1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/systm.h>
30 #include <sys/archsystm.h>
31 #include <sys/t_lock.h>
32 #include <sys/uadmin.h>
33 #include <sys/panic.h>
34 #include <sys/reboot.h>
35 #include <sys/autoconf.h>
36 #include <sys/machsystm.h>
37 #include <sys/promif.h>
38 #include <sys/membar.h>
39 #include <vm/hat_sfmmu.h>
40 #include <sys/cpu_module.h>
41 #include <sys/cpu_sgnblk_defs.h>
42 #include <sys/intreg.h>
43 #include <sys/consdev.h>
44 #include <sys/kdi_impl.h>
45 #include <sys/traptrace.h>
46 #include <sys/hypervisor_api.h>
47 #include <sys/vmsystm.h>
48 #include <sys/dtrace.h>
49 #include <sys/xc_impl.h>
50 #include <sys/callb.h>
51 #include <sys/mdesc.h>
52 #include <sys/mach_descrip.h>
53 #include <sys/wdt.h>
54 #include <sys/soft_state.h>
55 #include <sys/promimpl.h>
56 #include <sys/hsvc.h>
57 #include <sys/ldoms.h>
58 
59 /*
60  * hvdump_buf_va is a pointer to the currently-configured hvdump_buf.
61  * A value of NULL indicates that this area is not configured.
62  * hvdump_buf_sz is tunable but will be clamped to HVDUMP_SIZE_MAX.
63  */
64 
65 caddr_t hvdump_buf_va;
66 uint64_t hvdump_buf_sz = HVDUMP_SIZE_DEFAULT;
67 static uint64_t hvdump_buf_pa;
68 
69 u_longlong_t panic_tick;
70 
71 extern u_longlong_t gettick();
72 static void reboot_machine(char *);
73 static void update_hvdump_buffer(void);
74 
75 /*
76  * For xt_sync synchronization.
77  */
78 extern uint64_t xc_tick_limit;
79 extern uint64_t xc_tick_jump_limit;
80 
81 /*
82  * We keep our own copies, used for cache flushing, because we can be called
83  * before cpu_fiximpl().
84  */
85 static int kdi_dcache_size;
86 static int kdi_dcache_linesize;
87 static int kdi_icache_size;
88 static int kdi_icache_linesize;
89 
90 /*
91  * Assembly support for generic modules in sun4v/ml/mach_xc.s
92  */
93 extern void init_mondo_nocheck(xcfunc_t *func, uint64_t arg1, uint64_t arg2);
94 extern void kdi_flush_idcache(int, int, int, int);
95 extern uint64_t get_cpuaddr(uint64_t, uint64_t);
96 
97 
98 #define	BOOT_CMD_MAX_LEN	256
99 #define	BOOT_CMD_BASE		"boot "
100 
101 /*
102  * In an LDoms system we do not save the user's boot args in NVRAM
103  * as is done on legacy systems.  Instead, we format and send a
104  * 'reboot-command' variable to the variable service.  The contents
105  * of the variable are retrieved by OBP and used verbatim for
106  * the next boot.
107  */
108 static void
109 store_boot_cmd(char *args, boolean_t add_boot_str)
110 {
111 	static char	cmd_buf[BOOT_CMD_MAX_LEN];
112 	size_t		len = 1;
113 	pnode_t		node;
114 	size_t		base_len = 0;
115 	size_t		args_len;
116 	size_t		args_max;
117 
118 	if (add_boot_str) {
119 		(void) strcpy(cmd_buf, BOOT_CMD_BASE);
120 
121 		base_len = strlen(BOOT_CMD_BASE);
122 		len = base_len + 1;
123 	}
124 
125 	if (args != NULL) {
126 		args_len = strlen(args);
127 		args_max = BOOT_CMD_MAX_LEN - len;
128 
129 		if (args_len > args_max) {
130 			cmn_err(CE_WARN, "Reboot command too long (%ld), "
131 			    "truncating command arguments", len + args_len);
132 
133 			args_len = args_max;
134 		}
135 
136 		len += args_len;
137 		(void) strncpy(&cmd_buf[base_len], args, args_len);
138 	}
139 
140 	node = prom_optionsnode();
141 	if ((node == OBP_NONODE) || (node == OBP_BADNODE) ||
142 	    prom_setprop(node, "reboot-command", cmd_buf, len) == -1)
143 		cmn_err(CE_WARN, "Unable to store boot command for "
144 		    "use on reboot");
145 }
146 
147 
148 /*
149  * Machine dependent code to reboot.
150  *
151  * "bootstr", when non-null, points to a string to be used as the
152  * argument string when rebooting.
153  *
154  * "invoke_cb" is a boolean. It is set to true when mdboot() can safely
155  * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when
156  * we are in a normal shutdown sequence (interrupts are not blocked, the
157  * system is not panic'ing or being suspended).
158  */
159 /*ARGSUSED*/
160 void
161 mdboot(int cmd, int fcn, char *bootstr, boolean_t invoke_cb)
162 {
163 	extern void pm_cfb_check_and_powerup(void);
164 
165 	/*
166 	 * XXX - rconsvp is set to NULL to ensure that output messages
167 	 * are sent to the underlying "hardware" device using the
168 	 * monitor's printf routine since we are in the process of
169 	 * either rebooting or halting the machine.
170 	 */
171 	rconsvp = NULL;
172 
173 	switch (fcn) {
174 	case AD_HALT:
175 		/*
176 		 * LDoms: By storing a no-op command
177 		 * in the 'reboot-command' variable we cause OBP
178 		 * to ignore the setting of 'auto-boot?' after
179 		 * it completes the reset.  This causes the system
180 		 * to stop at the ok prompt.
181 		 */
182 		if (domaining_enabled() && invoke_cb)
183 			store_boot_cmd("noop", B_FALSE);
184 		break;
185 
186 	case AD_POWEROFF:
187 		break;
188 
189 	default:
190 		if (bootstr == NULL) {
191 			switch (fcn) {
192 
193 			case AD_BOOT:
194 				bootstr = "";
195 				break;
196 
197 			case AD_IBOOT:
198 				bootstr = "-a";
199 				break;
200 
201 			case AD_SBOOT:
202 				bootstr = "-s";
203 				break;
204 
205 			case AD_SIBOOT:
206 				bootstr = "-sa";
207 				break;
208 			default:
209 				cmn_err(CE_WARN,
210 				    "mdboot: invalid function %d", fcn);
211 				bootstr = "";
212 				break;
213 			}
214 		}
215 
216 		/*
217 		 * If LDoms is running, we must save the boot string
218 		 * before we enter restricted mode.  This is possible
219 		 * only if we are not being called from panic.
220 		 */
221 		if (domaining_enabled() && invoke_cb)
222 			store_boot_cmd(bootstr, B_TRUE);
223 	}
224 
225 	/*
226 	 * At a high interrupt level we can't:
227 	 *	1) bring up the console
228 	 * or
229 	 *	2) wait for pending interrupts prior to redistribution
230 	 *	   to the current CPU
231 	 *
232 	 * so we do them now.
233 	 */
234 	pm_cfb_check_and_powerup();
235 
236 	/* make sure there are no more changes to the device tree */
237 	devtree_freeze();
238 
239 	if (invoke_cb)
240 		(void) callb_execute_class(CB_CL_MDBOOT, NULL);
241 
242 	/*
243 	 * Clear any unresolved UEs from memory.
244 	 */
245 	page_retire_mdboot();
246 
247 	/*
248 	 * stop other cpus which also raise our priority. since there is only
249 	 * one active cpu after this, and our priority will be too high
250 	 * for us to be preempted, we're essentially single threaded
251 	 * from here on out.
252 	 */
253 	stop_other_cpus();
254 
255 	/*
256 	 * try and reset leaf devices.  reset_leaves() should only
257 	 * be called when there are no other threads that could be
258 	 * accessing devices
259 	 */
260 	reset_leaves();
261 
262 	watchdog_clear();
263 
264 	if (fcn == AD_HALT) {
265 		mach_set_soft_state(SIS_TRANSITION,
266 		    &SOLARIS_SOFT_STATE_HALT_MSG);
267 		halt((char *)NULL);
268 	} else if (fcn == AD_POWEROFF) {
269 		mach_set_soft_state(SIS_TRANSITION,
270 		    &SOLARIS_SOFT_STATE_POWER_MSG);
271 		power_down(NULL);
272 	} else {
273 		mach_set_soft_state(SIS_TRANSITION,
274 		    &SOLARIS_SOFT_STATE_REBOOT_MSG);
275 		reboot_machine(bootstr);
276 	}
277 	/* MAYBE REACHED */
278 }
279 
280 /* mdpreboot - may be called prior to mdboot while root fs still mounted */
281 /*ARGSUSED*/
282 void
283 mdpreboot(int cmd, int fcn, char *bootstr)
284 {
285 }
286 
287 /*
288  * Halt the machine and then reboot with the device
289  * and arguments specified in bootstr.
290  */
291 static void
292 reboot_machine(char *bootstr)
293 {
294 	flush_windows();
295 	stop_other_cpus();		/* send stop signal to other CPUs */
296 	prom_printf("rebooting...\n");
297 	/*
298 	 * For platforms that use CPU signatures, we
299 	 * need to set the signature block to OS and
300 	 * the state to exiting for all the processors.
301 	 */
302 	CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_REBOOT, -1);
303 	prom_reboot(bootstr);
304 	/*NOTREACHED*/
305 }
306 
307 /*
308  * We use the x-trap mechanism and idle_stop_xcall() to stop the other CPUs.
309  * Once in panic_idle() they raise spl, record their location, and spin.
310  */
311 static void
312 panic_idle(void)
313 {
314 	(void) spl7();
315 
316 	debug_flush_windows();
317 	(void) setjmp(&curthread->t_pcb);
318 
319 	CPU->cpu_m.in_prom = 1;
320 	membar_stld();
321 
322 	for (;;)
323 		;
324 }
325 
326 /*
327  * Force the other CPUs to trap into panic_idle(), and then remove them
328  * from the cpu_ready_set so they will no longer receive cross-calls.
329  */
330 /*ARGSUSED*/
331 void
332 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl)
333 {
334 	cpuset_t cps;
335 	int i;
336 
337 	(void) splzs();
338 	CPUSET_ALL_BUT(cps, cp->cpu_id);
339 	xt_some(cps, (xcfunc_t *)idle_stop_xcall, (uint64_t)&panic_idle, NULL);
340 
341 	for (i = 0; i < NCPU; i++) {
342 		if (i != cp->cpu_id && CPU_XCALL_READY(i)) {
343 			int ntries = 0x10000;
344 
345 			while (!cpu[i]->cpu_m.in_prom && ntries) {
346 				DELAY(50);
347 				ntries--;
348 			}
349 
350 			if (!cpu[i]->cpu_m.in_prom)
351 				printf("panic: failed to stop cpu%d\n", i);
352 
353 			cpu[i]->cpu_flags &= ~CPU_READY;
354 			cpu[i]->cpu_flags |= CPU_QUIESCED;
355 			CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id);
356 		}
357 	}
358 }
359 
360 /*
361  * Platform callback following each entry to panicsys().  If we've panicked at
362  * level 14, we examine t_panic_trap to see if a fatal trap occurred.  If so,
363  * we disable further %tick_cmpr interrupts.  If not, an explicit call to panic
364  * was made and so we re-enqueue an interrupt request structure to allow
365  * further level 14 interrupts to be processed once we lower PIL.  This allows
366  * us to handle panics from the deadman() CY_HIGH_LEVEL cyclic.
367  */
368 void
369 panic_enter_hw(int spl)
370 {
371 	if (!panic_tick) {
372 		panic_tick = gettick();
373 		if (mach_htraptrace_enable) {
374 			uint64_t prev_freeze;
375 
376 			/*  there are no possible error codes for this hcall */
377 			(void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL,
378 			    &prev_freeze);
379 		}
380 #ifdef TRAPTRACE
381 		TRAPTRACE_FREEZE;
382 #endif
383 	}
384 
385 	mach_set_soft_state(SIS_TRANSITION, &SOLARIS_SOFT_STATE_PANIC_MSG);
386 
387 	if (spl == ipltospl(PIL_14)) {
388 		uint_t opstate = disable_vec_intr();
389 
390 		if (curthread->t_panic_trap != NULL) {
391 			tickcmpr_disable();
392 			intr_dequeue_req(PIL_14, cbe_level14_inum);
393 		} else {
394 			if (!tickcmpr_disabled())
395 				intr_enqueue_req(PIL_14, cbe_level14_inum);
396 			/*
397 			 * Clear SOFTINT<14>, SOFTINT<0> (TICK_INT)
398 			 * and SOFTINT<16> (STICK_INT) to indicate
399 			 * that the current level 14 has been serviced.
400 			 */
401 			wr_clr_softint((1 << PIL_14) |
402 			    TICK_INT_MASK | STICK_INT_MASK);
403 		}
404 
405 		enable_vec_intr(opstate);
406 	}
407 }
408 
409 /*
410  * Miscellaneous hardware-specific code to execute after panicstr is set
411  * by the panic code: we also print and record PTL1 panic information here.
412  */
413 /*ARGSUSED*/
414 void
415 panic_quiesce_hw(panic_data_t *pdp)
416 {
417 	extern uint_t getpstate(void);
418 	extern void setpstate(uint_t);
419 
420 	/*
421 	 * Turn off TRAPTRACE and save the current %tick value in panic_tick.
422 	 */
423 	if (!panic_tick) {
424 		panic_tick = gettick();
425 		if (mach_htraptrace_enable) {
426 			uint64_t prev_freeze;
427 
428 			/*  there are no possible error codes for this hcall */
429 			(void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL,
430 			    &prev_freeze);
431 		}
432 #ifdef TRAPTRACE
433 		TRAPTRACE_FREEZE;
434 #endif
435 	}
436 	/*
437 	 * For Platforms that use CPU signatures, we
438 	 * need to set the signature block to OS, the state to
439 	 * exiting, and the substate to panic for all the processors.
440 	 */
441 	CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_PANIC, -1);
442 
443 	update_hvdump_buffer();
444 
445 	/*
446 	 * Disable further ECC errors from the bus nexus.
447 	 */
448 	(void) bus_func_invoke(BF_TYPE_ERRDIS);
449 
450 	/*
451 	 * Redirect all interrupts to the current CPU.
452 	 */
453 	intr_redist_all_cpus_shutdown();
454 
455 	/*
456 	 * This call exists solely to support dumps to network
457 	 * devices after sync from OBP.
458 	 *
459 	 * If we came here via the sync callback, then on some
460 	 * platforms, interrupts may have arrived while we were
461 	 * stopped in OBP.  OBP will arrange for those interrupts to
462 	 * be redelivered if you say "go", but not if you invoke a
463 	 * client callback like 'sync'.	 For some dump devices
464 	 * (network swap devices), we need interrupts to be
465 	 * delivered in order to dump, so we have to call the bus
466 	 * nexus driver to reset the interrupt state machines.
467 	 */
468 	(void) bus_func_invoke(BF_TYPE_RESINTR);
469 
470 	setpstate(getpstate() | PSTATE_IE);
471 }
472 
473 /*
474  * Platforms that use CPU signatures need to set the signature block to OS and
475  * the state to exiting for all CPUs. PANIC_CONT indicates that we're about to
476  * write the crash dump, which tells the SSP/SMS to begin a timeout routine to
477  * reboot the machine if the dump never completes.
478  */
479 /*ARGSUSED*/
480 void
481 panic_dump_hw(int spl)
482 {
483 	CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1);
484 }
485 
486 /*
487  * for ptl1_panic
488  */
489 void
490 ptl1_init_cpu(struct cpu *cpu)
491 {
492 	ptl1_state_t *pstate = &cpu->cpu_m.ptl1_state;
493 
494 	/*CONSTCOND*/
495 	if (sizeof (struct cpu) + PTL1_SSIZE > CPU_ALLOC_SIZE) {
496 		panic("ptl1_init_cpu: not enough space left for ptl1_panic "
497 		    "stack, sizeof (struct cpu) = %lu",
498 		    (unsigned long)sizeof (struct cpu));
499 	}
500 
501 	pstate->ptl1_stktop = (uintptr_t)cpu + CPU_ALLOC_SIZE;
502 	cpu_pa[cpu->cpu_id] = va_to_pa(cpu);
503 }
504 
505 void
506 ptl1_panic_handler(ptl1_state_t *pstate)
507 {
508 	static const char *ptl1_reasons[] = {
509 #ifdef	PTL1_PANIC_DEBUG
510 		"trap for debug purpose",	/* PTL1_BAD_DEBUG */
511 #else
512 		"unknown trap",			/* PTL1_BAD_DEBUG */
513 #endif
514 		"register window trap",		/* PTL1_BAD_WTRAP */
515 		"kernel MMU miss",		/* PTL1_BAD_KMISS */
516 		"kernel protection fault",	/* PTL1_BAD_KPROT_FAULT */
517 		"ISM MMU miss",			/* PTL1_BAD_ISM */
518 		"kernel MMU trap",		/* PTL1_BAD_MMUTRAP */
519 		"kernel trap handler state",	/* PTL1_BAD_TRAP */
520 		"floating point trap",		/* PTL1_BAD_FPTRAP */
521 #ifdef	DEBUG
522 		"pointer to intr_vec",		/* PTL1_BAD_INTR_VEC */
523 #else
524 		"unknown trap",			/* PTL1_BAD_INTR_VEC */
525 #endif
526 #ifdef	TRAPTRACE
527 		"TRACE_PTR state",		/* PTL1_BAD_TRACE_PTR */
528 #else
529 		"unknown trap",			/* PTL1_BAD_TRACE_PTR */
530 #endif
531 		"stack overflow",		/* PTL1_BAD_STACK */
532 		"DTrace flags",			/* PTL1_BAD_DTRACE_FLAGS */
533 		"attempt to steal locked ctx",  /* PTL1_BAD_CTX_STEAL */
534 		"CPU ECC error loop",		/* PTL1_BAD_ECC */
535 		"unexpected error from hypervisor call", /* PTL1_BAD_HCALL */
536 		"unexpected global level(%gl)", /* PTL1_BAD_GL */
537 		"Watchdog Reset", 		/* PTL1_BAD_WATCHDOG */
538 		"unexpected RED mode trap", 	/* PTL1_BAD_RED */
539 		"return value EINVAL from hcall: "\
540 		    "UNMAP_PERM_ADDR",	/* PTL1_BAD_HCALL_UNMAP_PERM_EINVAL */
541 		"return value ENOMAP from hcall: "\
542 		    "UNMAP_PERM_ADDR", /* PTL1_BAD_HCALL_UNMAP_PERM_ENOMAP */
543 		"error raising a TSB exception", /* PTL1_BAD_RAISE_TSBEXCP */
544 		"missing shared TSB"	/* PTL1_NO_SCDTSB8K */
545 	};
546 
547 	uint_t reason = pstate->ptl1_regs.ptl1_gregs[0].ptl1_g1;
548 	uint_t tl = pstate->ptl1_regs.ptl1_trap_regs[0].ptl1_tl;
549 	struct panic_trap_info ti = { 0 };
550 
551 	/*
552 	 * Use trap_info for a place holder to call panic_savetrap() and
553 	 * panic_showtrap() to save and print out ptl1_panic information.
554 	 */
555 	if (curthread->t_panic_trap == NULL)
556 		curthread->t_panic_trap = &ti;
557 
558 	if (reason < sizeof (ptl1_reasons) / sizeof (ptl1_reasons[0]))
559 		panic("bad %s at TL %u", ptl1_reasons[reason], tl);
560 	else
561 		panic("ptl1_panic reason 0x%x at TL %u", reason, tl);
562 }
563 
564 void
565 clear_watchdog_on_exit(void)
566 {
567 	if (watchdog_enabled && watchdog_activated) {
568 		prom_printf("Debugging requested; hardware watchdog "
569 		    "suspended.\n");
570 		(void) watchdog_suspend();
571 	}
572 }
573 
574 /*
575  * Restore the watchdog timer when returning from a debugger
576  * after a panic or L1-A and resume watchdog pat.
577  */
578 void
579 restore_watchdog_on_entry()
580 {
581 	watchdog_resume();
582 }
583 
584 int
585 kdi_watchdog_disable(void)
586 {
587 	watchdog_suspend();
588 
589 	return (0);
590 }
591 
592 void
593 kdi_watchdog_restore(void)
594 {
595 	watchdog_resume();
596 }
597 
598 void
599 mach_dump_buffer_init(void)
600 {
601 	uint64_t  ret, minsize = 0;
602 
603 	if (hvdump_buf_sz > HVDUMP_SIZE_MAX)
604 		hvdump_buf_sz = HVDUMP_SIZE_MAX;
605 
606 	hvdump_buf_va = contig_mem_alloc_align(hvdump_buf_sz, PAGESIZE);
607 	if (hvdump_buf_va == NULL)
608 		return;
609 
610 	hvdump_buf_pa = va_to_pa(hvdump_buf_va);
611 
612 	ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz,
613 	    &minsize);
614 
615 	if (ret != H_EOK) {
616 		contig_mem_free(hvdump_buf_va, hvdump_buf_sz);
617 		hvdump_buf_va = NULL;
618 		cmn_err(CE_NOTE, "!Error in setting up hvstate"
619 		    "dump buffer. Error = 0x%lx, size = 0x%lx,"
620 		    "buf_pa = 0x%lx", ret, hvdump_buf_sz,
621 		    hvdump_buf_pa);
622 
623 		if (ret == H_EINVAL) {
624 			cmn_err(CE_NOTE, "!Buffer size too small."
625 			    "Available buffer size = 0x%lx,"
626 			    "Minimum buffer size required = 0x%lx",
627 			    hvdump_buf_sz, minsize);
628 		}
629 	}
630 }
631 
632 
633 static void
634 update_hvdump_buffer(void)
635 {
636 	uint64_t ret, dummy_val;
637 
638 	if (hvdump_buf_va == NULL)
639 		return;
640 
641 	ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz,
642 	    &dummy_val);
643 	if (ret != H_EOK) {
644 		cmn_err(CE_NOTE, "!Cannot update hvstate dump"
645 		    "buffer. Error = 0x%lx", ret);
646 	}
647 }
648 
649 
650 static int
651 getintprop(pnode_t node, char *name, int deflt)
652 {
653 	int	value;
654 
655 	switch (prom_getproplen(node, name)) {
656 	case 0:
657 		value = 1;	/* boolean properties */
658 		break;
659 
660 	case sizeof (int):
661 		(void) prom_getprop(node, name, (caddr_t)&value);
662 		break;
663 
664 	default:
665 		value = deflt;
666 		break;
667 	}
668 
669 	return (value);
670 }
671 
672 /*
673  * Called by setcpudelay
674  */
675 void
676 cpu_init_tick_freq(void)
677 {
678 	md_t *mdp;
679 	mde_cookie_t rootnode;
680 	int		listsz;
681 	mde_cookie_t	*listp = NULL;
682 	int	num_nodes;
683 	uint64_t stick_prop;
684 
685 	if (broken_md_flag) {
686 		sys_tick_freq = cpunodes[CPU->cpu_id].clock_freq;
687 		return;
688 	}
689 
690 	if ((mdp = md_get_handle()) == NULL)
691 		panic("stick_frequency property not found in MD");
692 
693 	rootnode = md_root_node(mdp);
694 	ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE);
695 
696 	num_nodes = md_node_count(mdp);
697 
698 	ASSERT(num_nodes > 0);
699 	listsz = num_nodes * sizeof (mde_cookie_t);
700 	listp = (mde_cookie_t *)prom_alloc((caddr_t)0, listsz, 0);
701 
702 	if (listp == NULL)
703 		panic("cannot allocate list for MD properties");
704 
705 	num_nodes = md_scan_dag(mdp, rootnode, md_find_name(mdp, "platform"),
706 	    md_find_name(mdp, "fwd"), listp);
707 
708 	ASSERT(num_nodes == 1);
709 
710 	if (md_get_prop_val(mdp, *listp, "stick-frequency", &stick_prop) != 0)
711 		panic("stick_frequency property not found in MD");
712 
713 	sys_tick_freq = stick_prop;
714 
715 	prom_free((caddr_t)listp, listsz);
716 	(void) md_fini_handle(mdp);
717 }
718 
719 int shipit(int n, uint64_t cpu_list_ra);
720 extern uint64_t xc_tick_limit;
721 extern uint64_t xc_tick_jump_limit;
722 
723 #ifdef DEBUG
724 #define	SEND_MONDO_STATS	1
725 #endif
726 
727 #ifdef SEND_MONDO_STATS
728 uint32_t x_one_stimes[64];
729 uint32_t x_one_ltimes[16];
730 uint32_t x_set_stimes[64];
731 uint32_t x_set_ltimes[16];
732 uint32_t x_set_cpus[NCPU];
733 #endif
734 
735 void
736 send_one_mondo(int cpuid)
737 {
738 	int retries, stat;
739 	uint64_t starttick, endtick, tick, lasttick;
740 	struct machcpu	*mcpup = &(CPU->cpu_m);
741 
742 	CPU_STATS_ADDQ(CPU, sys, xcalls, 1);
743 	starttick = lasttick = gettick();
744 	mcpup->cpu_list[0] = (uint16_t)cpuid;
745 	stat = shipit(1, mcpup->cpu_list_ra);
746 	endtick = starttick + xc_tick_limit;
747 	retries = 0;
748 	while (stat != H_EOK) {
749 		if (stat != H_EWOULDBLOCK) {
750 			if (panic_quiesce)
751 				return;
752 			if (stat == H_ECPUERROR)
753 				cmn_err(CE_PANIC, "send_one_mondo: "
754 				    "cpuid: 0x%x has been marked in "
755 				    "error", cpuid);
756 			else
757 				cmn_err(CE_PANIC, "send_one_mondo: "
758 				    "unexpected hypervisor error 0x%x "
759 				    "while sending a mondo to cpuid: "
760 				    "0x%x", stat, cpuid);
761 		}
762 		tick = gettick();
763 		/*
764 		 * If there is a big jump between the current tick
765 		 * count and lasttick, we have probably hit a break
766 		 * point.  Adjust endtick accordingly to avoid panic.
767 		 */
768 		if (tick > (lasttick + xc_tick_jump_limit))
769 			endtick += (tick - lasttick);
770 		lasttick = tick;
771 		if (tick > endtick) {
772 			if (panic_quiesce)
773 				return;
774 			cmn_err(CE_PANIC, "send mondo timeout "
775 			    "(target 0x%x) [retries: 0x%x hvstat: 0x%x]",
776 			    cpuid, retries, stat);
777 		}
778 		drv_usecwait(1);
779 		stat = shipit(1, mcpup->cpu_list_ra);
780 		retries++;
781 	}
782 #ifdef SEND_MONDO_STATS
783 	{
784 		uint64_t n = gettick() - starttick;
785 		if (n < 8192)
786 			x_one_stimes[n >> 7]++;
787 		else if (n < 15*8192)
788 			x_one_ltimes[n >> 13]++;
789 		else
790 			x_one_ltimes[0xf]++;
791 	}
792 #endif
793 }
794 
795 void
796 send_mondo_set(cpuset_t set)
797 {
798 	uint64_t starttick, endtick, tick, lasttick;
799 	uint_t largestid, smallestid;
800 	int i, j;
801 	int ncpuids = 0;
802 	int shipped = 0;
803 	int retries = 0;
804 	struct machcpu	*mcpup = &(CPU->cpu_m);
805 
806 	ASSERT(!CPUSET_ISNULL(set));
807 	CPUSET_BOUNDS(set, smallestid, largestid);
808 	if (smallestid == CPUSET_NOTINSET) {
809 		return;
810 	}
811 
812 	starttick = lasttick = gettick();
813 	endtick = starttick + xc_tick_limit;
814 
815 	/*
816 	 * Assemble CPU list for HV argument. We already know
817 	 * smallestid and largestid are members of set.
818 	 */
819 	mcpup->cpu_list[ncpuids++] = (uint16_t)smallestid;
820 	if (largestid != smallestid) {
821 		for (i = smallestid+1; i <= largestid-1; i++) {
822 			if (CPU_IN_SET(set, i)) {
823 				mcpup->cpu_list[ncpuids++] = (uint16_t)i;
824 			}
825 		}
826 		mcpup->cpu_list[ncpuids++] = (uint16_t)largestid;
827 	}
828 
829 	do {
830 		int stat;
831 
832 		stat = shipit(ncpuids, mcpup->cpu_list_ra);
833 		if (stat == H_EOK) {
834 			shipped += ncpuids;
835 			break;
836 		}
837 
838 		/*
839 		 * Either not all CPU mondos were sent, or an
840 		 * error occurred. CPUs that were sent mondos
841 		 * have their CPU IDs overwritten in cpu_list.
842 		 * Reset cpu_list so that it only holds those
843 		 * CPU IDs that still need to be sent.
844 		 */
845 		for (i = 0, j = 0; i < ncpuids; i++) {
846 			if (mcpup->cpu_list[i] == HV_SEND_MONDO_ENTRYDONE) {
847 				shipped++;
848 			} else {
849 				mcpup->cpu_list[j++] = mcpup->cpu_list[i];
850 			}
851 		}
852 		ncpuids = j;
853 
854 		/*
855 		 * Now handle possible errors returned
856 		 * from hypervisor.
857 		 */
858 		if (stat == H_ECPUERROR) {
859 			int errorcpus;
860 
861 			if (!panic_quiesce)
862 				cmn_err(CE_CONT, "send_mondo_set: cpuid(s) ");
863 
864 			/*
865 			 * Remove any CPUs in the error state from
866 			 * cpu_list. At this point cpu_list only
867 			 * contains the CPU IDs for mondos not
868 			 * succesfully sent.
869 			 */
870 			for (i = 0, errorcpus = 0; i < ncpuids; i++) {
871 				uint64_t state = CPU_STATE_INVALID;
872 				uint16_t id = mcpup->cpu_list[i];
873 
874 				(void) hv_cpu_state(id, &state);
875 				if (state == CPU_STATE_ERROR) {
876 					if (!panic_quiesce)
877 						cmn_err(CE_CONT, "0x%x ", id);
878 					errorcpus++;
879 				} else if (errorcpus > 0) {
880 					mcpup->cpu_list[i - errorcpus] =
881 					    mcpup->cpu_list[i];
882 				}
883 			}
884 			ncpuids -= errorcpus;
885 
886 			if (!panic_quiesce) {
887 				if (errorcpus == 0) {
888 					cmn_err(CE_CONT, "<none> have been "
889 					    "marked in error\n");
890 					cmn_err(CE_PANIC, "send_mondo_set: "
891 					    "hypervisor returned "
892 					    "H_ECPUERROR but no CPU in "
893 					    "cpu_list in error state");
894 				} else {
895 					cmn_err(CE_CONT, "have been marked in "
896 					    "error\n");
897 					cmn_err(CE_PANIC, "send_mondo_set: "
898 					    "CPU(s) in error state");
899 				}
900 			}
901 		} else if (stat != H_EWOULDBLOCK) {
902 			if (panic_quiesce)
903 				return;
904 			/*
905 			 * For all other errors, panic.
906 			 */
907 			cmn_err(CE_CONT, "send_mondo_set: unexpected "
908 			    "hypervisor error 0x%x while sending a "
909 			    "mondo to cpuid(s):", stat);
910 			for (i = 0; i < ncpuids; i++) {
911 				cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]);
912 			}
913 			cmn_err(CE_CONT, "\n");
914 			cmn_err(CE_PANIC, "send_mondo_set: unexpected "
915 			    "hypervisor error");
916 		}
917 
918 		tick = gettick();
919 		/*
920 		 * If there is a big jump between the current tick
921 		 * count and lasttick, we have probably hit a break
922 		 * point.  Adjust endtick accordingly to avoid panic.
923 		 */
924 		if (tick > (lasttick + xc_tick_jump_limit))
925 			endtick += (tick - lasttick);
926 		lasttick = tick;
927 		if (tick > endtick) {
928 			if (panic_quiesce)
929 				return;
930 			cmn_err(CE_CONT, "send mondo timeout "
931 			    "[retries: 0x%x]  cpuids: ", retries);
932 			for (i = 0; i < ncpuids; i++)
933 				cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]);
934 			cmn_err(CE_CONT, "\n");
935 			cmn_err(CE_PANIC, "send_mondo_set: timeout");
936 		}
937 
938 		while (gettick() < (tick + sys_clock_mhz))
939 			;
940 		retries++;
941 	} while (ncpuids > 0);
942 
943 	CPU_STATS_ADDQ(CPU, sys, xcalls, shipped);
944 
945 #ifdef SEND_MONDO_STATS
946 	{
947 		uint64_t n = gettick() - starttick;
948 		if (n < 8192)
949 			x_set_stimes[n >> 7]++;
950 		else if (n < 15*8192)
951 			x_set_ltimes[n >> 13]++;
952 		else
953 			x_set_ltimes[0xf]++;
954 	}
955 	x_set_cpus[shipped]++;
956 #endif
957 }
958 
959 void
960 syncfpu(void)
961 {
962 }
963 
964 void
965 sticksync_slave(void)
966 {}
967 
968 void
969 sticksync_master(void)
970 {}
971 
972 void
973 cpu_init_cache_scrub(void)
974 {
975 	mach_set_soft_state(SIS_NORMAL, &SOLARIS_SOFT_STATE_RUN_MSG);
976 }
977 
978 int
979 dtrace_blksuword32_err(uintptr_t addr, uint32_t *data)
980 {
981 	int ret, watched;
982 
983 	watched = watch_disable_addr((void *)addr, 4, S_WRITE);
984 	ret = dtrace_blksuword32(addr, data, 0);
985 	if (watched)
986 		watch_enable_addr((void *)addr, 4, S_WRITE);
987 
988 	return (ret);
989 }
990 
991 int
992 dtrace_blksuword32(uintptr_t addr, uint32_t *data, int tryagain)
993 {
994 	if (suword32((void *)addr, *data) == -1)
995 		return (tryagain ? dtrace_blksuword32_err(addr, data) : -1);
996 	dtrace_flush_sec(addr);
997 
998 	return (0);
999 }
1000 
1001 /*ARGSUSED*/
1002 void
1003 cpu_faulted_enter(struct cpu *cp)
1004 {
1005 }
1006 
1007 /*ARGSUSED*/
1008 void
1009 cpu_faulted_exit(struct cpu *cp)
1010 {
1011 }
1012 
1013 static int
1014 kdi_cpu_ready_iter(int (*cb)(int, void *), void *arg)
1015 {
1016 	int rc, i;
1017 
1018 	for (rc = 0, i = 0; i < NCPU; i++) {
1019 		if (CPU_IN_SET(cpu_ready_set, i))
1020 			rc += cb(i, arg);
1021 	}
1022 
1023 	return (rc);
1024 }
1025 
1026 /*
1027  * Sends a cross-call to a specified processor.  The caller assumes
1028  * responsibility for repetition of cross-calls, as appropriate (MARSA for
1029  * debugging).
1030  */
1031 static int
1032 kdi_xc_one(int cpuid, void (*func)(uintptr_t, uintptr_t), uintptr_t arg1,
1033     uintptr_t arg2)
1034 {
1035 	int stat;
1036 	struct machcpu	*mcpup;
1037 	uint64_t cpuaddr_reg = 0, cpuaddr_scr = 0;
1038 
1039 	mcpup = &(((cpu_t *)get_cpuaddr(cpuaddr_reg, cpuaddr_scr))->cpu_m);
1040 
1041 	/*
1042 	 * if (idsr_busy())
1043 	 *	return (KDI_XC_RES_ERR);
1044 	 */
1045 
1046 	init_mondo_nocheck((xcfunc_t *)func, arg1, arg2);
1047 
1048 	mcpup->cpu_list[0] = (uint16_t)cpuid;
1049 	stat = shipit(1, mcpup->cpu_list_ra);
1050 
1051 	if (stat == 0)
1052 		return (KDI_XC_RES_OK);
1053 	else
1054 		return (KDI_XC_RES_NACK);
1055 }
1056 
1057 static void
1058 kdi_tickwait(clock_t nticks)
1059 {
1060 	clock_t endtick = gettick() + nticks;
1061 
1062 	while (gettick() < endtick)
1063 		;
1064 }
1065 
1066 static void
1067 kdi_cpu_init(int dcache_size, int dcache_linesize, int icache_size,
1068     int icache_linesize)
1069 {
1070 	kdi_dcache_size = dcache_size;
1071 	kdi_dcache_linesize = dcache_linesize;
1072 	kdi_icache_size = icache_size;
1073 	kdi_icache_linesize = icache_linesize;
1074 }
1075 
1076 /* used directly by kdi_read/write_phys */
1077 void
1078 kdi_flush_caches(void)
1079 {
1080 	/* Not required on sun4v architecture. */
1081 }
1082 
1083 /*ARGSUSED*/
1084 int
1085 kdi_get_stick(uint64_t *stickp)
1086 {
1087 	return (-1);
1088 }
1089 
1090 void
1091 cpu_kdi_init(kdi_t *kdi)
1092 {
1093 	kdi->kdi_flush_caches = kdi_flush_caches;
1094 	kdi->mkdi_cpu_init = kdi_cpu_init;
1095 	kdi->mkdi_cpu_ready_iter = kdi_cpu_ready_iter;
1096 	kdi->mkdi_xc_one = kdi_xc_one;
1097 	kdi->mkdi_tickwait = kdi_tickwait;
1098 	kdi->mkdi_get_stick = kdi_get_stick;
1099 }
1100 
1101 uint64_t	soft_state_message_ra[SOLARIS_SOFT_STATE_MSG_CNT];
1102 static uint64_t	soft_state_saved_state = (uint64_t)-1;
1103 static int	soft_state_initialized = 0;
1104 static uint64_t soft_state_sup_minor;		/* Supported minor number */
1105 static hsvc_info_t soft_state_hsvc = {
1106 			HSVC_REV_1, NULL, HSVC_GROUP_SOFT_STATE, 1, 0, NULL };
1107 
1108 
1109 static void
1110 sun4v_system_claim(void)
1111 {
1112 	watchdog_suspend();
1113 	/*
1114 	 * For "mdb -K", set soft state to debugging
1115 	 */
1116 	if (soft_state_saved_state == -1) {
1117 		mach_get_soft_state(&soft_state_saved_state,
1118 		    &SOLARIS_SOFT_STATE_SAVED_MSG);
1119 	}
1120 	/*
1121 	 * check again as the read above may or may not have worked and if
1122 	 * it didn't then soft state will still be -1
1123 	 */
1124 	if (soft_state_saved_state != -1) {
1125 		mach_set_soft_state(SIS_TRANSITION,
1126 		    &SOLARIS_SOFT_STATE_DEBUG_MSG);
1127 	}
1128 }
1129 
1130 static void
1131 sun4v_system_release(void)
1132 {
1133 	watchdog_resume();
1134 	/*
1135 	 * For "mdb -K", set soft_state state back to original state on exit
1136 	 */
1137 	if (soft_state_saved_state != -1) {
1138 		mach_set_soft_state(soft_state_saved_state,
1139 		    &SOLARIS_SOFT_STATE_SAVED_MSG);
1140 		soft_state_saved_state = -1;
1141 	}
1142 }
1143 
1144 void
1145 plat_kdi_init(kdi_t *kdi)
1146 {
1147 	kdi->pkdi_system_claim = sun4v_system_claim;
1148 	kdi->pkdi_system_release = sun4v_system_release;
1149 }
1150 
1151 /*
1152  * Routine to return memory information associated
1153  * with a physical address and syndrome.
1154  */
1155 /* ARGSUSED */
1156 int
1157 cpu_get_mem_info(uint64_t synd, uint64_t afar,
1158     uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep,
1159     int *segsp, int *banksp, int *mcidp)
1160 {
1161 	return (ENOTSUP);
1162 }
1163 
1164 /*
1165  * This routine returns the size of the kernel's FRU name buffer.
1166  */
1167 size_t
1168 cpu_get_name_bufsize()
1169 {
1170 	return (UNUM_NAMLEN);
1171 }
1172 
1173 /*
1174  * This routine is a more generic interface to cpu_get_mem_unum(),
1175  * that may be used by other modules (e.g. mm).
1176  */
1177 /* ARGSUSED */
1178 int
1179 cpu_get_mem_name(uint64_t synd, uint64_t *afsr, uint64_t afar,
1180     char *buf, int buflen, int *lenp)
1181 {
1182 	return (ENOTSUP);
1183 }
1184 
1185 /* ARGSUSED */
1186 int
1187 cpu_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
1188 {
1189 	return (ENOTSUP);
1190 }
1191 
1192 /* ARGSUSED */
1193 int
1194 cpu_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
1195 {
1196 	return (ENOTSUP);
1197 }
1198 
1199 /*
1200  * xt_sync - wait for previous x-traps to finish
1201  */
1202 void
1203 xt_sync(cpuset_t cpuset)
1204 {
1205 	union {
1206 		uint8_t volatile byte[NCPU];
1207 		uint64_t volatile xword[NCPU / 8];
1208 	} cpu_sync;
1209 	uint64_t starttick, endtick, tick, lasttick, traptrace_id;
1210 	uint_t largestid, smallestid;
1211 	int i, j;
1212 
1213 	kpreempt_disable();
1214 	CPUSET_DEL(cpuset, CPU->cpu_id);
1215 	CPUSET_AND(cpuset, cpu_ready_set);
1216 
1217 	CPUSET_BOUNDS(cpuset, smallestid, largestid);
1218 	if (smallestid == CPUSET_NOTINSET)
1219 		goto out;
1220 
1221 	/*
1222 	 * Sun4v uses a queue for receiving mondos. Successful
1223 	 * transmission of a mondo only indicates that the mondo
1224 	 * has been written into the queue.
1225 	 *
1226 	 * We use an array of bytes to let each cpu to signal back
1227 	 * to the cross trap sender that the cross trap has been
1228 	 * executed. Set the byte to 1 before sending the cross trap
1229 	 * and wait until other cpus reset it to 0.
1230 	 */
1231 	bzero((void *)&cpu_sync, NCPU);
1232 	cpu_sync.byte[smallestid] = 1;
1233 	if (largestid != smallestid) {
1234 		for (i = (smallestid + 1); i <= (largestid - 1); i++)
1235 			if (CPU_IN_SET(cpuset, i))
1236 				cpu_sync.byte[i] = 1;
1237 		cpu_sync.byte[largestid] = 1;
1238 	}
1239 
1240 	/*
1241 	 * To help debug xt_sync panic, each mondo is uniquely identified
1242 	 * by passing the tick value, traptrace_id as the second mondo
1243 	 * argument to xt_some which is logged in CPU's mondo queue,
1244 	 * traptrace buffer and the panic message.
1245 	 */
1246 	traptrace_id = gettick();
1247 	xt_some(cpuset, (xcfunc_t *)xt_sync_tl1,
1248 	    (uint64_t)cpu_sync.byte, traptrace_id);
1249 
1250 	starttick = lasttick = gettick();
1251 	endtick = starttick + xc_tick_limit;
1252 
1253 	for (i = (smallestid / 8); i <= (largestid / 8); i++) {
1254 		while (cpu_sync.xword[i] != 0) {
1255 			tick = gettick();
1256 			/*
1257 			 * If there is a big jump between the current tick
1258 			 * count and lasttick, we have probably hit a break
1259 			 * point. Adjust endtick accordingly to avoid panic.
1260 			 */
1261 			if (tick > (lasttick + xc_tick_jump_limit)) {
1262 				endtick += (tick - lasttick);
1263 			}
1264 			lasttick = tick;
1265 			if (tick > endtick) {
1266 				if (panic_quiesce)
1267 					goto out;
1268 				cmn_err(CE_CONT, "Cross trap sync timeout:  "
1269 				    "at cpu_sync.xword[%d]: 0x%lx "
1270 				    "cpu_sync.byte: 0x%lx "
1271 				    "starttick: 0x%lx endtick: 0x%lx "
1272 				    "traptrace_id = 0x%lx\n",
1273 				    i, cpu_sync.xword[i],
1274 				    (uint64_t)cpu_sync.byte,
1275 				    starttick, endtick, traptrace_id);
1276 				cmn_err(CE_CONT, "CPUIDs:");
1277 				for (j = (i * 8); j <= largestid; j++) {
1278 					if (cpu_sync.byte[j] != 0)
1279 						cmn_err(CE_CONT, " 0x%x", j);
1280 				}
1281 				cmn_err(CE_PANIC, "xt_sync: timeout");
1282 			}
1283 		}
1284 	}
1285 
1286 out:
1287 	kpreempt_enable();
1288 }
1289 
1290 /*
1291  * Recalculate the values of the cross-call timeout variables based
1292  * on the value of the 'inter-cpu-latency' property of the platform node.
1293  * The property sets the number of nanosec to wait for a cross-call
1294  * to be acknowledged.  Other timeout variables are derived from it.
1295  *
1296  * N.B. This implementation is aware of the internals of xc_init()
1297  * and updates many of the same variables.
1298  */
1299 void
1300 recalc_xc_timeouts(void)
1301 {
1302 	typedef union {
1303 		uint64_t whole;
1304 		struct {
1305 			uint_t high;
1306 			uint_t low;
1307 		} half;
1308 	} u_number;
1309 
1310 	/* See x_call.c for descriptions of these extern variables. */
1311 	extern uint64_t xc_tick_limit_scale;
1312 	extern uint64_t xc_mondo_time_limit;
1313 	extern uint64_t xc_func_time_limit;
1314 	extern uint64_t xc_scale;
1315 	extern uint64_t xc_mondo_multiplier;
1316 	extern uint_t   nsec_shift;
1317 
1318 	/* Temp versions of the target variables */
1319 	uint64_t tick_limit;
1320 	uint64_t tick_jump_limit;
1321 	uint64_t mondo_time_limit;
1322 	uint64_t func_time_limit;
1323 	uint64_t scale;
1324 
1325 	uint64_t latency;	/* nanoseconds */
1326 	uint64_t maxfreq;
1327 	uint64_t tick_limit_save = xc_tick_limit;
1328 	uint_t   tick_scale;
1329 	uint64_t top;
1330 	uint64_t bottom;
1331 	u_number tk;
1332 
1333 	md_t *mdp;
1334 	int nrnode;
1335 	mde_cookie_t *platlist;
1336 
1337 	/*
1338 	 * Look up the 'inter-cpu-latency' (optional) property in the
1339 	 * platform node of the MD.  The units are nanoseconds.
1340 	 */
1341 	if ((mdp = md_get_handle()) == NULL) {
1342 		cmn_err(CE_WARN, "recalc_xc_timeouts: "
1343 		    "Unable to initialize machine description");
1344 		return;
1345 	}
1346 
1347 	nrnode = md_alloc_scan_dag(mdp,
1348 	    md_root_node(mdp), "platform", "fwd", &platlist);
1349 
1350 	ASSERT(nrnode == 1);
1351 	if (nrnode < 1) {
1352 		cmn_err(CE_WARN, "recalc_xc_timeouts: platform node missing");
1353 		goto done;
1354 	}
1355 
1356 	if (md_get_prop_val(mdp, platlist[0],
1357 	    "inter-cpu-latency", &latency) == -1)
1358 		goto done;
1359 
1360 	/*
1361 	 * clock.h defines an assembly-language macro
1362 	 * (NATIVE_TIME_TO_NSEC_SCALE) to convert from %stick
1363 	 * units to nanoseconds.  Since the inter-cpu-latency
1364 	 * units are nanoseconds and the xc_* variables require
1365 	 * %stick units, we need the inverse of that function.
1366 	 * The trick is to perform the calculation without
1367 	 * floating point, but also without integer truncation
1368 	 * or overflow.  To understand the calculation below,
1369 	 * please read the discussion of the macro in clock.h.
1370 	 * Since this new code will be invoked infrequently,
1371 	 * we can afford to implement it in C.
1372 	 *
1373 	 * tick_scale is the reciprocal of nsec_scale which is
1374 	 * calculated at startup in setcpudelay().  The calc
1375 	 * of tick_limit parallels that of NATIVE_TIME_TO_NSEC_SCALE
1376 	 * except we use tick_scale instead of nsec_scale and
1377 	 * C instead of assembler.
1378 	 */
1379 	tick_scale = (uint_t)(((u_longlong_t)sys_tick_freq
1380 	    << (32 - nsec_shift)) / NANOSEC);
1381 
1382 	tk.whole = latency;
1383 	top = ((uint64_t)tk.half.high << 4) * tick_scale;
1384 	bottom = (((uint64_t)tk.half.low << 4) * (uint64_t)tick_scale) >> 32;
1385 	tick_limit = top + bottom;
1386 
1387 
1388 	/*
1389 	 * xc_init() calculated 'maxfreq' by looking at all the cpus,
1390 	 * and used it to derive some of the timeout variables that we
1391 	 * recalculate below.  We can back into the original value by
1392 	 * using the inverse of one of those calculations.
1393 	 */
1394 	maxfreq = xc_mondo_time_limit / xc_scale;
1395 
1396 	/*
1397 	 * Don't allow the new timeout (xc_tick_limit) to fall below
1398 	 * the system tick frequency (stick).  Allowing the timeout
1399 	 * to be set more tightly than this empirically determined
1400 	 * value may cause panics.
1401 	 */
1402 	tick_limit = tick_limit < sys_tick_freq ? sys_tick_freq : tick_limit;
1403 
1404 	tick_jump_limit = tick_limit / 32;
1405 	tick_limit *= xc_tick_limit_scale;
1406 
1407 	/*
1408 	 * Recalculate xc_scale since it is used in a callback function
1409 	 * (xc_func_timeout_adj) to adjust two of the timeouts dynamically.
1410 	 * Make the change in xc_scale proportional to the change in
1411 	 * xc_tick_limit.
1412 	 */
1413 	scale = (xc_scale * tick_limit + sys_tick_freq / 2) / tick_limit_save;
1414 	if (scale == 0)
1415 		scale = 1;
1416 
1417 	mondo_time_limit = maxfreq * scale;
1418 	func_time_limit = mondo_time_limit * xc_mondo_multiplier;
1419 
1420 	/*
1421 	 * Don't modify the timeouts if nothing has changed.  Else,
1422 	 * stuff the variables with the freshly calculated (temp)
1423 	 * variables.  This minimizes the window where the set of
1424 	 * values could be inconsistent.
1425 	 */
1426 	if (tick_limit != xc_tick_limit) {
1427 		xc_tick_limit = tick_limit;
1428 		xc_tick_jump_limit = tick_jump_limit;
1429 		xc_scale = scale;
1430 		xc_mondo_time_limit = mondo_time_limit;
1431 		xc_func_time_limit = func_time_limit;
1432 		/*
1433 		 * Force the new values to be used for future cross
1434 		 * calls.  This is necessary only when we increase
1435 		 * the timeouts.
1436 		 */
1437 		if (tick_limit > tick_limit_save) {
1438 			cpuset_t cpuset = cpu_ready_set;
1439 
1440 			xt_sync(cpuset);
1441 		}
1442 	}
1443 
1444 done:
1445 	if (nrnode > 0)
1446 		md_free_scan_dag(mdp, &platlist);
1447 	(void) md_fini_handle(mdp);
1448 }
1449 
1450 void
1451 mach_soft_state_init(void)
1452 {
1453 	int		i;
1454 	uint64_t	ra;
1455 
1456 	/*
1457 	 * Try to register soft_state api. If it fails, soft_state api has not
1458 	 * been implemented in the firmware, so do not bother to setup
1459 	 * soft_state in the kernel.
1460 	 */
1461 	if ((i = hsvc_register(&soft_state_hsvc, &soft_state_sup_minor)) != 0) {
1462 		return;
1463 	}
1464 	for (i = 0; i < SOLARIS_SOFT_STATE_MSG_CNT; i++) {
1465 		ASSERT(strlen((const char *)(void *)
1466 		    soft_state_message_strings + i) < SSM_SIZE);
1467 		if ((ra = va_to_pa(
1468 		    (void *)(soft_state_message_strings + i))) == -1ll) {
1469 			return;
1470 		}
1471 		soft_state_message_ra[i] = ra;
1472 	}
1473 	/*
1474 	 * Tell OBP that we are supporting Guest State
1475 	 */
1476 	prom_sun4v_soft_state_supported();
1477 	soft_state_initialized = 1;
1478 }
1479 
1480 void
1481 mach_set_soft_state(uint64_t state, uint64_t *string_ra)
1482 {
1483 	uint64_t	rc;
1484 
1485 	if (soft_state_initialized && *string_ra) {
1486 		rc = hv_soft_state_set(state, *string_ra);
1487 		if (rc != H_EOK) {
1488 			cmn_err(CE_WARN,
1489 			    "hv_soft_state_set returned %ld\n", rc);
1490 		}
1491 	}
1492 }
1493 
1494 void
1495 mach_get_soft_state(uint64_t *state, uint64_t *string_ra)
1496 {
1497 	uint64_t	rc;
1498 
1499 	if (soft_state_initialized && *string_ra) {
1500 		rc = hv_soft_state_get(*string_ra, state);
1501 		if (rc != H_EOK) {
1502 			cmn_err(CE_WARN,
1503 			    "hv_soft_state_get returned %ld\n", rc);
1504 			*state = -1;
1505 		}
1506 	}
1507 }
1508