xref: /linux/arch/arm/kernel/smp.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/kernel/smp.c
4  *
5  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
6  */
7 #include <linux/module.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/spinlock.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/interrupt.h>
15 #include <linux/cache.h>
16 #include <linux/profile.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/err.h>
20 #include <linux/cpu.h>
21 #include <linux/seq_file.h>
22 #include <linux/irq.h>
23 #include <linux/nmi.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
29 
30 #include <linux/atomic.h>
31 #include <asm/bugs.h>
32 #include <asm/smp.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpu.h>
35 #include <asm/cputype.h>
36 #include <asm/exception.h>
37 #include <asm/idmap.h>
38 #include <asm/topology.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/procinfo.h>
43 #include <asm/processor.h>
44 #include <asm/sections.h>
45 #include <asm/tlbflush.h>
46 #include <asm/ptrace.h>
47 #include <asm/smp_plat.h>
48 #include <asm/virt.h>
49 #include <asm/mach/arch.h>
50 #include <asm/mpu.h>
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/ipi.h>
54 
55 /*
56  * as from 2.5, kernels no longer have an init_tasks structure
57  * so we need some other way of telling a new secondary core
58  * where to place its SVC stack
59  */
60 struct secondary_data secondary_data;
61 
62 enum ipi_msg_type {
63 	IPI_WAKEUP,
64 	IPI_TIMER,
65 	IPI_RESCHEDULE,
66 	IPI_CALL_FUNC,
67 	IPI_CPU_STOP,
68 	IPI_IRQ_WORK,
69 	IPI_COMPLETION,
70 	/*
71 	 * CPU_BACKTRACE is special and not included in NR_IPI
72 	 * or tracable with trace_ipi_*
73 	 */
74 	IPI_CPU_BACKTRACE,
75 	/*
76 	 * SGI8-15 can be reserved by secure firmware, and thus may
77 	 * not be usable by the kernel. Please keep the above limited
78 	 * to at most 8 entries.
79 	 */
80 };
81 
82 static DECLARE_COMPLETION(cpu_running);
83 
84 static struct smp_operations smp_ops __ro_after_init;
85 
86 void __init smp_set_ops(const struct smp_operations *ops)
87 {
88 	if (ops)
89 		smp_ops = *ops;
90 };
91 
92 static unsigned long get_arch_pgd(pgd_t *pgd)
93 {
94 #ifdef CONFIG_ARM_LPAE
95 	return __phys_to_pfn(virt_to_phys(pgd));
96 #else
97 	return virt_to_phys(pgd);
98 #endif
99 }
100 
101 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
102 static int secondary_biglittle_prepare(unsigned int cpu)
103 {
104 	if (!cpu_vtable[cpu])
105 		cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
106 
107 	return cpu_vtable[cpu] ? 0 : -ENOMEM;
108 }
109 
110 static void secondary_biglittle_init(void)
111 {
112 	init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
113 }
114 #else
115 static int secondary_biglittle_prepare(unsigned int cpu)
116 {
117 	return 0;
118 }
119 
120 static void secondary_biglittle_init(void)
121 {
122 }
123 #endif
124 
125 int __cpu_up(unsigned int cpu, struct task_struct *idle)
126 {
127 	int ret;
128 
129 	if (!smp_ops.smp_boot_secondary)
130 		return -ENOSYS;
131 
132 	ret = secondary_biglittle_prepare(cpu);
133 	if (ret)
134 		return ret;
135 
136 	/*
137 	 * We need to tell the secondary core where to find
138 	 * its stack and the page tables.
139 	 */
140 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
141 #ifdef CONFIG_ARM_MPU
142 	secondary_data.mpu_rgn_info = &mpu_rgn_info;
143 #endif
144 
145 #ifdef CONFIG_MMU
146 	secondary_data.pgdir = virt_to_phys(idmap_pgd);
147 	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
148 #endif
149 	sync_cache_w(&secondary_data);
150 
151 	/*
152 	 * Now bring the CPU into our world.
153 	 */
154 	ret = smp_ops.smp_boot_secondary(cpu, idle);
155 	if (ret == 0) {
156 		/*
157 		 * CPU was successfully started, wait for it
158 		 * to come online or time out.
159 		 */
160 		wait_for_completion_timeout(&cpu_running,
161 						 msecs_to_jiffies(1000));
162 
163 		if (!cpu_online(cpu)) {
164 			pr_crit("CPU%u: failed to come online\n", cpu);
165 			ret = -EIO;
166 		}
167 	} else {
168 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
169 	}
170 
171 
172 	memset(&secondary_data, 0, sizeof(secondary_data));
173 	return ret;
174 }
175 
176 /* platform specific SMP operations */
177 void __init smp_init_cpus(void)
178 {
179 	if (smp_ops.smp_init_cpus)
180 		smp_ops.smp_init_cpus();
181 }
182 
183 int platform_can_secondary_boot(void)
184 {
185 	return !!smp_ops.smp_boot_secondary;
186 }
187 
188 int platform_can_cpu_hotplug(void)
189 {
190 #ifdef CONFIG_HOTPLUG_CPU
191 	if (smp_ops.cpu_kill)
192 		return 1;
193 #endif
194 
195 	return 0;
196 }
197 
198 #ifdef CONFIG_HOTPLUG_CPU
199 static int platform_cpu_kill(unsigned int cpu)
200 {
201 	if (smp_ops.cpu_kill)
202 		return smp_ops.cpu_kill(cpu);
203 	return 1;
204 }
205 
206 static int platform_cpu_disable(unsigned int cpu)
207 {
208 	if (smp_ops.cpu_disable)
209 		return smp_ops.cpu_disable(cpu);
210 
211 	return 0;
212 }
213 
214 int platform_can_hotplug_cpu(unsigned int cpu)
215 {
216 	/* cpu_die must be specified to support hotplug */
217 	if (!smp_ops.cpu_die)
218 		return 0;
219 
220 	if (smp_ops.cpu_can_disable)
221 		return smp_ops.cpu_can_disable(cpu);
222 
223 	/*
224 	 * By default, allow disabling all CPUs except the first one,
225 	 * since this is special on a lot of platforms, e.g. because
226 	 * of clock tick interrupts.
227 	 */
228 	return cpu != 0;
229 }
230 
231 /*
232  * __cpu_disable runs on the processor to be shutdown.
233  */
234 int __cpu_disable(void)
235 {
236 	unsigned int cpu = smp_processor_id();
237 	int ret;
238 
239 	ret = platform_cpu_disable(cpu);
240 	if (ret)
241 		return ret;
242 
243 	/*
244 	 * Take this CPU offline.  Once we clear this, we can't return,
245 	 * and we must not schedule until we're ready to give up the cpu.
246 	 */
247 	set_cpu_online(cpu, false);
248 
249 	/*
250 	 * OK - migrate IRQs away from this CPU
251 	 */
252 	irq_migrate_all_off_this_cpu();
253 
254 	/*
255 	 * Flush user cache and TLB mappings, and then remove this CPU
256 	 * from the vm mask set of all processes.
257 	 *
258 	 * Caches are flushed to the Level of Unification Inner Shareable
259 	 * to write-back dirty lines to unified caches shared by all CPUs.
260 	 */
261 	flush_cache_louis();
262 	local_flush_tlb_all();
263 
264 	return 0;
265 }
266 
267 static DECLARE_COMPLETION(cpu_died);
268 
269 /*
270  * called on the thread which is asking for a CPU to be shutdown -
271  * waits until shutdown has completed, or it is timed out.
272  */
273 void __cpu_die(unsigned int cpu)
274 {
275 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
276 		pr_err("CPU%u: cpu didn't die\n", cpu);
277 		return;
278 	}
279 	pr_debug("CPU%u: shutdown\n", cpu);
280 
281 	clear_tasks_mm_cpumask(cpu);
282 	/*
283 	 * platform_cpu_kill() is generally expected to do the powering off
284 	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
285 	 * be done by the CPU which is dying in preference to supporting
286 	 * this call, but that means there is _no_ synchronisation between
287 	 * the requesting CPU and the dying CPU actually losing power.
288 	 */
289 	if (!platform_cpu_kill(cpu))
290 		pr_err("CPU%u: unable to kill\n", cpu);
291 }
292 
293 /*
294  * Called from the idle thread for the CPU which has been shutdown.
295  *
296  * Note that we disable IRQs here, but do not re-enable them
297  * before returning to the caller. This is also the behaviour
298  * of the other hotplug-cpu capable cores, so presumably coming
299  * out of idle fixes this.
300  */
301 void arch_cpu_idle_dead(void)
302 {
303 	unsigned int cpu = smp_processor_id();
304 
305 	idle_task_exit();
306 
307 	local_irq_disable();
308 
309 	/*
310 	 * Flush the data out of the L1 cache for this CPU.  This must be
311 	 * before the completion to ensure that data is safely written out
312 	 * before platform_cpu_kill() gets called - which may disable
313 	 * *this* CPU and power down its cache.
314 	 */
315 	flush_cache_louis();
316 
317 	/*
318 	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
319 	 * this returns, power and/or clocks can be removed at any point
320 	 * from this CPU and its cache by platform_cpu_kill().
321 	 */
322 	complete(&cpu_died);
323 
324 	/*
325 	 * Ensure that the cache lines associated with that completion are
326 	 * written out.  This covers the case where _this_ CPU is doing the
327 	 * powering down, to ensure that the completion is visible to the
328 	 * CPU waiting for this one.
329 	 */
330 	flush_cache_louis();
331 
332 	/*
333 	 * The actual CPU shutdown procedure is at least platform (if not
334 	 * CPU) specific.  This may remove power, or it may simply spin.
335 	 *
336 	 * Platforms are generally expected *NOT* to return from this call,
337 	 * although there are some which do because they have no way to
338 	 * power down the CPU.  These platforms are the _only_ reason we
339 	 * have a return path which uses the fragment of assembly below.
340 	 *
341 	 * The return path should not be used for platforms which can
342 	 * power off the CPU.
343 	 */
344 	if (smp_ops.cpu_die)
345 		smp_ops.cpu_die(cpu);
346 
347 	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
348 		cpu);
349 
350 	/*
351 	 * Do not return to the idle loop - jump back to the secondary
352 	 * cpu initialisation.  There's some initialisation which needs
353 	 * to be repeated to undo the effects of taking the CPU offline.
354 	 */
355 	__asm__("mov	sp, %0\n"
356 	"	mov	fp, #0\n"
357 	"	b	secondary_start_kernel"
358 		:
359 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
360 }
361 #endif /* CONFIG_HOTPLUG_CPU */
362 
363 /*
364  * Called by both boot and secondaries to move global data into
365  * per-processor storage.
366  */
367 static void smp_store_cpu_info(unsigned int cpuid)
368 {
369 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
370 
371 	cpu_info->loops_per_jiffy = loops_per_jiffy;
372 	cpu_info->cpuid = read_cpuid_id();
373 
374 	store_cpu_topology(cpuid);
375 }
376 
377 /*
378  * This is the secondary CPU boot entry.  We're using this CPUs
379  * idle thread stack, but a set of temporary page tables.
380  */
381 asmlinkage void secondary_start_kernel(void)
382 {
383 	struct mm_struct *mm = &init_mm;
384 	unsigned int cpu;
385 
386 	secondary_biglittle_init();
387 
388 	/*
389 	 * The identity mapping is uncached (strongly ordered), so
390 	 * switch away from it before attempting any exclusive accesses.
391 	 */
392 	cpu_switch_mm(mm->pgd, mm);
393 	local_flush_bp_all();
394 	enter_lazy_tlb(mm, current);
395 	local_flush_tlb_all();
396 
397 	/*
398 	 * All kernel threads share the same mm context; grab a
399 	 * reference and switch to it.
400 	 */
401 	cpu = smp_processor_id();
402 	mmgrab(mm);
403 	current->active_mm = mm;
404 	cpumask_set_cpu(cpu, mm_cpumask(mm));
405 
406 	cpu_init();
407 
408 #ifndef CONFIG_MMU
409 	setup_vectors_base();
410 #endif
411 	pr_debug("CPU%u: Booted secondary processor\n", cpu);
412 
413 	preempt_disable();
414 	trace_hardirqs_off();
415 
416 	/*
417 	 * Give the platform a chance to do its own initialisation.
418 	 */
419 	if (smp_ops.smp_secondary_init)
420 		smp_ops.smp_secondary_init(cpu);
421 
422 	notify_cpu_starting(cpu);
423 
424 	calibrate_delay();
425 
426 	smp_store_cpu_info(cpu);
427 
428 	/*
429 	 * OK, now it's safe to let the boot CPU continue.  Wait for
430 	 * the CPU migration code to notice that the CPU is online
431 	 * before we continue - which happens after __cpu_up returns.
432 	 */
433 	set_cpu_online(cpu, true);
434 
435 	check_other_bugs();
436 
437 	complete(&cpu_running);
438 
439 	local_irq_enable();
440 	local_fiq_enable();
441 	local_abt_enable();
442 
443 	/*
444 	 * OK, it's off to the idle thread for us
445 	 */
446 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
447 }
448 
449 void __init smp_cpus_done(unsigned int max_cpus)
450 {
451 	int cpu;
452 	unsigned long bogosum = 0;
453 
454 	for_each_online_cpu(cpu)
455 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
456 
457 	printk(KERN_INFO "SMP: Total of %d processors activated "
458 	       "(%lu.%02lu BogoMIPS).\n",
459 	       num_online_cpus(),
460 	       bogosum / (500000/HZ),
461 	       (bogosum / (5000/HZ)) % 100);
462 
463 	hyp_mode_check();
464 }
465 
466 void __init smp_prepare_boot_cpu(void)
467 {
468 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
469 }
470 
471 void __init smp_prepare_cpus(unsigned int max_cpus)
472 {
473 	unsigned int ncores = num_possible_cpus();
474 
475 	init_cpu_topology();
476 
477 	smp_store_cpu_info(smp_processor_id());
478 
479 	/*
480 	 * are we trying to boot more cores than exist?
481 	 */
482 	if (max_cpus > ncores)
483 		max_cpus = ncores;
484 	if (ncores > 1 && max_cpus) {
485 		/*
486 		 * Initialise the present map, which describes the set of CPUs
487 		 * actually populated at the present time. A platform should
488 		 * re-initialize the map in the platforms smp_prepare_cpus()
489 		 * if present != possible (e.g. physical hotplug).
490 		 */
491 		init_cpu_present(cpu_possible_mask);
492 
493 		/*
494 		 * Initialise the SCU if there are more than one CPU
495 		 * and let them know where to start.
496 		 */
497 		if (smp_ops.smp_prepare_cpus)
498 			smp_ops.smp_prepare_cpus(max_cpus);
499 	}
500 }
501 
502 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
503 
504 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
505 {
506 	if (!__smp_cross_call)
507 		__smp_cross_call = fn;
508 }
509 
510 static const char *ipi_types[NR_IPI] __tracepoint_string = {
511 #define S(x,s)	[x] = s
512 	S(IPI_WAKEUP, "CPU wakeup interrupts"),
513 	S(IPI_TIMER, "Timer broadcast interrupts"),
514 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
515 	S(IPI_CALL_FUNC, "Function call interrupts"),
516 	S(IPI_CPU_STOP, "CPU stop interrupts"),
517 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
518 	S(IPI_COMPLETION, "completion interrupts"),
519 };
520 
521 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
522 {
523 	trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
524 	__smp_cross_call(target, ipinr);
525 }
526 
527 void show_ipi_list(struct seq_file *p, int prec)
528 {
529 	unsigned int cpu, i;
530 
531 	for (i = 0; i < NR_IPI; i++) {
532 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
533 
534 		for_each_online_cpu(cpu)
535 			seq_printf(p, "%10u ",
536 				   __get_irq_stat(cpu, ipi_irqs[i]));
537 
538 		seq_printf(p, " %s\n", ipi_types[i]);
539 	}
540 }
541 
542 u64 smp_irq_stat_cpu(unsigned int cpu)
543 {
544 	u64 sum = 0;
545 	int i;
546 
547 	for (i = 0; i < NR_IPI; i++)
548 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
549 
550 	return sum;
551 }
552 
553 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
554 {
555 	smp_cross_call(mask, IPI_CALL_FUNC);
556 }
557 
558 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
559 {
560 	smp_cross_call(mask, IPI_WAKEUP);
561 }
562 
563 void arch_send_call_function_single_ipi(int cpu)
564 {
565 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
566 }
567 
568 #ifdef CONFIG_IRQ_WORK
569 void arch_irq_work_raise(void)
570 {
571 	if (arch_irq_work_has_interrupt())
572 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
573 }
574 #endif
575 
576 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
577 void tick_broadcast(const struct cpumask *mask)
578 {
579 	smp_cross_call(mask, IPI_TIMER);
580 }
581 #endif
582 
583 static DEFINE_RAW_SPINLOCK(stop_lock);
584 
585 /*
586  * ipi_cpu_stop - handle IPI from smp_send_stop()
587  */
588 static void ipi_cpu_stop(unsigned int cpu)
589 {
590 	if (system_state <= SYSTEM_RUNNING) {
591 		raw_spin_lock(&stop_lock);
592 		pr_crit("CPU%u: stopping\n", cpu);
593 		dump_stack();
594 		raw_spin_unlock(&stop_lock);
595 	}
596 
597 	set_cpu_online(cpu, false);
598 
599 	local_fiq_disable();
600 	local_irq_disable();
601 
602 	while (1) {
603 		cpu_relax();
604 		wfe();
605 	}
606 }
607 
608 static DEFINE_PER_CPU(struct completion *, cpu_completion);
609 
610 int register_ipi_completion(struct completion *completion, int cpu)
611 {
612 	per_cpu(cpu_completion, cpu) = completion;
613 	return IPI_COMPLETION;
614 }
615 
616 static void ipi_complete(unsigned int cpu)
617 {
618 	complete(per_cpu(cpu_completion, cpu));
619 }
620 
621 /*
622  * Main handler for inter-processor interrupts
623  */
624 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
625 {
626 	handle_IPI(ipinr, regs);
627 }
628 
629 void handle_IPI(int ipinr, struct pt_regs *regs)
630 {
631 	unsigned int cpu = smp_processor_id();
632 	struct pt_regs *old_regs = set_irq_regs(regs);
633 
634 	if ((unsigned)ipinr < NR_IPI) {
635 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
636 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
637 	}
638 
639 	switch (ipinr) {
640 	case IPI_WAKEUP:
641 		break;
642 
643 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
644 	case IPI_TIMER:
645 		irq_enter();
646 		tick_receive_broadcast();
647 		irq_exit();
648 		break;
649 #endif
650 
651 	case IPI_RESCHEDULE:
652 		scheduler_ipi();
653 		break;
654 
655 	case IPI_CALL_FUNC:
656 		irq_enter();
657 		generic_smp_call_function_interrupt();
658 		irq_exit();
659 		break;
660 
661 	case IPI_CPU_STOP:
662 		irq_enter();
663 		ipi_cpu_stop(cpu);
664 		irq_exit();
665 		break;
666 
667 #ifdef CONFIG_IRQ_WORK
668 	case IPI_IRQ_WORK:
669 		irq_enter();
670 		irq_work_run();
671 		irq_exit();
672 		break;
673 #endif
674 
675 	case IPI_COMPLETION:
676 		irq_enter();
677 		ipi_complete(cpu);
678 		irq_exit();
679 		break;
680 
681 	case IPI_CPU_BACKTRACE:
682 		printk_nmi_enter();
683 		irq_enter();
684 		nmi_cpu_backtrace(regs);
685 		irq_exit();
686 		printk_nmi_exit();
687 		break;
688 
689 	default:
690 		pr_crit("CPU%u: Unknown IPI message 0x%x\n",
691 		        cpu, ipinr);
692 		break;
693 	}
694 
695 	if ((unsigned)ipinr < NR_IPI)
696 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
697 	set_irq_regs(old_regs);
698 }
699 
700 void smp_send_reschedule(int cpu)
701 {
702 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
703 }
704 
705 void smp_send_stop(void)
706 {
707 	unsigned long timeout;
708 	struct cpumask mask;
709 
710 	cpumask_copy(&mask, cpu_online_mask);
711 	cpumask_clear_cpu(smp_processor_id(), &mask);
712 	if (!cpumask_empty(&mask))
713 		smp_cross_call(&mask, IPI_CPU_STOP);
714 
715 	/* Wait up to one second for other CPUs to stop */
716 	timeout = USEC_PER_SEC;
717 	while (num_online_cpus() > 1 && timeout--)
718 		udelay(1);
719 
720 	if (num_online_cpus() > 1)
721 		pr_warn("SMP: failed to stop secondary CPUs\n");
722 }
723 
724 /* In case panic() and panic() called at the same time on CPU1 and CPU2,
725  * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
726  * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
727  * kdump fails. So split out the panic_smp_self_stop() and add
728  * set_cpu_online(smp_processor_id(), false).
729  */
730 void panic_smp_self_stop(void)
731 {
732 	pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
733 	         smp_processor_id());
734 	set_cpu_online(smp_processor_id(), false);
735 	while (1)
736 		cpu_relax();
737 }
738 
739 /*
740  * not supported here
741  */
742 int setup_profiling_timer(unsigned int multiplier)
743 {
744 	return -EINVAL;
745 }
746 
747 #ifdef CONFIG_CPU_FREQ
748 
749 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
750 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
751 static unsigned long global_l_p_j_ref;
752 static unsigned long global_l_p_j_ref_freq;
753 
754 static int cpufreq_callback(struct notifier_block *nb,
755 					unsigned long val, void *data)
756 {
757 	struct cpufreq_freqs *freq = data;
758 	struct cpumask *cpus = freq->policy->cpus;
759 	int cpu, first = cpumask_first(cpus);
760 	unsigned int lpj;
761 
762 	if (freq->flags & CPUFREQ_CONST_LOOPS)
763 		return NOTIFY_OK;
764 
765 	if (!per_cpu(l_p_j_ref, first)) {
766 		for_each_cpu(cpu, cpus) {
767 			per_cpu(l_p_j_ref, cpu) =
768 				per_cpu(cpu_data, cpu).loops_per_jiffy;
769 			per_cpu(l_p_j_ref_freq, cpu) = freq->old;
770 		}
771 
772 		if (!global_l_p_j_ref) {
773 			global_l_p_j_ref = loops_per_jiffy;
774 			global_l_p_j_ref_freq = freq->old;
775 		}
776 	}
777 
778 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
779 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
780 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
781 						global_l_p_j_ref_freq,
782 						freq->new);
783 
784 		lpj = cpufreq_scale(per_cpu(l_p_j_ref, first),
785 				    per_cpu(l_p_j_ref_freq, first), freq->new);
786 		for_each_cpu(cpu, cpus)
787 			per_cpu(cpu_data, cpu).loops_per_jiffy = lpj;
788 	}
789 	return NOTIFY_OK;
790 }
791 
792 static struct notifier_block cpufreq_notifier = {
793 	.notifier_call  = cpufreq_callback,
794 };
795 
796 static int __init register_cpufreq_notifier(void)
797 {
798 	return cpufreq_register_notifier(&cpufreq_notifier,
799 						CPUFREQ_TRANSITION_NOTIFIER);
800 }
801 core_initcall(register_cpufreq_notifier);
802 
803 #endif
804 
805 static void raise_nmi(cpumask_t *mask)
806 {
807 	__smp_cross_call(mask, IPI_CPU_BACKTRACE);
808 }
809 
810 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
811 {
812 	nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
813 }
814