xref: /linux/arch/arm/mach-bcm/platsmp.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2014-2015 Broadcom Corporation
4  * Copyright 2014 Linaro Limited
5  */
6 
7 #include <linux/cpumask.h>
8 #include <linux/delay.h>
9 #include <linux/errno.h>
10 #include <linux/init.h>
11 #include <linux/io.h>
12 #include <linux/irqchip/irq-bcm2836.h>
13 #include <linux/jiffies.h>
14 #include <linux/of.h>
15 #include <linux/of_address.h>
16 #include <linux/sched.h>
17 #include <linux/sched/clock.h>
18 #include <linux/smp.h>
19 
20 #include <asm/cacheflush.h>
21 #include <asm/smp.h>
22 #include <asm/smp_plat.h>
23 #include <asm/smp_scu.h>
24 
25 /* Size of mapped Cortex A9 SCU address space */
26 #define CORTEX_A9_SCU_SIZE	0x58
27 
28 #define SECONDARY_TIMEOUT_NS	NSEC_PER_MSEC	/* 1 msec (in nanoseconds) */
29 #define BOOT_ADDR_CPUID_MASK	0x3
30 
31 /* Name of device node property defining secondary boot register location */
32 #define OF_SECONDARY_BOOT	"secondary-boot-reg"
33 #define MPIDR_CPUID_BITMASK	0x3
34 
35 /*
36  * Enable the Cortex A9 Snoop Control Unit
37  *
38  * By the time this is called we already know there are multiple
39  * cores present.  We assume we're running on a Cortex A9 processor,
40  * so any trouble getting the base address register or getting the
41  * SCU base is a problem.
42  *
43  * Return 0 if successful or an error code otherwise.
44  */
45 static int __init scu_a9_enable(void)
46 {
47 	unsigned long config_base;
48 	void __iomem *scu_base;
49 
50 	if (!scu_a9_has_base()) {
51 		pr_err("no configuration base address register!\n");
52 		return -ENXIO;
53 	}
54 
55 	/* Config base address register value is zero for uniprocessor */
56 	config_base = scu_a9_get_base();
57 	if (!config_base) {
58 		pr_err("hardware reports only one core\n");
59 		return -ENOENT;
60 	}
61 
62 	scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
63 	if (!scu_base) {
64 		pr_err("failed to remap config base (%lu/%u) for SCU\n",
65 			config_base, CORTEX_A9_SCU_SIZE);
66 		return -ENOMEM;
67 	}
68 
69 	scu_enable(scu_base);
70 
71 	iounmap(scu_base);	/* That's the last we'll need of this */
72 
73 	return 0;
74 }
75 
76 static u32 secondary_boot_addr_for(unsigned int cpu)
77 {
78 	u32 secondary_boot_addr = 0;
79 	struct device_node *cpu_node = of_get_cpu_node(cpu, NULL);
80 
81         if (!cpu_node) {
82 		pr_err("Failed to find device tree node for CPU%u\n", cpu);
83 		return 0;
84 	}
85 
86 	if (of_property_read_u32(cpu_node,
87 				 OF_SECONDARY_BOOT,
88 				 &secondary_boot_addr))
89 		pr_err("required secondary boot register not specified for CPU%u\n",
90 			cpu);
91 
92 	of_node_put(cpu_node);
93 
94 	return secondary_boot_addr;
95 }
96 
97 static int nsp_write_lut(unsigned int cpu)
98 {
99 	void __iomem *sku_rom_lut;
100 	phys_addr_t secondary_startup_phy;
101 	const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
102 
103 	if (!secondary_boot_addr)
104 		return -EINVAL;
105 
106 	sku_rom_lut = ioremap_nocache((phys_addr_t)secondary_boot_addr,
107 				      sizeof(phys_addr_t));
108 	if (!sku_rom_lut) {
109 		pr_warn("unable to ioremap SKU-ROM LUT register for cpu %u\n", cpu);
110 		return -ENOMEM;
111 	}
112 
113 	secondary_startup_phy = __pa_symbol(secondary_startup);
114 	BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX);
115 
116 	writel_relaxed(secondary_startup_phy, sku_rom_lut);
117 
118 	/* Ensure the write is visible to the secondary core */
119 	smp_wmb();
120 
121 	iounmap(sku_rom_lut);
122 
123 	return 0;
124 }
125 
126 static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
127 {
128 	const cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
129 
130 	/* Enable the SCU on Cortex A9 based SoCs */
131 	if (scu_a9_enable()) {
132 		/* Update the CPU present map to reflect uniprocessor mode */
133 		pr_warn("failed to enable A9 SCU - disabling SMP\n");
134 		init_cpu_present(&only_cpu_0);
135 	}
136 }
137 
138 /*
139  * The ROM code has the secondary cores looping, waiting for an event.
140  * When an event occurs each core examines the bottom two bits of the
141  * secondary boot register.  When a core finds those bits contain its
142  * own core id, it performs initialization, including computing its boot
143  * address by clearing the boot register value's bottom two bits.  The
144  * core signals that it is beginning its execution by writing its boot
145  * address back to the secondary boot register, and finally jumps to
146  * that address.
147  *
148  * So to start a core executing we need to:
149  * - Encode the (hardware) CPU id with the bottom bits of the secondary
150  *   start address.
151  * - Write that value into the secondary boot register.
152  * - Generate an event to wake up the secondary CPU(s).
153  * - Wait for the secondary boot register to be re-written, which
154  *   indicates the secondary core has started.
155  */
156 static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle)
157 {
158 	void __iomem *boot_reg;
159 	phys_addr_t boot_func;
160 	u64 start_clock;
161 	u32 cpu_id;
162 	u32 boot_val;
163 	bool timeout = false;
164 	const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
165 
166 	cpu_id = cpu_logical_map(cpu);
167 	if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
168 		pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
169 		return -EINVAL;
170 	}
171 
172 	if (!secondary_boot_addr)
173 		return -EINVAL;
174 
175 	boot_reg = ioremap_nocache((phys_addr_t)secondary_boot_addr,
176 				   sizeof(phys_addr_t));
177 	if (!boot_reg) {
178 		pr_err("unable to map boot register for cpu %u\n", cpu_id);
179 		return -ENOMEM;
180 	}
181 
182 	/*
183 	 * Secondary cores will start in secondary_startup(),
184 	 * defined in "arch/arm/kernel/head.S"
185 	 */
186 	boot_func = __pa_symbol(secondary_startup);
187 	BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
188 	BUG_ON(boot_func > (phys_addr_t)U32_MAX);
189 
190 	/* The core to start is encoded in the low bits */
191 	boot_val = (u32)boot_func | cpu_id;
192 	writel_relaxed(boot_val, boot_reg);
193 
194 	sev();
195 
196 	/* The low bits will be cleared once the core has started */
197 	start_clock = local_clock();
198 	while (!timeout && readl_relaxed(boot_reg) == boot_val)
199 		timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
200 
201 	iounmap(boot_reg);
202 
203 	if (!timeout)
204 		return 0;
205 
206 	pr_err("timeout waiting for cpu %u to start\n", cpu_id);
207 
208 	return -ENXIO;
209 }
210 
211 /* Cluster Dormant Control command to bring CPU into a running state */
212 #define CDC_CMD			6
213 #define CDC_CMD_OFFSET		0
214 #define CDC_CMD_REG(cpu)	(CDC_CMD_OFFSET + 4*(cpu))
215 
216 /*
217  * BCM23550 has a Cluster Dormant Control block that keeps the core in
218  * idle state. A command needs to be sent to the block to bring the CPU
219  * into running state.
220  */
221 static int bcm23550_boot_secondary(unsigned int cpu, struct task_struct *idle)
222 {
223 	void __iomem *cdc_base;
224 	struct device_node *dn;
225 	char *name;
226 	int ret;
227 
228 	/* Make sure a CDC node exists before booting the
229 	 * secondary core.
230 	 */
231 	name = "brcm,bcm23550-cdc";
232 	dn = of_find_compatible_node(NULL, NULL, name);
233 	if (!dn) {
234 		pr_err("unable to find cdc node\n");
235 		return -ENODEV;
236 	}
237 
238 	cdc_base = of_iomap(dn, 0);
239 	of_node_put(dn);
240 
241 	if (!cdc_base) {
242 		pr_err("unable to remap cdc base register\n");
243 		return -ENOMEM;
244 	}
245 
246 	/* Boot the secondary core */
247 	ret = kona_boot_secondary(cpu, idle);
248 	if (ret)
249 		goto out;
250 
251 	/* Bring this CPU to RUN state so that nIRQ nFIQ
252 	 * signals are unblocked.
253 	 */
254 	writel_relaxed(CDC_CMD, cdc_base + CDC_CMD_REG(cpu));
255 
256 out:
257 	iounmap(cdc_base);
258 
259 	return ret;
260 }
261 
262 static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle)
263 {
264 	int ret;
265 
266 	/*
267 	 * After wake up, secondary core branches to the startup
268 	 * address programmed at SKU ROM LUT location.
269 	 */
270 	ret = nsp_write_lut(cpu);
271 	if (ret) {
272 		pr_err("unable to write startup addr to SKU ROM LUT\n");
273 		goto out;
274 	}
275 
276 	/* Send a CPU wakeup interrupt to the secondary core */
277 	arch_send_wakeup_ipi_mask(cpumask_of(cpu));
278 
279 out:
280 	return ret;
281 }
282 
283 static int bcm2836_boot_secondary(unsigned int cpu, struct task_struct *idle)
284 {
285 	void __iomem *intc_base;
286 	struct device_node *dn;
287 	char *name;
288 
289 	name = "brcm,bcm2836-l1-intc";
290 	dn = of_find_compatible_node(NULL, NULL, name);
291 	if (!dn) {
292 		pr_err("unable to find intc node\n");
293 		return -ENODEV;
294 	}
295 
296 	intc_base = of_iomap(dn, 0);
297 	of_node_put(dn);
298 
299 	if (!intc_base) {
300 		pr_err("unable to remap intc base register\n");
301 		return -ENOMEM;
302 	}
303 
304 	writel(virt_to_phys(secondary_startup),
305 	       intc_base + LOCAL_MAILBOX3_SET0 + 16 * cpu);
306 
307 	dsb(sy);
308 	sev();
309 
310 	iounmap(intc_base);
311 
312 	return 0;
313 }
314 
315 static const struct smp_operations kona_smp_ops __initconst = {
316 	.smp_prepare_cpus	= bcm_smp_prepare_cpus,
317 	.smp_boot_secondary	= kona_boot_secondary,
318 };
319 CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
320 			&kona_smp_ops);
321 
322 static const struct smp_operations bcm23550_smp_ops __initconst = {
323 	.smp_boot_secondary	= bcm23550_boot_secondary,
324 };
325 CPU_METHOD_OF_DECLARE(bcm_smp_bcm23550, "brcm,bcm23550",
326 			&bcm23550_smp_ops);
327 
328 static const struct smp_operations nsp_smp_ops __initconst = {
329 	.smp_prepare_cpus	= bcm_smp_prepare_cpus,
330 	.smp_boot_secondary	= nsp_boot_secondary,
331 };
332 CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops);
333 
334 const struct smp_operations bcm2836_smp_ops __initconst = {
335 	.smp_boot_secondary	= bcm2836_boot_secondary,
336 };
337 CPU_METHOD_OF_DECLARE(bcm_smp_bcm2836, "brcm,bcm2836-smp", &bcm2836_smp_ops);
338