xref: /linux/arch/arm/mm/dma-mapping.c (revision 6c8c1406)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/dma-mapping.c
4  *
5  *  Copyright (C) 2000-2004 Russell King
6  *
7  *  DMA uncached mapping support.
8  */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/genalloc.h>
12 #include <linux/gfp.h>
13 #include <linux/errno.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/device.h>
17 #include <linux/dma-direct.h>
18 #include <linux/dma-map-ops.h>
19 #include <linux/highmem.h>
20 #include <linux/memblock.h>
21 #include <linux/slab.h>
22 #include <linux/iommu.h>
23 #include <linux/io.h>
24 #include <linux/vmalloc.h>
25 #include <linux/sizes.h>
26 #include <linux/cma.h>
27 
28 #include <asm/memory.h>
29 #include <asm/highmem.h>
30 #include <asm/cacheflush.h>
31 #include <asm/tlbflush.h>
32 #include <asm/mach/arch.h>
33 #include <asm/dma-iommu.h>
34 #include <asm/mach/map.h>
35 #include <asm/system_info.h>
36 #include <asm/xen/xen-ops.h>
37 
38 #include "dma.h"
39 #include "mm.h"
40 
41 struct arm_dma_alloc_args {
42 	struct device *dev;
43 	size_t size;
44 	gfp_t gfp;
45 	pgprot_t prot;
46 	const void *caller;
47 	bool want_vaddr;
48 	int coherent_flag;
49 };
50 
51 struct arm_dma_free_args {
52 	struct device *dev;
53 	size_t size;
54 	void *cpu_addr;
55 	struct page *page;
56 	bool want_vaddr;
57 };
58 
59 #define NORMAL	    0
60 #define COHERENT    1
61 
62 struct arm_dma_allocator {
63 	void *(*alloc)(struct arm_dma_alloc_args *args,
64 		       struct page **ret_page);
65 	void (*free)(struct arm_dma_free_args *args);
66 };
67 
68 struct arm_dma_buffer {
69 	struct list_head list;
70 	void *virt;
71 	struct arm_dma_allocator *allocator;
72 };
73 
74 static LIST_HEAD(arm_dma_bufs);
75 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
76 
77 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
78 {
79 	struct arm_dma_buffer *buf, *found = NULL;
80 	unsigned long flags;
81 
82 	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
83 	list_for_each_entry(buf, &arm_dma_bufs, list) {
84 		if (buf->virt == virt) {
85 			list_del(&buf->list);
86 			found = buf;
87 			break;
88 		}
89 	}
90 	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
91 	return found;
92 }
93 
94 /*
95  * The DMA API is built upon the notion of "buffer ownership".  A buffer
96  * is either exclusively owned by the CPU (and therefore may be accessed
97  * by it) or exclusively owned by the DMA device.  These helper functions
98  * represent the transitions between these two ownership states.
99  *
100  * Note, however, that on later ARMs, this notion does not work due to
101  * speculative prefetches.  We model our approach on the assumption that
102  * the CPU does do speculative prefetches, which means we clean caches
103  * before transfers and delay cache invalidation until transfer completion.
104  *
105  */
106 
107 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
108 {
109 	/*
110 	 * Ensure that the allocated pages are zeroed, and that any data
111 	 * lurking in the kernel direct-mapped region is invalidated.
112 	 */
113 	if (PageHighMem(page)) {
114 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
115 		phys_addr_t end = base + size;
116 		while (size > 0) {
117 			void *ptr = kmap_atomic(page);
118 			memset(ptr, 0, PAGE_SIZE);
119 			if (coherent_flag != COHERENT)
120 				dmac_flush_range(ptr, ptr + PAGE_SIZE);
121 			kunmap_atomic(ptr);
122 			page++;
123 			size -= PAGE_SIZE;
124 		}
125 		if (coherent_flag != COHERENT)
126 			outer_flush_range(base, end);
127 	} else {
128 		void *ptr = page_address(page);
129 		memset(ptr, 0, size);
130 		if (coherent_flag != COHERENT) {
131 			dmac_flush_range(ptr, ptr + size);
132 			outer_flush_range(__pa(ptr), __pa(ptr) + size);
133 		}
134 	}
135 }
136 
137 /*
138  * Allocate a DMA buffer for 'dev' of size 'size' using the
139  * specified gfp mask.  Note that 'size' must be page aligned.
140  */
141 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
142 				       gfp_t gfp, int coherent_flag)
143 {
144 	unsigned long order = get_order(size);
145 	struct page *page, *p, *e;
146 
147 	page = alloc_pages(gfp, order);
148 	if (!page)
149 		return NULL;
150 
151 	/*
152 	 * Now split the huge page and free the excess pages
153 	 */
154 	split_page(page, order);
155 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
156 		__free_page(p);
157 
158 	__dma_clear_buffer(page, size, coherent_flag);
159 
160 	return page;
161 }
162 
163 /*
164  * Free a DMA buffer.  'size' must be page aligned.
165  */
166 static void __dma_free_buffer(struct page *page, size_t size)
167 {
168 	struct page *e = page + (size >> PAGE_SHIFT);
169 
170 	while (page < e) {
171 		__free_page(page);
172 		page++;
173 	}
174 }
175 
176 static void *__alloc_from_contiguous(struct device *dev, size_t size,
177 				     pgprot_t prot, struct page **ret_page,
178 				     const void *caller, bool want_vaddr,
179 				     int coherent_flag, gfp_t gfp);
180 
181 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
182 				 pgprot_t prot, struct page **ret_page,
183 				 const void *caller, bool want_vaddr);
184 
185 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
186 static struct gen_pool *atomic_pool __ro_after_init;
187 
188 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
189 
190 static int __init early_coherent_pool(char *p)
191 {
192 	atomic_pool_size = memparse(p, &p);
193 	return 0;
194 }
195 early_param("coherent_pool", early_coherent_pool);
196 
197 /*
198  * Initialise the coherent pool for atomic allocations.
199  */
200 static int __init atomic_pool_init(void)
201 {
202 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
203 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
204 	struct page *page;
205 	void *ptr;
206 
207 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
208 	if (!atomic_pool)
209 		goto out;
210 	/*
211 	 * The atomic pool is only used for non-coherent allocations
212 	 * so we must pass NORMAL for coherent_flag.
213 	 */
214 	if (dev_get_cma_area(NULL))
215 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
216 				      &page, atomic_pool_init, true, NORMAL,
217 				      GFP_KERNEL);
218 	else
219 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
220 					   &page, atomic_pool_init, true);
221 	if (ptr) {
222 		int ret;
223 
224 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
225 					page_to_phys(page),
226 					atomic_pool_size, -1);
227 		if (ret)
228 			goto destroy_genpool;
229 
230 		gen_pool_set_algo(atomic_pool,
231 				gen_pool_first_fit_order_align,
232 				NULL);
233 		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
234 		       atomic_pool_size / 1024);
235 		return 0;
236 	}
237 
238 destroy_genpool:
239 	gen_pool_destroy(atomic_pool);
240 	atomic_pool = NULL;
241 out:
242 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
243 	       atomic_pool_size / 1024);
244 	return -ENOMEM;
245 }
246 /*
247  * CMA is activated by core_initcall, so we must be called after it.
248  */
249 postcore_initcall(atomic_pool_init);
250 
251 #ifdef CONFIG_CMA_AREAS
252 struct dma_contig_early_reserve {
253 	phys_addr_t base;
254 	unsigned long size;
255 };
256 
257 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
258 
259 static int dma_mmu_remap_num __initdata;
260 
261 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
262 {
263 	dma_mmu_remap[dma_mmu_remap_num].base = base;
264 	dma_mmu_remap[dma_mmu_remap_num].size = size;
265 	dma_mmu_remap_num++;
266 }
267 
268 void __init dma_contiguous_remap(void)
269 {
270 	int i;
271 	for (i = 0; i < dma_mmu_remap_num; i++) {
272 		phys_addr_t start = dma_mmu_remap[i].base;
273 		phys_addr_t end = start + dma_mmu_remap[i].size;
274 		struct map_desc map;
275 		unsigned long addr;
276 
277 		if (end > arm_lowmem_limit)
278 			end = arm_lowmem_limit;
279 		if (start >= end)
280 			continue;
281 
282 		map.pfn = __phys_to_pfn(start);
283 		map.virtual = __phys_to_virt(start);
284 		map.length = end - start;
285 		map.type = MT_MEMORY_DMA_READY;
286 
287 		/*
288 		 * Clear previous low-memory mapping to ensure that the
289 		 * TLB does not see any conflicting entries, then flush
290 		 * the TLB of the old entries before creating new mappings.
291 		 *
292 		 * This ensures that any speculatively loaded TLB entries
293 		 * (even though they may be rare) can not cause any problems,
294 		 * and ensures that this code is architecturally compliant.
295 		 */
296 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
297 		     addr += PMD_SIZE)
298 			pmd_clear(pmd_off_k(addr));
299 
300 		flush_tlb_kernel_range(__phys_to_virt(start),
301 				       __phys_to_virt(end));
302 
303 		iotable_init(&map, 1);
304 	}
305 }
306 #endif
307 
308 static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
309 {
310 	struct page *page = virt_to_page((void *)addr);
311 	pgprot_t prot = *(pgprot_t *)data;
312 
313 	set_pte_ext(pte, mk_pte(page, prot), 0);
314 	return 0;
315 }
316 
317 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
318 {
319 	unsigned long start = (unsigned long) page_address(page);
320 	unsigned end = start + size;
321 
322 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
323 	flush_tlb_kernel_range(start, end);
324 }
325 
326 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
327 				 pgprot_t prot, struct page **ret_page,
328 				 const void *caller, bool want_vaddr)
329 {
330 	struct page *page;
331 	void *ptr = NULL;
332 	/*
333 	 * __alloc_remap_buffer is only called when the device is
334 	 * non-coherent
335 	 */
336 	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
337 	if (!page)
338 		return NULL;
339 	if (!want_vaddr)
340 		goto out;
341 
342 	ptr = dma_common_contiguous_remap(page, size, prot, caller);
343 	if (!ptr) {
344 		__dma_free_buffer(page, size);
345 		return NULL;
346 	}
347 
348  out:
349 	*ret_page = page;
350 	return ptr;
351 }
352 
353 static void *__alloc_from_pool(size_t size, struct page **ret_page)
354 {
355 	unsigned long val;
356 	void *ptr = NULL;
357 
358 	if (!atomic_pool) {
359 		WARN(1, "coherent pool not initialised!\n");
360 		return NULL;
361 	}
362 
363 	val = gen_pool_alloc(atomic_pool, size);
364 	if (val) {
365 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
366 
367 		*ret_page = phys_to_page(phys);
368 		ptr = (void *)val;
369 	}
370 
371 	return ptr;
372 }
373 
374 static bool __in_atomic_pool(void *start, size_t size)
375 {
376 	return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
377 }
378 
379 static int __free_from_pool(void *start, size_t size)
380 {
381 	if (!__in_atomic_pool(start, size))
382 		return 0;
383 
384 	gen_pool_free(atomic_pool, (unsigned long)start, size);
385 
386 	return 1;
387 }
388 
389 static void *__alloc_from_contiguous(struct device *dev, size_t size,
390 				     pgprot_t prot, struct page **ret_page,
391 				     const void *caller, bool want_vaddr,
392 				     int coherent_flag, gfp_t gfp)
393 {
394 	unsigned long order = get_order(size);
395 	size_t count = size >> PAGE_SHIFT;
396 	struct page *page;
397 	void *ptr = NULL;
398 
399 	page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
400 	if (!page)
401 		return NULL;
402 
403 	__dma_clear_buffer(page, size, coherent_flag);
404 
405 	if (!want_vaddr)
406 		goto out;
407 
408 	if (PageHighMem(page)) {
409 		ptr = dma_common_contiguous_remap(page, size, prot, caller);
410 		if (!ptr) {
411 			dma_release_from_contiguous(dev, page, count);
412 			return NULL;
413 		}
414 	} else {
415 		__dma_remap(page, size, prot);
416 		ptr = page_address(page);
417 	}
418 
419  out:
420 	*ret_page = page;
421 	return ptr;
422 }
423 
424 static void __free_from_contiguous(struct device *dev, struct page *page,
425 				   void *cpu_addr, size_t size, bool want_vaddr)
426 {
427 	if (want_vaddr) {
428 		if (PageHighMem(page))
429 			dma_common_free_remap(cpu_addr, size);
430 		else
431 			__dma_remap(page, size, PAGE_KERNEL);
432 	}
433 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
434 }
435 
436 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
437 {
438 	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
439 			pgprot_writecombine(prot) :
440 			pgprot_dmacoherent(prot);
441 	return prot;
442 }
443 
444 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
445 				   struct page **ret_page)
446 {
447 	struct page *page;
448 	/* __alloc_simple_buffer is only called when the device is coherent */
449 	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
450 	if (!page)
451 		return NULL;
452 
453 	*ret_page = page;
454 	return page_address(page);
455 }
456 
457 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
458 				    struct page **ret_page)
459 {
460 	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
461 				     ret_page);
462 }
463 
464 static void simple_allocator_free(struct arm_dma_free_args *args)
465 {
466 	__dma_free_buffer(args->page, args->size);
467 }
468 
469 static struct arm_dma_allocator simple_allocator = {
470 	.alloc = simple_allocator_alloc,
471 	.free = simple_allocator_free,
472 };
473 
474 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
475 				 struct page **ret_page)
476 {
477 	return __alloc_from_contiguous(args->dev, args->size, args->prot,
478 				       ret_page, args->caller,
479 				       args->want_vaddr, args->coherent_flag,
480 				       args->gfp);
481 }
482 
483 static void cma_allocator_free(struct arm_dma_free_args *args)
484 {
485 	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
486 			       args->size, args->want_vaddr);
487 }
488 
489 static struct arm_dma_allocator cma_allocator = {
490 	.alloc = cma_allocator_alloc,
491 	.free = cma_allocator_free,
492 };
493 
494 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
495 				  struct page **ret_page)
496 {
497 	return __alloc_from_pool(args->size, ret_page);
498 }
499 
500 static void pool_allocator_free(struct arm_dma_free_args *args)
501 {
502 	__free_from_pool(args->cpu_addr, args->size);
503 }
504 
505 static struct arm_dma_allocator pool_allocator = {
506 	.alloc = pool_allocator_alloc,
507 	.free = pool_allocator_free,
508 };
509 
510 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
511 				   struct page **ret_page)
512 {
513 	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
514 				    args->prot, ret_page, args->caller,
515 				    args->want_vaddr);
516 }
517 
518 static void remap_allocator_free(struct arm_dma_free_args *args)
519 {
520 	if (args->want_vaddr)
521 		dma_common_free_remap(args->cpu_addr, args->size);
522 
523 	__dma_free_buffer(args->page, args->size);
524 }
525 
526 static struct arm_dma_allocator remap_allocator = {
527 	.alloc = remap_allocator_alloc,
528 	.free = remap_allocator_free,
529 };
530 
531 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
532 			 gfp_t gfp, pgprot_t prot, bool is_coherent,
533 			 unsigned long attrs, const void *caller)
534 {
535 	u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
536 	struct page *page = NULL;
537 	void *addr;
538 	bool allowblock, cma;
539 	struct arm_dma_buffer *buf;
540 	struct arm_dma_alloc_args args = {
541 		.dev = dev,
542 		.size = PAGE_ALIGN(size),
543 		.gfp = gfp,
544 		.prot = prot,
545 		.caller = caller,
546 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
547 		.coherent_flag = is_coherent ? COHERENT : NORMAL,
548 	};
549 
550 #ifdef CONFIG_DMA_API_DEBUG
551 	u64 limit = (mask + 1) & ~mask;
552 	if (limit && size >= limit) {
553 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
554 			size, mask);
555 		return NULL;
556 	}
557 #endif
558 
559 	buf = kzalloc(sizeof(*buf),
560 		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
561 	if (!buf)
562 		return NULL;
563 
564 	if (mask < 0xffffffffULL)
565 		gfp |= GFP_DMA;
566 
567 	/*
568 	 * Following is a work-around (a.k.a. hack) to prevent pages
569 	 * with __GFP_COMP being passed to split_page() which cannot
570 	 * handle them.  The real problem is that this flag probably
571 	 * should be 0 on ARM as it is not supported on this
572 	 * platform; see CONFIG_HUGETLBFS.
573 	 */
574 	gfp &= ~(__GFP_COMP);
575 	args.gfp = gfp;
576 
577 	*handle = DMA_MAPPING_ERROR;
578 	allowblock = gfpflags_allow_blocking(gfp);
579 	cma = allowblock ? dev_get_cma_area(dev) : NULL;
580 
581 	if (cma)
582 		buf->allocator = &cma_allocator;
583 	else if (is_coherent)
584 		buf->allocator = &simple_allocator;
585 	else if (allowblock)
586 		buf->allocator = &remap_allocator;
587 	else
588 		buf->allocator = &pool_allocator;
589 
590 	addr = buf->allocator->alloc(&args, &page);
591 
592 	if (page) {
593 		unsigned long flags;
594 
595 		*handle = phys_to_dma(dev, page_to_phys(page));
596 		buf->virt = args.want_vaddr ? addr : page;
597 
598 		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
599 		list_add(&buf->list, &arm_dma_bufs);
600 		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
601 	} else {
602 		kfree(buf);
603 	}
604 
605 	return args.want_vaddr ? addr : page;
606 }
607 
608 /*
609  * Free a buffer as defined by the above mapping.
610  */
611 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
612 			   dma_addr_t handle, unsigned long attrs,
613 			   bool is_coherent)
614 {
615 	struct page *page = phys_to_page(dma_to_phys(dev, handle));
616 	struct arm_dma_buffer *buf;
617 	struct arm_dma_free_args args = {
618 		.dev = dev,
619 		.size = PAGE_ALIGN(size),
620 		.cpu_addr = cpu_addr,
621 		.page = page,
622 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
623 	};
624 
625 	buf = arm_dma_buffer_find(cpu_addr);
626 	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
627 		return;
628 
629 	buf->allocator->free(&args);
630 	kfree(buf);
631 }
632 
633 static void dma_cache_maint_page(struct page *page, unsigned long offset,
634 	size_t size, enum dma_data_direction dir,
635 	void (*op)(const void *, size_t, int))
636 {
637 	unsigned long pfn;
638 	size_t left = size;
639 
640 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
641 	offset %= PAGE_SIZE;
642 
643 	/*
644 	 * A single sg entry may refer to multiple physically contiguous
645 	 * pages.  But we still need to process highmem pages individually.
646 	 * If highmem is not configured then the bulk of this loop gets
647 	 * optimized out.
648 	 */
649 	do {
650 		size_t len = left;
651 		void *vaddr;
652 
653 		page = pfn_to_page(pfn);
654 
655 		if (PageHighMem(page)) {
656 			if (len + offset > PAGE_SIZE)
657 				len = PAGE_SIZE - offset;
658 
659 			if (cache_is_vipt_nonaliasing()) {
660 				vaddr = kmap_atomic(page);
661 				op(vaddr + offset, len, dir);
662 				kunmap_atomic(vaddr);
663 			} else {
664 				vaddr = kmap_high_get(page);
665 				if (vaddr) {
666 					op(vaddr + offset, len, dir);
667 					kunmap_high(page);
668 				}
669 			}
670 		} else {
671 			vaddr = page_address(page) + offset;
672 			op(vaddr, len, dir);
673 		}
674 		offset = 0;
675 		pfn++;
676 		left -= len;
677 	} while (left);
678 }
679 
680 /*
681  * Make an area consistent for devices.
682  * Note: Drivers should NOT use this function directly.
683  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
684  */
685 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
686 	size_t size, enum dma_data_direction dir)
687 {
688 	phys_addr_t paddr;
689 
690 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
691 
692 	paddr = page_to_phys(page) + off;
693 	if (dir == DMA_FROM_DEVICE) {
694 		outer_inv_range(paddr, paddr + size);
695 	} else {
696 		outer_clean_range(paddr, paddr + size);
697 	}
698 	/* FIXME: non-speculating: flush on bidirectional mappings? */
699 }
700 
701 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
702 	size_t size, enum dma_data_direction dir)
703 {
704 	phys_addr_t paddr = page_to_phys(page) + off;
705 
706 	/* FIXME: non-speculating: not required */
707 	/* in any case, don't bother invalidating if DMA to device */
708 	if (dir != DMA_TO_DEVICE) {
709 		outer_inv_range(paddr, paddr + size);
710 
711 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
712 	}
713 
714 	/*
715 	 * Mark the D-cache clean for these pages to avoid extra flushing.
716 	 */
717 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
718 		unsigned long pfn;
719 		size_t left = size;
720 
721 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
722 		off %= PAGE_SIZE;
723 		if (off) {
724 			pfn++;
725 			left -= PAGE_SIZE - off;
726 		}
727 		while (left >= PAGE_SIZE) {
728 			page = pfn_to_page(pfn++);
729 			set_bit(PG_dcache_clean, &page->flags);
730 			left -= PAGE_SIZE;
731 		}
732 	}
733 }
734 
735 #ifdef CONFIG_ARM_DMA_USE_IOMMU
736 
737 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
738 {
739 	int prot = 0;
740 
741 	if (attrs & DMA_ATTR_PRIVILEGED)
742 		prot |= IOMMU_PRIV;
743 
744 	switch (dir) {
745 	case DMA_BIDIRECTIONAL:
746 		return prot | IOMMU_READ | IOMMU_WRITE;
747 	case DMA_TO_DEVICE:
748 		return prot | IOMMU_READ;
749 	case DMA_FROM_DEVICE:
750 		return prot | IOMMU_WRITE;
751 	default:
752 		return prot;
753 	}
754 }
755 
756 /* IOMMU */
757 
758 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
759 
760 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
761 				      size_t size)
762 {
763 	unsigned int order = get_order(size);
764 	unsigned int align = 0;
765 	unsigned int count, start;
766 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
767 	unsigned long flags;
768 	dma_addr_t iova;
769 	int i;
770 
771 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
772 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
773 
774 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
775 	align = (1 << order) - 1;
776 
777 	spin_lock_irqsave(&mapping->lock, flags);
778 	for (i = 0; i < mapping->nr_bitmaps; i++) {
779 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
780 				mapping->bits, 0, count, align);
781 
782 		if (start > mapping->bits)
783 			continue;
784 
785 		bitmap_set(mapping->bitmaps[i], start, count);
786 		break;
787 	}
788 
789 	/*
790 	 * No unused range found. Try to extend the existing mapping
791 	 * and perform a second attempt to reserve an IO virtual
792 	 * address range of size bytes.
793 	 */
794 	if (i == mapping->nr_bitmaps) {
795 		if (extend_iommu_mapping(mapping)) {
796 			spin_unlock_irqrestore(&mapping->lock, flags);
797 			return DMA_MAPPING_ERROR;
798 		}
799 
800 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
801 				mapping->bits, 0, count, align);
802 
803 		if (start > mapping->bits) {
804 			spin_unlock_irqrestore(&mapping->lock, flags);
805 			return DMA_MAPPING_ERROR;
806 		}
807 
808 		bitmap_set(mapping->bitmaps[i], start, count);
809 	}
810 	spin_unlock_irqrestore(&mapping->lock, flags);
811 
812 	iova = mapping->base + (mapping_size * i);
813 	iova += start << PAGE_SHIFT;
814 
815 	return iova;
816 }
817 
818 static inline void __free_iova(struct dma_iommu_mapping *mapping,
819 			       dma_addr_t addr, size_t size)
820 {
821 	unsigned int start, count;
822 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
823 	unsigned long flags;
824 	dma_addr_t bitmap_base;
825 	u32 bitmap_index;
826 
827 	if (!size)
828 		return;
829 
830 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
831 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
832 
833 	bitmap_base = mapping->base + mapping_size * bitmap_index;
834 
835 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
836 
837 	if (addr + size > bitmap_base + mapping_size) {
838 		/*
839 		 * The address range to be freed reaches into the iova
840 		 * range of the next bitmap. This should not happen as
841 		 * we don't allow this in __alloc_iova (at the
842 		 * moment).
843 		 */
844 		BUG();
845 	} else
846 		count = size >> PAGE_SHIFT;
847 
848 	spin_lock_irqsave(&mapping->lock, flags);
849 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
850 	spin_unlock_irqrestore(&mapping->lock, flags);
851 }
852 
853 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
854 static const int iommu_order_array[] = { 9, 8, 4, 0 };
855 
856 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
857 					  gfp_t gfp, unsigned long attrs,
858 					  int coherent_flag)
859 {
860 	struct page **pages;
861 	int count = size >> PAGE_SHIFT;
862 	int array_size = count * sizeof(struct page *);
863 	int i = 0;
864 	int order_idx = 0;
865 
866 	if (array_size <= PAGE_SIZE)
867 		pages = kzalloc(array_size, GFP_KERNEL);
868 	else
869 		pages = vzalloc(array_size);
870 	if (!pages)
871 		return NULL;
872 
873 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
874 	{
875 		unsigned long order = get_order(size);
876 		struct page *page;
877 
878 		page = dma_alloc_from_contiguous(dev, count, order,
879 						 gfp & __GFP_NOWARN);
880 		if (!page)
881 			goto error;
882 
883 		__dma_clear_buffer(page, size, coherent_flag);
884 
885 		for (i = 0; i < count; i++)
886 			pages[i] = page + i;
887 
888 		return pages;
889 	}
890 
891 	/* Go straight to 4K chunks if caller says it's OK. */
892 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
893 		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
894 
895 	/*
896 	 * IOMMU can map any pages, so himem can also be used here
897 	 */
898 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
899 
900 	while (count) {
901 		int j, order;
902 
903 		order = iommu_order_array[order_idx];
904 
905 		/* Drop down when we get small */
906 		if (__fls(count) < order) {
907 			order_idx++;
908 			continue;
909 		}
910 
911 		if (order) {
912 			/* See if it's easy to allocate a high-order chunk */
913 			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
914 
915 			/* Go down a notch at first sign of pressure */
916 			if (!pages[i]) {
917 				order_idx++;
918 				continue;
919 			}
920 		} else {
921 			pages[i] = alloc_pages(gfp, 0);
922 			if (!pages[i])
923 				goto error;
924 		}
925 
926 		if (order) {
927 			split_page(pages[i], order);
928 			j = 1 << order;
929 			while (--j)
930 				pages[i + j] = pages[i] + j;
931 		}
932 
933 		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
934 		i += 1 << order;
935 		count -= 1 << order;
936 	}
937 
938 	return pages;
939 error:
940 	while (i--)
941 		if (pages[i])
942 			__free_pages(pages[i], 0);
943 	kvfree(pages);
944 	return NULL;
945 }
946 
947 static int __iommu_free_buffer(struct device *dev, struct page **pages,
948 			       size_t size, unsigned long attrs)
949 {
950 	int count = size >> PAGE_SHIFT;
951 	int i;
952 
953 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
954 		dma_release_from_contiguous(dev, pages[0], count);
955 	} else {
956 		for (i = 0; i < count; i++)
957 			if (pages[i])
958 				__free_pages(pages[i], 0);
959 	}
960 
961 	kvfree(pages);
962 	return 0;
963 }
964 
965 /*
966  * Create a mapping in device IO address space for specified pages
967  */
968 static dma_addr_t
969 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
970 		       unsigned long attrs)
971 {
972 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
973 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
974 	dma_addr_t dma_addr, iova;
975 	int i;
976 
977 	dma_addr = __alloc_iova(mapping, size);
978 	if (dma_addr == DMA_MAPPING_ERROR)
979 		return dma_addr;
980 
981 	iova = dma_addr;
982 	for (i = 0; i < count; ) {
983 		int ret;
984 
985 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
986 		phys_addr_t phys = page_to_phys(pages[i]);
987 		unsigned int len, j;
988 
989 		for (j = i + 1; j < count; j++, next_pfn++)
990 			if (page_to_pfn(pages[j]) != next_pfn)
991 				break;
992 
993 		len = (j - i) << PAGE_SHIFT;
994 		ret = iommu_map(mapping->domain, iova, phys, len,
995 				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
996 		if (ret < 0)
997 			goto fail;
998 		iova += len;
999 		i = j;
1000 	}
1001 	return dma_addr;
1002 fail:
1003 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1004 	__free_iova(mapping, dma_addr, size);
1005 	return DMA_MAPPING_ERROR;
1006 }
1007 
1008 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1009 {
1010 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1011 
1012 	/*
1013 	 * add optional in-page offset from iova to size and align
1014 	 * result to page size
1015 	 */
1016 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1017 	iova &= PAGE_MASK;
1018 
1019 	iommu_unmap(mapping->domain, iova, size);
1020 	__free_iova(mapping, iova, size);
1021 	return 0;
1022 }
1023 
1024 static struct page **__atomic_get_pages(void *addr)
1025 {
1026 	struct page *page;
1027 	phys_addr_t phys;
1028 
1029 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1030 	page = phys_to_page(phys);
1031 
1032 	return (struct page **)page;
1033 }
1034 
1035 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1036 {
1037 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1038 		return __atomic_get_pages(cpu_addr);
1039 
1040 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1041 		return cpu_addr;
1042 
1043 	return dma_common_find_pages(cpu_addr);
1044 }
1045 
1046 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1047 				  dma_addr_t *handle, int coherent_flag,
1048 				  unsigned long attrs)
1049 {
1050 	struct page *page;
1051 	void *addr;
1052 
1053 	if (coherent_flag  == COHERENT)
1054 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1055 	else
1056 		addr = __alloc_from_pool(size, &page);
1057 	if (!addr)
1058 		return NULL;
1059 
1060 	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1061 	if (*handle == DMA_MAPPING_ERROR)
1062 		goto err_mapping;
1063 
1064 	return addr;
1065 
1066 err_mapping:
1067 	__free_from_pool(addr, size);
1068 	return NULL;
1069 }
1070 
1071 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1072 			dma_addr_t handle, size_t size, int coherent_flag)
1073 {
1074 	__iommu_remove_mapping(dev, handle, size);
1075 	if (coherent_flag == COHERENT)
1076 		__dma_free_buffer(virt_to_page(cpu_addr), size);
1077 	else
1078 		__free_from_pool(cpu_addr, size);
1079 }
1080 
1081 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1082 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1083 {
1084 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1085 	struct page **pages;
1086 	void *addr = NULL;
1087 	int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1088 
1089 	*handle = DMA_MAPPING_ERROR;
1090 	size = PAGE_ALIGN(size);
1091 
1092 	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1093 		return __iommu_alloc_simple(dev, size, gfp, handle,
1094 					    coherent_flag, attrs);
1095 
1096 	/*
1097 	 * Following is a work-around (a.k.a. hack) to prevent pages
1098 	 * with __GFP_COMP being passed to split_page() which cannot
1099 	 * handle them.  The real problem is that this flag probably
1100 	 * should be 0 on ARM as it is not supported on this
1101 	 * platform; see CONFIG_HUGETLBFS.
1102 	 */
1103 	gfp &= ~(__GFP_COMP);
1104 
1105 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1106 	if (!pages)
1107 		return NULL;
1108 
1109 	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1110 	if (*handle == DMA_MAPPING_ERROR)
1111 		goto err_buffer;
1112 
1113 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1114 		return pages;
1115 
1116 	addr = dma_common_pages_remap(pages, size, prot,
1117 				   __builtin_return_address(0));
1118 	if (!addr)
1119 		goto err_mapping;
1120 
1121 	return addr;
1122 
1123 err_mapping:
1124 	__iommu_remove_mapping(dev, *handle, size);
1125 err_buffer:
1126 	__iommu_free_buffer(dev, pages, size, attrs);
1127 	return NULL;
1128 }
1129 
1130 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1131 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1132 		    unsigned long attrs)
1133 {
1134 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1135 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1136 	int err;
1137 
1138 	if (!pages)
1139 		return -ENXIO;
1140 
1141 	if (vma->vm_pgoff >= nr_pages)
1142 		return -ENXIO;
1143 
1144 	if (!dev->dma_coherent)
1145 		vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1146 
1147 	err = vm_map_pages(vma, pages, nr_pages);
1148 	if (err)
1149 		pr_err("Remapping memory failed: %d\n", err);
1150 
1151 	return err;
1152 }
1153 
1154 /*
1155  * free a page as defined by the above mapping.
1156  * Must not be called with IRQs disabled.
1157  */
1158 static void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1159 	dma_addr_t handle, unsigned long attrs)
1160 {
1161 	int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1162 	struct page **pages;
1163 	size = PAGE_ALIGN(size);
1164 
1165 	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1166 		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1167 		return;
1168 	}
1169 
1170 	pages = __iommu_get_pages(cpu_addr, attrs);
1171 	if (!pages) {
1172 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1173 		return;
1174 	}
1175 
1176 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1177 		dma_common_free_remap(cpu_addr, size);
1178 
1179 	__iommu_remove_mapping(dev, handle, size);
1180 	__iommu_free_buffer(dev, pages, size, attrs);
1181 }
1182 
1183 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1184 				 void *cpu_addr, dma_addr_t dma_addr,
1185 				 size_t size, unsigned long attrs)
1186 {
1187 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1188 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1189 
1190 	if (!pages)
1191 		return -ENXIO;
1192 
1193 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1194 					 GFP_KERNEL);
1195 }
1196 
1197 /*
1198  * Map a part of the scatter-gather list into contiguous io address space
1199  */
1200 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1201 			  size_t size, dma_addr_t *handle,
1202 			  enum dma_data_direction dir, unsigned long attrs)
1203 {
1204 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1205 	dma_addr_t iova, iova_base;
1206 	int ret = 0;
1207 	unsigned int count;
1208 	struct scatterlist *s;
1209 	int prot;
1210 
1211 	size = PAGE_ALIGN(size);
1212 	*handle = DMA_MAPPING_ERROR;
1213 
1214 	iova_base = iova = __alloc_iova(mapping, size);
1215 	if (iova == DMA_MAPPING_ERROR)
1216 		return -ENOMEM;
1217 
1218 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1219 		phys_addr_t phys = page_to_phys(sg_page(s));
1220 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1221 
1222 		if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1223 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1224 
1225 		prot = __dma_info_to_prot(dir, attrs);
1226 
1227 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1228 		if (ret < 0)
1229 			goto fail;
1230 		count += len >> PAGE_SHIFT;
1231 		iova += len;
1232 	}
1233 	*handle = iova_base;
1234 
1235 	return 0;
1236 fail:
1237 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1238 	__free_iova(mapping, iova_base, size);
1239 	return ret;
1240 }
1241 
1242 /**
1243  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1244  * @dev: valid struct device pointer
1245  * @sg: list of buffers
1246  * @nents: number of buffers to map
1247  * @dir: DMA transfer direction
1248  *
1249  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1250  * The scatter gather list elements are merged together (if possible) and
1251  * tagged with the appropriate dma address and length. They are obtained via
1252  * sg_dma_{address,length}.
1253  */
1254 static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1255 		int nents, enum dma_data_direction dir, unsigned long attrs)
1256 {
1257 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1258 	int i, count = 0, ret;
1259 	unsigned int offset = s->offset;
1260 	unsigned int size = s->offset + s->length;
1261 	unsigned int max = dma_get_max_seg_size(dev);
1262 
1263 	for (i = 1; i < nents; i++) {
1264 		s = sg_next(s);
1265 
1266 		s->dma_length = 0;
1267 
1268 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1269 			ret = __map_sg_chunk(dev, start, size,
1270 					     &dma->dma_address, dir, attrs);
1271 			if (ret < 0)
1272 				goto bad_mapping;
1273 
1274 			dma->dma_address += offset;
1275 			dma->dma_length = size - offset;
1276 
1277 			size = offset = s->offset;
1278 			start = s;
1279 			dma = sg_next(dma);
1280 			count += 1;
1281 		}
1282 		size += s->length;
1283 	}
1284 	ret = __map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs);
1285 	if (ret < 0)
1286 		goto bad_mapping;
1287 
1288 	dma->dma_address += offset;
1289 	dma->dma_length = size - offset;
1290 
1291 	return count+1;
1292 
1293 bad_mapping:
1294 	for_each_sg(sg, s, count, i)
1295 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1296 	if (ret == -ENOMEM)
1297 		return ret;
1298 	return -EINVAL;
1299 }
1300 
1301 /**
1302  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1303  * @dev: valid struct device pointer
1304  * @sg: list of buffers
1305  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1306  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1307  *
1308  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1309  * rules concerning calls here are the same as for dma_unmap_single().
1310  */
1311 static void arm_iommu_unmap_sg(struct device *dev,
1312 			       struct scatterlist *sg, int nents,
1313 			       enum dma_data_direction dir,
1314 			       unsigned long attrs)
1315 {
1316 	struct scatterlist *s;
1317 	int i;
1318 
1319 	for_each_sg(sg, s, nents, i) {
1320 		if (sg_dma_len(s))
1321 			__iommu_remove_mapping(dev, sg_dma_address(s),
1322 					       sg_dma_len(s));
1323 		if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1324 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1325 					      s->length, dir);
1326 	}
1327 }
1328 
1329 /**
1330  * arm_iommu_sync_sg_for_cpu
1331  * @dev: valid struct device pointer
1332  * @sg: list of buffers
1333  * @nents: number of buffers to map (returned from dma_map_sg)
1334  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1335  */
1336 static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1337 			struct scatterlist *sg,
1338 			int nents, enum dma_data_direction dir)
1339 {
1340 	struct scatterlist *s;
1341 	int i;
1342 
1343 	if (dev->dma_coherent)
1344 		return;
1345 
1346 	for_each_sg(sg, s, nents, i)
1347 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1348 
1349 }
1350 
1351 /**
1352  * arm_iommu_sync_sg_for_device
1353  * @dev: valid struct device pointer
1354  * @sg: list of buffers
1355  * @nents: number of buffers to map (returned from dma_map_sg)
1356  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1357  */
1358 static void arm_iommu_sync_sg_for_device(struct device *dev,
1359 			struct scatterlist *sg,
1360 			int nents, enum dma_data_direction dir)
1361 {
1362 	struct scatterlist *s;
1363 	int i;
1364 
1365 	if (dev->dma_coherent)
1366 		return;
1367 
1368 	for_each_sg(sg, s, nents, i)
1369 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1370 }
1371 
1372 /**
1373  * arm_iommu_map_page
1374  * @dev: valid struct device pointer
1375  * @page: page that buffer resides in
1376  * @offset: offset into page for start of buffer
1377  * @size: size of buffer to map
1378  * @dir: DMA transfer direction
1379  *
1380  * IOMMU aware version of arm_dma_map_page()
1381  */
1382 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1383 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1384 	     unsigned long attrs)
1385 {
1386 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1387 	dma_addr_t dma_addr;
1388 	int ret, prot, len = PAGE_ALIGN(size + offset);
1389 
1390 	if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1391 		__dma_page_cpu_to_dev(page, offset, size, dir);
1392 
1393 	dma_addr = __alloc_iova(mapping, len);
1394 	if (dma_addr == DMA_MAPPING_ERROR)
1395 		return dma_addr;
1396 
1397 	prot = __dma_info_to_prot(dir, attrs);
1398 
1399 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1400 	if (ret < 0)
1401 		goto fail;
1402 
1403 	return dma_addr + offset;
1404 fail:
1405 	__free_iova(mapping, dma_addr, len);
1406 	return DMA_MAPPING_ERROR;
1407 }
1408 
1409 /**
1410  * arm_iommu_unmap_page
1411  * @dev: valid struct device pointer
1412  * @handle: DMA address of buffer
1413  * @size: size of buffer (same as passed to dma_map_page)
1414  * @dir: DMA transfer direction (same as passed to dma_map_page)
1415  *
1416  * IOMMU aware version of arm_dma_unmap_page()
1417  */
1418 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1419 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1420 {
1421 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1422 	dma_addr_t iova = handle & PAGE_MASK;
1423 	struct page *page;
1424 	int offset = handle & ~PAGE_MASK;
1425 	int len = PAGE_ALIGN(size + offset);
1426 
1427 	if (!iova)
1428 		return;
1429 
1430 	if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
1431 		page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1432 		__dma_page_dev_to_cpu(page, offset, size, dir);
1433 	}
1434 
1435 	iommu_unmap(mapping->domain, iova, len);
1436 	__free_iova(mapping, iova, len);
1437 }
1438 
1439 /**
1440  * arm_iommu_map_resource - map a device resource for DMA
1441  * @dev: valid struct device pointer
1442  * @phys_addr: physical address of resource
1443  * @size: size of resource to map
1444  * @dir: DMA transfer direction
1445  */
1446 static dma_addr_t arm_iommu_map_resource(struct device *dev,
1447 		phys_addr_t phys_addr, size_t size,
1448 		enum dma_data_direction dir, unsigned long attrs)
1449 {
1450 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1451 	dma_addr_t dma_addr;
1452 	int ret, prot;
1453 	phys_addr_t addr = phys_addr & PAGE_MASK;
1454 	unsigned int offset = phys_addr & ~PAGE_MASK;
1455 	size_t len = PAGE_ALIGN(size + offset);
1456 
1457 	dma_addr = __alloc_iova(mapping, len);
1458 	if (dma_addr == DMA_MAPPING_ERROR)
1459 		return dma_addr;
1460 
1461 	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1462 
1463 	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1464 	if (ret < 0)
1465 		goto fail;
1466 
1467 	return dma_addr + offset;
1468 fail:
1469 	__free_iova(mapping, dma_addr, len);
1470 	return DMA_MAPPING_ERROR;
1471 }
1472 
1473 /**
1474  * arm_iommu_unmap_resource - unmap a device DMA resource
1475  * @dev: valid struct device pointer
1476  * @dma_handle: DMA address to resource
1477  * @size: size of resource to map
1478  * @dir: DMA transfer direction
1479  */
1480 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1481 		size_t size, enum dma_data_direction dir,
1482 		unsigned long attrs)
1483 {
1484 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1485 	dma_addr_t iova = dma_handle & PAGE_MASK;
1486 	unsigned int offset = dma_handle & ~PAGE_MASK;
1487 	size_t len = PAGE_ALIGN(size + offset);
1488 
1489 	if (!iova)
1490 		return;
1491 
1492 	iommu_unmap(mapping->domain, iova, len);
1493 	__free_iova(mapping, iova, len);
1494 }
1495 
1496 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1497 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1498 {
1499 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1500 	dma_addr_t iova = handle & PAGE_MASK;
1501 	struct page *page;
1502 	unsigned int offset = handle & ~PAGE_MASK;
1503 
1504 	if (dev->dma_coherent || !iova)
1505 		return;
1506 
1507 	page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1508 	__dma_page_dev_to_cpu(page, offset, size, dir);
1509 }
1510 
1511 static void arm_iommu_sync_single_for_device(struct device *dev,
1512 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1513 {
1514 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1515 	dma_addr_t iova = handle & PAGE_MASK;
1516 	struct page *page;
1517 	unsigned int offset = handle & ~PAGE_MASK;
1518 
1519 	if (dev->dma_coherent || !iova)
1520 		return;
1521 
1522 	page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1523 	__dma_page_cpu_to_dev(page, offset, size, dir);
1524 }
1525 
1526 static const struct dma_map_ops iommu_ops = {
1527 	.alloc		= arm_iommu_alloc_attrs,
1528 	.free		= arm_iommu_free_attrs,
1529 	.mmap		= arm_iommu_mmap_attrs,
1530 	.get_sgtable	= arm_iommu_get_sgtable,
1531 
1532 	.map_page		= arm_iommu_map_page,
1533 	.unmap_page		= arm_iommu_unmap_page,
1534 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1535 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1536 
1537 	.map_sg			= arm_iommu_map_sg,
1538 	.unmap_sg		= arm_iommu_unmap_sg,
1539 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1540 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1541 
1542 	.map_resource		= arm_iommu_map_resource,
1543 	.unmap_resource		= arm_iommu_unmap_resource,
1544 };
1545 
1546 /**
1547  * arm_iommu_create_mapping
1548  * @bus: pointer to the bus holding the client device (for IOMMU calls)
1549  * @base: start address of the valid IO address space
1550  * @size: maximum size of the valid IO address space
1551  *
1552  * Creates a mapping structure which holds information about used/unused
1553  * IO address ranges, which is required to perform memory allocation and
1554  * mapping with IOMMU aware functions.
1555  *
1556  * The client device need to be attached to the mapping with
1557  * arm_iommu_attach_device function.
1558  */
1559 struct dma_iommu_mapping *
1560 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
1561 {
1562 	unsigned int bits = size >> PAGE_SHIFT;
1563 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1564 	struct dma_iommu_mapping *mapping;
1565 	int extensions = 1;
1566 	int err = -ENOMEM;
1567 
1568 	/* currently only 32-bit DMA address space is supported */
1569 	if (size > DMA_BIT_MASK(32) + 1)
1570 		return ERR_PTR(-ERANGE);
1571 
1572 	if (!bitmap_size)
1573 		return ERR_PTR(-EINVAL);
1574 
1575 	if (bitmap_size > PAGE_SIZE) {
1576 		extensions = bitmap_size / PAGE_SIZE;
1577 		bitmap_size = PAGE_SIZE;
1578 	}
1579 
1580 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1581 	if (!mapping)
1582 		goto err;
1583 
1584 	mapping->bitmap_size = bitmap_size;
1585 	mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
1586 				   GFP_KERNEL);
1587 	if (!mapping->bitmaps)
1588 		goto err2;
1589 
1590 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1591 	if (!mapping->bitmaps[0])
1592 		goto err3;
1593 
1594 	mapping->nr_bitmaps = 1;
1595 	mapping->extensions = extensions;
1596 	mapping->base = base;
1597 	mapping->bits = BITS_PER_BYTE * bitmap_size;
1598 
1599 	spin_lock_init(&mapping->lock);
1600 
1601 	mapping->domain = iommu_domain_alloc(bus);
1602 	if (!mapping->domain)
1603 		goto err4;
1604 
1605 	kref_init(&mapping->kref);
1606 	return mapping;
1607 err4:
1608 	kfree(mapping->bitmaps[0]);
1609 err3:
1610 	kfree(mapping->bitmaps);
1611 err2:
1612 	kfree(mapping);
1613 err:
1614 	return ERR_PTR(err);
1615 }
1616 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1617 
1618 static void release_iommu_mapping(struct kref *kref)
1619 {
1620 	int i;
1621 	struct dma_iommu_mapping *mapping =
1622 		container_of(kref, struct dma_iommu_mapping, kref);
1623 
1624 	iommu_domain_free(mapping->domain);
1625 	for (i = 0; i < mapping->nr_bitmaps; i++)
1626 		kfree(mapping->bitmaps[i]);
1627 	kfree(mapping->bitmaps);
1628 	kfree(mapping);
1629 }
1630 
1631 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1632 {
1633 	int next_bitmap;
1634 
1635 	if (mapping->nr_bitmaps >= mapping->extensions)
1636 		return -EINVAL;
1637 
1638 	next_bitmap = mapping->nr_bitmaps;
1639 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1640 						GFP_ATOMIC);
1641 	if (!mapping->bitmaps[next_bitmap])
1642 		return -ENOMEM;
1643 
1644 	mapping->nr_bitmaps++;
1645 
1646 	return 0;
1647 }
1648 
1649 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1650 {
1651 	if (mapping)
1652 		kref_put(&mapping->kref, release_iommu_mapping);
1653 }
1654 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1655 
1656 static int __arm_iommu_attach_device(struct device *dev,
1657 				     struct dma_iommu_mapping *mapping)
1658 {
1659 	int err;
1660 
1661 	err = iommu_attach_device(mapping->domain, dev);
1662 	if (err)
1663 		return err;
1664 
1665 	kref_get(&mapping->kref);
1666 	to_dma_iommu_mapping(dev) = mapping;
1667 
1668 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1669 	return 0;
1670 }
1671 
1672 /**
1673  * arm_iommu_attach_device
1674  * @dev: valid struct device pointer
1675  * @mapping: io address space mapping structure (returned from
1676  *	arm_iommu_create_mapping)
1677  *
1678  * Attaches specified io address space mapping to the provided device.
1679  * This replaces the dma operations (dma_map_ops pointer) with the
1680  * IOMMU aware version.
1681  *
1682  * More than one client might be attached to the same io address space
1683  * mapping.
1684  */
1685 int arm_iommu_attach_device(struct device *dev,
1686 			    struct dma_iommu_mapping *mapping)
1687 {
1688 	int err;
1689 
1690 	err = __arm_iommu_attach_device(dev, mapping);
1691 	if (err)
1692 		return err;
1693 
1694 	set_dma_ops(dev, &iommu_ops);
1695 	return 0;
1696 }
1697 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1698 
1699 /**
1700  * arm_iommu_detach_device
1701  * @dev: valid struct device pointer
1702  *
1703  * Detaches the provided device from a previously attached map.
1704  * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
1705  */
1706 void arm_iommu_detach_device(struct device *dev)
1707 {
1708 	struct dma_iommu_mapping *mapping;
1709 
1710 	mapping = to_dma_iommu_mapping(dev);
1711 	if (!mapping) {
1712 		dev_warn(dev, "Not attached\n");
1713 		return;
1714 	}
1715 
1716 	iommu_detach_device(mapping->domain, dev);
1717 	kref_put(&mapping->kref, release_iommu_mapping);
1718 	to_dma_iommu_mapping(dev) = NULL;
1719 	set_dma_ops(dev, NULL);
1720 
1721 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1722 }
1723 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1724 
1725 static void arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
1726 				    const struct iommu_ops *iommu, bool coherent)
1727 {
1728 	struct dma_iommu_mapping *mapping;
1729 
1730 	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
1731 	if (IS_ERR(mapping)) {
1732 		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
1733 				size, dev_name(dev));
1734 		return;
1735 	}
1736 
1737 	if (__arm_iommu_attach_device(dev, mapping)) {
1738 		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
1739 				dev_name(dev));
1740 		arm_iommu_release_mapping(mapping);
1741 		return;
1742 	}
1743 
1744 	set_dma_ops(dev, &iommu_ops);
1745 }
1746 
1747 static void arm_teardown_iommu_dma_ops(struct device *dev)
1748 {
1749 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1750 
1751 	if (!mapping)
1752 		return;
1753 
1754 	arm_iommu_detach_device(dev);
1755 	arm_iommu_release_mapping(mapping);
1756 }
1757 
1758 #else
1759 
1760 static void arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
1761 				    const struct iommu_ops *iommu, bool coherent)
1762 {
1763 }
1764 
1765 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
1766 
1767 #endif	/* CONFIG_ARM_DMA_USE_IOMMU */
1768 
1769 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
1770 			const struct iommu_ops *iommu, bool coherent)
1771 {
1772 	/*
1773 	 * Due to legacy code that sets the ->dma_coherent flag from a bus
1774 	 * notifier we can't just assign coherent to the ->dma_coherent flag
1775 	 * here, but instead have to make sure we only set but never clear it
1776 	 * for now.
1777 	 */
1778 	if (coherent)
1779 		dev->dma_coherent = true;
1780 
1781 	/*
1782 	 * Don't override the dma_ops if they have already been set. Ideally
1783 	 * this should be the only location where dma_ops are set, remove this
1784 	 * check when all other callers of set_dma_ops will have disappeared.
1785 	 */
1786 	if (dev->dma_ops)
1787 		return;
1788 
1789 	if (iommu)
1790 		arm_setup_iommu_dma_ops(dev, dma_base, size, iommu, coherent);
1791 
1792 	xen_setup_dma_ops(dev);
1793 	dev->archdata.dma_ops_setup = true;
1794 }
1795 
1796 void arch_teardown_dma_ops(struct device *dev)
1797 {
1798 	if (!dev->archdata.dma_ops_setup)
1799 		return;
1800 
1801 	arm_teardown_iommu_dma_ops(dev);
1802 	/* Let arch_setup_dma_ops() start again from scratch upon re-probe */
1803 	set_dma_ops(dev, NULL);
1804 }
1805 
1806 void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
1807 		enum dma_data_direction dir)
1808 {
1809 	__dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1810 			      size, dir);
1811 }
1812 
1813 void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
1814 		enum dma_data_direction dir)
1815 {
1816 	__dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1817 			      size, dir);
1818 }
1819 
1820 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
1821 		gfp_t gfp, unsigned long attrs)
1822 {
1823 	return __dma_alloc(dev, size, dma_handle, gfp,
1824 			   __get_dma_pgprot(attrs, PAGE_KERNEL), false,
1825 			   attrs, __builtin_return_address(0));
1826 }
1827 
1828 void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
1829 		dma_addr_t dma_handle, unsigned long attrs)
1830 {
1831 	__arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
1832 }
1833