xref: /linux/arch/arm/mm/fault.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/fault.c
4  *
5  *  Copyright (C) 1995  Linus Torvalds
6  *  Modifications for ARM processor (c) 1995-2004 Russell King
7  */
8 #include <linux/extable.h>
9 #include <linux/signal.h>
10 #include <linux/mm.h>
11 #include <linux/hardirq.h>
12 #include <linux/init.h>
13 #include <linux/kprobes.h>
14 #include <linux/uaccess.h>
15 #include <linux/page-flags.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/debug.h>
18 #include <linux/highmem.h>
19 #include <linux/perf_event.h>
20 
21 #include <asm/pgtable.h>
22 #include <asm/system_misc.h>
23 #include <asm/system_info.h>
24 #include <asm/tlbflush.h>
25 
26 #include "fault.h"
27 
28 #ifdef CONFIG_MMU
29 
30 #ifdef CONFIG_KPROBES
31 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
32 {
33 	int ret = 0;
34 
35 	if (!user_mode(regs)) {
36 		/* kprobe_running() needs smp_processor_id() */
37 		preempt_disable();
38 		if (kprobe_running() && kprobe_fault_handler(regs, fsr))
39 			ret = 1;
40 		preempt_enable();
41 	}
42 
43 	return ret;
44 }
45 #else
46 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
47 {
48 	return 0;
49 }
50 #endif
51 
52 /*
53  * This is useful to dump out the page tables associated with
54  * 'addr' in mm 'mm'.
55  */
56 void show_pte(struct mm_struct *mm, unsigned long addr)
57 {
58 	pgd_t *pgd;
59 
60 	if (!mm)
61 		mm = &init_mm;
62 
63 	pr_alert("pgd = %p\n", mm->pgd);
64 	pgd = pgd_offset(mm, addr);
65 	pr_alert("[%08lx] *pgd=%08llx",
66 			addr, (long long)pgd_val(*pgd));
67 
68 	do {
69 		pud_t *pud;
70 		pmd_t *pmd;
71 		pte_t *pte;
72 
73 		if (pgd_none(*pgd))
74 			break;
75 
76 		if (pgd_bad(*pgd)) {
77 			pr_cont("(bad)");
78 			break;
79 		}
80 
81 		pud = pud_offset(pgd, addr);
82 		if (PTRS_PER_PUD != 1)
83 			pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
84 
85 		if (pud_none(*pud))
86 			break;
87 
88 		if (pud_bad(*pud)) {
89 			pr_cont("(bad)");
90 			break;
91 		}
92 
93 		pmd = pmd_offset(pud, addr);
94 		if (PTRS_PER_PMD != 1)
95 			pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
96 
97 		if (pmd_none(*pmd))
98 			break;
99 
100 		if (pmd_bad(*pmd)) {
101 			pr_cont("(bad)");
102 			break;
103 		}
104 
105 		/* We must not map this if we have highmem enabled */
106 		if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
107 			break;
108 
109 		pte = pte_offset_map(pmd, addr);
110 		pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
111 #ifndef CONFIG_ARM_LPAE
112 		pr_cont(", *ppte=%08llx",
113 		       (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
114 #endif
115 		pte_unmap(pte);
116 	} while(0);
117 
118 	pr_cont("\n");
119 }
120 #else					/* CONFIG_MMU */
121 void show_pte(struct mm_struct *mm, unsigned long addr)
122 { }
123 #endif					/* CONFIG_MMU */
124 
125 /*
126  * Oops.  The kernel tried to access some page that wasn't present.
127  */
128 static void
129 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
130 		  struct pt_regs *regs)
131 {
132 	/*
133 	 * Are we prepared to handle this kernel fault?
134 	 */
135 	if (fixup_exception(regs))
136 		return;
137 
138 	/*
139 	 * No handler, we'll have to terminate things with extreme prejudice.
140 	 */
141 	bust_spinlocks(1);
142 	pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
143 		 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
144 		 "paging request", addr);
145 
146 	show_pte(mm, addr);
147 	die("Oops", regs, fsr);
148 	bust_spinlocks(0);
149 	do_exit(SIGKILL);
150 }
151 
152 /*
153  * Something tried to access memory that isn't in our memory map..
154  * User mode accesses just cause a SIGSEGV
155  */
156 static void
157 __do_user_fault(struct task_struct *tsk, unsigned long addr,
158 		unsigned int fsr, unsigned int sig, int code,
159 		struct pt_regs *regs)
160 {
161 	if (addr > TASK_SIZE)
162 		harden_branch_predictor();
163 
164 #ifdef CONFIG_DEBUG_USER
165 	if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
166 	    ((user_debug & UDBG_BUS)  && (sig == SIGBUS))) {
167 		printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
168 		       tsk->comm, sig, addr, fsr);
169 		show_pte(tsk->mm, addr);
170 		show_regs(regs);
171 	}
172 #endif
173 #ifndef CONFIG_KUSER_HELPERS
174 	if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000))
175 		printk_ratelimited(KERN_DEBUG
176 				   "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n",
177 				   tsk->comm, addr);
178 #endif
179 
180 	tsk->thread.address = addr;
181 	tsk->thread.error_code = fsr;
182 	tsk->thread.trap_no = 14;
183 	force_sig_fault(sig, code, (void __user *)addr, tsk);
184 }
185 
186 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
187 {
188 	struct task_struct *tsk = current;
189 	struct mm_struct *mm = tsk->active_mm;
190 
191 	/*
192 	 * If we are in kernel mode at this point, we
193 	 * have no context to handle this fault with.
194 	 */
195 	if (user_mode(regs))
196 		__do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
197 	else
198 		__do_kernel_fault(mm, addr, fsr, regs);
199 }
200 
201 #ifdef CONFIG_MMU
202 #define VM_FAULT_BADMAP		0x010000
203 #define VM_FAULT_BADACCESS	0x020000
204 
205 /*
206  * Check that the permissions on the VMA allow for the fault which occurred.
207  * If we encountered a write fault, we must have write permission, otherwise
208  * we allow any permission.
209  */
210 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
211 {
212 	unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
213 
214 	if (fsr & FSR_WRITE)
215 		mask = VM_WRITE;
216 	if (fsr & FSR_LNX_PF)
217 		mask = VM_EXEC;
218 
219 	return vma->vm_flags & mask ? false : true;
220 }
221 
222 static vm_fault_t __kprobes
223 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
224 		unsigned int flags, struct task_struct *tsk)
225 {
226 	struct vm_area_struct *vma;
227 	vm_fault_t fault;
228 
229 	vma = find_vma(mm, addr);
230 	fault = VM_FAULT_BADMAP;
231 	if (unlikely(!vma))
232 		goto out;
233 	if (unlikely(vma->vm_start > addr))
234 		goto check_stack;
235 
236 	/*
237 	 * Ok, we have a good vm_area for this
238 	 * memory access, so we can handle it.
239 	 */
240 good_area:
241 	if (access_error(fsr, vma)) {
242 		fault = VM_FAULT_BADACCESS;
243 		goto out;
244 	}
245 
246 	return handle_mm_fault(vma, addr & PAGE_MASK, flags);
247 
248 check_stack:
249 	/* Don't allow expansion below FIRST_USER_ADDRESS */
250 	if (vma->vm_flags & VM_GROWSDOWN &&
251 	    addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
252 		goto good_area;
253 out:
254 	return fault;
255 }
256 
257 static int __kprobes
258 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
259 {
260 	struct task_struct *tsk;
261 	struct mm_struct *mm;
262 	int sig, code;
263 	vm_fault_t fault;
264 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
265 
266 	if (notify_page_fault(regs, fsr))
267 		return 0;
268 
269 	tsk = current;
270 	mm  = tsk->mm;
271 
272 	/* Enable interrupts if they were enabled in the parent context. */
273 	if (interrupts_enabled(regs))
274 		local_irq_enable();
275 
276 	/*
277 	 * If we're in an interrupt or have no user
278 	 * context, we must not take the fault..
279 	 */
280 	if (faulthandler_disabled() || !mm)
281 		goto no_context;
282 
283 	if (user_mode(regs))
284 		flags |= FAULT_FLAG_USER;
285 	if (fsr & FSR_WRITE)
286 		flags |= FAULT_FLAG_WRITE;
287 
288 	/*
289 	 * As per x86, we may deadlock here.  However, since the kernel only
290 	 * validly references user space from well defined areas of the code,
291 	 * we can bug out early if this is from code which shouldn't.
292 	 */
293 	if (!down_read_trylock(&mm->mmap_sem)) {
294 		if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
295 			goto no_context;
296 retry:
297 		down_read(&mm->mmap_sem);
298 	} else {
299 		/*
300 		 * The above down_read_trylock() might have succeeded in
301 		 * which case, we'll have missed the might_sleep() from
302 		 * down_read()
303 		 */
304 		might_sleep();
305 #ifdef CONFIG_DEBUG_VM
306 		if (!user_mode(regs) &&
307 		    !search_exception_tables(regs->ARM_pc))
308 			goto no_context;
309 #endif
310 	}
311 
312 	fault = __do_page_fault(mm, addr, fsr, flags, tsk);
313 
314 	/* If we need to retry but a fatal signal is pending, handle the
315 	 * signal first. We do not need to release the mmap_sem because
316 	 * it would already be released in __lock_page_or_retry in
317 	 * mm/filemap.c. */
318 	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
319 		if (!user_mode(regs))
320 			goto no_context;
321 		return 0;
322 	}
323 
324 	/*
325 	 * Major/minor page fault accounting is only done on the
326 	 * initial attempt. If we go through a retry, it is extremely
327 	 * likely that the page will be found in page cache at that point.
328 	 */
329 
330 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
331 	if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
332 		if (fault & VM_FAULT_MAJOR) {
333 			tsk->maj_flt++;
334 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
335 					regs, addr);
336 		} else {
337 			tsk->min_flt++;
338 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
339 					regs, addr);
340 		}
341 		if (fault & VM_FAULT_RETRY) {
342 			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
343 			* of starvation. */
344 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
345 			flags |= FAULT_FLAG_TRIED;
346 			goto retry;
347 		}
348 	}
349 
350 	up_read(&mm->mmap_sem);
351 
352 	/*
353 	 * Handle the "normal" case first - VM_FAULT_MAJOR
354 	 */
355 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
356 		return 0;
357 
358 	/*
359 	 * If we are in kernel mode at this point, we
360 	 * have no context to handle this fault with.
361 	 */
362 	if (!user_mode(regs))
363 		goto no_context;
364 
365 	if (fault & VM_FAULT_OOM) {
366 		/*
367 		 * We ran out of memory, call the OOM killer, and return to
368 		 * userspace (which will retry the fault, or kill us if we
369 		 * got oom-killed)
370 		 */
371 		pagefault_out_of_memory();
372 		return 0;
373 	}
374 
375 	if (fault & VM_FAULT_SIGBUS) {
376 		/*
377 		 * We had some memory, but were unable to
378 		 * successfully fix up this page fault.
379 		 */
380 		sig = SIGBUS;
381 		code = BUS_ADRERR;
382 	} else {
383 		/*
384 		 * Something tried to access memory that
385 		 * isn't in our memory map..
386 		 */
387 		sig = SIGSEGV;
388 		code = fault == VM_FAULT_BADACCESS ?
389 			SEGV_ACCERR : SEGV_MAPERR;
390 	}
391 
392 	__do_user_fault(tsk, addr, fsr, sig, code, regs);
393 	return 0;
394 
395 no_context:
396 	__do_kernel_fault(mm, addr, fsr, regs);
397 	return 0;
398 }
399 #else					/* CONFIG_MMU */
400 static int
401 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
402 {
403 	return 0;
404 }
405 #endif					/* CONFIG_MMU */
406 
407 /*
408  * First Level Translation Fault Handler
409  *
410  * We enter here because the first level page table doesn't contain
411  * a valid entry for the address.
412  *
413  * If the address is in kernel space (>= TASK_SIZE), then we are
414  * probably faulting in the vmalloc() area.
415  *
416  * If the init_task's first level page tables contains the relevant
417  * entry, we copy the it to this task.  If not, we send the process
418  * a signal, fixup the exception, or oops the kernel.
419  *
420  * NOTE! We MUST NOT take any locks for this case. We may be in an
421  * interrupt or a critical region, and should only copy the information
422  * from the master page table, nothing more.
423  */
424 #ifdef CONFIG_MMU
425 static int __kprobes
426 do_translation_fault(unsigned long addr, unsigned int fsr,
427 		     struct pt_regs *regs)
428 {
429 	unsigned int index;
430 	pgd_t *pgd, *pgd_k;
431 	pud_t *pud, *pud_k;
432 	pmd_t *pmd, *pmd_k;
433 
434 	if (addr < TASK_SIZE)
435 		return do_page_fault(addr, fsr, regs);
436 
437 	if (user_mode(regs))
438 		goto bad_area;
439 
440 	index = pgd_index(addr);
441 
442 	pgd = cpu_get_pgd() + index;
443 	pgd_k = init_mm.pgd + index;
444 
445 	if (pgd_none(*pgd_k))
446 		goto bad_area;
447 	if (!pgd_present(*pgd))
448 		set_pgd(pgd, *pgd_k);
449 
450 	pud = pud_offset(pgd, addr);
451 	pud_k = pud_offset(pgd_k, addr);
452 
453 	if (pud_none(*pud_k))
454 		goto bad_area;
455 	if (!pud_present(*pud))
456 		set_pud(pud, *pud_k);
457 
458 	pmd = pmd_offset(pud, addr);
459 	pmd_k = pmd_offset(pud_k, addr);
460 
461 #ifdef CONFIG_ARM_LPAE
462 	/*
463 	 * Only one hardware entry per PMD with LPAE.
464 	 */
465 	index = 0;
466 #else
467 	/*
468 	 * On ARM one Linux PGD entry contains two hardware entries (see page
469 	 * tables layout in pgtable.h). We normally guarantee that we always
470 	 * fill both L1 entries. But create_mapping() doesn't follow the rule.
471 	 * It can create inidividual L1 entries, so here we have to call
472 	 * pmd_none() check for the entry really corresponded to address, not
473 	 * for the first of pair.
474 	 */
475 	index = (addr >> SECTION_SHIFT) & 1;
476 #endif
477 	if (pmd_none(pmd_k[index]))
478 		goto bad_area;
479 
480 	copy_pmd(pmd, pmd_k);
481 	return 0;
482 
483 bad_area:
484 	do_bad_area(addr, fsr, regs);
485 	return 0;
486 }
487 #else					/* CONFIG_MMU */
488 static int
489 do_translation_fault(unsigned long addr, unsigned int fsr,
490 		     struct pt_regs *regs)
491 {
492 	return 0;
493 }
494 #endif					/* CONFIG_MMU */
495 
496 /*
497  * Some section permission faults need to be handled gracefully.
498  * They can happen due to a __{get,put}_user during an oops.
499  */
500 #ifndef CONFIG_ARM_LPAE
501 static int
502 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
503 {
504 	do_bad_area(addr, fsr, regs);
505 	return 0;
506 }
507 #endif /* CONFIG_ARM_LPAE */
508 
509 /*
510  * This abort handler always returns "fault".
511  */
512 static int
513 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
514 {
515 	return 1;
516 }
517 
518 struct fsr_info {
519 	int	(*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
520 	int	sig;
521 	int	code;
522 	const char *name;
523 };
524 
525 /* FSR definition */
526 #ifdef CONFIG_ARM_LPAE
527 #include "fsr-3level.c"
528 #else
529 #include "fsr-2level.c"
530 #endif
531 
532 void __init
533 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
534 		int sig, int code, const char *name)
535 {
536 	if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
537 		BUG();
538 
539 	fsr_info[nr].fn   = fn;
540 	fsr_info[nr].sig  = sig;
541 	fsr_info[nr].code = code;
542 	fsr_info[nr].name = name;
543 }
544 
545 /*
546  * Dispatch a data abort to the relevant handler.
547  */
548 asmlinkage void
549 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
550 {
551 	const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
552 
553 	if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
554 		return;
555 
556 	pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
557 		inf->name, fsr, addr);
558 	show_pte(current->mm, addr);
559 
560 	arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
561 		       fsr, 0);
562 }
563 
564 void __init
565 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
566 		 int sig, int code, const char *name)
567 {
568 	if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
569 		BUG();
570 
571 	ifsr_info[nr].fn   = fn;
572 	ifsr_info[nr].sig  = sig;
573 	ifsr_info[nr].code = code;
574 	ifsr_info[nr].name = name;
575 }
576 
577 asmlinkage void
578 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
579 {
580 	const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
581 
582 	if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
583 		return;
584 
585 	pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
586 		inf->name, ifsr, addr);
587 
588 	arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
589 		       ifsr, 0);
590 }
591 
592 /*
593  * Abort handler to be used only during first unmasking of asynchronous aborts
594  * on the boot CPU. This makes sure that the machine will not die if the
595  * firmware/bootloader left an imprecise abort pending for us to trip over.
596  */
597 static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
598 				      struct pt_regs *regs)
599 {
600 	pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
601 		"first unmask, this is most likely caused by a "
602 		"firmware/bootloader bug.\n", fsr);
603 
604 	return 0;
605 }
606 
607 void __init early_abt_enable(void)
608 {
609 	fsr_info[FSR_FS_AEA].fn = early_abort_handler;
610 	local_abt_enable();
611 	fsr_info[FSR_FS_AEA].fn = do_bad;
612 }
613 
614 #ifndef CONFIG_ARM_LPAE
615 static int __init exceptions_init(void)
616 {
617 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
618 		hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
619 				"I-cache maintenance fault");
620 	}
621 
622 	if (cpu_architecture() >= CPU_ARCH_ARMv7) {
623 		/*
624 		 * TODO: Access flag faults introduced in ARMv6K.
625 		 * Runtime check for 'K' extension is needed
626 		 */
627 		hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
628 				"section access flag fault");
629 		hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
630 				"section access flag fault");
631 	}
632 
633 	return 0;
634 }
635 
636 arch_initcall(exceptions_init);
637 #endif
638