xref: /linux/arch/arm/mm/mmu.c (revision 908fc4c2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/mmu.c
4  *
5  *  Copyright (C) 1995-2005 Russell King
6  */
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/init.h>
11 #include <linux/mman.h>
12 #include <linux/nodemask.h>
13 #include <linux/memblock.h>
14 #include <linux/fs.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sizes.h>
17 
18 #include <asm/cp15.h>
19 #include <asm/cputype.h>
20 #include <asm/cachetype.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/smp_plat.h>
24 #include <asm/tlb.h>
25 #include <asm/highmem.h>
26 #include <asm/system_info.h>
27 #include <asm/traps.h>
28 #include <asm/procinfo.h>
29 #include <asm/memory.h>
30 #include <asm/pgalloc.h>
31 #include <asm/kasan_def.h>
32 
33 #include <asm/mach/arch.h>
34 #include <asm/mach/map.h>
35 #include <asm/mach/pci.h>
36 #include <asm/fixmap.h>
37 
38 #include "fault.h"
39 #include "mm.h"
40 #include "tcm.h"
41 
42 extern unsigned long __atags_pointer;
43 
44 /*
45  * empty_zero_page is a special page that is used for
46  * zero-initialized data and COW.
47  */
48 struct page *empty_zero_page;
49 EXPORT_SYMBOL(empty_zero_page);
50 
51 /*
52  * The pmd table for the upper-most set of pages.
53  */
54 pmd_t *top_pmd;
55 
56 pmdval_t user_pmd_table = _PAGE_USER_TABLE;
57 
58 #define CPOLICY_UNCACHED	0
59 #define CPOLICY_BUFFERED	1
60 #define CPOLICY_WRITETHROUGH	2
61 #define CPOLICY_WRITEBACK	3
62 #define CPOLICY_WRITEALLOC	4
63 
64 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
65 static unsigned int ecc_mask __initdata = 0;
66 pgprot_t pgprot_user;
67 pgprot_t pgprot_kernel;
68 
69 EXPORT_SYMBOL(pgprot_user);
70 EXPORT_SYMBOL(pgprot_kernel);
71 
72 struct cachepolicy {
73 	const char	policy[16];
74 	unsigned int	cr_mask;
75 	pmdval_t	pmd;
76 	pteval_t	pte;
77 };
78 
79 static struct cachepolicy cache_policies[] __initdata = {
80 	{
81 		.policy		= "uncached",
82 		.cr_mask	= CR_W|CR_C,
83 		.pmd		= PMD_SECT_UNCACHED,
84 		.pte		= L_PTE_MT_UNCACHED,
85 	}, {
86 		.policy		= "buffered",
87 		.cr_mask	= CR_C,
88 		.pmd		= PMD_SECT_BUFFERED,
89 		.pte		= L_PTE_MT_BUFFERABLE,
90 	}, {
91 		.policy		= "writethrough",
92 		.cr_mask	= 0,
93 		.pmd		= PMD_SECT_WT,
94 		.pte		= L_PTE_MT_WRITETHROUGH,
95 	}, {
96 		.policy		= "writeback",
97 		.cr_mask	= 0,
98 		.pmd		= PMD_SECT_WB,
99 		.pte		= L_PTE_MT_WRITEBACK,
100 	}, {
101 		.policy		= "writealloc",
102 		.cr_mask	= 0,
103 		.pmd		= PMD_SECT_WBWA,
104 		.pte		= L_PTE_MT_WRITEALLOC,
105 	}
106 };
107 
108 #ifdef CONFIG_CPU_CP15
109 static unsigned long initial_pmd_value __initdata = 0;
110 
111 /*
112  * Initialise the cache_policy variable with the initial state specified
113  * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
114  * the C code sets the page tables up with the same policy as the head
115  * assembly code, which avoids an illegal state where the TLBs can get
116  * confused.  See comments in early_cachepolicy() for more information.
117  */
118 void __init init_default_cache_policy(unsigned long pmd)
119 {
120 	int i;
121 
122 	initial_pmd_value = pmd;
123 
124 	pmd &= PMD_SECT_CACHE_MASK;
125 
126 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
127 		if (cache_policies[i].pmd == pmd) {
128 			cachepolicy = i;
129 			break;
130 		}
131 
132 	if (i == ARRAY_SIZE(cache_policies))
133 		pr_err("ERROR: could not find cache policy\n");
134 }
135 
136 /*
137  * These are useful for identifying cache coherency problems by allowing
138  * the cache or the cache and writebuffer to be turned off.  (Note: the
139  * write buffer should not be on and the cache off).
140  */
141 static int __init early_cachepolicy(char *p)
142 {
143 	int i, selected = -1;
144 
145 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
146 		int len = strlen(cache_policies[i].policy);
147 
148 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
149 			selected = i;
150 			break;
151 		}
152 	}
153 
154 	if (selected == -1)
155 		pr_err("ERROR: unknown or unsupported cache policy\n");
156 
157 	/*
158 	 * This restriction is partly to do with the way we boot; it is
159 	 * unpredictable to have memory mapped using two different sets of
160 	 * memory attributes (shared, type, and cache attribs).  We can not
161 	 * change these attributes once the initial assembly has setup the
162 	 * page tables.
163 	 */
164 	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
165 		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
166 			cache_policies[cachepolicy].policy);
167 		return 0;
168 	}
169 
170 	if (selected != cachepolicy) {
171 		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
172 		cachepolicy = selected;
173 		flush_cache_all();
174 		set_cr(cr);
175 	}
176 	return 0;
177 }
178 early_param("cachepolicy", early_cachepolicy);
179 
180 static int __init early_nocache(char *__unused)
181 {
182 	char *p = "buffered";
183 	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
184 	early_cachepolicy(p);
185 	return 0;
186 }
187 early_param("nocache", early_nocache);
188 
189 static int __init early_nowrite(char *__unused)
190 {
191 	char *p = "uncached";
192 	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
193 	early_cachepolicy(p);
194 	return 0;
195 }
196 early_param("nowb", early_nowrite);
197 
198 #ifndef CONFIG_ARM_LPAE
199 static int __init early_ecc(char *p)
200 {
201 	if (memcmp(p, "on", 2) == 0)
202 		ecc_mask = PMD_PROTECTION;
203 	else if (memcmp(p, "off", 3) == 0)
204 		ecc_mask = 0;
205 	return 0;
206 }
207 early_param("ecc", early_ecc);
208 #endif
209 
210 #else /* ifdef CONFIG_CPU_CP15 */
211 
212 static int __init early_cachepolicy(char *p)
213 {
214 	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
215 	return 0;
216 }
217 early_param("cachepolicy", early_cachepolicy);
218 
219 static int __init noalign_setup(char *__unused)
220 {
221 	pr_warn("noalign kernel parameter not supported without cp15\n");
222 	return 1;
223 }
224 __setup("noalign", noalign_setup);
225 
226 #endif /* ifdef CONFIG_CPU_CP15 / else */
227 
228 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
229 #define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
230 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
231 
232 static struct mem_type mem_types[] __ro_after_init = {
233 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
234 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
235 				  L_PTE_SHARED,
236 		.prot_l1	= PMD_TYPE_TABLE,
237 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
238 		.domain		= DOMAIN_IO,
239 	},
240 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
241 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
242 		.prot_l1	= PMD_TYPE_TABLE,
243 		.prot_sect	= PROT_SECT_DEVICE,
244 		.domain		= DOMAIN_IO,
245 	},
246 	[MT_DEVICE_CACHED] = {	  /* ioremap_cache */
247 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
248 		.prot_l1	= PMD_TYPE_TABLE,
249 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
250 		.domain		= DOMAIN_IO,
251 	},
252 	[MT_DEVICE_WC] = {	/* ioremap_wc */
253 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
254 		.prot_l1	= PMD_TYPE_TABLE,
255 		.prot_sect	= PROT_SECT_DEVICE,
256 		.domain		= DOMAIN_IO,
257 	},
258 	[MT_UNCACHED] = {
259 		.prot_pte	= PROT_PTE_DEVICE,
260 		.prot_l1	= PMD_TYPE_TABLE,
261 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
262 		.domain		= DOMAIN_IO,
263 	},
264 	[MT_CACHECLEAN] = {
265 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
266 		.domain    = DOMAIN_KERNEL,
267 	},
268 #ifndef CONFIG_ARM_LPAE
269 	[MT_MINICLEAN] = {
270 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
271 		.domain    = DOMAIN_KERNEL,
272 	},
273 #endif
274 	[MT_LOW_VECTORS] = {
275 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
276 				L_PTE_RDONLY,
277 		.prot_l1   = PMD_TYPE_TABLE,
278 		.domain    = DOMAIN_VECTORS,
279 	},
280 	[MT_HIGH_VECTORS] = {
281 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
282 				L_PTE_USER | L_PTE_RDONLY,
283 		.prot_l1   = PMD_TYPE_TABLE,
284 		.domain    = DOMAIN_VECTORS,
285 	},
286 	[MT_MEMORY_RWX] = {
287 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
288 		.prot_l1   = PMD_TYPE_TABLE,
289 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
290 		.domain    = DOMAIN_KERNEL,
291 	},
292 	[MT_MEMORY_RW] = {
293 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
294 			     L_PTE_XN,
295 		.prot_l1   = PMD_TYPE_TABLE,
296 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
297 		.domain    = DOMAIN_KERNEL,
298 	},
299 	[MT_MEMORY_RO] = {
300 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
301 			     L_PTE_XN | L_PTE_RDONLY,
302 		.prot_l1   = PMD_TYPE_TABLE,
303 		.prot_sect = PMD_TYPE_SECT,
304 		.domain    = DOMAIN_KERNEL,
305 	},
306 	[MT_ROM] = {
307 		.prot_sect = PMD_TYPE_SECT,
308 		.domain    = DOMAIN_KERNEL,
309 	},
310 	[MT_MEMORY_RWX_NONCACHED] = {
311 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
312 				L_PTE_MT_BUFFERABLE,
313 		.prot_l1   = PMD_TYPE_TABLE,
314 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
315 		.domain    = DOMAIN_KERNEL,
316 	},
317 	[MT_MEMORY_RW_DTCM] = {
318 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
319 				L_PTE_XN,
320 		.prot_l1   = PMD_TYPE_TABLE,
321 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
322 		.domain    = DOMAIN_KERNEL,
323 	},
324 	[MT_MEMORY_RWX_ITCM] = {
325 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
326 		.prot_l1   = PMD_TYPE_TABLE,
327 		.domain    = DOMAIN_KERNEL,
328 	},
329 	[MT_MEMORY_RW_SO] = {
330 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
331 				L_PTE_MT_UNCACHED | L_PTE_XN,
332 		.prot_l1   = PMD_TYPE_TABLE,
333 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
334 				PMD_SECT_UNCACHED | PMD_SECT_XN,
335 		.domain    = DOMAIN_KERNEL,
336 	},
337 	[MT_MEMORY_DMA_READY] = {
338 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
339 				L_PTE_XN,
340 		.prot_l1   = PMD_TYPE_TABLE,
341 		.domain    = DOMAIN_KERNEL,
342 	},
343 };
344 
345 const struct mem_type *get_mem_type(unsigned int type)
346 {
347 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
348 }
349 EXPORT_SYMBOL(get_mem_type);
350 
351 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
352 
353 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
354 	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
355 
356 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
357 {
358 	return &bm_pte[pte_index(addr)];
359 }
360 
361 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
362 {
363 	return pte_offset_kernel(dir, addr);
364 }
365 
366 static inline pmd_t * __init fixmap_pmd(unsigned long addr)
367 {
368 	return pmd_off_k(addr);
369 }
370 
371 void __init early_fixmap_init(void)
372 {
373 	pmd_t *pmd;
374 
375 	/*
376 	 * The early fixmap range spans multiple pmds, for which
377 	 * we are not prepared:
378 	 */
379 	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
380 		     != FIXADDR_TOP >> PMD_SHIFT);
381 
382 	pmd = fixmap_pmd(FIXADDR_TOP);
383 	pmd_populate_kernel(&init_mm, pmd, bm_pte);
384 
385 	pte_offset_fixmap = pte_offset_early_fixmap;
386 }
387 
388 /*
389  * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
390  * As a result, this can only be called with preemption disabled, as under
391  * stop_machine().
392  */
393 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
394 {
395 	unsigned long vaddr = __fix_to_virt(idx);
396 	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
397 
398 	/* Make sure fixmap region does not exceed available allocation. */
399 	BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) < FIXADDR_START);
400 	BUG_ON(idx >= __end_of_fixed_addresses);
401 
402 	/* We support only device mappings before pgprot_kernel is set. */
403 	if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
404 		    pgprot_val(prot) && pgprot_val(pgprot_kernel) == 0))
405 		return;
406 
407 	if (pgprot_val(prot))
408 		set_pte_at(NULL, vaddr, pte,
409 			pfn_pte(phys >> PAGE_SHIFT, prot));
410 	else
411 		pte_clear(NULL, vaddr, pte);
412 	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
413 }
414 
415 /*
416  * Adjust the PMD section entries according to the CPU in use.
417  */
418 static void __init build_mem_type_table(void)
419 {
420 	struct cachepolicy *cp;
421 	unsigned int cr = get_cr();
422 	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
423 	int cpu_arch = cpu_architecture();
424 	int i;
425 
426 	if (cpu_arch < CPU_ARCH_ARMv6) {
427 #if defined(CONFIG_CPU_DCACHE_DISABLE)
428 		if (cachepolicy > CPOLICY_BUFFERED)
429 			cachepolicy = CPOLICY_BUFFERED;
430 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
431 		if (cachepolicy > CPOLICY_WRITETHROUGH)
432 			cachepolicy = CPOLICY_WRITETHROUGH;
433 #endif
434 	}
435 	if (cpu_arch < CPU_ARCH_ARMv5) {
436 		if (cachepolicy >= CPOLICY_WRITEALLOC)
437 			cachepolicy = CPOLICY_WRITEBACK;
438 		ecc_mask = 0;
439 	}
440 
441 	if (is_smp()) {
442 		if (cachepolicy != CPOLICY_WRITEALLOC) {
443 			pr_warn("Forcing write-allocate cache policy for SMP\n");
444 			cachepolicy = CPOLICY_WRITEALLOC;
445 		}
446 		if (!(initial_pmd_value & PMD_SECT_S)) {
447 			pr_warn("Forcing shared mappings for SMP\n");
448 			initial_pmd_value |= PMD_SECT_S;
449 		}
450 	}
451 
452 	/*
453 	 * Strip out features not present on earlier architectures.
454 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
455 	 * without extended page tables don't have the 'Shared' bit.
456 	 */
457 	if (cpu_arch < CPU_ARCH_ARMv5)
458 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
459 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
460 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
461 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
462 			mem_types[i].prot_sect &= ~PMD_SECT_S;
463 
464 	/*
465 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
466 	 * "update-able on write" bit on ARM610).  However, Xscale and
467 	 * Xscale3 require this bit to be cleared.
468 	 */
469 	if (cpu_is_xscale_family()) {
470 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
471 			mem_types[i].prot_sect &= ~PMD_BIT4;
472 			mem_types[i].prot_l1 &= ~PMD_BIT4;
473 		}
474 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
475 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
476 			if (mem_types[i].prot_l1)
477 				mem_types[i].prot_l1 |= PMD_BIT4;
478 			if (mem_types[i].prot_sect)
479 				mem_types[i].prot_sect |= PMD_BIT4;
480 		}
481 	}
482 
483 	/*
484 	 * Mark the device areas according to the CPU/architecture.
485 	 */
486 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
487 		if (!cpu_is_xsc3()) {
488 			/*
489 			 * Mark device regions on ARMv6+ as execute-never
490 			 * to prevent speculative instruction fetches.
491 			 */
492 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
493 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
494 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
495 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
496 
497 			/* Also setup NX memory mapping */
498 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
499 			mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_XN;
500 		}
501 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
502 			/*
503 			 * For ARMv7 with TEX remapping,
504 			 * - shared device is SXCB=1100
505 			 * - nonshared device is SXCB=0100
506 			 * - write combine device mem is SXCB=0001
507 			 * (Uncached Normal memory)
508 			 */
509 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
510 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
511 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
512 		} else if (cpu_is_xsc3()) {
513 			/*
514 			 * For Xscale3,
515 			 * - shared device is TEXCB=00101
516 			 * - nonshared device is TEXCB=01000
517 			 * - write combine device mem is TEXCB=00100
518 			 * (Inner/Outer Uncacheable in xsc3 parlance)
519 			 */
520 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
521 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
522 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
523 		} else {
524 			/*
525 			 * For ARMv6 and ARMv7 without TEX remapping,
526 			 * - shared device is TEXCB=00001
527 			 * - nonshared device is TEXCB=01000
528 			 * - write combine device mem is TEXCB=00100
529 			 * (Uncached Normal in ARMv6 parlance).
530 			 */
531 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
532 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
533 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
534 		}
535 	} else {
536 		/*
537 		 * On others, write combining is "Uncached/Buffered"
538 		 */
539 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
540 	}
541 
542 	/*
543 	 * Now deal with the memory-type mappings
544 	 */
545 	cp = &cache_policies[cachepolicy];
546 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
547 
548 #ifndef CONFIG_ARM_LPAE
549 	/*
550 	 * We don't use domains on ARMv6 (since this causes problems with
551 	 * v6/v7 kernels), so we must use a separate memory type for user
552 	 * r/o, kernel r/w to map the vectors page.
553 	 */
554 	if (cpu_arch == CPU_ARCH_ARMv6)
555 		vecs_pgprot |= L_PTE_MT_VECTORS;
556 
557 	/*
558 	 * Check is it with support for the PXN bit
559 	 * in the Short-descriptor translation table format descriptors.
560 	 */
561 	if (cpu_arch == CPU_ARCH_ARMv7 &&
562 		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
563 		user_pmd_table |= PMD_PXNTABLE;
564 	}
565 #endif
566 
567 	/*
568 	 * ARMv6 and above have extended page tables.
569 	 */
570 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
571 #ifndef CONFIG_ARM_LPAE
572 		/*
573 		 * Mark cache clean areas and XIP ROM read only
574 		 * from SVC mode and no access from userspace.
575 		 */
576 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
577 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
578 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
579 		mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
580 #endif
581 
582 		/*
583 		 * If the initial page tables were created with the S bit
584 		 * set, then we need to do the same here for the same
585 		 * reasons given in early_cachepolicy().
586 		 */
587 		if (initial_pmd_value & PMD_SECT_S) {
588 			user_pgprot |= L_PTE_SHARED;
589 			kern_pgprot |= L_PTE_SHARED;
590 			vecs_pgprot |= L_PTE_SHARED;
591 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
592 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
593 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
594 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
595 			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
596 			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
597 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
598 			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
599 			mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_S;
600 			mem_types[MT_MEMORY_RO].prot_pte |= L_PTE_SHARED;
601 			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
602 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
603 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
604 		}
605 	}
606 
607 	/*
608 	 * Non-cacheable Normal - intended for memory areas that must
609 	 * not cause dirty cache line writebacks when used
610 	 */
611 	if (cpu_arch >= CPU_ARCH_ARMv6) {
612 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
613 			/* Non-cacheable Normal is XCB = 001 */
614 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
615 				PMD_SECT_BUFFERED;
616 		} else {
617 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
618 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
619 				PMD_SECT_TEX(1);
620 		}
621 	} else {
622 		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
623 	}
624 
625 #ifdef CONFIG_ARM_LPAE
626 	/*
627 	 * Do not generate access flag faults for the kernel mappings.
628 	 */
629 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
630 		mem_types[i].prot_pte |= PTE_EXT_AF;
631 		if (mem_types[i].prot_sect)
632 			mem_types[i].prot_sect |= PMD_SECT_AF;
633 	}
634 	kern_pgprot |= PTE_EXT_AF;
635 	vecs_pgprot |= PTE_EXT_AF;
636 
637 	/*
638 	 * Set PXN for user mappings
639 	 */
640 	user_pgprot |= PTE_EXT_PXN;
641 #endif
642 
643 	for (i = 0; i < 16; i++) {
644 		pteval_t v = pgprot_val(protection_map[i]);
645 		protection_map[i] = __pgprot(v | user_pgprot);
646 	}
647 
648 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
649 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
650 
651 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
652 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
653 				 L_PTE_DIRTY | kern_pgprot);
654 
655 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
656 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
657 	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
658 	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
659 	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
660 	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
661 	mem_types[MT_MEMORY_RO].prot_sect |= ecc_mask | cp->pmd;
662 	mem_types[MT_MEMORY_RO].prot_pte |= kern_pgprot;
663 	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
664 	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
665 	mem_types[MT_ROM].prot_sect |= cp->pmd;
666 
667 	switch (cp->pmd) {
668 	case PMD_SECT_WT:
669 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
670 		break;
671 	case PMD_SECT_WB:
672 	case PMD_SECT_WBWA:
673 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
674 		break;
675 	}
676 	pr_info("Memory policy: %sData cache %s\n",
677 		ecc_mask ? "ECC enabled, " : "", cp->policy);
678 
679 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
680 		struct mem_type *t = &mem_types[i];
681 		if (t->prot_l1)
682 			t->prot_l1 |= PMD_DOMAIN(t->domain);
683 		if (t->prot_sect)
684 			t->prot_sect |= PMD_DOMAIN(t->domain);
685 	}
686 }
687 
688 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
689 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
690 			      unsigned long size, pgprot_t vma_prot)
691 {
692 	if (!pfn_valid(pfn))
693 		return pgprot_noncached(vma_prot);
694 	else if (file->f_flags & O_SYNC)
695 		return pgprot_writecombine(vma_prot);
696 	return vma_prot;
697 }
698 EXPORT_SYMBOL(phys_mem_access_prot);
699 #endif
700 
701 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
702 
703 static void __init *early_alloc(unsigned long sz)
704 {
705 	void *ptr = memblock_alloc(sz, sz);
706 
707 	if (!ptr)
708 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
709 		      __func__, sz, sz);
710 
711 	return ptr;
712 }
713 
714 static void *__init late_alloc(unsigned long sz)
715 {
716 	void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
717 
718 	if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr)))
719 		BUG();
720 	return ptr;
721 }
722 
723 static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
724 				unsigned long prot,
725 				void *(*alloc)(unsigned long sz))
726 {
727 	if (pmd_none(*pmd)) {
728 		pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
729 		__pmd_populate(pmd, __pa(pte), prot);
730 	}
731 	BUG_ON(pmd_bad(*pmd));
732 	return pte_offset_kernel(pmd, addr);
733 }
734 
735 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
736 				      unsigned long prot)
737 {
738 	return arm_pte_alloc(pmd, addr, prot, early_alloc);
739 }
740 
741 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
742 				  unsigned long end, unsigned long pfn,
743 				  const struct mem_type *type,
744 				  void *(*alloc)(unsigned long sz),
745 				  bool ng)
746 {
747 	pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
748 	do {
749 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
750 			    ng ? PTE_EXT_NG : 0);
751 		pfn++;
752 	} while (pte++, addr += PAGE_SIZE, addr != end);
753 }
754 
755 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
756 			unsigned long end, phys_addr_t phys,
757 			const struct mem_type *type, bool ng)
758 {
759 	pmd_t *p = pmd;
760 
761 #ifndef CONFIG_ARM_LPAE
762 	/*
763 	 * In classic MMU format, puds and pmds are folded in to
764 	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
765 	 * group of L1 entries making up one logical pointer to
766 	 * an L2 table (2MB), where as PMDs refer to the individual
767 	 * L1 entries (1MB). Hence increment to get the correct
768 	 * offset for odd 1MB sections.
769 	 * (See arch/arm/include/asm/pgtable-2level.h)
770 	 */
771 	if (addr & SECTION_SIZE)
772 		pmd++;
773 #endif
774 	do {
775 		*pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
776 		phys += SECTION_SIZE;
777 	} while (pmd++, addr += SECTION_SIZE, addr != end);
778 
779 	flush_pmd_entry(p);
780 }
781 
782 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
783 				      unsigned long end, phys_addr_t phys,
784 				      const struct mem_type *type,
785 				      void *(*alloc)(unsigned long sz), bool ng)
786 {
787 	pmd_t *pmd = pmd_offset(pud, addr);
788 	unsigned long next;
789 
790 	do {
791 		/*
792 		 * With LPAE, we must loop over to map
793 		 * all the pmds for the given range.
794 		 */
795 		next = pmd_addr_end(addr, end);
796 
797 		/*
798 		 * Try a section mapping - addr, next and phys must all be
799 		 * aligned to a section boundary.
800 		 */
801 		if (type->prot_sect &&
802 				((addr | next | phys) & ~SECTION_MASK) == 0) {
803 			__map_init_section(pmd, addr, next, phys, type, ng);
804 		} else {
805 			alloc_init_pte(pmd, addr, next,
806 				       __phys_to_pfn(phys), type, alloc, ng);
807 		}
808 
809 		phys += next - addr;
810 
811 	} while (pmd++, addr = next, addr != end);
812 }
813 
814 static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr,
815 				  unsigned long end, phys_addr_t phys,
816 				  const struct mem_type *type,
817 				  void *(*alloc)(unsigned long sz), bool ng)
818 {
819 	pud_t *pud = pud_offset(p4d, addr);
820 	unsigned long next;
821 
822 	do {
823 		next = pud_addr_end(addr, end);
824 		alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
825 		phys += next - addr;
826 	} while (pud++, addr = next, addr != end);
827 }
828 
829 static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr,
830 				  unsigned long end, phys_addr_t phys,
831 				  const struct mem_type *type,
832 				  void *(*alloc)(unsigned long sz), bool ng)
833 {
834 	p4d_t *p4d = p4d_offset(pgd, addr);
835 	unsigned long next;
836 
837 	do {
838 		next = p4d_addr_end(addr, end);
839 		alloc_init_pud(p4d, addr, next, phys, type, alloc, ng);
840 		phys += next - addr;
841 	} while (p4d++, addr = next, addr != end);
842 }
843 
844 #ifndef CONFIG_ARM_LPAE
845 static void __init create_36bit_mapping(struct mm_struct *mm,
846 					struct map_desc *md,
847 					const struct mem_type *type,
848 					bool ng)
849 {
850 	unsigned long addr, length, end;
851 	phys_addr_t phys;
852 	pgd_t *pgd;
853 
854 	addr = md->virtual;
855 	phys = __pfn_to_phys(md->pfn);
856 	length = PAGE_ALIGN(md->length);
857 
858 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
859 		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
860 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
861 		return;
862 	}
863 
864 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
865 	 *	Since domain assignments can in fact be arbitrary, the
866 	 *	'domain == 0' check below is required to insure that ARMv6
867 	 *	supersections are only allocated for domain 0 regardless
868 	 *	of the actual domain assignments in use.
869 	 */
870 	if (type->domain) {
871 		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
872 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
873 		return;
874 	}
875 
876 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
877 		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
878 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
879 		return;
880 	}
881 
882 	/*
883 	 * Shift bits [35:32] of address into bits [23:20] of PMD
884 	 * (See ARMv6 spec).
885 	 */
886 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
887 
888 	pgd = pgd_offset(mm, addr);
889 	end = addr + length;
890 	do {
891 		p4d_t *p4d = p4d_offset(pgd, addr);
892 		pud_t *pud = pud_offset(p4d, addr);
893 		pmd_t *pmd = pmd_offset(pud, addr);
894 		int i;
895 
896 		for (i = 0; i < 16; i++)
897 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
898 				       (ng ? PMD_SECT_nG : 0));
899 
900 		addr += SUPERSECTION_SIZE;
901 		phys += SUPERSECTION_SIZE;
902 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
903 	} while (addr != end);
904 }
905 #endif	/* !CONFIG_ARM_LPAE */
906 
907 static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
908 				    void *(*alloc)(unsigned long sz),
909 				    bool ng)
910 {
911 	unsigned long addr, length, end;
912 	phys_addr_t phys;
913 	const struct mem_type *type;
914 	pgd_t *pgd;
915 
916 	type = &mem_types[md->type];
917 
918 #ifndef CONFIG_ARM_LPAE
919 	/*
920 	 * Catch 36-bit addresses
921 	 */
922 	if (md->pfn >= 0x100000) {
923 		create_36bit_mapping(mm, md, type, ng);
924 		return;
925 	}
926 #endif
927 
928 	addr = md->virtual & PAGE_MASK;
929 	phys = __pfn_to_phys(md->pfn);
930 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
931 
932 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
933 		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
934 			(long long)__pfn_to_phys(md->pfn), addr);
935 		return;
936 	}
937 
938 	pgd = pgd_offset(mm, addr);
939 	end = addr + length;
940 	do {
941 		unsigned long next = pgd_addr_end(addr, end);
942 
943 		alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng);
944 
945 		phys += next - addr;
946 		addr = next;
947 	} while (pgd++, addr != end);
948 }
949 
950 /*
951  * Create the page directory entries and any necessary
952  * page tables for the mapping specified by `md'.  We
953  * are able to cope here with varying sizes and address
954  * offsets, and we take full advantage of sections and
955  * supersections.
956  */
957 static void __init create_mapping(struct map_desc *md)
958 {
959 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
960 		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
961 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
962 		return;
963 	}
964 
965 	if (md->type == MT_DEVICE &&
966 	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
967 	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
968 		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
969 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
970 	}
971 
972 	__create_mapping(&init_mm, md, early_alloc, false);
973 }
974 
975 void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
976 				bool ng)
977 {
978 #ifdef CONFIG_ARM_LPAE
979 	p4d_t *p4d;
980 	pud_t *pud;
981 
982 	p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
983 	if (WARN_ON(!p4d))
984 		return;
985 	pud = pud_alloc(mm, p4d, md->virtual);
986 	if (WARN_ON(!pud))
987 		return;
988 	pmd_alloc(mm, pud, 0);
989 #endif
990 	__create_mapping(mm, md, late_alloc, ng);
991 }
992 
993 /*
994  * Create the architecture specific mappings
995  */
996 void __init iotable_init(struct map_desc *io_desc, int nr)
997 {
998 	struct map_desc *md;
999 	struct vm_struct *vm;
1000 	struct static_vm *svm;
1001 
1002 	if (!nr)
1003 		return;
1004 
1005 	svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
1006 	if (!svm)
1007 		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1008 		      __func__, sizeof(*svm) * nr, __alignof__(*svm));
1009 
1010 	for (md = io_desc; nr; md++, nr--) {
1011 		create_mapping(md);
1012 
1013 		vm = &svm->vm;
1014 		vm->addr = (void *)(md->virtual & PAGE_MASK);
1015 		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1016 		vm->phys_addr = __pfn_to_phys(md->pfn);
1017 		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1018 		vm->flags |= VM_ARM_MTYPE(md->type);
1019 		vm->caller = iotable_init;
1020 		add_static_vm_early(svm++);
1021 	}
1022 }
1023 
1024 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1025 				  void *caller)
1026 {
1027 	struct vm_struct *vm;
1028 	struct static_vm *svm;
1029 
1030 	svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1031 	if (!svm)
1032 		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1033 		      __func__, sizeof(*svm), __alignof__(*svm));
1034 
1035 	vm = &svm->vm;
1036 	vm->addr = (void *)addr;
1037 	vm->size = size;
1038 	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1039 	vm->caller = caller;
1040 	add_static_vm_early(svm);
1041 }
1042 
1043 #ifndef CONFIG_ARM_LPAE
1044 
1045 /*
1046  * The Linux PMD is made of two consecutive section entries covering 2MB
1047  * (see definition in include/asm/pgtable-2level.h).  However a call to
1048  * create_mapping() may optimize static mappings by using individual
1049  * 1MB section mappings.  This leaves the actual PMD potentially half
1050  * initialized if the top or bottom section entry isn't used, leaving it
1051  * open to problems if a subsequent ioremap() or vmalloc() tries to use
1052  * the virtual space left free by that unused section entry.
1053  *
1054  * Let's avoid the issue by inserting dummy vm entries covering the unused
1055  * PMD halves once the static mappings are in place.
1056  */
1057 
1058 static void __init pmd_empty_section_gap(unsigned long addr)
1059 {
1060 	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1061 }
1062 
1063 static void __init fill_pmd_gaps(void)
1064 {
1065 	struct static_vm *svm;
1066 	struct vm_struct *vm;
1067 	unsigned long addr, next = 0;
1068 	pmd_t *pmd;
1069 
1070 	list_for_each_entry(svm, &static_vmlist, list) {
1071 		vm = &svm->vm;
1072 		addr = (unsigned long)vm->addr;
1073 		if (addr < next)
1074 			continue;
1075 
1076 		/*
1077 		 * Check if this vm starts on an odd section boundary.
1078 		 * If so and the first section entry for this PMD is free
1079 		 * then we block the corresponding virtual address.
1080 		 */
1081 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1082 			pmd = pmd_off_k(addr);
1083 			if (pmd_none(*pmd))
1084 				pmd_empty_section_gap(addr & PMD_MASK);
1085 		}
1086 
1087 		/*
1088 		 * Then check if this vm ends on an odd section boundary.
1089 		 * If so and the second section entry for this PMD is empty
1090 		 * then we block the corresponding virtual address.
1091 		 */
1092 		addr += vm->size;
1093 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1094 			pmd = pmd_off_k(addr) + 1;
1095 			if (pmd_none(*pmd))
1096 				pmd_empty_section_gap(addr);
1097 		}
1098 
1099 		/* no need to look at any vm entry until we hit the next PMD */
1100 		next = (addr + PMD_SIZE - 1) & PMD_MASK;
1101 	}
1102 }
1103 
1104 #else
1105 #define fill_pmd_gaps() do { } while (0)
1106 #endif
1107 
1108 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1109 static void __init pci_reserve_io(void)
1110 {
1111 	struct static_vm *svm;
1112 
1113 	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1114 	if (svm)
1115 		return;
1116 
1117 	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1118 }
1119 #else
1120 #define pci_reserve_io() do { } while (0)
1121 #endif
1122 
1123 #ifdef CONFIG_DEBUG_LL
1124 void __init debug_ll_io_init(void)
1125 {
1126 	struct map_desc map;
1127 
1128 	debug_ll_addr(&map.pfn, &map.virtual);
1129 	if (!map.pfn || !map.virtual)
1130 		return;
1131 	map.pfn = __phys_to_pfn(map.pfn);
1132 	map.virtual &= PAGE_MASK;
1133 	map.length = PAGE_SIZE;
1134 	map.type = MT_DEVICE;
1135 	iotable_init(&map, 1);
1136 }
1137 #endif
1138 
1139 static unsigned long __initdata vmalloc_size = 240 * SZ_1M;
1140 
1141 /*
1142  * vmalloc=size forces the vmalloc area to be exactly 'size'
1143  * bytes. This can be used to increase (or decrease) the vmalloc
1144  * area - the default is 240MiB.
1145  */
1146 static int __init early_vmalloc(char *arg)
1147 {
1148 	unsigned long vmalloc_reserve = memparse(arg, NULL);
1149 	unsigned long vmalloc_max;
1150 
1151 	if (vmalloc_reserve < SZ_16M) {
1152 		vmalloc_reserve = SZ_16M;
1153 		pr_warn("vmalloc area is too small, limiting to %luMiB\n",
1154 			vmalloc_reserve >> 20);
1155 	}
1156 
1157 	vmalloc_max = VMALLOC_END - (PAGE_OFFSET + SZ_32M + VMALLOC_OFFSET);
1158 	if (vmalloc_reserve > vmalloc_max) {
1159 		vmalloc_reserve = vmalloc_max;
1160 		pr_warn("vmalloc area is too big, limiting to %luMiB\n",
1161 			vmalloc_reserve >> 20);
1162 	}
1163 
1164 	vmalloc_size = vmalloc_reserve;
1165 	return 0;
1166 }
1167 early_param("vmalloc", early_vmalloc);
1168 
1169 phys_addr_t arm_lowmem_limit __initdata = 0;
1170 
1171 void __init adjust_lowmem_bounds(void)
1172 {
1173 	phys_addr_t block_start, block_end, memblock_limit = 0;
1174 	u64 vmalloc_limit, i;
1175 	phys_addr_t lowmem_limit = 0;
1176 
1177 	/*
1178 	 * Let's use our own (unoptimized) equivalent of __pa() that is
1179 	 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1180 	 * The result is used as the upper bound on physical memory address
1181 	 * and may itself be outside the valid range for which phys_addr_t
1182 	 * and therefore __pa() is defined.
1183 	 */
1184 	vmalloc_limit = (u64)VMALLOC_END - vmalloc_size - VMALLOC_OFFSET -
1185 			PAGE_OFFSET + PHYS_OFFSET;
1186 
1187 	/*
1188 	 * The first usable region must be PMD aligned. Mark its start
1189 	 * as MEMBLOCK_NOMAP if it isn't
1190 	 */
1191 	for_each_mem_range(i, &block_start, &block_end) {
1192 		if (!IS_ALIGNED(block_start, PMD_SIZE)) {
1193 			phys_addr_t len;
1194 
1195 			len = round_up(block_start, PMD_SIZE) - block_start;
1196 			memblock_mark_nomap(block_start, len);
1197 		}
1198 		break;
1199 	}
1200 
1201 	for_each_mem_range(i, &block_start, &block_end) {
1202 		if (block_start < vmalloc_limit) {
1203 			if (block_end > lowmem_limit)
1204 				/*
1205 				 * Compare as u64 to ensure vmalloc_limit does
1206 				 * not get truncated. block_end should always
1207 				 * fit in phys_addr_t so there should be no
1208 				 * issue with assignment.
1209 				 */
1210 				lowmem_limit = min_t(u64,
1211 							 vmalloc_limit,
1212 							 block_end);
1213 
1214 			/*
1215 			 * Find the first non-pmd-aligned page, and point
1216 			 * memblock_limit at it. This relies on rounding the
1217 			 * limit down to be pmd-aligned, which happens at the
1218 			 * end of this function.
1219 			 *
1220 			 * With this algorithm, the start or end of almost any
1221 			 * bank can be non-pmd-aligned. The only exception is
1222 			 * that the start of the bank 0 must be section-
1223 			 * aligned, since otherwise memory would need to be
1224 			 * allocated when mapping the start of bank 0, which
1225 			 * occurs before any free memory is mapped.
1226 			 */
1227 			if (!memblock_limit) {
1228 				if (!IS_ALIGNED(block_start, PMD_SIZE))
1229 					memblock_limit = block_start;
1230 				else if (!IS_ALIGNED(block_end, PMD_SIZE))
1231 					memblock_limit = lowmem_limit;
1232 			}
1233 
1234 		}
1235 	}
1236 
1237 	arm_lowmem_limit = lowmem_limit;
1238 
1239 	high_memory = __va(arm_lowmem_limit - 1) + 1;
1240 
1241 	if (!memblock_limit)
1242 		memblock_limit = arm_lowmem_limit;
1243 
1244 	/*
1245 	 * Round the memblock limit down to a pmd size.  This
1246 	 * helps to ensure that we will allocate memory from the
1247 	 * last full pmd, which should be mapped.
1248 	 */
1249 	memblock_limit = round_down(memblock_limit, PMD_SIZE);
1250 
1251 	if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1252 		if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1253 			phys_addr_t end = memblock_end_of_DRAM();
1254 
1255 			pr_notice("Ignoring RAM at %pa-%pa\n",
1256 				  &memblock_limit, &end);
1257 			pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1258 
1259 			memblock_remove(memblock_limit, end - memblock_limit);
1260 		}
1261 	}
1262 
1263 	memblock_set_current_limit(memblock_limit);
1264 }
1265 
1266 static __init void prepare_page_table(void)
1267 {
1268 	unsigned long addr;
1269 	phys_addr_t end;
1270 
1271 	/*
1272 	 * Clear out all the mappings below the kernel image.
1273 	 */
1274 #ifdef CONFIG_KASAN
1275 	/*
1276 	 * KASan's shadow memory inserts itself between the TASK_SIZE
1277 	 * and MODULES_VADDR. Do not clear the KASan shadow memory mappings.
1278 	 */
1279 	for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE)
1280 		pmd_clear(pmd_off_k(addr));
1281 	/*
1282 	 * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes
1283 	 * equal to MODULES_VADDR and then we exit the pmd clearing. If we
1284 	 * are using a thumb-compiled kernel, there there will be 8MB more
1285 	 * to clear as KASan always offset to 16 MB below MODULES_VADDR.
1286 	 */
1287 	for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE)
1288 		pmd_clear(pmd_off_k(addr));
1289 #else
1290 	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1291 		pmd_clear(pmd_off_k(addr));
1292 #endif
1293 
1294 #ifdef CONFIG_XIP_KERNEL
1295 	/* The XIP kernel is mapped in the module area -- skip over it */
1296 	addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1297 #endif
1298 	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1299 		pmd_clear(pmd_off_k(addr));
1300 
1301 	/*
1302 	 * Find the end of the first block of lowmem.
1303 	 */
1304 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1305 	if (end >= arm_lowmem_limit)
1306 		end = arm_lowmem_limit;
1307 
1308 	/*
1309 	 * Clear out all the kernel space mappings, except for the first
1310 	 * memory bank, up to the vmalloc region.
1311 	 */
1312 	for (addr = __phys_to_virt(end);
1313 	     addr < VMALLOC_START; addr += PMD_SIZE)
1314 		pmd_clear(pmd_off_k(addr));
1315 }
1316 
1317 #ifdef CONFIG_ARM_LPAE
1318 /* the first page is reserved for pgd */
1319 #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1320 				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1321 #else
1322 #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1323 #endif
1324 
1325 /*
1326  * Reserve the special regions of memory
1327  */
1328 void __init arm_mm_memblock_reserve(void)
1329 {
1330 	/*
1331 	 * Reserve the page tables.  These are already in use,
1332 	 * and can only be in node 0.
1333 	 */
1334 	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1335 
1336 #ifdef CONFIG_SA1111
1337 	/*
1338 	 * Because of the SA1111 DMA bug, we want to preserve our
1339 	 * precious DMA-able memory...
1340 	 */
1341 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1342 #endif
1343 }
1344 
1345 /*
1346  * Set up the device mappings.  Since we clear out the page tables for all
1347  * mappings above VMALLOC_START, except early fixmap, we might remove debug
1348  * device mappings.  This means earlycon can be used to debug this function
1349  * Any other function or debugging method which may touch any device _will_
1350  * crash the kernel.
1351  */
1352 static void __init devicemaps_init(const struct machine_desc *mdesc)
1353 {
1354 	struct map_desc map;
1355 	unsigned long addr;
1356 	void *vectors;
1357 
1358 	/*
1359 	 * Allocate the vector page early.
1360 	 */
1361 	vectors = early_alloc(PAGE_SIZE * 2);
1362 
1363 	early_trap_init(vectors);
1364 
1365 	/*
1366 	 * Clear page table except top pmd used by early fixmaps
1367 	 */
1368 	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1369 		pmd_clear(pmd_off_k(addr));
1370 
1371 	if (__atags_pointer) {
1372 		/* create a read-only mapping of the device tree */
1373 		map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK);
1374 		map.virtual = FDT_FIXED_BASE;
1375 		map.length = FDT_FIXED_SIZE;
1376 		map.type = MT_MEMORY_RO;
1377 		create_mapping(&map);
1378 	}
1379 
1380 	/*
1381 	 * Map the kernel if it is XIP.
1382 	 * It is always first in the modulearea.
1383 	 */
1384 #ifdef CONFIG_XIP_KERNEL
1385 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1386 	map.virtual = MODULES_VADDR;
1387 	map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1388 	map.type = MT_ROM;
1389 	create_mapping(&map);
1390 #endif
1391 
1392 	/*
1393 	 * Map the cache flushing regions.
1394 	 */
1395 #ifdef FLUSH_BASE
1396 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1397 	map.virtual = FLUSH_BASE;
1398 	map.length = SZ_1M;
1399 	map.type = MT_CACHECLEAN;
1400 	create_mapping(&map);
1401 #endif
1402 #ifdef FLUSH_BASE_MINICACHE
1403 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1404 	map.virtual = FLUSH_BASE_MINICACHE;
1405 	map.length = SZ_1M;
1406 	map.type = MT_MINICLEAN;
1407 	create_mapping(&map);
1408 #endif
1409 
1410 	/*
1411 	 * Create a mapping for the machine vectors at the high-vectors
1412 	 * location (0xffff0000).  If we aren't using high-vectors, also
1413 	 * create a mapping at the low-vectors virtual address.
1414 	 */
1415 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1416 	map.virtual = 0xffff0000;
1417 	map.length = PAGE_SIZE;
1418 #ifdef CONFIG_KUSER_HELPERS
1419 	map.type = MT_HIGH_VECTORS;
1420 #else
1421 	map.type = MT_LOW_VECTORS;
1422 #endif
1423 	create_mapping(&map);
1424 
1425 	if (!vectors_high()) {
1426 		map.virtual = 0;
1427 		map.length = PAGE_SIZE * 2;
1428 		map.type = MT_LOW_VECTORS;
1429 		create_mapping(&map);
1430 	}
1431 
1432 	/* Now create a kernel read-only mapping */
1433 	map.pfn += 1;
1434 	map.virtual = 0xffff0000 + PAGE_SIZE;
1435 	map.length = PAGE_SIZE;
1436 	map.type = MT_LOW_VECTORS;
1437 	create_mapping(&map);
1438 
1439 	/*
1440 	 * Ask the machine support to map in the statically mapped devices.
1441 	 */
1442 	if (mdesc->map_io)
1443 		mdesc->map_io();
1444 	else
1445 		debug_ll_io_init();
1446 	fill_pmd_gaps();
1447 
1448 	/* Reserve fixed i/o space in VMALLOC region */
1449 	pci_reserve_io();
1450 
1451 	/*
1452 	 * Finally flush the caches and tlb to ensure that we're in a
1453 	 * consistent state wrt the writebuffer.  This also ensures that
1454 	 * any write-allocated cache lines in the vector page are written
1455 	 * back.  After this point, we can start to touch devices again.
1456 	 */
1457 	local_flush_tlb_all();
1458 	flush_cache_all();
1459 
1460 	/* Enable asynchronous aborts */
1461 	early_abt_enable();
1462 }
1463 
1464 static void __init kmap_init(void)
1465 {
1466 #ifdef CONFIG_HIGHMEM
1467 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1468 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1469 #endif
1470 
1471 	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1472 			_PAGE_KERNEL_TABLE);
1473 }
1474 
1475 static void __init map_lowmem(void)
1476 {
1477 	phys_addr_t start, end;
1478 	u64 i;
1479 
1480 	/* Map all the lowmem memory banks. */
1481 	for_each_mem_range(i, &start, &end) {
1482 		struct map_desc map;
1483 
1484 		pr_debug("map lowmem start: 0x%08llx, end: 0x%08llx\n",
1485 			 (long long)start, (long long)end);
1486 		if (end > arm_lowmem_limit)
1487 			end = arm_lowmem_limit;
1488 		if (start >= end)
1489 			break;
1490 
1491 		/*
1492 		 * If our kernel image is in the VMALLOC area we need to remove
1493 		 * the kernel physical memory from lowmem since the kernel will
1494 		 * be mapped separately.
1495 		 *
1496 		 * The kernel will typically be at the very start of lowmem,
1497 		 * but any placement relative to memory ranges is possible.
1498 		 *
1499 		 * If the memblock contains the kernel, we have to chisel out
1500 		 * the kernel memory from it and map each part separately. We
1501 		 * get 6 different theoretical cases:
1502 		 *
1503 		 *                            +--------+ +--------+
1504 		 *  +-- start --+  +--------+ | Kernel | | Kernel |
1505 		 *  |           |  | Kernel | | case 2 | | case 5 |
1506 		 *  |           |  | case 1 | +--------+ |        | +--------+
1507 		 *  |  Memory   |  +--------+            |        | | Kernel |
1508 		 *  |  range    |  +--------+            |        | | case 6 |
1509 		 *  |           |  | Kernel | +--------+ |        | +--------+
1510 		 *  |           |  | case 3 | | Kernel | |        |
1511 		 *  +-- end ----+  +--------+ | case 4 | |        |
1512 		 *                            +--------+ +--------+
1513 		 */
1514 
1515 		/* Case 5: kernel covers range, don't map anything, should be rare */
1516 		if ((start > kernel_sec_start) && (end < kernel_sec_end))
1517 			break;
1518 
1519 		/* Cases where the kernel is starting inside the range */
1520 		if ((kernel_sec_start >= start) && (kernel_sec_start <= end)) {
1521 			/* Case 6: kernel is embedded in the range, we need two mappings */
1522 			if ((start < kernel_sec_start) && (end > kernel_sec_end)) {
1523 				/* Map memory below the kernel */
1524 				map.pfn = __phys_to_pfn(start);
1525 				map.virtual = __phys_to_virt(start);
1526 				map.length = kernel_sec_start - start;
1527 				map.type = MT_MEMORY_RW;
1528 				create_mapping(&map);
1529 				/* Map memory above the kernel */
1530 				map.pfn = __phys_to_pfn(kernel_sec_end);
1531 				map.virtual = __phys_to_virt(kernel_sec_end);
1532 				map.length = end - kernel_sec_end;
1533 				map.type = MT_MEMORY_RW;
1534 				create_mapping(&map);
1535 				break;
1536 			}
1537 			/* Case 1: kernel and range start at the same address, should be common */
1538 			if (kernel_sec_start == start)
1539 				start = kernel_sec_end;
1540 			/* Case 3: kernel and range end at the same address, should be rare */
1541 			if (kernel_sec_end == end)
1542 				end = kernel_sec_start;
1543 		} else if ((kernel_sec_start < start) && (kernel_sec_end > start) && (kernel_sec_end < end)) {
1544 			/* Case 2: kernel ends inside range, starts below it */
1545 			start = kernel_sec_end;
1546 		} else if ((kernel_sec_start > start) && (kernel_sec_start < end) && (kernel_sec_end > end)) {
1547 			/* Case 4: kernel starts inside range, ends above it */
1548 			end = kernel_sec_start;
1549 		}
1550 		map.pfn = __phys_to_pfn(start);
1551 		map.virtual = __phys_to_virt(start);
1552 		map.length = end - start;
1553 		map.type = MT_MEMORY_RW;
1554 		create_mapping(&map);
1555 	}
1556 }
1557 
1558 static void __init map_kernel(void)
1559 {
1560 	/*
1561 	 * We use the well known kernel section start and end and split the area in the
1562 	 * middle like this:
1563 	 *  .                .
1564 	 *  | RW memory      |
1565 	 *  +----------------+ kernel_x_start
1566 	 *  | Executable     |
1567 	 *  | kernel memory  |
1568 	 *  +----------------+ kernel_x_end / kernel_nx_start
1569 	 *  | Non-executable |
1570 	 *  | kernel memory  |
1571 	 *  +----------------+ kernel_nx_end
1572 	 *  | RW memory      |
1573 	 *  .                .
1574 	 *
1575 	 * Notice that we are dealing with section sized mappings here so all of this
1576 	 * will be bumped to the closest section boundary. This means that some of the
1577 	 * non-executable part of the kernel memory is actually mapped as executable.
1578 	 * This will only persist until we turn on proper memory management later on
1579 	 * and we remap the whole kernel with page granularity.
1580 	 */
1581 	phys_addr_t kernel_x_start = kernel_sec_start;
1582 	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1583 	phys_addr_t kernel_nx_start = kernel_x_end;
1584 	phys_addr_t kernel_nx_end = kernel_sec_end;
1585 	struct map_desc map;
1586 
1587 	map.pfn = __phys_to_pfn(kernel_x_start);
1588 	map.virtual = __phys_to_virt(kernel_x_start);
1589 	map.length = kernel_x_end - kernel_x_start;
1590 	map.type = MT_MEMORY_RWX;
1591 	create_mapping(&map);
1592 
1593 	/* If the nx part is small it may end up covered by the tail of the RWX section */
1594 	if (kernel_x_end == kernel_nx_end)
1595 		return;
1596 
1597 	map.pfn = __phys_to_pfn(kernel_nx_start);
1598 	map.virtual = __phys_to_virt(kernel_nx_start);
1599 	map.length = kernel_nx_end - kernel_nx_start;
1600 	map.type = MT_MEMORY_RW;
1601 	create_mapping(&map);
1602 }
1603 
1604 #ifdef CONFIG_ARM_PV_FIXUP
1605 typedef void pgtables_remap(long long offset, unsigned long pgd);
1606 pgtables_remap lpae_pgtables_remap_asm;
1607 
1608 /*
1609  * early_paging_init() recreates boot time page table setup, allowing machines
1610  * to switch over to a high (>4G) address space on LPAE systems
1611  */
1612 static void __init early_paging_init(const struct machine_desc *mdesc)
1613 {
1614 	pgtables_remap *lpae_pgtables_remap;
1615 	unsigned long pa_pgd;
1616 	unsigned int cr, ttbcr;
1617 	long long offset;
1618 
1619 	if (!mdesc->pv_fixup)
1620 		return;
1621 
1622 	offset = mdesc->pv_fixup();
1623 	if (offset == 0)
1624 		return;
1625 
1626 	/*
1627 	 * Offset the kernel section physical offsets so that the kernel
1628 	 * mapping will work out later on.
1629 	 */
1630 	kernel_sec_start += offset;
1631 	kernel_sec_end += offset;
1632 
1633 	/*
1634 	 * Get the address of the remap function in the 1:1 identity
1635 	 * mapping setup by the early page table assembly code.  We
1636 	 * must get this prior to the pv update.  The following barrier
1637 	 * ensures that this is complete before we fixup any P:V offsets.
1638 	 */
1639 	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1640 	pa_pgd = __pa(swapper_pg_dir);
1641 	barrier();
1642 
1643 	pr_info("Switching physical address space to 0x%08llx\n",
1644 		(u64)PHYS_OFFSET + offset);
1645 
1646 	/* Re-set the phys pfn offset, and the pv offset */
1647 	__pv_offset += offset;
1648 	__pv_phys_pfn_offset += PFN_DOWN(offset);
1649 
1650 	/* Run the patch stub to update the constants */
1651 	fixup_pv_table(&__pv_table_begin,
1652 		(&__pv_table_end - &__pv_table_begin) << 2);
1653 
1654 	/*
1655 	 * We changing not only the virtual to physical mapping, but also
1656 	 * the physical addresses used to access memory.  We need to flush
1657 	 * all levels of cache in the system with caching disabled to
1658 	 * ensure that all data is written back, and nothing is prefetched
1659 	 * into the caches.  We also need to prevent the TLB walkers
1660 	 * allocating into the caches too.  Note that this is ARMv7 LPAE
1661 	 * specific.
1662 	 */
1663 	cr = get_cr();
1664 	set_cr(cr & ~(CR_I | CR_C));
1665 	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1666 	asm volatile("mcr p15, 0, %0, c2, c0, 2"
1667 		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1668 	flush_cache_all();
1669 
1670 	/*
1671 	 * Fixup the page tables - this must be in the idmap region as
1672 	 * we need to disable the MMU to do this safely, and hence it
1673 	 * needs to be assembly.  It's fairly simple, as we're using the
1674 	 * temporary tables setup by the initial assembly code.
1675 	 */
1676 	lpae_pgtables_remap(offset, pa_pgd);
1677 
1678 	/* Re-enable the caches and cacheable TLB walks */
1679 	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1680 	set_cr(cr);
1681 }
1682 
1683 #else
1684 
1685 static void __init early_paging_init(const struct machine_desc *mdesc)
1686 {
1687 	long long offset;
1688 
1689 	if (!mdesc->pv_fixup)
1690 		return;
1691 
1692 	offset = mdesc->pv_fixup();
1693 	if (offset == 0)
1694 		return;
1695 
1696 	pr_crit("Physical address space modification is only to support Keystone2.\n");
1697 	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1698 	pr_crit("feature. Your kernel may crash now, have a good day.\n");
1699 	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1700 }
1701 
1702 #endif
1703 
1704 static void __init early_fixmap_shutdown(void)
1705 {
1706 	int i;
1707 	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1708 
1709 	pte_offset_fixmap = pte_offset_late_fixmap;
1710 	pmd_clear(fixmap_pmd(va));
1711 	local_flush_tlb_kernel_page(va);
1712 
1713 	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1714 		pte_t *pte;
1715 		struct map_desc map;
1716 
1717 		map.virtual = fix_to_virt(i);
1718 		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1719 
1720 		/* Only i/o device mappings are supported ATM */
1721 		if (pte_none(*pte) ||
1722 		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1723 			continue;
1724 
1725 		map.pfn = pte_pfn(*pte);
1726 		map.type = MT_DEVICE;
1727 		map.length = PAGE_SIZE;
1728 
1729 		create_mapping(&map);
1730 	}
1731 }
1732 
1733 /*
1734  * paging_init() sets up the page tables, initialises the zone memory
1735  * maps, and sets up the zero page, bad page and bad page tables.
1736  */
1737 void __init paging_init(const struct machine_desc *mdesc)
1738 {
1739 	void *zero_page;
1740 
1741 	pr_debug("physical kernel sections: 0x%08llx-0x%08llx\n",
1742 		 kernel_sec_start, kernel_sec_end);
1743 
1744 	prepare_page_table();
1745 	map_lowmem();
1746 	memblock_set_current_limit(arm_lowmem_limit);
1747 	pr_debug("lowmem limit is %08llx\n", (long long)arm_lowmem_limit);
1748 	/*
1749 	 * After this point early_alloc(), i.e. the memblock allocator, can
1750 	 * be used
1751 	 */
1752 	map_kernel();
1753 	dma_contiguous_remap();
1754 	early_fixmap_shutdown();
1755 	devicemaps_init(mdesc);
1756 	kmap_init();
1757 	tcm_init();
1758 
1759 	top_pmd = pmd_off_k(0xffff0000);
1760 
1761 	/* allocate the zero page. */
1762 	zero_page = early_alloc(PAGE_SIZE);
1763 
1764 	bootmem_init();
1765 
1766 	empty_zero_page = virt_to_page(zero_page);
1767 	__flush_dcache_page(NULL, empty_zero_page);
1768 }
1769 
1770 void __init early_mm_init(const struct machine_desc *mdesc)
1771 {
1772 	build_mem_type_table();
1773 	early_paging_init(mdesc);
1774 }
1775 
1776 void set_pte_at(struct mm_struct *mm, unsigned long addr,
1777 			      pte_t *ptep, pte_t pteval)
1778 {
1779 	unsigned long ext = 0;
1780 
1781 	if (addr < TASK_SIZE && pte_valid_user(pteval)) {
1782 		if (!pte_special(pteval))
1783 			__sync_icache_dcache(pteval);
1784 		ext |= PTE_EXT_NG;
1785 	}
1786 
1787 	set_pte_ext(ptep, pteval, ext);
1788 }
1789