xref: /linux/arch/arm64/Kconfig (revision c6fbb759)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_CCA_REQUIRED if ACPI
5	select ACPI_GENERIC_GSI if ACPI
6	select ACPI_GTDT if ACPI
7	select ACPI_IORT if ACPI
8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9	select ACPI_MCFG if (ACPI && PCI)
10	select ACPI_SPCR_TABLE if ACPI
11	select ACPI_PPTT if ACPI
12	select ARCH_HAS_DEBUG_WX
13	select ARCH_BINFMT_ELF_EXTRA_PHDRS
14	select ARCH_BINFMT_ELF_STATE
15	select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
16	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
17	select ARCH_ENABLE_MEMORY_HOTPLUG
18	select ARCH_ENABLE_MEMORY_HOTREMOVE
19	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
20	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
21	select ARCH_HAS_CACHE_LINE_SIZE
22	select ARCH_HAS_CURRENT_STACK_POINTER
23	select ARCH_HAS_DEBUG_VIRTUAL
24	select ARCH_HAS_DEBUG_VM_PGTABLE
25	select ARCH_HAS_DMA_PREP_COHERENT
26	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
27	select ARCH_HAS_FAST_MULTIPLIER
28	select ARCH_HAS_FORTIFY_SOURCE
29	select ARCH_HAS_GCOV_PROFILE_ALL
30	select ARCH_HAS_GIGANTIC_PAGE
31	select ARCH_HAS_KCOV
32	select ARCH_HAS_KEEPINITRD
33	select ARCH_HAS_MEMBARRIER_SYNC_CORE
34	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
35	select ARCH_HAS_PTE_DEVMAP
36	select ARCH_HAS_PTE_SPECIAL
37	select ARCH_HAS_SETUP_DMA_OPS
38	select ARCH_HAS_SET_DIRECT_MAP
39	select ARCH_HAS_SET_MEMORY
40	select ARCH_STACKWALK
41	select ARCH_HAS_STRICT_KERNEL_RWX
42	select ARCH_HAS_STRICT_MODULE_RWX
43	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
44	select ARCH_HAS_SYNC_DMA_FOR_CPU
45	select ARCH_HAS_SYSCALL_WRAPPER
46	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
47	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
48	select ARCH_HAS_ZONE_DMA_SET if EXPERT
49	select ARCH_HAVE_ELF_PROT
50	select ARCH_HAVE_NMI_SAFE_CMPXCHG
51	select ARCH_HAVE_TRACE_MMIO_ACCESS
52	select ARCH_INLINE_READ_LOCK if !PREEMPTION
53	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
54	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
55	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
56	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
57	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
58	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
59	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
60	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
61	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
62	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
63	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
64	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
65	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
66	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
67	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
68	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
69	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
70	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
71	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
72	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
73	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
74	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
75	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
76	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
77	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
78	select ARCH_KEEP_MEMBLOCK
79	select ARCH_USE_CMPXCHG_LOCKREF
80	select ARCH_USE_GNU_PROPERTY
81	select ARCH_USE_MEMTEST
82	select ARCH_USE_QUEUED_RWLOCKS
83	select ARCH_USE_QUEUED_SPINLOCKS
84	select ARCH_USE_SYM_ANNOTATIONS
85	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
86	select ARCH_SUPPORTS_HUGETLBFS
87	select ARCH_SUPPORTS_MEMORY_FAILURE
88	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
89	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
90	select ARCH_SUPPORTS_LTO_CLANG_THIN
91	select ARCH_SUPPORTS_CFI_CLANG
92	select ARCH_SUPPORTS_ATOMIC_RMW
93	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
94	select ARCH_SUPPORTS_NUMA_BALANCING
95	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
96	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
97	select ARCH_WANT_DEFAULT_BPF_JIT
98	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
99	select ARCH_WANT_FRAME_POINTERS
100	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
101	select ARCH_WANT_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
102	select ARCH_WANT_LD_ORPHAN_WARN
103	select ARCH_WANTS_NO_INSTR
104	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
105	select ARCH_HAS_UBSAN_SANITIZE_ALL
106	select ARM_AMBA
107	select ARM_ARCH_TIMER
108	select ARM_GIC
109	select AUDIT_ARCH_COMPAT_GENERIC
110	select ARM_GIC_V2M if PCI
111	select ARM_GIC_V3
112	select ARM_GIC_V3_ITS if PCI
113	select ARM_PSCI_FW
114	select BUILDTIME_TABLE_SORT
115	select CLONE_BACKWARDS
116	select COMMON_CLK
117	select CPU_PM if (SUSPEND || CPU_IDLE)
118	select CRC32
119	select DCACHE_WORD_ACCESS
120	select DMA_DIRECT_REMAP
121	select EDAC_SUPPORT
122	select FRAME_POINTER
123	select GENERIC_ALLOCATOR
124	select GENERIC_ARCH_TOPOLOGY
125	select GENERIC_CLOCKEVENTS_BROADCAST
126	select GENERIC_CPU_AUTOPROBE
127	select GENERIC_CPU_VULNERABILITIES
128	select GENERIC_EARLY_IOREMAP
129	select GENERIC_IDLE_POLL_SETUP
130	select GENERIC_IOREMAP
131	select GENERIC_IRQ_IPI
132	select GENERIC_IRQ_PROBE
133	select GENERIC_IRQ_SHOW
134	select GENERIC_IRQ_SHOW_LEVEL
135	select GENERIC_LIB_DEVMEM_IS_ALLOWED
136	select GENERIC_PCI_IOMAP
137	select GENERIC_PTDUMP
138	select GENERIC_SCHED_CLOCK
139	select GENERIC_SMP_IDLE_THREAD
140	select GENERIC_TIME_VSYSCALL
141	select GENERIC_GETTIMEOFDAY
142	select GENERIC_VDSO_TIME_NS
143	select HARDIRQS_SW_RESEND
144	select HAVE_MOVE_PMD
145	select HAVE_MOVE_PUD
146	select HAVE_PCI
147	select HAVE_ACPI_APEI if (ACPI && EFI)
148	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
149	select HAVE_ARCH_AUDITSYSCALL
150	select HAVE_ARCH_BITREVERSE
151	select HAVE_ARCH_COMPILER_H
152	select HAVE_ARCH_HUGE_VMALLOC
153	select HAVE_ARCH_HUGE_VMAP
154	select HAVE_ARCH_JUMP_LABEL
155	select HAVE_ARCH_JUMP_LABEL_RELATIVE
156	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
157	select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
158	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
159	select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
160	# Some instrumentation may be unsound, hence EXPERT
161	select HAVE_ARCH_KCSAN if EXPERT
162	select HAVE_ARCH_KFENCE
163	select HAVE_ARCH_KGDB
164	select HAVE_ARCH_MMAP_RND_BITS
165	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
166	select HAVE_ARCH_PREL32_RELOCATIONS
167	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
168	select HAVE_ARCH_SECCOMP_FILTER
169	select HAVE_ARCH_STACKLEAK
170	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
171	select HAVE_ARCH_TRACEHOOK
172	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
173	select HAVE_ARCH_VMAP_STACK
174	select HAVE_ARM_SMCCC
175	select HAVE_ASM_MODVERSIONS
176	select HAVE_EBPF_JIT
177	select HAVE_C_RECORDMCOUNT
178	select HAVE_CMPXCHG_DOUBLE
179	select HAVE_CMPXCHG_LOCAL
180	select HAVE_CONTEXT_TRACKING_USER
181	select HAVE_DEBUG_KMEMLEAK
182	select HAVE_DMA_CONTIGUOUS
183	select HAVE_DYNAMIC_FTRACE
184	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
185		if DYNAMIC_FTRACE_WITH_REGS
186	select HAVE_EFFICIENT_UNALIGNED_ACCESS
187	select HAVE_FAST_GUP
188	select HAVE_FTRACE_MCOUNT_RECORD
189	select HAVE_FUNCTION_TRACER
190	select HAVE_FUNCTION_ERROR_INJECTION
191	select HAVE_FUNCTION_GRAPH_TRACER
192	select HAVE_GCC_PLUGINS
193	select HAVE_HW_BREAKPOINT if PERF_EVENTS
194	select HAVE_IOREMAP_PROT
195	select HAVE_IRQ_TIME_ACCOUNTING
196	select HAVE_KVM
197	select HAVE_NMI
198	select HAVE_PERF_EVENTS
199	select HAVE_PERF_REGS
200	select HAVE_PERF_USER_STACK_DUMP
201	select HAVE_PREEMPT_DYNAMIC_KEY
202	select HAVE_REGS_AND_STACK_ACCESS_API
203	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
204	select HAVE_FUNCTION_ARG_ACCESS_API
205	select MMU_GATHER_RCU_TABLE_FREE
206	select HAVE_RSEQ
207	select HAVE_STACKPROTECTOR
208	select HAVE_SYSCALL_TRACEPOINTS
209	select HAVE_KPROBES
210	select HAVE_KRETPROBES
211	select HAVE_GENERIC_VDSO
212	select IRQ_DOMAIN
213	select IRQ_FORCED_THREADING
214	select KASAN_VMALLOC if KASAN
215	select MODULES_USE_ELF_RELA
216	select NEED_DMA_MAP_STATE
217	select NEED_SG_DMA_LENGTH
218	select OF
219	select OF_EARLY_FLATTREE
220	select PCI_DOMAINS_GENERIC if PCI
221	select PCI_ECAM if (ACPI && PCI)
222	select PCI_SYSCALL if PCI
223	select POWER_RESET
224	select POWER_SUPPLY
225	select SPARSE_IRQ
226	select SWIOTLB
227	select SYSCTL_EXCEPTION_TRACE
228	select THREAD_INFO_IN_TASK
229	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
230	select TRACE_IRQFLAGS_SUPPORT
231	select TRACE_IRQFLAGS_NMI_SUPPORT
232	select HAVE_SOFTIRQ_ON_OWN_STACK
233	help
234	  ARM 64-bit (AArch64) Linux support.
235
236config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_REGS
237	def_bool CC_IS_CLANG
238	# https://github.com/ClangBuiltLinux/linux/issues/1507
239	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
240	select HAVE_DYNAMIC_FTRACE_WITH_REGS
241
242config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_REGS
243	def_bool CC_IS_GCC
244	depends on $(cc-option,-fpatchable-function-entry=2)
245	select HAVE_DYNAMIC_FTRACE_WITH_REGS
246
247config 64BIT
248	def_bool y
249
250config MMU
251	def_bool y
252
253config ARM64_PAGE_SHIFT
254	int
255	default 16 if ARM64_64K_PAGES
256	default 14 if ARM64_16K_PAGES
257	default 12
258
259config ARM64_CONT_PTE_SHIFT
260	int
261	default 5 if ARM64_64K_PAGES
262	default 7 if ARM64_16K_PAGES
263	default 4
264
265config ARM64_CONT_PMD_SHIFT
266	int
267	default 5 if ARM64_64K_PAGES
268	default 5 if ARM64_16K_PAGES
269	default 4
270
271config ARCH_MMAP_RND_BITS_MIN
272	default 14 if ARM64_64K_PAGES
273	default 16 if ARM64_16K_PAGES
274	default 18
275
276# max bits determined by the following formula:
277#  VA_BITS - PAGE_SHIFT - 3
278config ARCH_MMAP_RND_BITS_MAX
279	default 19 if ARM64_VA_BITS=36
280	default 24 if ARM64_VA_BITS=39
281	default 27 if ARM64_VA_BITS=42
282	default 30 if ARM64_VA_BITS=47
283	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
284	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
285	default 33 if ARM64_VA_BITS=48
286	default 14 if ARM64_64K_PAGES
287	default 16 if ARM64_16K_PAGES
288	default 18
289
290config ARCH_MMAP_RND_COMPAT_BITS_MIN
291	default 7 if ARM64_64K_PAGES
292	default 9 if ARM64_16K_PAGES
293	default 11
294
295config ARCH_MMAP_RND_COMPAT_BITS_MAX
296	default 16
297
298config NO_IOPORT_MAP
299	def_bool y if !PCI
300
301config STACKTRACE_SUPPORT
302	def_bool y
303
304config ILLEGAL_POINTER_VALUE
305	hex
306	default 0xdead000000000000
307
308config LOCKDEP_SUPPORT
309	def_bool y
310
311config GENERIC_BUG
312	def_bool y
313	depends on BUG
314
315config GENERIC_BUG_RELATIVE_POINTERS
316	def_bool y
317	depends on GENERIC_BUG
318
319config GENERIC_HWEIGHT
320	def_bool y
321
322config GENERIC_CSUM
323	def_bool y
324
325config GENERIC_CALIBRATE_DELAY
326	def_bool y
327
328config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
329	def_bool y
330
331config SMP
332	def_bool y
333
334config KERNEL_MODE_NEON
335	def_bool y
336
337config FIX_EARLYCON_MEM
338	def_bool y
339
340config PGTABLE_LEVELS
341	int
342	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
343	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
344	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
345	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
346	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
347	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
348
349config ARCH_SUPPORTS_UPROBES
350	def_bool y
351
352config ARCH_PROC_KCORE_TEXT
353	def_bool y
354
355config BROKEN_GAS_INST
356	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
357
358config KASAN_SHADOW_OFFSET
359	hex
360	depends on KASAN_GENERIC || KASAN_SW_TAGS
361	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
362	default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
363	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
364	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
365	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
366	default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
367	default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
368	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
369	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
370	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
371	default 0xffffffffffffffff
372
373source "arch/arm64/Kconfig.platforms"
374
375menu "Kernel Features"
376
377menu "ARM errata workarounds via the alternatives framework"
378
379config ARM64_WORKAROUND_CLEAN_CACHE
380	bool
381
382config ARM64_ERRATUM_826319
383	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
384	default y
385	select ARM64_WORKAROUND_CLEAN_CACHE
386	help
387	  This option adds an alternative code sequence to work around ARM
388	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
389	  AXI master interface and an L2 cache.
390
391	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
392	  and is unable to accept a certain write via this interface, it will
393	  not progress on read data presented on the read data channel and the
394	  system can deadlock.
395
396	  The workaround promotes data cache clean instructions to
397	  data cache clean-and-invalidate.
398	  Please note that this does not necessarily enable the workaround,
399	  as it depends on the alternative framework, which will only patch
400	  the kernel if an affected CPU is detected.
401
402	  If unsure, say Y.
403
404config ARM64_ERRATUM_827319
405	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
406	default y
407	select ARM64_WORKAROUND_CLEAN_CACHE
408	help
409	  This option adds an alternative code sequence to work around ARM
410	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
411	  master interface and an L2 cache.
412
413	  Under certain conditions this erratum can cause a clean line eviction
414	  to occur at the same time as another transaction to the same address
415	  on the AMBA 5 CHI interface, which can cause data corruption if the
416	  interconnect reorders the two transactions.
417
418	  The workaround promotes data cache clean instructions to
419	  data cache clean-and-invalidate.
420	  Please note that this does not necessarily enable the workaround,
421	  as it depends on the alternative framework, which will only patch
422	  the kernel if an affected CPU is detected.
423
424	  If unsure, say Y.
425
426config ARM64_ERRATUM_824069
427	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
428	default y
429	select ARM64_WORKAROUND_CLEAN_CACHE
430	help
431	  This option adds an alternative code sequence to work around ARM
432	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
433	  to a coherent interconnect.
434
435	  If a Cortex-A53 processor is executing a store or prefetch for
436	  write instruction at the same time as a processor in another
437	  cluster is executing a cache maintenance operation to the same
438	  address, then this erratum might cause a clean cache line to be
439	  incorrectly marked as dirty.
440
441	  The workaround promotes data cache clean instructions to
442	  data cache clean-and-invalidate.
443	  Please note that this option does not necessarily enable the
444	  workaround, as it depends on the alternative framework, which will
445	  only patch the kernel if an affected CPU is detected.
446
447	  If unsure, say Y.
448
449config ARM64_ERRATUM_819472
450	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
451	default y
452	select ARM64_WORKAROUND_CLEAN_CACHE
453	help
454	  This option adds an alternative code sequence to work around ARM
455	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
456	  present when it is connected to a coherent interconnect.
457
458	  If the processor is executing a load and store exclusive sequence at
459	  the same time as a processor in another cluster is executing a cache
460	  maintenance operation to the same address, then this erratum might
461	  cause data corruption.
462
463	  The workaround promotes data cache clean instructions to
464	  data cache clean-and-invalidate.
465	  Please note that this does not necessarily enable the workaround,
466	  as it depends on the alternative framework, which will only patch
467	  the kernel if an affected CPU is detected.
468
469	  If unsure, say Y.
470
471config ARM64_ERRATUM_832075
472	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
473	default y
474	help
475	  This option adds an alternative code sequence to work around ARM
476	  erratum 832075 on Cortex-A57 parts up to r1p2.
477
478	  Affected Cortex-A57 parts might deadlock when exclusive load/store
479	  instructions to Write-Back memory are mixed with Device loads.
480
481	  The workaround is to promote device loads to use Load-Acquire
482	  semantics.
483	  Please note that this does not necessarily enable the workaround,
484	  as it depends on the alternative framework, which will only patch
485	  the kernel if an affected CPU is detected.
486
487	  If unsure, say Y.
488
489config ARM64_ERRATUM_834220
490	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
491	depends on KVM
492	default y
493	help
494	  This option adds an alternative code sequence to work around ARM
495	  erratum 834220 on Cortex-A57 parts up to r1p2.
496
497	  Affected Cortex-A57 parts might report a Stage 2 translation
498	  fault as the result of a Stage 1 fault for load crossing a
499	  page boundary when there is a permission or device memory
500	  alignment fault at Stage 1 and a translation fault at Stage 2.
501
502	  The workaround is to verify that the Stage 1 translation
503	  doesn't generate a fault before handling the Stage 2 fault.
504	  Please note that this does not necessarily enable the workaround,
505	  as it depends on the alternative framework, which will only patch
506	  the kernel if an affected CPU is detected.
507
508	  If unsure, say Y.
509
510config ARM64_ERRATUM_1742098
511	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
512	depends on COMPAT
513	default y
514	help
515	  This option removes the AES hwcap for aarch32 user-space to
516	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
517
518	  Affected parts may corrupt the AES state if an interrupt is
519	  taken between a pair of AES instructions. These instructions
520	  are only present if the cryptography extensions are present.
521	  All software should have a fallback implementation for CPUs
522	  that don't implement the cryptography extensions.
523
524	  If unsure, say Y.
525
526config ARM64_ERRATUM_845719
527	bool "Cortex-A53: 845719: a load might read incorrect data"
528	depends on COMPAT
529	default y
530	help
531	  This option adds an alternative code sequence to work around ARM
532	  erratum 845719 on Cortex-A53 parts up to r0p4.
533
534	  When running a compat (AArch32) userspace on an affected Cortex-A53
535	  part, a load at EL0 from a virtual address that matches the bottom 32
536	  bits of the virtual address used by a recent load at (AArch64) EL1
537	  might return incorrect data.
538
539	  The workaround is to write the contextidr_el1 register on exception
540	  return to a 32-bit task.
541	  Please note that this does not necessarily enable the workaround,
542	  as it depends on the alternative framework, which will only patch
543	  the kernel if an affected CPU is detected.
544
545	  If unsure, say Y.
546
547config ARM64_ERRATUM_843419
548	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
549	default y
550	select ARM64_MODULE_PLTS if MODULES
551	help
552	  This option links the kernel with '--fix-cortex-a53-843419' and
553	  enables PLT support to replace certain ADRP instructions, which can
554	  cause subsequent memory accesses to use an incorrect address on
555	  Cortex-A53 parts up to r0p4.
556
557	  If unsure, say Y.
558
559config ARM64_LD_HAS_FIX_ERRATUM_843419
560	def_bool $(ld-option,--fix-cortex-a53-843419)
561
562config ARM64_ERRATUM_1024718
563	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
564	default y
565	help
566	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
567
568	  Affected Cortex-A55 cores (all revisions) could cause incorrect
569	  update of the hardware dirty bit when the DBM/AP bits are updated
570	  without a break-before-make. The workaround is to disable the usage
571	  of hardware DBM locally on the affected cores. CPUs not affected by
572	  this erratum will continue to use the feature.
573
574	  If unsure, say Y.
575
576config ARM64_ERRATUM_1418040
577	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
578	default y
579	depends on COMPAT
580	help
581	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
582	  errata 1188873 and 1418040.
583
584	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
585	  cause register corruption when accessing the timer registers
586	  from AArch32 userspace.
587
588	  If unsure, say Y.
589
590config ARM64_WORKAROUND_SPECULATIVE_AT
591	bool
592
593config ARM64_ERRATUM_1165522
594	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
595	default y
596	select ARM64_WORKAROUND_SPECULATIVE_AT
597	help
598	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
599
600	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
601	  corrupted TLBs by speculating an AT instruction during a guest
602	  context switch.
603
604	  If unsure, say Y.
605
606config ARM64_ERRATUM_1319367
607	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
608	default y
609	select ARM64_WORKAROUND_SPECULATIVE_AT
610	help
611	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
612	  and A72 erratum 1319367
613
614	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
615	  speculating an AT instruction during a guest context switch.
616
617	  If unsure, say Y.
618
619config ARM64_ERRATUM_1530923
620	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
621	default y
622	select ARM64_WORKAROUND_SPECULATIVE_AT
623	help
624	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
625
626	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
627	  corrupted TLBs by speculating an AT instruction during a guest
628	  context switch.
629
630	  If unsure, say Y.
631
632config ARM64_WORKAROUND_REPEAT_TLBI
633	bool
634
635config ARM64_ERRATUM_2441007
636	bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI"
637	default y
638	select ARM64_WORKAROUND_REPEAT_TLBI
639	help
640	  This option adds a workaround for ARM Cortex-A55 erratum #2441007.
641
642	  Under very rare circumstances, affected Cortex-A55 CPUs
643	  may not handle a race between a break-before-make sequence on one
644	  CPU, and another CPU accessing the same page. This could allow a
645	  store to a page that has been unmapped.
646
647	  Work around this by adding the affected CPUs to the list that needs
648	  TLB sequences to be done twice.
649
650	  If unsure, say Y.
651
652config ARM64_ERRATUM_1286807
653	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
654	default y
655	select ARM64_WORKAROUND_REPEAT_TLBI
656	help
657	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
658
659	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
660	  address for a cacheable mapping of a location is being
661	  accessed by a core while another core is remapping the virtual
662	  address to a new physical page using the recommended
663	  break-before-make sequence, then under very rare circumstances
664	  TLBI+DSB completes before a read using the translation being
665	  invalidated has been observed by other observers. The
666	  workaround repeats the TLBI+DSB operation.
667
668config ARM64_ERRATUM_1463225
669	bool "Cortex-A76: Software Step might prevent interrupt recognition"
670	default y
671	help
672	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
673
674	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
675	  of a system call instruction (SVC) can prevent recognition of
676	  subsequent interrupts when software stepping is disabled in the
677	  exception handler of the system call and either kernel debugging
678	  is enabled or VHE is in use.
679
680	  Work around the erratum by triggering a dummy step exception
681	  when handling a system call from a task that is being stepped
682	  in a VHE configuration of the kernel.
683
684	  If unsure, say Y.
685
686config ARM64_ERRATUM_1542419
687	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
688	default y
689	help
690	  This option adds a workaround for ARM Neoverse-N1 erratum
691	  1542419.
692
693	  Affected Neoverse-N1 cores could execute a stale instruction when
694	  modified by another CPU. The workaround depends on a firmware
695	  counterpart.
696
697	  Workaround the issue by hiding the DIC feature from EL0. This
698	  forces user-space to perform cache maintenance.
699
700	  If unsure, say Y.
701
702config ARM64_ERRATUM_1508412
703	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
704	default y
705	help
706	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
707
708	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
709	  of a store-exclusive or read of PAR_EL1 and a load with device or
710	  non-cacheable memory attributes. The workaround depends on a firmware
711	  counterpart.
712
713	  KVM guests must also have the workaround implemented or they can
714	  deadlock the system.
715
716	  Work around the issue by inserting DMB SY barriers around PAR_EL1
717	  register reads and warning KVM users. The DMB barrier is sufficient
718	  to prevent a speculative PAR_EL1 read.
719
720	  If unsure, say Y.
721
722config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
723	bool
724
725config ARM64_ERRATUM_2051678
726	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
727	default y
728	help
729	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
730	  Affected Cortex-A510 might not respect the ordering rules for
731	  hardware update of the page table's dirty bit. The workaround
732	  is to not enable the feature on affected CPUs.
733
734	  If unsure, say Y.
735
736config ARM64_ERRATUM_2077057
737	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
738	default y
739	help
740	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
741	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
742	  expected, but a Pointer Authentication trap is taken instead. The
743	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
744	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
745
746	  This can only happen when EL2 is stepping EL1.
747
748	  When these conditions occur, the SPSR_EL2 value is unchanged from the
749	  previous guest entry, and can be restored from the in-memory copy.
750
751	  If unsure, say Y.
752
753config ARM64_ERRATUM_2658417
754	bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
755	default y
756	help
757	  This option adds the workaround for ARM Cortex-A510 erratum 2658417.
758	  Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
759	  BFMMLA or VMMLA instructions in rare circumstances when a pair of
760	  A510 CPUs are using shared neon hardware. As the sharing is not
761	  discoverable by the kernel, hide the BF16 HWCAP to indicate that
762	  user-space should not be using these instructions.
763
764	  If unsure, say Y.
765
766config ARM64_ERRATUM_2119858
767	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
768	default y
769	depends on CORESIGHT_TRBE
770	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
771	help
772	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
773
774	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
775	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
776	  the event of a WRAP event.
777
778	  Work around the issue by always making sure we move the TRBPTR_EL1 by
779	  256 bytes before enabling the buffer and filling the first 256 bytes of
780	  the buffer with ETM ignore packets upon disabling.
781
782	  If unsure, say Y.
783
784config ARM64_ERRATUM_2139208
785	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
786	default y
787	depends on CORESIGHT_TRBE
788	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
789	help
790	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
791
792	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
793	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
794	  the event of a WRAP event.
795
796	  Work around the issue by always making sure we move the TRBPTR_EL1 by
797	  256 bytes before enabling the buffer and filling the first 256 bytes of
798	  the buffer with ETM ignore packets upon disabling.
799
800	  If unsure, say Y.
801
802config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
803	bool
804
805config ARM64_ERRATUM_2054223
806	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
807	default y
808	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
809	help
810	  Enable workaround for ARM Cortex-A710 erratum 2054223
811
812	  Affected cores may fail to flush the trace data on a TSB instruction, when
813	  the PE is in trace prohibited state. This will cause losing a few bytes
814	  of the trace cached.
815
816	  Workaround is to issue two TSB consecutively on affected cores.
817
818	  If unsure, say Y.
819
820config ARM64_ERRATUM_2067961
821	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
822	default y
823	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
824	help
825	  Enable workaround for ARM Neoverse-N2 erratum 2067961
826
827	  Affected cores may fail to flush the trace data on a TSB instruction, when
828	  the PE is in trace prohibited state. This will cause losing a few bytes
829	  of the trace cached.
830
831	  Workaround is to issue two TSB consecutively on affected cores.
832
833	  If unsure, say Y.
834
835config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
836	bool
837
838config ARM64_ERRATUM_2253138
839	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
840	depends on CORESIGHT_TRBE
841	default y
842	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
843	help
844	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
845
846	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
847	  for TRBE. Under some conditions, the TRBE might generate a write to the next
848	  virtually addressed page following the last page of the TRBE address space
849	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
850
851	  Work around this in the driver by always making sure that there is a
852	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
853
854	  If unsure, say Y.
855
856config ARM64_ERRATUM_2224489
857	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
858	depends on CORESIGHT_TRBE
859	default y
860	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
861	help
862	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
863
864	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
865	  for TRBE. Under some conditions, the TRBE might generate a write to the next
866	  virtually addressed page following the last page of the TRBE address space
867	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
868
869	  Work around this in the driver by always making sure that there is a
870	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
871
872	  If unsure, say Y.
873
874config ARM64_ERRATUM_2441009
875	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI"
876	default y
877	select ARM64_WORKAROUND_REPEAT_TLBI
878	help
879	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
880
881	  Under very rare circumstances, affected Cortex-A510 CPUs
882	  may not handle a race between a break-before-make sequence on one
883	  CPU, and another CPU accessing the same page. This could allow a
884	  store to a page that has been unmapped.
885
886	  Work around this by adding the affected CPUs to the list that needs
887	  TLB sequences to be done twice.
888
889	  If unsure, say Y.
890
891config ARM64_ERRATUM_2064142
892	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
893	depends on CORESIGHT_TRBE
894	default y
895	help
896	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
897
898	  Affected Cortex-A510 core might fail to write into system registers after the
899	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
900	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
901	  and TRBTRG_EL1 will be ignored and will not be effected.
902
903	  Work around this in the driver by executing TSB CSYNC and DSB after collection
904	  is stopped and before performing a system register write to one of the affected
905	  registers.
906
907	  If unsure, say Y.
908
909config ARM64_ERRATUM_2038923
910	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
911	depends on CORESIGHT_TRBE
912	default y
913	help
914	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
915
916	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
917	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
918	  might be corrupted. This happens after TRBE buffer has been enabled by setting
919	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
920	  execution changes from a context, in which trace is prohibited to one where it
921	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
922	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
923	  the trace buffer state might be corrupted.
924
925	  Work around this in the driver by preventing an inconsistent view of whether the
926	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
927	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
928	  two ISB instructions if no ERET is to take place.
929
930	  If unsure, say Y.
931
932config ARM64_ERRATUM_1902691
933	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
934	depends on CORESIGHT_TRBE
935	default y
936	help
937	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
938
939	  Affected Cortex-A510 core might cause trace data corruption, when being written
940	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
941	  trace data.
942
943	  Work around this problem in the driver by just preventing TRBE initialization on
944	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
945	  on such implementations. This will cover the kernel for any firmware that doesn't
946	  do this already.
947
948	  If unsure, say Y.
949
950config ARM64_ERRATUM_2457168
951	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
952	depends on ARM64_AMU_EXTN
953	default y
954	help
955	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
956
957	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
958	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
959	  incorrectly giving a significantly higher output value.
960
961	  Work around this problem by returning 0 when reading the affected counter in
962	  key locations that results in disabling all users of this counter. This effect
963	  is the same to firmware disabling affected counters.
964
965	  If unsure, say Y.
966
967config CAVIUM_ERRATUM_22375
968	bool "Cavium erratum 22375, 24313"
969	default y
970	help
971	  Enable workaround for errata 22375 and 24313.
972
973	  This implements two gicv3-its errata workarounds for ThunderX. Both
974	  with a small impact affecting only ITS table allocation.
975
976	    erratum 22375: only alloc 8MB table size
977	    erratum 24313: ignore memory access type
978
979	  The fixes are in ITS initialization and basically ignore memory access
980	  type and table size provided by the TYPER and BASER registers.
981
982	  If unsure, say Y.
983
984config CAVIUM_ERRATUM_23144
985	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
986	depends on NUMA
987	default y
988	help
989	  ITS SYNC command hang for cross node io and collections/cpu mapping.
990
991	  If unsure, say Y.
992
993config CAVIUM_ERRATUM_23154
994	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
995	default y
996	help
997	  The ThunderX GICv3 implementation requires a modified version for
998	  reading the IAR status to ensure data synchronization
999	  (access to icc_iar1_el1 is not sync'ed before and after).
1000
1001	  It also suffers from erratum 38545 (also present on Marvell's
1002	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1003	  spuriously presented to the CPU interface.
1004
1005	  If unsure, say Y.
1006
1007config CAVIUM_ERRATUM_27456
1008	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1009	default y
1010	help
1011	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1012	  instructions may cause the icache to become corrupted if it
1013	  contains data for a non-current ASID.  The fix is to
1014	  invalidate the icache when changing the mm context.
1015
1016	  If unsure, say Y.
1017
1018config CAVIUM_ERRATUM_30115
1019	bool "Cavium erratum 30115: Guest may disable interrupts in host"
1020	default y
1021	help
1022	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1023	  1.2, and T83 Pass 1.0, KVM guest execution may disable
1024	  interrupts in host. Trapping both GICv3 group-0 and group-1
1025	  accesses sidesteps the issue.
1026
1027	  If unsure, say Y.
1028
1029config CAVIUM_TX2_ERRATUM_219
1030	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1031	default y
1032	help
1033	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1034	  TTBR update and the corresponding context synchronizing operation can
1035	  cause a spurious Data Abort to be delivered to any hardware thread in
1036	  the CPU core.
1037
1038	  Work around the issue by avoiding the problematic code sequence and
1039	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1040	  trap handler performs the corresponding register access, skips the
1041	  instruction and ensures context synchronization by virtue of the
1042	  exception return.
1043
1044	  If unsure, say Y.
1045
1046config FUJITSU_ERRATUM_010001
1047	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1048	default y
1049	help
1050	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1051	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1052	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1053	  This fault occurs under a specific hardware condition when a
1054	  load/store instruction performs an address translation using:
1055	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1056	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1057	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1058	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1059
1060	  The workaround is to ensure these bits are clear in TCR_ELx.
1061	  The workaround only affects the Fujitsu-A64FX.
1062
1063	  If unsure, say Y.
1064
1065config HISILICON_ERRATUM_161600802
1066	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1067	default y
1068	help
1069	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1070	  when issued ITS commands such as VMOVP and VMAPP, and requires
1071	  a 128kB offset to be applied to the target address in this commands.
1072
1073	  If unsure, say Y.
1074
1075config QCOM_FALKOR_ERRATUM_1003
1076	bool "Falkor E1003: Incorrect translation due to ASID change"
1077	default y
1078	help
1079	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1080	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1081	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1082	  then only for entries in the walk cache, since the leaf translation
1083	  is unchanged. Work around the erratum by invalidating the walk cache
1084	  entries for the trampoline before entering the kernel proper.
1085
1086config QCOM_FALKOR_ERRATUM_1009
1087	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1088	default y
1089	select ARM64_WORKAROUND_REPEAT_TLBI
1090	help
1091	  On Falkor v1, the CPU may prematurely complete a DSB following a
1092	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1093	  one more time to fix the issue.
1094
1095	  If unsure, say Y.
1096
1097config QCOM_QDF2400_ERRATUM_0065
1098	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1099	default y
1100	help
1101	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1102	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1103	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1104
1105	  If unsure, say Y.
1106
1107config QCOM_FALKOR_ERRATUM_E1041
1108	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1109	default y
1110	help
1111	  Falkor CPU may speculatively fetch instructions from an improper
1112	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1113	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1114
1115	  If unsure, say Y.
1116
1117config NVIDIA_CARMEL_CNP_ERRATUM
1118	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1119	default y
1120	help
1121	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1122	  invalidate shared TLB entries installed by a different core, as it would
1123	  on standard ARM cores.
1124
1125	  If unsure, say Y.
1126
1127config SOCIONEXT_SYNQUACER_PREITS
1128	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1129	default y
1130	help
1131	  Socionext Synquacer SoCs implement a separate h/w block to generate
1132	  MSI doorbell writes with non-zero values for the device ID.
1133
1134	  If unsure, say Y.
1135
1136endmenu # "ARM errata workarounds via the alternatives framework"
1137
1138choice
1139	prompt "Page size"
1140	default ARM64_4K_PAGES
1141	help
1142	  Page size (translation granule) configuration.
1143
1144config ARM64_4K_PAGES
1145	bool "4KB"
1146	help
1147	  This feature enables 4KB pages support.
1148
1149config ARM64_16K_PAGES
1150	bool "16KB"
1151	help
1152	  The system will use 16KB pages support. AArch32 emulation
1153	  requires applications compiled with 16K (or a multiple of 16K)
1154	  aligned segments.
1155
1156config ARM64_64K_PAGES
1157	bool "64KB"
1158	help
1159	  This feature enables 64KB pages support (4KB by default)
1160	  allowing only two levels of page tables and faster TLB
1161	  look-up. AArch32 emulation requires applications compiled
1162	  with 64K aligned segments.
1163
1164endchoice
1165
1166choice
1167	prompt "Virtual address space size"
1168	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
1169	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
1170	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
1171	help
1172	  Allows choosing one of multiple possible virtual address
1173	  space sizes. The level of translation table is determined by
1174	  a combination of page size and virtual address space size.
1175
1176config ARM64_VA_BITS_36
1177	bool "36-bit" if EXPERT
1178	depends on ARM64_16K_PAGES
1179
1180config ARM64_VA_BITS_39
1181	bool "39-bit"
1182	depends on ARM64_4K_PAGES
1183
1184config ARM64_VA_BITS_42
1185	bool "42-bit"
1186	depends on ARM64_64K_PAGES
1187
1188config ARM64_VA_BITS_47
1189	bool "47-bit"
1190	depends on ARM64_16K_PAGES
1191
1192config ARM64_VA_BITS_48
1193	bool "48-bit"
1194
1195config ARM64_VA_BITS_52
1196	bool "52-bit"
1197	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
1198	help
1199	  Enable 52-bit virtual addressing for userspace when explicitly
1200	  requested via a hint to mmap(). The kernel will also use 52-bit
1201	  virtual addresses for its own mappings (provided HW support for
1202	  this feature is available, otherwise it reverts to 48-bit).
1203
1204	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1205	  ARMv8.3 Pointer Authentication will result in the PAC being
1206	  reduced from 7 bits to 3 bits, which may have a significant
1207	  impact on its susceptibility to brute-force attacks.
1208
1209	  If unsure, select 48-bit virtual addressing instead.
1210
1211endchoice
1212
1213config ARM64_FORCE_52BIT
1214	bool "Force 52-bit virtual addresses for userspace"
1215	depends on ARM64_VA_BITS_52 && EXPERT
1216	help
1217	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1218	  to maintain compatibility with older software by providing 48-bit VAs
1219	  unless a hint is supplied to mmap.
1220
1221	  This configuration option disables the 48-bit compatibility logic, and
1222	  forces all userspace addresses to be 52-bit on HW that supports it. One
1223	  should only enable this configuration option for stress testing userspace
1224	  memory management code. If unsure say N here.
1225
1226config ARM64_VA_BITS
1227	int
1228	default 36 if ARM64_VA_BITS_36
1229	default 39 if ARM64_VA_BITS_39
1230	default 42 if ARM64_VA_BITS_42
1231	default 47 if ARM64_VA_BITS_47
1232	default 48 if ARM64_VA_BITS_48
1233	default 52 if ARM64_VA_BITS_52
1234
1235choice
1236	prompt "Physical address space size"
1237	default ARM64_PA_BITS_48
1238	help
1239	  Choose the maximum physical address range that the kernel will
1240	  support.
1241
1242config ARM64_PA_BITS_48
1243	bool "48-bit"
1244
1245config ARM64_PA_BITS_52
1246	bool "52-bit (ARMv8.2)"
1247	depends on ARM64_64K_PAGES
1248	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1249	help
1250	  Enable support for a 52-bit physical address space, introduced as
1251	  part of the ARMv8.2-LPA extension.
1252
1253	  With this enabled, the kernel will also continue to work on CPUs that
1254	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1255	  minor performance overhead).
1256
1257endchoice
1258
1259config ARM64_PA_BITS
1260	int
1261	default 48 if ARM64_PA_BITS_48
1262	default 52 if ARM64_PA_BITS_52
1263
1264choice
1265	prompt "Endianness"
1266	default CPU_LITTLE_ENDIAN
1267	help
1268	  Select the endianness of data accesses performed by the CPU. Userspace
1269	  applications will need to be compiled and linked for the endianness
1270	  that is selected here.
1271
1272config CPU_BIG_ENDIAN
1273	bool "Build big-endian kernel"
1274	depends on !LD_IS_LLD || LLD_VERSION >= 130000
1275	help
1276	  Say Y if you plan on running a kernel with a big-endian userspace.
1277
1278config CPU_LITTLE_ENDIAN
1279	bool "Build little-endian kernel"
1280	help
1281	  Say Y if you plan on running a kernel with a little-endian userspace.
1282	  This is usually the case for distributions targeting arm64.
1283
1284endchoice
1285
1286config SCHED_MC
1287	bool "Multi-core scheduler support"
1288	help
1289	  Multi-core scheduler support improves the CPU scheduler's decision
1290	  making when dealing with multi-core CPU chips at a cost of slightly
1291	  increased overhead in some places. If unsure say N here.
1292
1293config SCHED_CLUSTER
1294	bool "Cluster scheduler support"
1295	help
1296	  Cluster scheduler support improves the CPU scheduler's decision
1297	  making when dealing with machines that have clusters of CPUs.
1298	  Cluster usually means a couple of CPUs which are placed closely
1299	  by sharing mid-level caches, last-level cache tags or internal
1300	  busses.
1301
1302config SCHED_SMT
1303	bool "SMT scheduler support"
1304	help
1305	  Improves the CPU scheduler's decision making when dealing with
1306	  MultiThreading at a cost of slightly increased overhead in some
1307	  places. If unsure say N here.
1308
1309config NR_CPUS
1310	int "Maximum number of CPUs (2-4096)"
1311	range 2 4096
1312	default "256"
1313
1314config HOTPLUG_CPU
1315	bool "Support for hot-pluggable CPUs"
1316	select GENERIC_IRQ_MIGRATION
1317	help
1318	  Say Y here to experiment with turning CPUs off and on.  CPUs
1319	  can be controlled through /sys/devices/system/cpu.
1320
1321# Common NUMA Features
1322config NUMA
1323	bool "NUMA Memory Allocation and Scheduler Support"
1324	select GENERIC_ARCH_NUMA
1325	select ACPI_NUMA if ACPI
1326	select OF_NUMA
1327	select HAVE_SETUP_PER_CPU_AREA
1328	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1329	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1330	select USE_PERCPU_NUMA_NODE_ID
1331	help
1332	  Enable NUMA (Non-Uniform Memory Access) support.
1333
1334	  The kernel will try to allocate memory used by a CPU on the
1335	  local memory of the CPU and add some more
1336	  NUMA awareness to the kernel.
1337
1338config NODES_SHIFT
1339	int "Maximum NUMA Nodes (as a power of 2)"
1340	range 1 10
1341	default "4"
1342	depends on NUMA
1343	help
1344	  Specify the maximum number of NUMA Nodes available on the target
1345	  system.  Increases memory reserved to accommodate various tables.
1346
1347source "kernel/Kconfig.hz"
1348
1349config ARCH_SPARSEMEM_ENABLE
1350	def_bool y
1351	select SPARSEMEM_VMEMMAP_ENABLE
1352	select SPARSEMEM_VMEMMAP
1353
1354config HW_PERF_EVENTS
1355	def_bool y
1356	depends on ARM_PMU
1357
1358# Supported by clang >= 7.0 or GCC >= 12.0.0
1359config CC_HAVE_SHADOW_CALL_STACK
1360	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1361
1362config PARAVIRT
1363	bool "Enable paravirtualization code"
1364	help
1365	  This changes the kernel so it can modify itself when it is run
1366	  under a hypervisor, potentially improving performance significantly
1367	  over full virtualization.
1368
1369config PARAVIRT_TIME_ACCOUNTING
1370	bool "Paravirtual steal time accounting"
1371	select PARAVIRT
1372	help
1373	  Select this option to enable fine granularity task steal time
1374	  accounting. Time spent executing other tasks in parallel with
1375	  the current vCPU is discounted from the vCPU power. To account for
1376	  that, there can be a small performance impact.
1377
1378	  If in doubt, say N here.
1379
1380config KEXEC
1381	depends on PM_SLEEP_SMP
1382	select KEXEC_CORE
1383	bool "kexec system call"
1384	help
1385	  kexec is a system call that implements the ability to shutdown your
1386	  current kernel, and to start another kernel.  It is like a reboot
1387	  but it is independent of the system firmware.   And like a reboot
1388	  you can start any kernel with it, not just Linux.
1389
1390config KEXEC_FILE
1391	bool "kexec file based system call"
1392	select KEXEC_CORE
1393	select HAVE_IMA_KEXEC if IMA
1394	help
1395	  This is new version of kexec system call. This system call is
1396	  file based and takes file descriptors as system call argument
1397	  for kernel and initramfs as opposed to list of segments as
1398	  accepted by previous system call.
1399
1400config KEXEC_SIG
1401	bool "Verify kernel signature during kexec_file_load() syscall"
1402	depends on KEXEC_FILE
1403	help
1404	  Select this option to verify a signature with loaded kernel
1405	  image. If configured, any attempt of loading a image without
1406	  valid signature will fail.
1407
1408	  In addition to that option, you need to enable signature
1409	  verification for the corresponding kernel image type being
1410	  loaded in order for this to work.
1411
1412config KEXEC_IMAGE_VERIFY_SIG
1413	bool "Enable Image signature verification support"
1414	default y
1415	depends on KEXEC_SIG
1416	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1417	help
1418	  Enable Image signature verification support.
1419
1420comment "Support for PE file signature verification disabled"
1421	depends on KEXEC_SIG
1422	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1423
1424config CRASH_DUMP
1425	bool "Build kdump crash kernel"
1426	help
1427	  Generate crash dump after being started by kexec. This should
1428	  be normally only set in special crash dump kernels which are
1429	  loaded in the main kernel with kexec-tools into a specially
1430	  reserved region and then later executed after a crash by
1431	  kdump/kexec.
1432
1433	  For more details see Documentation/admin-guide/kdump/kdump.rst
1434
1435config TRANS_TABLE
1436	def_bool y
1437	depends on HIBERNATION || KEXEC_CORE
1438
1439config XEN_DOM0
1440	def_bool y
1441	depends on XEN
1442
1443config XEN
1444	bool "Xen guest support on ARM64"
1445	depends on ARM64 && OF
1446	select SWIOTLB_XEN
1447	select PARAVIRT
1448	help
1449	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1450
1451config ARCH_FORCE_MAX_ORDER
1452	int
1453	default "14" if ARM64_64K_PAGES
1454	default "12" if ARM64_16K_PAGES
1455	default "11"
1456	help
1457	  The kernel memory allocator divides physically contiguous memory
1458	  blocks into "zones", where each zone is a power of two number of
1459	  pages.  This option selects the largest power of two that the kernel
1460	  keeps in the memory allocator.  If you need to allocate very large
1461	  blocks of physically contiguous memory, then you may need to
1462	  increase this value.
1463
1464	  This config option is actually maximum order plus one. For example,
1465	  a value of 11 means that the largest free memory block is 2^10 pages.
1466
1467	  We make sure that we can allocate upto a HugePage size for each configuration.
1468	  Hence we have :
1469		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1470
1471	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1472	  4M allocations matching the default size used by generic code.
1473
1474config UNMAP_KERNEL_AT_EL0
1475	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1476	default y
1477	help
1478	  Speculation attacks against some high-performance processors can
1479	  be used to bypass MMU permission checks and leak kernel data to
1480	  userspace. This can be defended against by unmapping the kernel
1481	  when running in userspace, mapping it back in on exception entry
1482	  via a trampoline page in the vector table.
1483
1484	  If unsure, say Y.
1485
1486config MITIGATE_SPECTRE_BRANCH_HISTORY
1487	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1488	default y
1489	help
1490	  Speculation attacks against some high-performance processors can
1491	  make use of branch history to influence future speculation.
1492	  When taking an exception from user-space, a sequence of branches
1493	  or a firmware call overwrites the branch history.
1494
1495config RODATA_FULL_DEFAULT_ENABLED
1496	bool "Apply r/o permissions of VM areas also to their linear aliases"
1497	default y
1498	help
1499	  Apply read-only attributes of VM areas to the linear alias of
1500	  the backing pages as well. This prevents code or read-only data
1501	  from being modified (inadvertently or intentionally) via another
1502	  mapping of the same memory page. This additional enhancement can
1503	  be turned off at runtime by passing rodata=[off|on] (and turned on
1504	  with rodata=full if this option is set to 'n')
1505
1506	  This requires the linear region to be mapped down to pages,
1507	  which may adversely affect performance in some cases.
1508
1509config ARM64_SW_TTBR0_PAN
1510	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1511	help
1512	  Enabling this option prevents the kernel from accessing
1513	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1514	  zeroed area and reserved ASID. The user access routines
1515	  restore the valid TTBR0_EL1 temporarily.
1516
1517config ARM64_TAGGED_ADDR_ABI
1518	bool "Enable the tagged user addresses syscall ABI"
1519	default y
1520	help
1521	  When this option is enabled, user applications can opt in to a
1522	  relaxed ABI via prctl() allowing tagged addresses to be passed
1523	  to system calls as pointer arguments. For details, see
1524	  Documentation/arm64/tagged-address-abi.rst.
1525
1526menuconfig COMPAT
1527	bool "Kernel support for 32-bit EL0"
1528	depends on ARM64_4K_PAGES || EXPERT
1529	select HAVE_UID16
1530	select OLD_SIGSUSPEND3
1531	select COMPAT_OLD_SIGACTION
1532	help
1533	  This option enables support for a 32-bit EL0 running under a 64-bit
1534	  kernel at EL1. AArch32-specific components such as system calls,
1535	  the user helper functions, VFP support and the ptrace interface are
1536	  handled appropriately by the kernel.
1537
1538	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1539	  that you will only be able to execute AArch32 binaries that were compiled
1540	  with page size aligned segments.
1541
1542	  If you want to execute 32-bit userspace applications, say Y.
1543
1544if COMPAT
1545
1546config KUSER_HELPERS
1547	bool "Enable kuser helpers page for 32-bit applications"
1548	default y
1549	help
1550	  Warning: disabling this option may break 32-bit user programs.
1551
1552	  Provide kuser helpers to compat tasks. The kernel provides
1553	  helper code to userspace in read only form at a fixed location
1554	  to allow userspace to be independent of the CPU type fitted to
1555	  the system. This permits binaries to be run on ARMv4 through
1556	  to ARMv8 without modification.
1557
1558	  See Documentation/arm/kernel_user_helpers.rst for details.
1559
1560	  However, the fixed address nature of these helpers can be used
1561	  by ROP (return orientated programming) authors when creating
1562	  exploits.
1563
1564	  If all of the binaries and libraries which run on your platform
1565	  are built specifically for your platform, and make no use of
1566	  these helpers, then you can turn this option off to hinder
1567	  such exploits. However, in that case, if a binary or library
1568	  relying on those helpers is run, it will not function correctly.
1569
1570	  Say N here only if you are absolutely certain that you do not
1571	  need these helpers; otherwise, the safe option is to say Y.
1572
1573config COMPAT_VDSO
1574	bool "Enable vDSO for 32-bit applications"
1575	depends on !CPU_BIG_ENDIAN
1576	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1577	select GENERIC_COMPAT_VDSO
1578	default y
1579	help
1580	  Place in the process address space of 32-bit applications an
1581	  ELF shared object providing fast implementations of gettimeofday
1582	  and clock_gettime.
1583
1584	  You must have a 32-bit build of glibc 2.22 or later for programs
1585	  to seamlessly take advantage of this.
1586
1587config THUMB2_COMPAT_VDSO
1588	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1589	depends on COMPAT_VDSO
1590	default y
1591	help
1592	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1593	  otherwise with '-marm'.
1594
1595config COMPAT_ALIGNMENT_FIXUPS
1596	bool "Fix up misaligned multi-word loads and stores in user space"
1597
1598menuconfig ARMV8_DEPRECATED
1599	bool "Emulate deprecated/obsolete ARMv8 instructions"
1600	depends on SYSCTL
1601	help
1602	  Legacy software support may require certain instructions
1603	  that have been deprecated or obsoleted in the architecture.
1604
1605	  Enable this config to enable selective emulation of these
1606	  features.
1607
1608	  If unsure, say Y
1609
1610if ARMV8_DEPRECATED
1611
1612config SWP_EMULATION
1613	bool "Emulate SWP/SWPB instructions"
1614	help
1615	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1616	  they are always undefined. Say Y here to enable software
1617	  emulation of these instructions for userspace using LDXR/STXR.
1618	  This feature can be controlled at runtime with the abi.swp
1619	  sysctl which is disabled by default.
1620
1621	  In some older versions of glibc [<=2.8] SWP is used during futex
1622	  trylock() operations with the assumption that the code will not
1623	  be preempted. This invalid assumption may be more likely to fail
1624	  with SWP emulation enabled, leading to deadlock of the user
1625	  application.
1626
1627	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1628	  on an external transaction monitoring block called a global
1629	  monitor to maintain update atomicity. If your system does not
1630	  implement a global monitor, this option can cause programs that
1631	  perform SWP operations to uncached memory to deadlock.
1632
1633	  If unsure, say Y
1634
1635config CP15_BARRIER_EMULATION
1636	bool "Emulate CP15 Barrier instructions"
1637	help
1638	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1639	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1640	  strongly recommended to use the ISB, DSB, and DMB
1641	  instructions instead.
1642
1643	  Say Y here to enable software emulation of these
1644	  instructions for AArch32 userspace code. When this option is
1645	  enabled, CP15 barrier usage is traced which can help
1646	  identify software that needs updating. This feature can be
1647	  controlled at runtime with the abi.cp15_barrier sysctl.
1648
1649	  If unsure, say Y
1650
1651config SETEND_EMULATION
1652	bool "Emulate SETEND instruction"
1653	help
1654	  The SETEND instruction alters the data-endianness of the
1655	  AArch32 EL0, and is deprecated in ARMv8.
1656
1657	  Say Y here to enable software emulation of the instruction
1658	  for AArch32 userspace code. This feature can be controlled
1659	  at runtime with the abi.setend sysctl.
1660
1661	  Note: All the cpus on the system must have mixed endian support at EL0
1662	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1663	  endian - is hotplugged in after this feature has been enabled, there could
1664	  be unexpected results in the applications.
1665
1666	  If unsure, say Y
1667endif # ARMV8_DEPRECATED
1668
1669endif # COMPAT
1670
1671menu "ARMv8.1 architectural features"
1672
1673config ARM64_HW_AFDBM
1674	bool "Support for hardware updates of the Access and Dirty page flags"
1675	default y
1676	help
1677	  The ARMv8.1 architecture extensions introduce support for
1678	  hardware updates of the access and dirty information in page
1679	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1680	  capable processors, accesses to pages with PTE_AF cleared will
1681	  set this bit instead of raising an access flag fault.
1682	  Similarly, writes to read-only pages with the DBM bit set will
1683	  clear the read-only bit (AP[2]) instead of raising a
1684	  permission fault.
1685
1686	  Kernels built with this configuration option enabled continue
1687	  to work on pre-ARMv8.1 hardware and the performance impact is
1688	  minimal. If unsure, say Y.
1689
1690config ARM64_PAN
1691	bool "Enable support for Privileged Access Never (PAN)"
1692	default y
1693	help
1694	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1695	  prevents the kernel or hypervisor from accessing user-space (EL0)
1696	  memory directly.
1697
1698	  Choosing this option will cause any unprotected (not using
1699	  copy_to_user et al) memory access to fail with a permission fault.
1700
1701	  The feature is detected at runtime, and will remain as a 'nop'
1702	  instruction if the cpu does not implement the feature.
1703
1704config AS_HAS_LDAPR
1705	def_bool $(as-instr,.arch_extension rcpc)
1706
1707config AS_HAS_LSE_ATOMICS
1708	def_bool $(as-instr,.arch_extension lse)
1709
1710config ARM64_LSE_ATOMICS
1711	bool
1712	default ARM64_USE_LSE_ATOMICS
1713	depends on AS_HAS_LSE_ATOMICS
1714
1715config ARM64_USE_LSE_ATOMICS
1716	bool "Atomic instructions"
1717	depends on JUMP_LABEL
1718	default y
1719	help
1720	  As part of the Large System Extensions, ARMv8.1 introduces new
1721	  atomic instructions that are designed specifically to scale in
1722	  very large systems.
1723
1724	  Say Y here to make use of these instructions for the in-kernel
1725	  atomic routines. This incurs a small overhead on CPUs that do
1726	  not support these instructions and requires the kernel to be
1727	  built with binutils >= 2.25 in order for the new instructions
1728	  to be used.
1729
1730endmenu # "ARMv8.1 architectural features"
1731
1732menu "ARMv8.2 architectural features"
1733
1734config AS_HAS_ARMV8_2
1735	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1736
1737config AS_HAS_SHA3
1738	def_bool $(as-instr,.arch armv8.2-a+sha3)
1739
1740config ARM64_PMEM
1741	bool "Enable support for persistent memory"
1742	select ARCH_HAS_PMEM_API
1743	select ARCH_HAS_UACCESS_FLUSHCACHE
1744	help
1745	  Say Y to enable support for the persistent memory API based on the
1746	  ARMv8.2 DCPoP feature.
1747
1748	  The feature is detected at runtime, and the kernel will use DC CVAC
1749	  operations if DC CVAP is not supported (following the behaviour of
1750	  DC CVAP itself if the system does not define a point of persistence).
1751
1752config ARM64_RAS_EXTN
1753	bool "Enable support for RAS CPU Extensions"
1754	default y
1755	help
1756	  CPUs that support the Reliability, Availability and Serviceability
1757	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1758	  errors, classify them and report them to software.
1759
1760	  On CPUs with these extensions system software can use additional
1761	  barriers to determine if faults are pending and read the
1762	  classification from a new set of registers.
1763
1764	  Selecting this feature will allow the kernel to use these barriers
1765	  and access the new registers if the system supports the extension.
1766	  Platform RAS features may additionally depend on firmware support.
1767
1768config ARM64_CNP
1769	bool "Enable support for Common Not Private (CNP) translations"
1770	default y
1771	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1772	help
1773	  Common Not Private (CNP) allows translation table entries to
1774	  be shared between different PEs in the same inner shareable
1775	  domain, so the hardware can use this fact to optimise the
1776	  caching of such entries in the TLB.
1777
1778	  Selecting this option allows the CNP feature to be detected
1779	  at runtime, and does not affect PEs that do not implement
1780	  this feature.
1781
1782endmenu # "ARMv8.2 architectural features"
1783
1784menu "ARMv8.3 architectural features"
1785
1786config ARM64_PTR_AUTH
1787	bool "Enable support for pointer authentication"
1788	default y
1789	help
1790	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1791	  instructions for signing and authenticating pointers against secret
1792	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1793	  and other attacks.
1794
1795	  This option enables these instructions at EL0 (i.e. for userspace).
1796	  Choosing this option will cause the kernel to initialise secret keys
1797	  for each process at exec() time, with these keys being
1798	  context-switched along with the process.
1799
1800	  The feature is detected at runtime. If the feature is not present in
1801	  hardware it will not be advertised to userspace/KVM guest nor will it
1802	  be enabled.
1803
1804	  If the feature is present on the boot CPU but not on a late CPU, then
1805	  the late CPU will be parked. Also, if the boot CPU does not have
1806	  address auth and the late CPU has then the late CPU will still boot
1807	  but with the feature disabled. On such a system, this option should
1808	  not be selected.
1809
1810config ARM64_PTR_AUTH_KERNEL
1811	bool "Use pointer authentication for kernel"
1812	default y
1813	depends on ARM64_PTR_AUTH
1814	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
1815	# Modern compilers insert a .note.gnu.property section note for PAC
1816	# which is only understood by binutils starting with version 2.33.1.
1817	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1818	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1819	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1820	help
1821	  If the compiler supports the -mbranch-protection or
1822	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1823	  will cause the kernel itself to be compiled with return address
1824	  protection. In this case, and if the target hardware is known to
1825	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1826	  disabled with minimal loss of protection.
1827
1828	  This feature works with FUNCTION_GRAPH_TRACER option only if
1829	  DYNAMIC_FTRACE_WITH_REGS is enabled.
1830
1831config CC_HAS_BRANCH_PROT_PAC_RET
1832	# GCC 9 or later, clang 8 or later
1833	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1834
1835config CC_HAS_SIGN_RETURN_ADDRESS
1836	# GCC 7, 8
1837	def_bool $(cc-option,-msign-return-address=all)
1838
1839config AS_HAS_PAC
1840	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1841
1842config AS_HAS_CFI_NEGATE_RA_STATE
1843	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1844
1845endmenu # "ARMv8.3 architectural features"
1846
1847menu "ARMv8.4 architectural features"
1848
1849config ARM64_AMU_EXTN
1850	bool "Enable support for the Activity Monitors Unit CPU extension"
1851	default y
1852	help
1853	  The activity monitors extension is an optional extension introduced
1854	  by the ARMv8.4 CPU architecture. This enables support for version 1
1855	  of the activity monitors architecture, AMUv1.
1856
1857	  To enable the use of this extension on CPUs that implement it, say Y.
1858
1859	  Note that for architectural reasons, firmware _must_ implement AMU
1860	  support when running on CPUs that present the activity monitors
1861	  extension. The required support is present in:
1862	    * Version 1.5 and later of the ARM Trusted Firmware
1863
1864	  For kernels that have this configuration enabled but boot with broken
1865	  firmware, you may need to say N here until the firmware is fixed.
1866	  Otherwise you may experience firmware panics or lockups when
1867	  accessing the counter registers. Even if you are not observing these
1868	  symptoms, the values returned by the register reads might not
1869	  correctly reflect reality. Most commonly, the value read will be 0,
1870	  indicating that the counter is not enabled.
1871
1872config AS_HAS_ARMV8_4
1873	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1874
1875config ARM64_TLB_RANGE
1876	bool "Enable support for tlbi range feature"
1877	default y
1878	depends on AS_HAS_ARMV8_4
1879	help
1880	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1881	  range of input addresses.
1882
1883	  The feature introduces new assembly instructions, and they were
1884	  support when binutils >= 2.30.
1885
1886endmenu # "ARMv8.4 architectural features"
1887
1888menu "ARMv8.5 architectural features"
1889
1890config AS_HAS_ARMV8_5
1891	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1892
1893config ARM64_BTI
1894	bool "Branch Target Identification support"
1895	default y
1896	help
1897	  Branch Target Identification (part of the ARMv8.5 Extensions)
1898	  provides a mechanism to limit the set of locations to which computed
1899	  branch instructions such as BR or BLR can jump.
1900
1901	  To make use of BTI on CPUs that support it, say Y.
1902
1903	  BTI is intended to provide complementary protection to other control
1904	  flow integrity protection mechanisms, such as the Pointer
1905	  authentication mechanism provided as part of the ARMv8.3 Extensions.
1906	  For this reason, it does not make sense to enable this option without
1907	  also enabling support for pointer authentication.  Thus, when
1908	  enabling this option you should also select ARM64_PTR_AUTH=y.
1909
1910	  Userspace binaries must also be specifically compiled to make use of
1911	  this mechanism.  If you say N here or the hardware does not support
1912	  BTI, such binaries can still run, but you get no additional
1913	  enforcement of branch destinations.
1914
1915config ARM64_BTI_KERNEL
1916	bool "Use Branch Target Identification for kernel"
1917	default y
1918	depends on ARM64_BTI
1919	depends on ARM64_PTR_AUTH_KERNEL
1920	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
1921	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
1922	depends on !CC_IS_GCC || GCC_VERSION >= 100100
1923	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
1924	depends on !CC_IS_GCC
1925	# https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9
1926	depends on !CC_IS_CLANG || CLANG_VERSION >= 120000
1927	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1928	help
1929	  Build the kernel with Branch Target Identification annotations
1930	  and enable enforcement of this for kernel code. When this option
1931	  is enabled and the system supports BTI all kernel code including
1932	  modular code must have BTI enabled.
1933
1934config CC_HAS_BRANCH_PROT_PAC_RET_BTI
1935	# GCC 9 or later, clang 8 or later
1936	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
1937
1938config ARM64_E0PD
1939	bool "Enable support for E0PD"
1940	default y
1941	help
1942	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
1943	  that EL0 accesses made via TTBR1 always fault in constant time,
1944	  providing similar benefits to KASLR as those provided by KPTI, but
1945	  with lower overhead and without disrupting legitimate access to
1946	  kernel memory such as SPE.
1947
1948	  This option enables E0PD for TTBR1 where available.
1949
1950config ARM64_AS_HAS_MTE
1951	# Initial support for MTE went in binutils 2.32.0, checked with
1952	# ".arch armv8.5-a+memtag" below. However, this was incomplete
1953	# as a late addition to the final architecture spec (LDGM/STGM)
1954	# is only supported in the newer 2.32.x and 2.33 binutils
1955	# versions, hence the extra "stgm" instruction check below.
1956	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
1957
1958config ARM64_MTE
1959	bool "Memory Tagging Extension support"
1960	default y
1961	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
1962	depends on AS_HAS_ARMV8_5
1963	depends on AS_HAS_LSE_ATOMICS
1964	# Required for tag checking in the uaccess routines
1965	depends on ARM64_PAN
1966	select ARCH_HAS_SUBPAGE_FAULTS
1967	select ARCH_USES_HIGH_VMA_FLAGS
1968	help
1969	  Memory Tagging (part of the ARMv8.5 Extensions) provides
1970	  architectural support for run-time, always-on detection of
1971	  various classes of memory error to aid with software debugging
1972	  to eliminate vulnerabilities arising from memory-unsafe
1973	  languages.
1974
1975	  This option enables the support for the Memory Tagging
1976	  Extension at EL0 (i.e. for userspace).
1977
1978	  Selecting this option allows the feature to be detected at
1979	  runtime. Any secondary CPU not implementing this feature will
1980	  not be allowed a late bring-up.
1981
1982	  Userspace binaries that want to use this feature must
1983	  explicitly opt in. The mechanism for the userspace is
1984	  described in:
1985
1986	  Documentation/arm64/memory-tagging-extension.rst.
1987
1988endmenu # "ARMv8.5 architectural features"
1989
1990menu "ARMv8.7 architectural features"
1991
1992config ARM64_EPAN
1993	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
1994	default y
1995	depends on ARM64_PAN
1996	help
1997	  Enhanced Privileged Access Never (EPAN) allows Privileged
1998	  Access Never to be used with Execute-only mappings.
1999
2000	  The feature is detected at runtime, and will remain disabled
2001	  if the cpu does not implement the feature.
2002endmenu # "ARMv8.7 architectural features"
2003
2004config ARM64_SVE
2005	bool "ARM Scalable Vector Extension support"
2006	default y
2007	help
2008	  The Scalable Vector Extension (SVE) is an extension to the AArch64
2009	  execution state which complements and extends the SIMD functionality
2010	  of the base architecture to support much larger vectors and to enable
2011	  additional vectorisation opportunities.
2012
2013	  To enable use of this extension on CPUs that implement it, say Y.
2014
2015	  On CPUs that support the SVE2 extensions, this option will enable
2016	  those too.
2017
2018	  Note that for architectural reasons, firmware _must_ implement SVE
2019	  support when running on SVE capable hardware.  The required support
2020	  is present in:
2021
2022	    * version 1.5 and later of the ARM Trusted Firmware
2023	    * the AArch64 boot wrapper since commit 5e1261e08abf
2024	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
2025
2026	  For other firmware implementations, consult the firmware documentation
2027	  or vendor.
2028
2029	  If you need the kernel to boot on SVE-capable hardware with broken
2030	  firmware, you may need to say N here until you get your firmware
2031	  fixed.  Otherwise, you may experience firmware panics or lockups when
2032	  booting the kernel.  If unsure and you are not observing these
2033	  symptoms, you should assume that it is safe to say Y.
2034
2035config ARM64_SME
2036	bool "ARM Scalable Matrix Extension support"
2037	default y
2038	depends on ARM64_SVE
2039	help
2040	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2041	  execution state which utilises a substantial subset of the SVE
2042	  instruction set, together with the addition of new architectural
2043	  register state capable of holding two dimensional matrix tiles to
2044	  enable various matrix operations.
2045
2046config ARM64_MODULE_PLTS
2047	bool "Use PLTs to allow module memory to spill over into vmalloc area"
2048	depends on MODULES
2049	select HAVE_MOD_ARCH_SPECIFIC
2050	help
2051	  Allocate PLTs when loading modules so that jumps and calls whose
2052	  targets are too far away for their relative offsets to be encoded
2053	  in the instructions themselves can be bounced via veneers in the
2054	  module's PLT. This allows modules to be allocated in the generic
2055	  vmalloc area after the dedicated module memory area has been
2056	  exhausted.
2057
2058	  When running with address space randomization (KASLR), the module
2059	  region itself may be too far away for ordinary relative jumps and
2060	  calls, and so in that case, module PLTs are required and cannot be
2061	  disabled.
2062
2063	  Specific errata workaround(s) might also force module PLTs to be
2064	  enabled (ARM64_ERRATUM_843419).
2065
2066config ARM64_PSEUDO_NMI
2067	bool "Support for NMI-like interrupts"
2068	select ARM_GIC_V3
2069	help
2070	  Adds support for mimicking Non-Maskable Interrupts through the use of
2071	  GIC interrupt priority. This support requires version 3 or later of
2072	  ARM GIC.
2073
2074	  This high priority configuration for interrupts needs to be
2075	  explicitly enabled by setting the kernel parameter
2076	  "irqchip.gicv3_pseudo_nmi" to 1.
2077
2078	  If unsure, say N
2079
2080if ARM64_PSEUDO_NMI
2081config ARM64_DEBUG_PRIORITY_MASKING
2082	bool "Debug interrupt priority masking"
2083	help
2084	  This adds runtime checks to functions enabling/disabling
2085	  interrupts when using priority masking. The additional checks verify
2086	  the validity of ICC_PMR_EL1 when calling concerned functions.
2087
2088	  If unsure, say N
2089endif # ARM64_PSEUDO_NMI
2090
2091config RELOCATABLE
2092	bool "Build a relocatable kernel image" if EXPERT
2093	select ARCH_HAS_RELR
2094	default y
2095	help
2096	  This builds the kernel as a Position Independent Executable (PIE),
2097	  which retains all relocation metadata required to relocate the
2098	  kernel binary at runtime to a different virtual address than the
2099	  address it was linked at.
2100	  Since AArch64 uses the RELA relocation format, this requires a
2101	  relocation pass at runtime even if the kernel is loaded at the
2102	  same address it was linked at.
2103
2104config RANDOMIZE_BASE
2105	bool "Randomize the address of the kernel image"
2106	select ARM64_MODULE_PLTS if MODULES
2107	select RELOCATABLE
2108	help
2109	  Randomizes the virtual address at which the kernel image is
2110	  loaded, as a security feature that deters exploit attempts
2111	  relying on knowledge of the location of kernel internals.
2112
2113	  It is the bootloader's job to provide entropy, by passing a
2114	  random u64 value in /chosen/kaslr-seed at kernel entry.
2115
2116	  When booting via the UEFI stub, it will invoke the firmware's
2117	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2118	  to the kernel proper. In addition, it will randomise the physical
2119	  location of the kernel Image as well.
2120
2121	  If unsure, say N.
2122
2123config RANDOMIZE_MODULE_REGION_FULL
2124	bool "Randomize the module region over a 2 GB range"
2125	depends on RANDOMIZE_BASE
2126	default y
2127	help
2128	  Randomizes the location of the module region inside a 2 GB window
2129	  covering the core kernel. This way, it is less likely for modules
2130	  to leak information about the location of core kernel data structures
2131	  but it does imply that function calls between modules and the core
2132	  kernel will need to be resolved via veneers in the module PLT.
2133
2134	  When this option is not set, the module region will be randomized over
2135	  a limited range that contains the [_stext, _etext] interval of the
2136	  core kernel, so branch relocations are almost always in range unless
2137	  ARM64_MODULE_PLTS is enabled and the region is exhausted. In this
2138	  particular case of region exhaustion, modules might be able to fall
2139	  back to a larger 2GB area.
2140
2141config CC_HAVE_STACKPROTECTOR_SYSREG
2142	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2143
2144config STACKPROTECTOR_PER_TASK
2145	def_bool y
2146	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2147
2148# The GPIO number here must be sorted by descending number. In case of
2149# a multiplatform kernel, we just want the highest value required by the
2150# selected platforms.
2151config ARCH_NR_GPIO
2152        int
2153        default 2048 if ARCH_APPLE
2154        default 0
2155        help
2156          Maximum number of GPIOs in the system.
2157
2158          If unsure, leave the default value.
2159
2160endmenu # "Kernel Features"
2161
2162menu "Boot options"
2163
2164config ARM64_ACPI_PARKING_PROTOCOL
2165	bool "Enable support for the ARM64 ACPI parking protocol"
2166	depends on ACPI
2167	help
2168	  Enable support for the ARM64 ACPI parking protocol. If disabled
2169	  the kernel will not allow booting through the ARM64 ACPI parking
2170	  protocol even if the corresponding data is present in the ACPI
2171	  MADT table.
2172
2173config CMDLINE
2174	string "Default kernel command string"
2175	default ""
2176	help
2177	  Provide a set of default command-line options at build time by
2178	  entering them here. As a minimum, you should specify the the
2179	  root device (e.g. root=/dev/nfs).
2180
2181choice
2182	prompt "Kernel command line type" if CMDLINE != ""
2183	default CMDLINE_FROM_BOOTLOADER
2184	help
2185	  Choose how the kernel will handle the provided default kernel
2186	  command line string.
2187
2188config CMDLINE_FROM_BOOTLOADER
2189	bool "Use bootloader kernel arguments if available"
2190	help
2191	  Uses the command-line options passed by the boot loader. If
2192	  the boot loader doesn't provide any, the default kernel command
2193	  string provided in CMDLINE will be used.
2194
2195config CMDLINE_FORCE
2196	bool "Always use the default kernel command string"
2197	help
2198	  Always use the default kernel command string, even if the boot
2199	  loader passes other arguments to the kernel.
2200	  This is useful if you cannot or don't want to change the
2201	  command-line options your boot loader passes to the kernel.
2202
2203endchoice
2204
2205config EFI_STUB
2206	bool
2207
2208config EFI
2209	bool "UEFI runtime support"
2210	depends on OF && !CPU_BIG_ENDIAN
2211	depends on KERNEL_MODE_NEON
2212	select ARCH_SUPPORTS_ACPI
2213	select LIBFDT
2214	select UCS2_STRING
2215	select EFI_PARAMS_FROM_FDT
2216	select EFI_RUNTIME_WRAPPERS
2217	select EFI_STUB
2218	select EFI_GENERIC_STUB
2219	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2220	default y
2221	help
2222	  This option provides support for runtime services provided
2223	  by UEFI firmware (such as non-volatile variables, realtime
2224	  clock, and platform reset). A UEFI stub is also provided to
2225	  allow the kernel to be booted as an EFI application. This
2226	  is only useful on systems that have UEFI firmware.
2227
2228config DMI
2229	bool "Enable support for SMBIOS (DMI) tables"
2230	depends on EFI
2231	default y
2232	help
2233	  This enables SMBIOS/DMI feature for systems.
2234
2235	  This option is only useful on systems that have UEFI firmware.
2236	  However, even with this option, the resultant kernel should
2237	  continue to boot on existing non-UEFI platforms.
2238
2239endmenu # "Boot options"
2240
2241menu "Power management options"
2242
2243source "kernel/power/Kconfig"
2244
2245config ARCH_HIBERNATION_POSSIBLE
2246	def_bool y
2247	depends on CPU_PM
2248
2249config ARCH_HIBERNATION_HEADER
2250	def_bool y
2251	depends on HIBERNATION
2252
2253config ARCH_SUSPEND_POSSIBLE
2254	def_bool y
2255
2256endmenu # "Power management options"
2257
2258menu "CPU Power Management"
2259
2260source "drivers/cpuidle/Kconfig"
2261
2262source "drivers/cpufreq/Kconfig"
2263
2264endmenu # "CPU Power Management"
2265
2266source "drivers/acpi/Kconfig"
2267
2268source "arch/arm64/kvm/Kconfig"
2269
2270