xref: /linux/arch/arm64/crypto/sha512-armv8.pl (revision 0be3ff0c)
1#! /usr/bin/env perl
2# SPDX-License-Identifier: GPL-2.0
3
4# This code is taken from the OpenSSL project but the author (Andy Polyakov)
5# has relicensed it under the GPLv2. Therefore this program is free software;
6# you can redistribute it and/or modify it under the terms of the GNU General
7# Public License version 2 as published by the Free Software Foundation.
8#
9# The original headers, including the original license headers, are
10# included below for completeness.
11
12# Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
13#
14# Licensed under the OpenSSL license (the "License").  You may not use
15# this file except in compliance with the License.  You can obtain a copy
16# in the file LICENSE in the source distribution or at
17# https://www.openssl.org/source/license.html
18
19# ====================================================================
20# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
21# project. The module is, however, dual licensed under OpenSSL and
22# CRYPTOGAMS licenses depending on where you obtain it. For further
23# details see http://www.openssl.org/~appro/cryptogams/.
24# ====================================================================
25#
26# SHA256/512 for ARMv8.
27#
28# Performance in cycles per processed byte and improvement coefficient
29# over code generated with "default" compiler:
30#
31#		SHA256-hw	SHA256(*)	SHA512
32# Apple A7	1.97		10.5 (+33%)	6.73 (-1%(**))
33# Cortex-A53	2.38		15.5 (+115%)	10.0 (+150%(***))
34# Cortex-A57	2.31		11.6 (+86%)	7.51 (+260%(***))
35# Denver	2.01		10.5 (+26%)	6.70 (+8%)
36# X-Gene			20.0 (+100%)	12.8 (+300%(***))
37# Mongoose	2.36		13.0 (+50%)	8.36 (+33%)
38#
39# (*)	Software SHA256 results are of lesser relevance, presented
40#	mostly for informational purposes.
41# (**)	The result is a trade-off: it's possible to improve it by
42#	10% (or by 1 cycle per round), but at the cost of 20% loss
43#	on Cortex-A53 (or by 4 cycles per round).
44# (***)	Super-impressive coefficients over gcc-generated code are
45#	indication of some compiler "pathology", most notably code
46#	generated with -mgeneral-regs-only is significantly faster
47#	and the gap is only 40-90%.
48#
49# October 2016.
50#
51# Originally it was reckoned that it makes no sense to implement NEON
52# version of SHA256 for 64-bit processors. This is because performance
53# improvement on most wide-spread Cortex-A5x processors was observed
54# to be marginal, same on Cortex-A53 and ~10% on A57. But then it was
55# observed that 32-bit NEON SHA256 performs significantly better than
56# 64-bit scalar version on *some* of the more recent processors. As
57# result 64-bit NEON version of SHA256 was added to provide best
58# all-round performance. For example it executes ~30% faster on X-Gene
59# and Mongoose. [For reference, NEON version of SHA512 is bound to
60# deliver much less improvement, likely *negative* on Cortex-A5x.
61# Which is why NEON support is limited to SHA256.]
62
63$output=pop;
64$flavour=pop;
65
66if ($flavour && $flavour ne "void") {
67    $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
68    ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
69    ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
70    die "can't locate arm-xlate.pl";
71
72    open OUT,"| \"$^X\" $xlate $flavour $output";
73    *STDOUT=*OUT;
74} else {
75    open STDOUT,">$output";
76}
77
78if ($output =~ /512/) {
79	$BITS=512;
80	$SZ=8;
81	@Sigma0=(28,34,39);
82	@Sigma1=(14,18,41);
83	@sigma0=(1,  8, 7);
84	@sigma1=(19,61, 6);
85	$rounds=80;
86	$reg_t="x";
87} else {
88	$BITS=256;
89	$SZ=4;
90	@Sigma0=( 2,13,22);
91	@Sigma1=( 6,11,25);
92	@sigma0=( 7,18, 3);
93	@sigma1=(17,19,10);
94	$rounds=64;
95	$reg_t="w";
96}
97
98$func="sha${BITS}_block_data_order";
99
100($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));
101
102@X=map("$reg_t$_",(3..15,0..2));
103@V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
104($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));
105
106sub BODY_00_xx {
107my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
108my $j=($i+1)&15;
109my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
110   $T0=@X[$i+3] if ($i<11);
111
112$code.=<<___	if ($i<16);
113#ifndef	__AARCH64EB__
114	rev	@X[$i],@X[$i]			// $i
115#endif
116___
117$code.=<<___	if ($i<13 && ($i&1));
118	ldp	@X[$i+1],@X[$i+2],[$inp],#2*$SZ
119___
120$code.=<<___	if ($i==13);
121	ldp	@X[14],@X[15],[$inp]
122___
123$code.=<<___	if ($i>=14);
124	ldr	@X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`]
125___
126$code.=<<___	if ($i>0 && $i<16);
127	add	$a,$a,$t1			// h+=Sigma0(a)
128___
129$code.=<<___	if ($i>=11);
130	str	@X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`]
131___
132# While ARMv8 specifies merged rotate-n-logical operation such as
133# 'eor x,y,z,ror#n', it was found to negatively affect performance
134# on Apple A7. The reason seems to be that it requires even 'y' to
135# be available earlier. This means that such merged instruction is
136# not necessarily best choice on critical path... On the other hand
137# Cortex-A5x handles merged instructions much better than disjoint
138# rotate and logical... See (**) footnote above.
139$code.=<<___	if ($i<15);
140	ror	$t0,$e,#$Sigma1[0]
141	add	$h,$h,$t2			// h+=K[i]
142	eor	$T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]`
143	and	$t1,$f,$e
144	bic	$t2,$g,$e
145	add	$h,$h,@X[$i&15]			// h+=X[i]
146	orr	$t1,$t1,$t2			// Ch(e,f,g)
147	eor	$t2,$a,$b			// a^b, b^c in next round
148	eor	$t0,$t0,$T0,ror#$Sigma1[1]	// Sigma1(e)
149	ror	$T0,$a,#$Sigma0[0]
150	add	$h,$h,$t1			// h+=Ch(e,f,g)
151	eor	$t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]`
152	add	$h,$h,$t0			// h+=Sigma1(e)
153	and	$t3,$t3,$t2			// (b^c)&=(a^b)
154	add	$d,$d,$h			// d+=h
155	eor	$t3,$t3,$b			// Maj(a,b,c)
156	eor	$t1,$T0,$t1,ror#$Sigma0[1]	// Sigma0(a)
157	add	$h,$h,$t3			// h+=Maj(a,b,c)
158	ldr	$t3,[$Ktbl],#$SZ		// *K++, $t2 in next round
159	//add	$h,$h,$t1			// h+=Sigma0(a)
160___
161$code.=<<___	if ($i>=15);
162	ror	$t0,$e,#$Sigma1[0]
163	add	$h,$h,$t2			// h+=K[i]
164	ror	$T1,@X[($j+1)&15],#$sigma0[0]
165	and	$t1,$f,$e
166	ror	$T2,@X[($j+14)&15],#$sigma1[0]
167	bic	$t2,$g,$e
168	ror	$T0,$a,#$Sigma0[0]
169	add	$h,$h,@X[$i&15]			// h+=X[i]
170	eor	$t0,$t0,$e,ror#$Sigma1[1]
171	eor	$T1,$T1,@X[($j+1)&15],ror#$sigma0[1]
172	orr	$t1,$t1,$t2			// Ch(e,f,g)
173	eor	$t2,$a,$b			// a^b, b^c in next round
174	eor	$t0,$t0,$e,ror#$Sigma1[2]	// Sigma1(e)
175	eor	$T0,$T0,$a,ror#$Sigma0[1]
176	add	$h,$h,$t1			// h+=Ch(e,f,g)
177	and	$t3,$t3,$t2			// (b^c)&=(a^b)
178	eor	$T2,$T2,@X[($j+14)&15],ror#$sigma1[1]
179	eor	$T1,$T1,@X[($j+1)&15],lsr#$sigma0[2]	// sigma0(X[i+1])
180	add	$h,$h,$t0			// h+=Sigma1(e)
181	eor	$t3,$t3,$b			// Maj(a,b,c)
182	eor	$t1,$T0,$a,ror#$Sigma0[2]	// Sigma0(a)
183	eor	$T2,$T2,@X[($j+14)&15],lsr#$sigma1[2]	// sigma1(X[i+14])
184	add	@X[$j],@X[$j],@X[($j+9)&15]
185	add	$d,$d,$h			// d+=h
186	add	$h,$h,$t3			// h+=Maj(a,b,c)
187	ldr	$t3,[$Ktbl],#$SZ		// *K++, $t2 in next round
188	add	@X[$j],@X[$j],$T1
189	add	$h,$h,$t1			// h+=Sigma0(a)
190	add	@X[$j],@X[$j],$T2
191___
192	($t2,$t3)=($t3,$t2);
193}
194
195$code.=<<___;
196#ifndef	__KERNEL__
197# include "arm_arch.h"
198#endif
199
200.text
201
202.extern	OPENSSL_armcap_P
203.globl	$func
204.type	$func,%function
205.align	6
206$func:
207___
208$code.=<<___	if ($SZ==4);
209#ifndef	__KERNEL__
210# ifdef	__ILP32__
211	ldrsw	x16,.LOPENSSL_armcap_P
212# else
213	ldr	x16,.LOPENSSL_armcap_P
214# endif
215	adr	x17,.LOPENSSL_armcap_P
216	add	x16,x16,x17
217	ldr	w16,[x16]
218	tst	w16,#ARMV8_SHA256
219	b.ne	.Lv8_entry
220	tst	w16,#ARMV7_NEON
221	b.ne	.Lneon_entry
222#endif
223___
224$code.=<<___;
225	stp	x29,x30,[sp,#-128]!
226	add	x29,sp,#0
227
228	stp	x19,x20,[sp,#16]
229	stp	x21,x22,[sp,#32]
230	stp	x23,x24,[sp,#48]
231	stp	x25,x26,[sp,#64]
232	stp	x27,x28,[sp,#80]
233	sub	sp,sp,#4*$SZ
234
235	ldp	$A,$B,[$ctx]				// load context
236	ldp	$C,$D,[$ctx,#2*$SZ]
237	ldp	$E,$F,[$ctx,#4*$SZ]
238	add	$num,$inp,$num,lsl#`log(16*$SZ)/log(2)`	// end of input
239	ldp	$G,$H,[$ctx,#6*$SZ]
240	adr	$Ktbl,.LK$BITS
241	stp	$ctx,$num,[x29,#96]
242
243.Loop:
244	ldp	@X[0],@X[1],[$inp],#2*$SZ
245	ldr	$t2,[$Ktbl],#$SZ			// *K++
246	eor	$t3,$B,$C				// magic seed
247	str	$inp,[x29,#112]
248___
249for ($i=0;$i<16;$i++)	{ &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
250$code.=".Loop_16_xx:\n";
251for (;$i<32;$i++)	{ &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
252$code.=<<___;
253	cbnz	$t2,.Loop_16_xx
254
255	ldp	$ctx,$num,[x29,#96]
256	ldr	$inp,[x29,#112]
257	sub	$Ktbl,$Ktbl,#`$SZ*($rounds+1)`		// rewind
258
259	ldp	@X[0],@X[1],[$ctx]
260	ldp	@X[2],@X[3],[$ctx,#2*$SZ]
261	add	$inp,$inp,#14*$SZ			// advance input pointer
262	ldp	@X[4],@X[5],[$ctx,#4*$SZ]
263	add	$A,$A,@X[0]
264	ldp	@X[6],@X[7],[$ctx,#6*$SZ]
265	add	$B,$B,@X[1]
266	add	$C,$C,@X[2]
267	add	$D,$D,@X[3]
268	stp	$A,$B,[$ctx]
269	add	$E,$E,@X[4]
270	add	$F,$F,@X[5]
271	stp	$C,$D,[$ctx,#2*$SZ]
272	add	$G,$G,@X[6]
273	add	$H,$H,@X[7]
274	cmp	$inp,$num
275	stp	$E,$F,[$ctx,#4*$SZ]
276	stp	$G,$H,[$ctx,#6*$SZ]
277	b.ne	.Loop
278
279	ldp	x19,x20,[x29,#16]
280	add	sp,sp,#4*$SZ
281	ldp	x21,x22,[x29,#32]
282	ldp	x23,x24,[x29,#48]
283	ldp	x25,x26,[x29,#64]
284	ldp	x27,x28,[x29,#80]
285	ldp	x29,x30,[sp],#128
286	ret
287.size	$func,.-$func
288
289.align	6
290.type	.LK$BITS,%object
291.LK$BITS:
292___
293$code.=<<___ if ($SZ==8);
294	.quad	0x428a2f98d728ae22,0x7137449123ef65cd
295	.quad	0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
296	.quad	0x3956c25bf348b538,0x59f111f1b605d019
297	.quad	0x923f82a4af194f9b,0xab1c5ed5da6d8118
298	.quad	0xd807aa98a3030242,0x12835b0145706fbe
299	.quad	0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
300	.quad	0x72be5d74f27b896f,0x80deb1fe3b1696b1
301	.quad	0x9bdc06a725c71235,0xc19bf174cf692694
302	.quad	0xe49b69c19ef14ad2,0xefbe4786384f25e3
303	.quad	0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
304	.quad	0x2de92c6f592b0275,0x4a7484aa6ea6e483
305	.quad	0x5cb0a9dcbd41fbd4,0x76f988da831153b5
306	.quad	0x983e5152ee66dfab,0xa831c66d2db43210
307	.quad	0xb00327c898fb213f,0xbf597fc7beef0ee4
308	.quad	0xc6e00bf33da88fc2,0xd5a79147930aa725
309	.quad	0x06ca6351e003826f,0x142929670a0e6e70
310	.quad	0x27b70a8546d22ffc,0x2e1b21385c26c926
311	.quad	0x4d2c6dfc5ac42aed,0x53380d139d95b3df
312	.quad	0x650a73548baf63de,0x766a0abb3c77b2a8
313	.quad	0x81c2c92e47edaee6,0x92722c851482353b
314	.quad	0xa2bfe8a14cf10364,0xa81a664bbc423001
315	.quad	0xc24b8b70d0f89791,0xc76c51a30654be30
316	.quad	0xd192e819d6ef5218,0xd69906245565a910
317	.quad	0xf40e35855771202a,0x106aa07032bbd1b8
318	.quad	0x19a4c116b8d2d0c8,0x1e376c085141ab53
319	.quad	0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
320	.quad	0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
321	.quad	0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
322	.quad	0x748f82ee5defb2fc,0x78a5636f43172f60
323	.quad	0x84c87814a1f0ab72,0x8cc702081a6439ec
324	.quad	0x90befffa23631e28,0xa4506cebde82bde9
325	.quad	0xbef9a3f7b2c67915,0xc67178f2e372532b
326	.quad	0xca273eceea26619c,0xd186b8c721c0c207
327	.quad	0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
328	.quad	0x06f067aa72176fba,0x0a637dc5a2c898a6
329	.quad	0x113f9804bef90dae,0x1b710b35131c471b
330	.quad	0x28db77f523047d84,0x32caab7b40c72493
331	.quad	0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
332	.quad	0x4cc5d4becb3e42b6,0x597f299cfc657e2a
333	.quad	0x5fcb6fab3ad6faec,0x6c44198c4a475817
334	.quad	0	// terminator
335___
336$code.=<<___ if ($SZ==4);
337	.long	0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
338	.long	0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
339	.long	0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
340	.long	0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
341	.long	0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
342	.long	0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
343	.long	0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
344	.long	0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
345	.long	0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
346	.long	0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
347	.long	0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
348	.long	0xd192e819,0xd6990624,0xf40e3585,0x106aa070
349	.long	0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
350	.long	0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
351	.long	0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
352	.long	0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
353	.long	0	//terminator
354___
355$code.=<<___;
356.size	.LK$BITS,.-.LK$BITS
357#ifndef	__KERNEL__
358.align	3
359.LOPENSSL_armcap_P:
360# ifdef	__ILP32__
361	.long	OPENSSL_armcap_P-.
362# else
363	.quad	OPENSSL_armcap_P-.
364# endif
365#endif
366.asciz	"SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
367.align	2
368___
369
370if ($SZ==4) {
371my $Ktbl="x3";
372
373my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
374my @MSG=map("v$_.16b",(4..7));
375my ($W0,$W1)=("v16.4s","v17.4s");
376my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");
377
378$code.=<<___;
379#ifndef	__KERNEL__
380.type	sha256_block_armv8,%function
381.align	6
382sha256_block_armv8:
383.Lv8_entry:
384	stp		x29,x30,[sp,#-16]!
385	add		x29,sp,#0
386
387	ld1.32		{$ABCD,$EFGH},[$ctx]
388	adr		$Ktbl,.LK256
389
390.Loop_hw:
391	ld1		{@MSG[0]-@MSG[3]},[$inp],#64
392	sub		$num,$num,#1
393	ld1.32		{$W0},[$Ktbl],#16
394	rev32		@MSG[0],@MSG[0]
395	rev32		@MSG[1],@MSG[1]
396	rev32		@MSG[2],@MSG[2]
397	rev32		@MSG[3],@MSG[3]
398	orr		$ABCD_SAVE,$ABCD,$ABCD		// offload
399	orr		$EFGH_SAVE,$EFGH,$EFGH
400___
401for($i=0;$i<12;$i++) {
402$code.=<<___;
403	ld1.32		{$W1},[$Ktbl],#16
404	add.i32		$W0,$W0,@MSG[0]
405	sha256su0	@MSG[0],@MSG[1]
406	orr		$abcd,$ABCD,$ABCD
407	sha256h		$ABCD,$EFGH,$W0
408	sha256h2	$EFGH,$abcd,$W0
409	sha256su1	@MSG[0],@MSG[2],@MSG[3]
410___
411	($W0,$W1)=($W1,$W0);	push(@MSG,shift(@MSG));
412}
413$code.=<<___;
414	ld1.32		{$W1},[$Ktbl],#16
415	add.i32		$W0,$W0,@MSG[0]
416	orr		$abcd,$ABCD,$ABCD
417	sha256h		$ABCD,$EFGH,$W0
418	sha256h2	$EFGH,$abcd,$W0
419
420	ld1.32		{$W0},[$Ktbl],#16
421	add.i32		$W1,$W1,@MSG[1]
422	orr		$abcd,$ABCD,$ABCD
423	sha256h		$ABCD,$EFGH,$W1
424	sha256h2	$EFGH,$abcd,$W1
425
426	ld1.32		{$W1},[$Ktbl]
427	add.i32		$W0,$W0,@MSG[2]
428	sub		$Ktbl,$Ktbl,#$rounds*$SZ-16	// rewind
429	orr		$abcd,$ABCD,$ABCD
430	sha256h		$ABCD,$EFGH,$W0
431	sha256h2	$EFGH,$abcd,$W0
432
433	add.i32		$W1,$W1,@MSG[3]
434	orr		$abcd,$ABCD,$ABCD
435	sha256h		$ABCD,$EFGH,$W1
436	sha256h2	$EFGH,$abcd,$W1
437
438	add.i32		$ABCD,$ABCD,$ABCD_SAVE
439	add.i32		$EFGH,$EFGH,$EFGH_SAVE
440
441	cbnz		$num,.Loop_hw
442
443	st1.32		{$ABCD,$EFGH},[$ctx]
444
445	ldr		x29,[sp],#16
446	ret
447.size	sha256_block_armv8,.-sha256_block_armv8
448#endif
449___
450}
451
452if ($SZ==4) {	######################################### NEON stuff #
453# You'll surely note a lot of similarities with sha256-armv4 module,
454# and of course it's not a coincidence. sha256-armv4 was used as
455# initial template, but was adapted for ARMv8 instruction set and
456# extensively re-tuned for all-round performance.
457
458my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10));
459my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15));
460my $Ktbl="x16";
461my $Xfer="x17";
462my @X = map("q$_",(0..3));
463my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19));
464my $j=0;
465
466sub AUTOLOAD()          # thunk [simplified] x86-style perlasm
467{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
468  my $arg = pop;
469    $arg = "#$arg" if ($arg*1 eq $arg);
470    $code .= "\t$opcode\t".join(',',@_,$arg)."\n";
471}
472
473sub Dscalar { shift =~ m|[qv]([0-9]+)|?"d$1":""; }
474sub Dlo     { shift =~ m|[qv]([0-9]+)|?"v$1.d[0]":""; }
475sub Dhi     { shift =~ m|[qv]([0-9]+)|?"v$1.d[1]":""; }
476
477sub Xupdate()
478{ use integer;
479  my $body = shift;
480  my @insns = (&$body,&$body,&$body,&$body);
481  my ($a,$b,$c,$d,$e,$f,$g,$h);
482
483	&ext_8		($T0,@X[0],@X[1],4);	# X[1..4]
484	 eval(shift(@insns));
485	 eval(shift(@insns));
486	 eval(shift(@insns));
487	&ext_8		($T3,@X[2],@X[3],4);	# X[9..12]
488	 eval(shift(@insns));
489	 eval(shift(@insns));
490	&mov		(&Dscalar($T7),&Dhi(@X[3]));	# X[14..15]
491	 eval(shift(@insns));
492	 eval(shift(@insns));
493	&ushr_32	($T2,$T0,$sigma0[0]);
494	 eval(shift(@insns));
495	&ushr_32	($T1,$T0,$sigma0[2]);
496	 eval(shift(@insns));
497	&add_32 	(@X[0],@X[0],$T3);	# X[0..3] += X[9..12]
498	 eval(shift(@insns));
499	&sli_32		($T2,$T0,32-$sigma0[0]);
500	 eval(shift(@insns));
501	 eval(shift(@insns));
502	&ushr_32	($T3,$T0,$sigma0[1]);
503	 eval(shift(@insns));
504	 eval(shift(@insns));
505	&eor_8		($T1,$T1,$T2);
506	 eval(shift(@insns));
507	 eval(shift(@insns));
508	&sli_32		($T3,$T0,32-$sigma0[1]);
509	 eval(shift(@insns));
510	 eval(shift(@insns));
511	  &ushr_32	($T4,$T7,$sigma1[0]);
512	 eval(shift(@insns));
513	 eval(shift(@insns));
514	&eor_8		($T1,$T1,$T3);		# sigma0(X[1..4])
515	 eval(shift(@insns));
516	 eval(shift(@insns));
517	  &sli_32	($T4,$T7,32-$sigma1[0]);
518	 eval(shift(@insns));
519	 eval(shift(@insns));
520	  &ushr_32	($T5,$T7,$sigma1[2]);
521	 eval(shift(@insns));
522	 eval(shift(@insns));
523	  &ushr_32	($T3,$T7,$sigma1[1]);
524	 eval(shift(@insns));
525	 eval(shift(@insns));
526	&add_32		(@X[0],@X[0],$T1);	# X[0..3] += sigma0(X[1..4])
527	 eval(shift(@insns));
528	 eval(shift(@insns));
529	  &sli_u32	($T3,$T7,32-$sigma1[1]);
530	 eval(shift(@insns));
531	 eval(shift(@insns));
532	  &eor_8	($T5,$T5,$T4);
533	 eval(shift(@insns));
534	 eval(shift(@insns));
535	 eval(shift(@insns));
536	  &eor_8	($T5,$T5,$T3);		# sigma1(X[14..15])
537	 eval(shift(@insns));
538	 eval(shift(@insns));
539	 eval(shift(@insns));
540	&add_32		(@X[0],@X[0],$T5);	# X[0..1] += sigma1(X[14..15])
541	 eval(shift(@insns));
542	 eval(shift(@insns));
543	 eval(shift(@insns));
544	  &ushr_32	($T6,@X[0],$sigma1[0]);
545	 eval(shift(@insns));
546	  &ushr_32	($T7,@X[0],$sigma1[2]);
547	 eval(shift(@insns));
548	 eval(shift(@insns));
549	  &sli_32	($T6,@X[0],32-$sigma1[0]);
550	 eval(shift(@insns));
551	  &ushr_32	($T5,@X[0],$sigma1[1]);
552	 eval(shift(@insns));
553	 eval(shift(@insns));
554	  &eor_8	($T7,$T7,$T6);
555	 eval(shift(@insns));
556	 eval(shift(@insns));
557	  &sli_32	($T5,@X[0],32-$sigma1[1]);
558	 eval(shift(@insns));
559	 eval(shift(@insns));
560	&ld1_32		("{$T0}","[$Ktbl], #16");
561	 eval(shift(@insns));
562	  &eor_8	($T7,$T7,$T5);		# sigma1(X[16..17])
563	 eval(shift(@insns));
564	 eval(shift(@insns));
565	&eor_8		($T5,$T5,$T5);
566	 eval(shift(@insns));
567	 eval(shift(@insns));
568	&mov		(&Dhi($T5), &Dlo($T7));
569	 eval(shift(@insns));
570	 eval(shift(@insns));
571	 eval(shift(@insns));
572	&add_32		(@X[0],@X[0],$T5);	# X[2..3] += sigma1(X[16..17])
573	 eval(shift(@insns));
574	 eval(shift(@insns));
575	 eval(shift(@insns));
576	&add_32		($T0,$T0,@X[0]);
577	 while($#insns>=1) { eval(shift(@insns)); }
578	&st1_32		("{$T0}","[$Xfer], #16");
579	 eval(shift(@insns));
580
581	push(@X,shift(@X));		# "rotate" X[]
582}
583
584sub Xpreload()
585{ use integer;
586  my $body = shift;
587  my @insns = (&$body,&$body,&$body,&$body);
588  my ($a,$b,$c,$d,$e,$f,$g,$h);
589
590	 eval(shift(@insns));
591	 eval(shift(@insns));
592	&ld1_8		("{@X[0]}","[$inp],#16");
593	 eval(shift(@insns));
594	 eval(shift(@insns));
595	&ld1_32		("{$T0}","[$Ktbl],#16");
596	 eval(shift(@insns));
597	 eval(shift(@insns));
598	 eval(shift(@insns));
599	 eval(shift(@insns));
600	&rev32		(@X[0],@X[0]);
601	 eval(shift(@insns));
602	 eval(shift(@insns));
603	 eval(shift(@insns));
604	 eval(shift(@insns));
605	&add_32		($T0,$T0,@X[0]);
606	 foreach (@insns) { eval; }	# remaining instructions
607	&st1_32		("{$T0}","[$Xfer], #16");
608
609	push(@X,shift(@X));		# "rotate" X[]
610}
611
612sub body_00_15 () {
613	(
614	'($a,$b,$c,$d,$e,$f,$g,$h)=@V;'.
615	'&add	($h,$h,$t1)',			# h+=X[i]+K[i]
616	'&add	($a,$a,$t4);'.			# h+=Sigma0(a) from the past
617	'&and	($t1,$f,$e)',
618	'&bic	($t4,$g,$e)',
619	'&eor	($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))',
620	'&add	($a,$a,$t2)',			# h+=Maj(a,b,c) from the past
621	'&orr	($t1,$t1,$t4)',			# Ch(e,f,g)
622	'&eor	($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))',	# Sigma1(e)
623	'&eor	($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))',
624	'&add	($h,$h,$t1)',			# h+=Ch(e,f,g)
625	'&ror	($t0,$t0,"#$Sigma1[0]")',
626	'&eor	($t2,$a,$b)',			# a^b, b^c in next round
627	'&eor	($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))',	# Sigma0(a)
628	'&add	($h,$h,$t0)',			# h+=Sigma1(e)
629	'&ldr	($t1,sprintf "[sp,#%d]",4*(($j+1)&15))	if (($j&15)!=15);'.
630	'&ldr	($t1,"[$Ktbl]")				if ($j==15);'.
631	'&and	($t3,$t3,$t2)',			# (b^c)&=(a^b)
632	'&ror	($t4,$t4,"#$Sigma0[0]")',
633	'&add	($d,$d,$h)',			# d+=h
634	'&eor	($t3,$t3,$b)',			# Maj(a,b,c)
635	'$j++;	unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);'
636	)
637}
638
639$code.=<<___;
640#ifdef	__KERNEL__
641.globl	sha256_block_neon
642#endif
643.type	sha256_block_neon,%function
644.align	4
645sha256_block_neon:
646.Lneon_entry:
647	stp	x29, x30, [sp, #-16]!
648	mov	x29, sp
649	sub	sp,sp,#16*4
650
651	adr	$Ktbl,.LK256
652	add	$num,$inp,$num,lsl#6	// len to point at the end of inp
653
654	ld1.8	{@X[0]},[$inp], #16
655	ld1.8	{@X[1]},[$inp], #16
656	ld1.8	{@X[2]},[$inp], #16
657	ld1.8	{@X[3]},[$inp], #16
658	ld1.32	{$T0},[$Ktbl], #16
659	ld1.32	{$T1},[$Ktbl], #16
660	ld1.32	{$T2},[$Ktbl], #16
661	ld1.32	{$T3},[$Ktbl], #16
662	rev32	@X[0],@X[0]		// yes, even on
663	rev32	@X[1],@X[1]		// big-endian
664	rev32	@X[2],@X[2]
665	rev32	@X[3],@X[3]
666	mov	$Xfer,sp
667	add.32	$T0,$T0,@X[0]
668	add.32	$T1,$T1,@X[1]
669	add.32	$T2,$T2,@X[2]
670	st1.32	{$T0-$T1},[$Xfer], #32
671	add.32	$T3,$T3,@X[3]
672	st1.32	{$T2-$T3},[$Xfer]
673	sub	$Xfer,$Xfer,#32
674
675	ldp	$A,$B,[$ctx]
676	ldp	$C,$D,[$ctx,#8]
677	ldp	$E,$F,[$ctx,#16]
678	ldp	$G,$H,[$ctx,#24]
679	ldr	$t1,[sp,#0]
680	mov	$t2,wzr
681	eor	$t3,$B,$C
682	mov	$t4,wzr
683	b	.L_00_48
684
685.align	4
686.L_00_48:
687___
688	&Xupdate(\&body_00_15);
689	&Xupdate(\&body_00_15);
690	&Xupdate(\&body_00_15);
691	&Xupdate(\&body_00_15);
692$code.=<<___;
693	cmp	$t1,#0				// check for K256 terminator
694	ldr	$t1,[sp,#0]
695	sub	$Xfer,$Xfer,#64
696	bne	.L_00_48
697
698	sub	$Ktbl,$Ktbl,#256		// rewind $Ktbl
699	cmp	$inp,$num
700	mov	$Xfer, #64
701	csel	$Xfer, $Xfer, xzr, eq
702	sub	$inp,$inp,$Xfer			// avoid SEGV
703	mov	$Xfer,sp
704___
705	&Xpreload(\&body_00_15);
706	&Xpreload(\&body_00_15);
707	&Xpreload(\&body_00_15);
708	&Xpreload(\&body_00_15);
709$code.=<<___;
710	add	$A,$A,$t4			// h+=Sigma0(a) from the past
711	ldp	$t0,$t1,[$ctx,#0]
712	add	$A,$A,$t2			// h+=Maj(a,b,c) from the past
713	ldp	$t2,$t3,[$ctx,#8]
714	add	$A,$A,$t0			// accumulate
715	add	$B,$B,$t1
716	ldp	$t0,$t1,[$ctx,#16]
717	add	$C,$C,$t2
718	add	$D,$D,$t3
719	ldp	$t2,$t3,[$ctx,#24]
720	add	$E,$E,$t0
721	add	$F,$F,$t1
722	 ldr	$t1,[sp,#0]
723	stp	$A,$B,[$ctx,#0]
724	add	$G,$G,$t2
725	 mov	$t2,wzr
726	stp	$C,$D,[$ctx,#8]
727	add	$H,$H,$t3
728	stp	$E,$F,[$ctx,#16]
729	 eor	$t3,$B,$C
730	stp	$G,$H,[$ctx,#24]
731	 mov	$t4,wzr
732	 mov	$Xfer,sp
733	b.ne	.L_00_48
734
735	ldr	x29,[x29]
736	add	sp,sp,#16*4+16
737	ret
738.size	sha256_block_neon,.-sha256_block_neon
739___
740}
741
742$code.=<<___;
743#ifndef	__KERNEL__
744.comm	OPENSSL_armcap_P,4,4
745#endif
746___
747
748{   my  %opcode = (
749	"sha256h"	=> 0x5e004000,	"sha256h2"	=> 0x5e005000,
750	"sha256su0"	=> 0x5e282800,	"sha256su1"	=> 0x5e006000	);
751
752    sub unsha256 {
753	my ($mnemonic,$arg)=@_;
754
755	$arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
756	&&
757	sprintf ".inst\t0x%08x\t//%s %s",
758			$opcode{$mnemonic}|$1|($2<<5)|($3<<16),
759			$mnemonic,$arg;
760    }
761}
762
763open SELF,$0;
764while(<SELF>) {
765        next if (/^#!/);
766        last if (!s/^#/\/\// and !/^$/);
767        print;
768}
769close SELF;
770
771foreach(split("\n",$code)) {
772
773	s/\`([^\`]*)\`/eval($1)/ge;
774
775	s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge;
776
777	s/\bq([0-9]+)\b/v$1.16b/g;		# old->new registers
778
779	s/\.[ui]?8(\s)/$1/;
780	s/\.\w?32\b//		and s/\.16b/\.4s/g;
781	m/(ld|st)1[^\[]+\[0\]/	and s/\.4s/\.s/g;
782
783	print $_,"\n";
784}
785
786close STDOUT;
787