xref: /linux/arch/arm64/include/asm/efi.h (revision f86fd32d)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_EFI_H
3 #define _ASM_EFI_H
4 
5 #include <asm/boot.h>
6 #include <asm/cpufeature.h>
7 #include <asm/fpsimd.h>
8 #include <asm/io.h>
9 #include <asm/memory.h>
10 #include <asm/mmu_context.h>
11 #include <asm/neon.h>
12 #include <asm/ptrace.h>
13 #include <asm/tlbflush.h>
14 
15 #ifdef CONFIG_EFI
16 extern void efi_init(void);
17 #else
18 #define efi_init()
19 #endif
20 
21 int efi_create_mapping(struct mm_struct *mm, efi_memory_desc_t *md);
22 int efi_set_mapping_permissions(struct mm_struct *mm, efi_memory_desc_t *md);
23 
24 #define arch_efi_call_virt_setup()					\
25 ({									\
26 	efi_virtmap_load();						\
27 	__efi_fpsimd_begin();						\
28 })
29 
30 #define arch_efi_call_virt(p, f, args...)				\
31 ({									\
32 	efi_##f##_t *__f;						\
33 	__f = p->f;							\
34 	__efi_rt_asm_wrapper(__f, #f, args);				\
35 })
36 
37 #define arch_efi_call_virt_teardown()					\
38 ({									\
39 	__efi_fpsimd_end();						\
40 	efi_virtmap_unload();						\
41 })
42 
43 efi_status_t __efi_rt_asm_wrapper(void *, const char *, ...);
44 
45 #define ARCH_EFI_IRQ_FLAGS_MASK (PSR_D_BIT | PSR_A_BIT | PSR_I_BIT | PSR_F_BIT)
46 
47 /*
48  * Even when Linux uses IRQ priorities for IRQ disabling, EFI does not.
49  * And EFI shouldn't really play around with priority masking as it is not aware
50  * which priorities the OS has assigned to its interrupts.
51  */
52 #define arch_efi_save_flags(state_flags)		\
53 	((void)((state_flags) = read_sysreg(daif)))
54 
55 #define arch_efi_restore_flags(state_flags)	write_sysreg(state_flags, daif)
56 
57 
58 /* arch specific definitions used by the stub code */
59 
60 /*
61  * AArch64 requires the DTB to be 8-byte aligned in the first 512MiB from
62  * start of kernel and may not cross a 2MiB boundary. We set alignment to
63  * 2MiB so we know it won't cross a 2MiB boundary.
64  */
65 #define EFI_FDT_ALIGN	SZ_2M   /* used by allocate_new_fdt_and_exit_boot() */
66 
67 /*
68  * In some configurations (e.g. VMAP_STACK && 64K pages), stacks built into the
69  * kernel need greater alignment than we require the segments to be padded to.
70  */
71 #define EFI_KIMG_ALIGN	\
72 	(SEGMENT_ALIGN > THREAD_ALIGN ? SEGMENT_ALIGN : THREAD_ALIGN)
73 
74 /* on arm64, the FDT may be located anywhere in system RAM */
75 static inline unsigned long efi_get_max_fdt_addr(unsigned long dram_base)
76 {
77 	return ULONG_MAX;
78 }
79 
80 /*
81  * On arm64, we have to ensure that the initrd ends up in the linear region,
82  * which is a 1 GB aligned region of size '1UL << (VA_BITS_MIN - 1)' that is
83  * guaranteed to cover the kernel Image.
84  *
85  * Since the EFI stub is part of the kernel Image, we can relax the
86  * usual requirements in Documentation/arm64/booting.rst, which still
87  * apply to other bootloaders, and are required for some kernel
88  * configurations.
89  */
90 static inline unsigned long efi_get_max_initrd_addr(unsigned long dram_base,
91 						    unsigned long image_addr)
92 {
93 	return (image_addr & ~(SZ_1G - 1UL)) + (1UL << (VA_BITS_MIN - 1));
94 }
95 
96 #define efi_bs_call(func, ...)	efi_system_table()->boottime->func(__VA_ARGS__)
97 #define efi_rt_call(func, ...)	efi_system_table()->runtime->func(__VA_ARGS__)
98 #define efi_is_native()		(true)
99 
100 #define efi_table_attr(inst, attr)	(inst->attr)
101 
102 #define efi_call_proto(inst, func, ...) inst->func(inst, ##__VA_ARGS__)
103 
104 #define alloc_screen_info(x...)		&screen_info
105 
106 static inline void free_screen_info(struct screen_info *si)
107 {
108 }
109 
110 /* redeclare as 'hidden' so the compiler will generate relative references */
111 extern struct screen_info screen_info __attribute__((__visibility__("hidden")));
112 
113 static inline void efifb_setup_from_dmi(struct screen_info *si, const char *opt)
114 {
115 }
116 
117 #define EFI_ALLOC_ALIGN		SZ_64K
118 
119 /*
120  * On ARM systems, virtually remapped UEFI runtime services are set up in two
121  * distinct stages:
122  * - The stub retrieves the final version of the memory map from UEFI, populates
123  *   the virt_addr fields and calls the SetVirtualAddressMap() [SVAM] runtime
124  *   service to communicate the new mapping to the firmware (Note that the new
125  *   mapping is not live at this time)
126  * - During an early initcall(), the EFI system table is permanently remapped
127  *   and the virtual remapping of the UEFI Runtime Services regions is loaded
128  *   into a private set of page tables. If this all succeeds, the Runtime
129  *   Services are enabled and the EFI_RUNTIME_SERVICES bit set.
130  */
131 
132 static inline void efi_set_pgd(struct mm_struct *mm)
133 {
134 	__switch_mm(mm);
135 
136 	if (system_uses_ttbr0_pan()) {
137 		if (mm != current->active_mm) {
138 			/*
139 			 * Update the current thread's saved ttbr0 since it is
140 			 * restored as part of a return from exception. Enable
141 			 * access to the valid TTBR0_EL1 and invoke the errata
142 			 * workaround directly since there is no return from
143 			 * exception when invoking the EFI run-time services.
144 			 */
145 			update_saved_ttbr0(current, mm);
146 			uaccess_ttbr0_enable();
147 			post_ttbr_update_workaround();
148 		} else {
149 			/*
150 			 * Defer the switch to the current thread's TTBR0_EL1
151 			 * until uaccess_enable(). Restore the current
152 			 * thread's saved ttbr0 corresponding to its active_mm
153 			 */
154 			uaccess_ttbr0_disable();
155 			update_saved_ttbr0(current, current->active_mm);
156 		}
157 	}
158 }
159 
160 void efi_virtmap_load(void);
161 void efi_virtmap_unload(void);
162 
163 #endif /* _ASM_EFI_H */
164