xref: /linux/arch/arm64/include/asm/kvm_host.h (revision dd093fb0)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13 
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/percpu.h>
20 #include <linux/psci.h>
21 #include <asm/arch_gicv3.h>
22 #include <asm/barrier.h>
23 #include <asm/cpufeature.h>
24 #include <asm/cputype.h>
25 #include <asm/daifflags.h>
26 #include <asm/fpsimd.h>
27 #include <asm/kvm.h>
28 #include <asm/kvm_asm.h>
29 
30 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
31 
32 #define KVM_HALT_POLL_NS_DEFAULT 500000
33 
34 #include <kvm/arm_vgic.h>
35 #include <kvm/arm_arch_timer.h>
36 #include <kvm/arm_pmu.h>
37 
38 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
39 
40 #define KVM_VCPU_MAX_FEATURES 7
41 
42 #define KVM_REQ_SLEEP \
43 	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
44 #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
45 #define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
46 #define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
47 #define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
48 #define KVM_REQ_RELOAD_PMU	KVM_ARCH_REQ(5)
49 #define KVM_REQ_SUSPEND		KVM_ARCH_REQ(6)
50 
51 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
52 				     KVM_DIRTY_LOG_INITIALLY_SET)
53 
54 #define KVM_HAVE_MMU_RWLOCK
55 
56 /*
57  * Mode of operation configurable with kvm-arm.mode early param.
58  * See Documentation/admin-guide/kernel-parameters.txt for more information.
59  */
60 enum kvm_mode {
61 	KVM_MODE_DEFAULT,
62 	KVM_MODE_PROTECTED,
63 	KVM_MODE_NONE,
64 };
65 enum kvm_mode kvm_get_mode(void);
66 
67 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
68 
69 extern unsigned int kvm_sve_max_vl;
70 int kvm_arm_init_sve(void);
71 
72 u32 __attribute_const__ kvm_target_cpu(void);
73 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
74 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
75 
76 struct kvm_hyp_memcache {
77 	phys_addr_t head;
78 	unsigned long nr_pages;
79 };
80 
81 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
82 				     phys_addr_t *p,
83 				     phys_addr_t (*to_pa)(void *virt))
84 {
85 	*p = mc->head;
86 	mc->head = to_pa(p);
87 	mc->nr_pages++;
88 }
89 
90 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
91 				     void *(*to_va)(phys_addr_t phys))
92 {
93 	phys_addr_t *p = to_va(mc->head);
94 
95 	if (!mc->nr_pages)
96 		return NULL;
97 
98 	mc->head = *p;
99 	mc->nr_pages--;
100 
101 	return p;
102 }
103 
104 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
105 				       unsigned long min_pages,
106 				       void *(*alloc_fn)(void *arg),
107 				       phys_addr_t (*to_pa)(void *virt),
108 				       void *arg)
109 {
110 	while (mc->nr_pages < min_pages) {
111 		phys_addr_t *p = alloc_fn(arg);
112 
113 		if (!p)
114 			return -ENOMEM;
115 		push_hyp_memcache(mc, p, to_pa);
116 	}
117 
118 	return 0;
119 }
120 
121 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
122 				       void (*free_fn)(void *virt, void *arg),
123 				       void *(*to_va)(phys_addr_t phys),
124 				       void *arg)
125 {
126 	while (mc->nr_pages)
127 		free_fn(pop_hyp_memcache(mc, to_va), arg);
128 }
129 
130 void free_hyp_memcache(struct kvm_hyp_memcache *mc);
131 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
132 
133 struct kvm_vmid {
134 	atomic64_t id;
135 };
136 
137 struct kvm_s2_mmu {
138 	struct kvm_vmid vmid;
139 
140 	/*
141 	 * stage2 entry level table
142 	 *
143 	 * Two kvm_s2_mmu structures in the same VM can point to the same
144 	 * pgd here.  This happens when running a guest using a
145 	 * translation regime that isn't affected by its own stage-2
146 	 * translation, such as a non-VHE hypervisor running at vEL2, or
147 	 * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
148 	 * canonical stage-2 page tables.
149 	 */
150 	phys_addr_t	pgd_phys;
151 	struct kvm_pgtable *pgt;
152 
153 	/* The last vcpu id that ran on each physical CPU */
154 	int __percpu *last_vcpu_ran;
155 
156 	struct kvm_arch *arch;
157 };
158 
159 struct kvm_arch_memory_slot {
160 };
161 
162 /**
163  * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
164  *
165  * @std_bmap: Bitmap of standard secure service calls
166  * @std_hyp_bmap: Bitmap of standard hypervisor service calls
167  * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
168  */
169 struct kvm_smccc_features {
170 	unsigned long std_bmap;
171 	unsigned long std_hyp_bmap;
172 	unsigned long vendor_hyp_bmap;
173 };
174 
175 typedef unsigned int pkvm_handle_t;
176 
177 struct kvm_protected_vm {
178 	pkvm_handle_t handle;
179 	struct kvm_hyp_memcache teardown_mc;
180 };
181 
182 struct kvm_arch {
183 	struct kvm_s2_mmu mmu;
184 
185 	/* VTCR_EL2 value for this VM */
186 	u64    vtcr;
187 
188 	/* Interrupt controller */
189 	struct vgic_dist	vgic;
190 
191 	/* Mandated version of PSCI */
192 	u32 psci_version;
193 
194 	/*
195 	 * If we encounter a data abort without valid instruction syndrome
196 	 * information, report this to user space.  User space can (and
197 	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
198 	 * supported.
199 	 */
200 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER	0
201 	/* Memory Tagging Extension enabled for the guest */
202 #define KVM_ARCH_FLAG_MTE_ENABLED			1
203 	/* At least one vCPU has ran in the VM */
204 #define KVM_ARCH_FLAG_HAS_RAN_ONCE			2
205 	/*
206 	 * The following two bits are used to indicate the guest's EL1
207 	 * register width configuration. A value of KVM_ARCH_FLAG_EL1_32BIT
208 	 * bit is valid only when KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED is set.
209 	 * Otherwise, the guest's EL1 register width has not yet been
210 	 * determined yet.
211 	 */
212 #define KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED		3
213 #define KVM_ARCH_FLAG_EL1_32BIT				4
214 	/* PSCI SYSTEM_SUSPEND enabled for the guest */
215 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED		5
216 
217 	unsigned long flags;
218 
219 	/*
220 	 * VM-wide PMU filter, implemented as a bitmap and big enough for
221 	 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
222 	 */
223 	unsigned long *pmu_filter;
224 	struct arm_pmu *arm_pmu;
225 
226 	cpumask_var_t supported_cpus;
227 
228 	u8 pfr0_csv2;
229 	u8 pfr0_csv3;
230 	struct {
231 		u8 imp:4;
232 		u8 unimp:4;
233 	} dfr0_pmuver;
234 
235 	/* Hypercall features firmware registers' descriptor */
236 	struct kvm_smccc_features smccc_feat;
237 
238 	/*
239 	 * For an untrusted host VM, 'pkvm.handle' is used to lookup
240 	 * the associated pKVM instance in the hypervisor.
241 	 */
242 	struct kvm_protected_vm pkvm;
243 };
244 
245 struct kvm_vcpu_fault_info {
246 	u64 esr_el2;		/* Hyp Syndrom Register */
247 	u64 far_el2;		/* Hyp Fault Address Register */
248 	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
249 	u64 disr_el1;		/* Deferred [SError] Status Register */
250 };
251 
252 enum vcpu_sysreg {
253 	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
254 	MPIDR_EL1,	/* MultiProcessor Affinity Register */
255 	CSSELR_EL1,	/* Cache Size Selection Register */
256 	SCTLR_EL1,	/* System Control Register */
257 	ACTLR_EL1,	/* Auxiliary Control Register */
258 	CPACR_EL1,	/* Coprocessor Access Control */
259 	ZCR_EL1,	/* SVE Control */
260 	TTBR0_EL1,	/* Translation Table Base Register 0 */
261 	TTBR1_EL1,	/* Translation Table Base Register 1 */
262 	TCR_EL1,	/* Translation Control Register */
263 	ESR_EL1,	/* Exception Syndrome Register */
264 	AFSR0_EL1,	/* Auxiliary Fault Status Register 0 */
265 	AFSR1_EL1,	/* Auxiliary Fault Status Register 1 */
266 	FAR_EL1,	/* Fault Address Register */
267 	MAIR_EL1,	/* Memory Attribute Indirection Register */
268 	VBAR_EL1,	/* Vector Base Address Register */
269 	CONTEXTIDR_EL1,	/* Context ID Register */
270 	TPIDR_EL0,	/* Thread ID, User R/W */
271 	TPIDRRO_EL0,	/* Thread ID, User R/O */
272 	TPIDR_EL1,	/* Thread ID, Privileged */
273 	AMAIR_EL1,	/* Aux Memory Attribute Indirection Register */
274 	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
275 	PAR_EL1,	/* Physical Address Register */
276 	MDSCR_EL1,	/* Monitor Debug System Control Register */
277 	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
278 	OSLSR_EL1,	/* OS Lock Status Register */
279 	DISR_EL1,	/* Deferred Interrupt Status Register */
280 
281 	/* Performance Monitors Registers */
282 	PMCR_EL0,	/* Control Register */
283 	PMSELR_EL0,	/* Event Counter Selection Register */
284 	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
285 	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
286 	PMCCNTR_EL0,	/* Cycle Counter Register */
287 	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
288 	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
289 	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
290 	PMCNTENSET_EL0,	/* Count Enable Set Register */
291 	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
292 	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
293 	PMUSERENR_EL0,	/* User Enable Register */
294 
295 	/* Pointer Authentication Registers in a strict increasing order. */
296 	APIAKEYLO_EL1,
297 	APIAKEYHI_EL1,
298 	APIBKEYLO_EL1,
299 	APIBKEYHI_EL1,
300 	APDAKEYLO_EL1,
301 	APDAKEYHI_EL1,
302 	APDBKEYLO_EL1,
303 	APDBKEYHI_EL1,
304 	APGAKEYLO_EL1,
305 	APGAKEYHI_EL1,
306 
307 	ELR_EL1,
308 	SP_EL1,
309 	SPSR_EL1,
310 
311 	CNTVOFF_EL2,
312 	CNTV_CVAL_EL0,
313 	CNTV_CTL_EL0,
314 	CNTP_CVAL_EL0,
315 	CNTP_CTL_EL0,
316 
317 	/* Memory Tagging Extension registers */
318 	RGSR_EL1,	/* Random Allocation Tag Seed Register */
319 	GCR_EL1,	/* Tag Control Register */
320 	TFSR_EL1,	/* Tag Fault Status Register (EL1) */
321 	TFSRE0_EL1,	/* Tag Fault Status Register (EL0) */
322 
323 	/* 32bit specific registers. Keep them at the end of the range */
324 	DACR32_EL2,	/* Domain Access Control Register */
325 	IFSR32_EL2,	/* Instruction Fault Status Register */
326 	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
327 	DBGVCR32_EL2,	/* Debug Vector Catch Register */
328 
329 	NR_SYS_REGS	/* Nothing after this line! */
330 };
331 
332 struct kvm_cpu_context {
333 	struct user_pt_regs regs;	/* sp = sp_el0 */
334 
335 	u64	spsr_abt;
336 	u64	spsr_und;
337 	u64	spsr_irq;
338 	u64	spsr_fiq;
339 
340 	struct user_fpsimd_state fp_regs;
341 
342 	u64 sys_regs[NR_SYS_REGS];
343 
344 	struct kvm_vcpu *__hyp_running_vcpu;
345 };
346 
347 struct kvm_host_data {
348 	struct kvm_cpu_context host_ctxt;
349 };
350 
351 struct kvm_host_psci_config {
352 	/* PSCI version used by host. */
353 	u32 version;
354 
355 	/* Function IDs used by host if version is v0.1. */
356 	struct psci_0_1_function_ids function_ids_0_1;
357 
358 	bool psci_0_1_cpu_suspend_implemented;
359 	bool psci_0_1_cpu_on_implemented;
360 	bool psci_0_1_cpu_off_implemented;
361 	bool psci_0_1_migrate_implemented;
362 };
363 
364 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
365 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
366 
367 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
368 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
369 
370 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
371 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
372 
373 struct vcpu_reset_state {
374 	unsigned long	pc;
375 	unsigned long	r0;
376 	bool		be;
377 	bool		reset;
378 };
379 
380 struct kvm_vcpu_arch {
381 	struct kvm_cpu_context ctxt;
382 
383 	/*
384 	 * Guest floating point state
385 	 *
386 	 * The architecture has two main floating point extensions,
387 	 * the original FPSIMD and SVE.  These have overlapping
388 	 * register views, with the FPSIMD V registers occupying the
389 	 * low 128 bits of the SVE Z registers.  When the core
390 	 * floating point code saves the register state of a task it
391 	 * records which view it saved in fp_type.
392 	 */
393 	void *sve_state;
394 	enum fp_type fp_type;
395 	unsigned int sve_max_vl;
396 	u64 svcr;
397 
398 	/* Stage 2 paging state used by the hardware on next switch */
399 	struct kvm_s2_mmu *hw_mmu;
400 
401 	/* Values of trap registers for the guest. */
402 	u64 hcr_el2;
403 	u64 mdcr_el2;
404 	u64 cptr_el2;
405 
406 	/* Values of trap registers for the host before guest entry. */
407 	u64 mdcr_el2_host;
408 
409 	/* Exception Information */
410 	struct kvm_vcpu_fault_info fault;
411 
412 	/* Ownership of the FP regs */
413 	enum {
414 		FP_STATE_FREE,
415 		FP_STATE_HOST_OWNED,
416 		FP_STATE_GUEST_OWNED,
417 	} fp_state;
418 
419 	/* Configuration flags, set once and for all before the vcpu can run */
420 	u8 cflags;
421 
422 	/* Input flags to the hypervisor code, potentially cleared after use */
423 	u8 iflags;
424 
425 	/* State flags for kernel bookkeeping, unused by the hypervisor code */
426 	u8 sflags;
427 
428 	/*
429 	 * Don't run the guest (internal implementation need).
430 	 *
431 	 * Contrary to the flags above, this is set/cleared outside of
432 	 * a vcpu context, and thus cannot be mixed with the flags
433 	 * themselves (or the flag accesses need to be made atomic).
434 	 */
435 	bool pause;
436 
437 	/*
438 	 * We maintain more than a single set of debug registers to support
439 	 * debugging the guest from the host and to maintain separate host and
440 	 * guest state during world switches. vcpu_debug_state are the debug
441 	 * registers of the vcpu as the guest sees them.  host_debug_state are
442 	 * the host registers which are saved and restored during
443 	 * world switches. external_debug_state contains the debug
444 	 * values we want to debug the guest. This is set via the
445 	 * KVM_SET_GUEST_DEBUG ioctl.
446 	 *
447 	 * debug_ptr points to the set of debug registers that should be loaded
448 	 * onto the hardware when running the guest.
449 	 */
450 	struct kvm_guest_debug_arch *debug_ptr;
451 	struct kvm_guest_debug_arch vcpu_debug_state;
452 	struct kvm_guest_debug_arch external_debug_state;
453 
454 	struct user_fpsimd_state *host_fpsimd_state;	/* hyp VA */
455 	struct task_struct *parent_task;
456 
457 	struct {
458 		/* {Break,watch}point registers */
459 		struct kvm_guest_debug_arch regs;
460 		/* Statistical profiling extension */
461 		u64 pmscr_el1;
462 		/* Self-hosted trace */
463 		u64 trfcr_el1;
464 	} host_debug_state;
465 
466 	/* VGIC state */
467 	struct vgic_cpu vgic_cpu;
468 	struct arch_timer_cpu timer_cpu;
469 	struct kvm_pmu pmu;
470 
471 	/*
472 	 * Guest registers we preserve during guest debugging.
473 	 *
474 	 * These shadow registers are updated by the kvm_handle_sys_reg
475 	 * trap handler if the guest accesses or updates them while we
476 	 * are using guest debug.
477 	 */
478 	struct {
479 		u32	mdscr_el1;
480 		bool	pstate_ss;
481 	} guest_debug_preserved;
482 
483 	/* vcpu power state */
484 	struct kvm_mp_state mp_state;
485 
486 	/* Cache some mmu pages needed inside spinlock regions */
487 	struct kvm_mmu_memory_cache mmu_page_cache;
488 
489 	/* Target CPU and feature flags */
490 	int target;
491 	DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
492 
493 	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
494 	u64 vsesr_el2;
495 
496 	/* Additional reset state */
497 	struct vcpu_reset_state	reset_state;
498 
499 	/* Guest PV state */
500 	struct {
501 		u64 last_steal;
502 		gpa_t base;
503 	} steal;
504 };
505 
506 /*
507  * Each 'flag' is composed of a comma-separated triplet:
508  *
509  * - the flag-set it belongs to in the vcpu->arch structure
510  * - the value for that flag
511  * - the mask for that flag
512  *
513  *  __vcpu_single_flag() builds such a triplet for a single-bit flag.
514  * unpack_vcpu_flag() extract the flag value from the triplet for
515  * direct use outside of the flag accessors.
516  */
517 #define __vcpu_single_flag(_set, _f)	_set, (_f), (_f)
518 
519 #define __unpack_flag(_set, _f, _m)	_f
520 #define unpack_vcpu_flag(...)		__unpack_flag(__VA_ARGS__)
521 
522 #define __build_check_flag(v, flagset, f, m)			\
523 	do {							\
524 		typeof(v->arch.flagset) *_fset;			\
525 								\
526 		/* Check that the flags fit in the mask */	\
527 		BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m)));	\
528 		/* Check that the flags fit in the type */	\
529 		BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m));	\
530 	} while (0)
531 
532 #define __vcpu_get_flag(v, flagset, f, m)			\
533 	({							\
534 		__build_check_flag(v, flagset, f, m);		\
535 								\
536 		v->arch.flagset & (m);				\
537 	})
538 
539 #define __vcpu_set_flag(v, flagset, f, m)			\
540 	do {							\
541 		typeof(v->arch.flagset) *fset;			\
542 								\
543 		__build_check_flag(v, flagset, f, m);		\
544 								\
545 		fset = &v->arch.flagset;			\
546 		if (HWEIGHT(m) > 1)				\
547 			*fset &= ~(m);				\
548 		*fset |= (f);					\
549 	} while (0)
550 
551 #define __vcpu_clear_flag(v, flagset, f, m)			\
552 	do {							\
553 		typeof(v->arch.flagset) *fset;			\
554 								\
555 		__build_check_flag(v, flagset, f, m);		\
556 								\
557 		fset = &v->arch.flagset;			\
558 		*fset &= ~(m);					\
559 	} while (0)
560 
561 #define vcpu_get_flag(v, ...)	__vcpu_get_flag((v), __VA_ARGS__)
562 #define vcpu_set_flag(v, ...)	__vcpu_set_flag((v), __VA_ARGS__)
563 #define vcpu_clear_flag(v, ...)	__vcpu_clear_flag((v), __VA_ARGS__)
564 
565 /* SVE exposed to guest */
566 #define GUEST_HAS_SVE		__vcpu_single_flag(cflags, BIT(0))
567 /* SVE config completed */
568 #define VCPU_SVE_FINALIZED	__vcpu_single_flag(cflags, BIT(1))
569 /* PTRAUTH exposed to guest */
570 #define GUEST_HAS_PTRAUTH	__vcpu_single_flag(cflags, BIT(2))
571 
572 /* Exception pending */
573 #define PENDING_EXCEPTION	__vcpu_single_flag(iflags, BIT(0))
574 /*
575  * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
576  * be set together with an exception...
577  */
578 #define INCREMENT_PC		__vcpu_single_flag(iflags, BIT(1))
579 /* Target EL/MODE (not a single flag, but let's abuse the macro) */
580 #define EXCEPT_MASK		__vcpu_single_flag(iflags, GENMASK(3, 1))
581 
582 /* Helpers to encode exceptions with minimum fuss */
583 #define __EXCEPT_MASK_VAL	unpack_vcpu_flag(EXCEPT_MASK)
584 #define __EXCEPT_SHIFT		__builtin_ctzl(__EXCEPT_MASK_VAL)
585 #define __vcpu_except_flags(_f)	iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
586 
587 /*
588  * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
589  * values:
590  *
591  * For AArch32 EL1:
592  */
593 #define EXCEPT_AA32_UND		__vcpu_except_flags(0)
594 #define EXCEPT_AA32_IABT	__vcpu_except_flags(1)
595 #define EXCEPT_AA32_DABT	__vcpu_except_flags(2)
596 /* For AArch64: */
597 #define EXCEPT_AA64_EL1_SYNC	__vcpu_except_flags(0)
598 #define EXCEPT_AA64_EL1_IRQ	__vcpu_except_flags(1)
599 #define EXCEPT_AA64_EL1_FIQ	__vcpu_except_flags(2)
600 #define EXCEPT_AA64_EL1_SERR	__vcpu_except_flags(3)
601 /* For AArch64 with NV (one day): */
602 #define EXCEPT_AA64_EL2_SYNC	__vcpu_except_flags(4)
603 #define EXCEPT_AA64_EL2_IRQ	__vcpu_except_flags(5)
604 #define EXCEPT_AA64_EL2_FIQ	__vcpu_except_flags(6)
605 #define EXCEPT_AA64_EL2_SERR	__vcpu_except_flags(7)
606 /* Guest debug is live */
607 #define DEBUG_DIRTY		__vcpu_single_flag(iflags, BIT(4))
608 /* Save SPE context if active  */
609 #define DEBUG_STATE_SAVE_SPE	__vcpu_single_flag(iflags, BIT(5))
610 /* Save TRBE context if active  */
611 #define DEBUG_STATE_SAVE_TRBE	__vcpu_single_flag(iflags, BIT(6))
612 
613 /* SVE enabled for host EL0 */
614 #define HOST_SVE_ENABLED	__vcpu_single_flag(sflags, BIT(0))
615 /* SME enabled for EL0 */
616 #define HOST_SME_ENABLED	__vcpu_single_flag(sflags, BIT(1))
617 /* Physical CPU not in supported_cpus */
618 #define ON_UNSUPPORTED_CPU	__vcpu_single_flag(sflags, BIT(2))
619 /* WFIT instruction trapped */
620 #define IN_WFIT			__vcpu_single_flag(sflags, BIT(3))
621 /* vcpu system registers loaded on physical CPU */
622 #define SYSREGS_ON_CPU		__vcpu_single_flag(sflags, BIT(4))
623 /* Software step state is Active-pending */
624 #define DBG_SS_ACTIVE_PENDING	__vcpu_single_flag(sflags, BIT(5))
625 
626 
627 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
628 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +	\
629 			     sve_ffr_offset((vcpu)->arch.sve_max_vl))
630 
631 #define vcpu_sve_max_vq(vcpu)	sve_vq_from_vl((vcpu)->arch.sve_max_vl)
632 
633 #define vcpu_sve_state_size(vcpu) ({					\
634 	size_t __size_ret;						\
635 	unsigned int __vcpu_vq;						\
636 									\
637 	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
638 		__size_ret = 0;						\
639 	} else {							\
640 		__vcpu_vq = vcpu_sve_max_vq(vcpu);			\
641 		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
642 	}								\
643 									\
644 	__size_ret;							\
645 })
646 
647 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
648 				 KVM_GUESTDBG_USE_SW_BP | \
649 				 KVM_GUESTDBG_USE_HW | \
650 				 KVM_GUESTDBG_SINGLESTEP)
651 
652 #define vcpu_has_sve(vcpu) (system_supports_sve() &&			\
653 			    vcpu_get_flag(vcpu, GUEST_HAS_SVE))
654 
655 #ifdef CONFIG_ARM64_PTR_AUTH
656 #define vcpu_has_ptrauth(vcpu)						\
657 	((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||		\
658 	  cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&		\
659 	  vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH))
660 #else
661 #define vcpu_has_ptrauth(vcpu)		false
662 #endif
663 
664 #define vcpu_on_unsupported_cpu(vcpu)					\
665 	vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
666 
667 #define vcpu_set_on_unsupported_cpu(vcpu)				\
668 	vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
669 
670 #define vcpu_clear_on_unsupported_cpu(vcpu)				\
671 	vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
672 
673 #define vcpu_gp_regs(v)		(&(v)->arch.ctxt.regs)
674 
675 /*
676  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
677  * memory backed version of a register, and not the one most recently
678  * accessed by a running VCPU.  For example, for userspace access or
679  * for system registers that are never context switched, but only
680  * emulated.
681  */
682 #define __ctxt_sys_reg(c,r)	(&(c)->sys_regs[(r)])
683 
684 #define ctxt_sys_reg(c,r)	(*__ctxt_sys_reg(c,r))
685 
686 #define __vcpu_sys_reg(v,r)	(ctxt_sys_reg(&(v)->arch.ctxt, (r)))
687 
688 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
689 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
690 
691 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
692 {
693 	/*
694 	 * *** VHE ONLY ***
695 	 *
696 	 * System registers listed in the switch are not saved on every
697 	 * exit from the guest but are only saved on vcpu_put.
698 	 *
699 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
700 	 * should never be listed below, because the guest cannot modify its
701 	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
702 	 * thread when emulating cross-VCPU communication.
703 	 */
704 	if (!has_vhe())
705 		return false;
706 
707 	switch (reg) {
708 	case CSSELR_EL1:	*val = read_sysreg_s(SYS_CSSELR_EL1);	break;
709 	case SCTLR_EL1:		*val = read_sysreg_s(SYS_SCTLR_EL12);	break;
710 	case CPACR_EL1:		*val = read_sysreg_s(SYS_CPACR_EL12);	break;
711 	case TTBR0_EL1:		*val = read_sysreg_s(SYS_TTBR0_EL12);	break;
712 	case TTBR1_EL1:		*val = read_sysreg_s(SYS_TTBR1_EL12);	break;
713 	case TCR_EL1:		*val = read_sysreg_s(SYS_TCR_EL12);	break;
714 	case ESR_EL1:		*val = read_sysreg_s(SYS_ESR_EL12);	break;
715 	case AFSR0_EL1:		*val = read_sysreg_s(SYS_AFSR0_EL12);	break;
716 	case AFSR1_EL1:		*val = read_sysreg_s(SYS_AFSR1_EL12);	break;
717 	case FAR_EL1:		*val = read_sysreg_s(SYS_FAR_EL12);	break;
718 	case MAIR_EL1:		*val = read_sysreg_s(SYS_MAIR_EL12);	break;
719 	case VBAR_EL1:		*val = read_sysreg_s(SYS_VBAR_EL12);	break;
720 	case CONTEXTIDR_EL1:	*val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
721 	case TPIDR_EL0:		*val = read_sysreg_s(SYS_TPIDR_EL0);	break;
722 	case TPIDRRO_EL0:	*val = read_sysreg_s(SYS_TPIDRRO_EL0);	break;
723 	case TPIDR_EL1:		*val = read_sysreg_s(SYS_TPIDR_EL1);	break;
724 	case AMAIR_EL1:		*val = read_sysreg_s(SYS_AMAIR_EL12);	break;
725 	case CNTKCTL_EL1:	*val = read_sysreg_s(SYS_CNTKCTL_EL12);	break;
726 	case ELR_EL1:		*val = read_sysreg_s(SYS_ELR_EL12);	break;
727 	case PAR_EL1:		*val = read_sysreg_par();		break;
728 	case DACR32_EL2:	*val = read_sysreg_s(SYS_DACR32_EL2);	break;
729 	case IFSR32_EL2:	*val = read_sysreg_s(SYS_IFSR32_EL2);	break;
730 	case DBGVCR32_EL2:	*val = read_sysreg_s(SYS_DBGVCR32_EL2);	break;
731 	default:		return false;
732 	}
733 
734 	return true;
735 }
736 
737 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
738 {
739 	/*
740 	 * *** VHE ONLY ***
741 	 *
742 	 * System registers listed in the switch are not restored on every
743 	 * entry to the guest but are only restored on vcpu_load.
744 	 *
745 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
746 	 * should never be listed below, because the MPIDR should only be set
747 	 * once, before running the VCPU, and never changed later.
748 	 */
749 	if (!has_vhe())
750 		return false;
751 
752 	switch (reg) {
753 	case CSSELR_EL1:	write_sysreg_s(val, SYS_CSSELR_EL1);	break;
754 	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	break;
755 	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	break;
756 	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	break;
757 	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	break;
758 	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	break;
759 	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	break;
760 	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	break;
761 	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	break;
762 	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	break;
763 	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	break;
764 	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	break;
765 	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
766 	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	break;
767 	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	break;
768 	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	break;
769 	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	break;
770 	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	break;
771 	case ELR_EL1:		write_sysreg_s(val, SYS_ELR_EL12);	break;
772 	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	break;
773 	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	break;
774 	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	break;
775 	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	break;
776 	default:		return false;
777 	}
778 
779 	return true;
780 }
781 
782 struct kvm_vm_stat {
783 	struct kvm_vm_stat_generic generic;
784 };
785 
786 struct kvm_vcpu_stat {
787 	struct kvm_vcpu_stat_generic generic;
788 	u64 hvc_exit_stat;
789 	u64 wfe_exit_stat;
790 	u64 wfi_exit_stat;
791 	u64 mmio_exit_user;
792 	u64 mmio_exit_kernel;
793 	u64 signal_exits;
794 	u64 exits;
795 };
796 
797 void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
798 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
799 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
800 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
801 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
802 
803 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
804 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
805 
806 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
807 			      struct kvm_vcpu_events *events);
808 
809 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
810 			      struct kvm_vcpu_events *events);
811 
812 #define KVM_ARCH_WANT_MMU_NOTIFIER
813 
814 void kvm_arm_halt_guest(struct kvm *kvm);
815 void kvm_arm_resume_guest(struct kvm *kvm);
816 
817 #define vcpu_has_run_once(vcpu)	!!rcu_access_pointer((vcpu)->pid)
818 
819 #ifndef __KVM_NVHE_HYPERVISOR__
820 #define kvm_call_hyp_nvhe(f, ...)						\
821 	({								\
822 		struct arm_smccc_res res;				\
823 									\
824 		arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),		\
825 				  ##__VA_ARGS__, &res);			\
826 		WARN_ON(res.a0 != SMCCC_RET_SUCCESS);			\
827 									\
828 		res.a1;							\
829 	})
830 
831 /*
832  * The couple of isb() below are there to guarantee the same behaviour
833  * on VHE as on !VHE, where the eret to EL1 acts as a context
834  * synchronization event.
835  */
836 #define kvm_call_hyp(f, ...)						\
837 	do {								\
838 		if (has_vhe()) {					\
839 			f(__VA_ARGS__);					\
840 			isb();						\
841 		} else {						\
842 			kvm_call_hyp_nvhe(f, ##__VA_ARGS__);		\
843 		}							\
844 	} while(0)
845 
846 #define kvm_call_hyp_ret(f, ...)					\
847 	({								\
848 		typeof(f(__VA_ARGS__)) ret;				\
849 									\
850 		if (has_vhe()) {					\
851 			ret = f(__VA_ARGS__);				\
852 			isb();						\
853 		} else {						\
854 			ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);	\
855 		}							\
856 									\
857 		ret;							\
858 	})
859 #else /* __KVM_NVHE_HYPERVISOR__ */
860 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
861 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
862 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
863 #endif /* __KVM_NVHE_HYPERVISOR__ */
864 
865 void force_vm_exit(const cpumask_t *mask);
866 
867 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
868 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
869 
870 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
871 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
872 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
873 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
874 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
875 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
876 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
877 
878 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
879 
880 int kvm_sys_reg_table_init(void);
881 
882 /* MMIO helpers */
883 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
884 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
885 
886 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
887 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
888 
889 /*
890  * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
891  * arrived in guest context.  For arm64, any event that arrives while a vCPU is
892  * loaded is considered to be "in guest".
893  */
894 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
895 {
896 	return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
897 }
898 
899 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
900 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
901 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
902 
903 bool kvm_arm_pvtime_supported(void);
904 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
905 			    struct kvm_device_attr *attr);
906 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
907 			    struct kvm_device_attr *attr);
908 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
909 			    struct kvm_device_attr *attr);
910 
911 extern unsigned int kvm_arm_vmid_bits;
912 int kvm_arm_vmid_alloc_init(void);
913 void kvm_arm_vmid_alloc_free(void);
914 void kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
915 void kvm_arm_vmid_clear_active(void);
916 
917 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
918 {
919 	vcpu_arch->steal.base = GPA_INVALID;
920 }
921 
922 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
923 {
924 	return (vcpu_arch->steal.base != GPA_INVALID);
925 }
926 
927 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
928 
929 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
930 
931 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
932 
933 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
934 {
935 	/* The host's MPIDR is immutable, so let's set it up at boot time */
936 	ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
937 }
938 
939 static inline bool kvm_system_needs_idmapped_vectors(void)
940 {
941 	return cpus_have_const_cap(ARM64_SPECTRE_V3A);
942 }
943 
944 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);
945 
946 static inline void kvm_arch_hardware_unsetup(void) {}
947 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
948 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
949 
950 void kvm_arm_init_debug(void);
951 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
952 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
953 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
954 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
955 
956 #define kvm_vcpu_os_lock_enabled(vcpu)		\
957 	(!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & SYS_OSLSR_OSLK))
958 
959 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
960 			       struct kvm_device_attr *attr);
961 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
962 			       struct kvm_device_attr *attr);
963 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
964 			       struct kvm_device_attr *attr);
965 
966 long kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
967 				struct kvm_arm_copy_mte_tags *copy_tags);
968 
969 /* Guest/host FPSIMD coordination helpers */
970 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
971 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
972 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
973 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
974 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
975 void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu);
976 
977 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
978 {
979 	return (!has_vhe() && attr->exclude_host);
980 }
981 
982 /* Flags for host debug state */
983 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
984 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
985 
986 #ifdef CONFIG_KVM
987 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
988 void kvm_clr_pmu_events(u32 clr);
989 #else
990 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
991 static inline void kvm_clr_pmu_events(u32 clr) {}
992 #endif
993 
994 void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
995 void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
996 
997 int kvm_set_ipa_limit(void);
998 
999 #define __KVM_HAVE_ARCH_VM_ALLOC
1000 struct kvm *kvm_arch_alloc_vm(void);
1001 
1002 static inline bool kvm_vm_is_protected(struct kvm *kvm)
1003 {
1004 	return false;
1005 }
1006 
1007 void kvm_init_protected_traps(struct kvm_vcpu *vcpu);
1008 
1009 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
1010 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
1011 
1012 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
1013 
1014 #define kvm_has_mte(kvm)					\
1015 	(system_supports_mte() &&				\
1016 	 test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
1017 
1018 #define kvm_supports_32bit_el0()				\
1019 	(system_supports_32bit_el0() &&				\
1020 	 !static_branch_unlikely(&arm64_mismatched_32bit_el0))
1021 
1022 int kvm_trng_call(struct kvm_vcpu *vcpu);
1023 #ifdef CONFIG_KVM
1024 extern phys_addr_t hyp_mem_base;
1025 extern phys_addr_t hyp_mem_size;
1026 void __init kvm_hyp_reserve(void);
1027 #else
1028 static inline void kvm_hyp_reserve(void) { }
1029 #endif
1030 
1031 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
1032 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
1033 
1034 #endif /* __ARM64_KVM_HOST_H__ */
1035