1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Contains CPU feature definitions
4 *
5 * Copyright (C) 2015 ARM Ltd.
6 *
7 * A note for the weary kernel hacker: the code here is confusing and hard to
8 * follow! That's partly because it's solving a nasty problem, but also because
9 * there's a little bit of over-abstraction that tends to obscure what's going
10 * on behind a maze of helper functions and macros.
11 *
12 * The basic problem is that hardware folks have started gluing together CPUs
13 * with distinct architectural features; in some cases even creating SoCs where
14 * user-visible instructions are available only on a subset of the available
15 * cores. We try to address this by snapshotting the feature registers of the
16 * boot CPU and comparing these with the feature registers of each secondary
17 * CPU when bringing them up. If there is a mismatch, then we update the
18 * snapshot state to indicate the lowest-common denominator of the feature,
19 * known as the "safe" value. This snapshot state can be queried to view the
20 * "sanitised" value of a feature register.
21 *
22 * The sanitised register values are used to decide which capabilities we
23 * have in the system. These may be in the form of traditional "hwcaps"
24 * advertised to userspace or internal "cpucaps" which are used to configure
25 * things like alternative patching and static keys. While a feature mismatch
26 * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27 * may prevent a CPU from being onlined at all.
28 *
29 * Some implementation details worth remembering:
30 *
31 * - Mismatched features are *always* sanitised to a "safe" value, which
32 * usually indicates that the feature is not supported.
33 *
34 * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35 * warning when onlining an offending CPU and the kernel will be tainted
36 * with TAINT_CPU_OUT_OF_SPEC.
37 *
38 * - Features marked as FTR_VISIBLE have their sanitised value visible to
39 * userspace. FTR_VISIBLE features in registers that are only visible
40 * to EL0 by trapping *must* have a corresponding HWCAP so that late
41 * onlining of CPUs cannot lead to features disappearing at runtime.
42 *
43 * - A "feature" is typically a 4-bit register field. A "capability" is the
44 * high-level description derived from the sanitised field value.
45 *
46 * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47 * scheme for fields in ID registers") to understand when feature fields
48 * may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49 *
50 * - KVM exposes its own view of the feature registers to guest operating
51 * systems regardless of FTR_VISIBLE. This is typically driven from the
52 * sanitised register values to allow virtual CPUs to be migrated between
53 * arbitrary physical CPUs, but some features not present on the host are
54 * also advertised and emulated. Look at sys_reg_descs[] for the gory
55 * details.
56 *
57 * - If the arm64_ftr_bits[] for a register has a missing field, then this
58 * field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59 * This is stronger than FTR_HIDDEN and can be used to hide features from
60 * KVM guests.
61 */
62
63 #define pr_fmt(fmt) "CPU features: " fmt
64
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/kstrtox.h>
69 #include <linux/sort.h>
70 #include <linux/stop_machine.h>
71 #include <linux/sysfs.h>
72 #include <linux/types.h>
73 #include <linux/minmax.h>
74 #include <linux/mm.h>
75 #include <linux/cpu.h>
76 #include <linux/kasan.h>
77 #include <linux/percpu.h>
78
79 #include <asm/cpu.h>
80 #include <asm/cpufeature.h>
81 #include <asm/cpu_ops.h>
82 #include <asm/fpsimd.h>
83 #include <asm/hwcap.h>
84 #include <asm/insn.h>
85 #include <asm/kvm_host.h>
86 #include <asm/mmu_context.h>
87 #include <asm/mte.h>
88 #include <asm/processor.h>
89 #include <asm/smp.h>
90 #include <asm/sysreg.h>
91 #include <asm/traps.h>
92 #include <asm/vectors.h>
93 #include <asm/virt.h>
94
95 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
96 static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
97
98 #ifdef CONFIG_COMPAT
99 #define COMPAT_ELF_HWCAP_DEFAULT \
100 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
101 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
102 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
103 COMPAT_HWCAP_LPAE)
104 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
105 unsigned int compat_elf_hwcap2 __read_mostly;
106 #endif
107
108 DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
109 EXPORT_SYMBOL(system_cpucaps);
110 static struct arm64_cpu_capabilities const __ro_after_init *cpucap_ptrs[ARM64_NCAPS];
111
112 DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
113
114 bool arm64_use_ng_mappings = false;
115 EXPORT_SYMBOL(arm64_use_ng_mappings);
116
117 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
118
119 /*
120 * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
121 * support it?
122 */
123 static bool __read_mostly allow_mismatched_32bit_el0;
124
125 /*
126 * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
127 * seen at least one CPU capable of 32-bit EL0.
128 */
129 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
130
131 /*
132 * Mask of CPUs supporting 32-bit EL0.
133 * Only valid if arm64_mismatched_32bit_el0 is enabled.
134 */
135 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
136
dump_cpu_features(void)137 void dump_cpu_features(void)
138 {
139 /* file-wide pr_fmt adds "CPU features: " prefix */
140 pr_emerg("0x%*pb\n", ARM64_NCAPS, &system_cpucaps);
141 }
142
143 #define __ARM64_MAX_POSITIVE(reg, field) \
144 ((reg##_##field##_SIGNED ? \
145 BIT(reg##_##field##_WIDTH - 1) : \
146 BIT(reg##_##field##_WIDTH)) - 1)
147
148 #define __ARM64_MIN_NEGATIVE(reg, field) BIT(reg##_##field##_WIDTH - 1)
149
150 #define __ARM64_CPUID_FIELDS(reg, field, min_value, max_value) \
151 .sys_reg = SYS_##reg, \
152 .field_pos = reg##_##field##_SHIFT, \
153 .field_width = reg##_##field##_WIDTH, \
154 .sign = reg##_##field##_SIGNED, \
155 .min_field_value = min_value, \
156 .max_field_value = max_value,
157
158 /*
159 * ARM64_CPUID_FIELDS() encodes a field with a range from min_value to
160 * an implicit maximum that depends on the sign-ess of the field.
161 *
162 * An unsigned field will be capped at all ones, while a signed field
163 * will be limited to the positive half only.
164 */
165 #define ARM64_CPUID_FIELDS(reg, field, min_value) \
166 __ARM64_CPUID_FIELDS(reg, field, \
167 SYS_FIELD_VALUE(reg, field, min_value), \
168 __ARM64_MAX_POSITIVE(reg, field))
169
170 /*
171 * ARM64_CPUID_FIELDS_NEG() encodes a field with a range from an
172 * implicit minimal value to max_value. This should be used when
173 * matching a non-implemented property.
174 */
175 #define ARM64_CPUID_FIELDS_NEG(reg, field, max_value) \
176 __ARM64_CPUID_FIELDS(reg, field, \
177 __ARM64_MIN_NEGATIVE(reg, field), \
178 SYS_FIELD_VALUE(reg, field, max_value))
179
180 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
181 { \
182 .sign = SIGNED, \
183 .visible = VISIBLE, \
184 .strict = STRICT, \
185 .type = TYPE, \
186 .shift = SHIFT, \
187 .width = WIDTH, \
188 .safe_val = SAFE_VAL, \
189 }
190
191 /* Define a feature with unsigned values */
192 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
193 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
194
195 /* Define a feature with a signed value */
196 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
197 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
198
199 #define ARM64_FTR_END \
200 { \
201 .width = 0, \
202 }
203
204 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
205
206 static bool __system_matches_cap(unsigned int n);
207
208 /*
209 * NOTE: Any changes to the visibility of features should be kept in
210 * sync with the documentation of the CPU feature register ABI.
211 */
212 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
213 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
214 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
215 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
216 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
217 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
218 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
219 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
220 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
221 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
222 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
223 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
224 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
225 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
226 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
227 ARM64_FTR_END,
228 };
229
230 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
231 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
232 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
233 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
234 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
235 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
236 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
237 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
238 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
239 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
240 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
241 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
242 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
243 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
244 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
245 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
246 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
247 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
248 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
249 ARM64_FTR_END,
250 };
251
252 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
253 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_LUT_SHIFT, 4, 0),
254 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0),
255 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0),
256 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CLRBHB_SHIFT, 4, 0),
257 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
258 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_MOPS_SHIFT, 4, 0),
259 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
260 FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
261 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
262 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
263 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
264 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
265 ARM64_FTR_END,
266 };
267
268 static const struct arm64_ftr_bits ftr_id_aa64isar3[] = {
269 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FAMINMAX_SHIFT, 4, 0),
270 ARM64_FTR_END,
271 };
272
273 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
274 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
275 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
276 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
277 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
278 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
279 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
280 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
281 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
282 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
283 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
284 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
285 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
286 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
287 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
288 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_EL1_IMP),
289 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_EL0_IMP),
290 ARM64_FTR_END,
291 };
292
293 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
294 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
295 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
296 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
297 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
298 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
299 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
300 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
301 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
302 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
303 ARM64_FTR_END,
304 };
305
306 static const struct arm64_ftr_bits ftr_id_aa64pfr2[] = {
307 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_FPMR_SHIFT, 4, 0),
308 ARM64_FTR_END,
309 };
310
311 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
312 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
313 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
314 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
315 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
316 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
317 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
318 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
319 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
320 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
321 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
322 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
323 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_B16B16_SHIFT, 4, 0),
324 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
325 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
326 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
327 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
328 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
329 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
330 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
331 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
332 ARM64_FTR_END,
333 };
334
335 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
336 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
337 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
338 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
339 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_LUTv2_SHIFT, 1, 0),
340 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
341 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0),
342 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
343 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
344 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
345 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
346 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
347 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0),
348 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
349 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0),
350 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
351 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0),
352 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
353 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F16_SHIFT, 1, 0),
354 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
355 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F32_SHIFT, 1, 0),
356 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
357 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
358 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
359 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
360 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
361 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
362 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
363 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0),
364 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
365 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
366 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
367 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8FMA_SHIFT, 1, 0),
368 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
369 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP4_SHIFT, 1, 0),
370 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
371 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP2_SHIFT, 1, 0),
372 ARM64_FTR_END,
373 };
374
375 static const struct arm64_ftr_bits ftr_id_aa64fpfr0[] = {
376 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8CVT_SHIFT, 1, 0),
377 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8FMA_SHIFT, 1, 0),
378 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP4_SHIFT, 1, 0),
379 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP2_SHIFT, 1, 0),
380 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E4M3_SHIFT, 1, 0),
381 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E5M2_SHIFT, 1, 0),
382 ARM64_FTR_END,
383 };
384
385 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
386 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
387 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
388 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
389 /*
390 * Page size not being supported at Stage-2 is not fatal. You
391 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
392 * your favourite nesting hypervisor.
393 *
394 * There is a small corner case where the hypervisor explicitly
395 * advertises a given granule size at Stage-2 (value 2) on some
396 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
397 * vCPUs. Although this is not forbidden by the architecture, it
398 * indicates that the hypervisor is being silly (or buggy).
399 *
400 * We make no effort to cope with this and pretend that if these
401 * fields are inconsistent across vCPUs, then it isn't worth
402 * trying to bring KVM up.
403 */
404 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
405 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
406 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
407 /*
408 * We already refuse to boot CPUs that don't support our configured
409 * page size, so we can only detect mismatches for a page size other
410 * than the one we're currently using. Unfortunately, SoCs like this
411 * exist in the wild so, even though we don't like it, we'll have to go
412 * along with it and treat them as non-strict.
413 */
414 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
415 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
416 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
417
418 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
419 /* Linux shouldn't care about secure memory */
420 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
421 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
422 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
423 /*
424 * Differing PARange is fine as long as all peripherals and memory are mapped
425 * within the minimum PARange of all CPUs
426 */
427 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
428 ARM64_FTR_END,
429 };
430
431 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
432 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ECBHB_SHIFT, 4, 0),
433 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
434 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
435 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HCX_SHIFT, 4, 0),
436 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
437 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
438 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
439 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
440 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
441 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
442 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
443 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
444 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
445 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
446 ARM64_FTR_END,
447 };
448
449 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
450 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
451 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
452 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
453 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
454 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
455 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
456 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
457 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
458 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
459 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
460 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
461 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
462 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
463 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
464 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
465 ARM64_FTR_END,
466 };
467
468 static const struct arm64_ftr_bits ftr_id_aa64mmfr3[] = {
469 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_POE),
470 FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1POE_SHIFT, 4, 0),
471 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1PIE_SHIFT, 4, 0),
472 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_TCRX_SHIFT, 4, 0),
473 ARM64_FTR_END,
474 };
475
476 static const struct arm64_ftr_bits ftr_id_aa64mmfr4[] = {
477 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_E2H0_SHIFT, 4, 0),
478 ARM64_FTR_END,
479 };
480
481 static const struct arm64_ftr_bits ftr_ctr[] = {
482 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
483 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
484 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
485 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
486 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
487 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
488 /*
489 * Linux can handle differing I-cache policies. Userspace JITs will
490 * make use of *minLine.
491 * If we have differing I-cache policies, report it as the weakest - VIPT.
492 */
493 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT), /* L1Ip */
494 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
495 ARM64_FTR_END,
496 };
497
498 static struct arm64_ftr_override __ro_after_init no_override = { };
499
500 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
501 .name = "SYS_CTR_EL0",
502 .ftr_bits = ftr_ctr,
503 .override = &no_override,
504 };
505
506 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
507 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf),
508 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0),
509 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0),
510 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0),
511 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0),
512 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf),
513 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0),
514 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0),
515 ARM64_FTR_END,
516 };
517
518 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
519 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
520 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
521 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
522 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
523 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
524 /*
525 * We can instantiate multiple PMU instances with different levels
526 * of support.
527 */
528 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
529 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
530 ARM64_FTR_END,
531 };
532
533 static const struct arm64_ftr_bits ftr_mvfr0[] = {
534 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0),
535 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0),
536 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0),
537 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0),
538 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0),
539 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0),
540 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0),
541 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0),
542 ARM64_FTR_END,
543 };
544
545 static const struct arm64_ftr_bits ftr_mvfr1[] = {
546 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0),
547 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0),
548 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0),
549 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0),
550 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0),
551 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0),
552 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0),
553 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0),
554 ARM64_FTR_END,
555 };
556
557 static const struct arm64_ftr_bits ftr_mvfr2[] = {
558 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0),
559 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0),
560 ARM64_FTR_END,
561 };
562
563 static const struct arm64_ftr_bits ftr_dczid[] = {
564 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
565 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
566 ARM64_FTR_END,
567 };
568
569 static const struct arm64_ftr_bits ftr_gmid[] = {
570 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
571 ARM64_FTR_END,
572 };
573
574 static const struct arm64_ftr_bits ftr_id_isar0[] = {
575 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0),
576 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0),
577 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0),
578 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0),
579 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0),
580 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0),
581 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0),
582 ARM64_FTR_END,
583 };
584
585 static const struct arm64_ftr_bits ftr_id_isar5[] = {
586 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0),
587 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0),
588 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0),
589 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0),
590 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0),
591 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0),
592 ARM64_FTR_END,
593 };
594
595 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
596 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0),
597 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0),
598 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0),
599 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0),
600 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0),
601 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0),
602 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0),
603
604 /*
605 * SpecSEI = 1 indicates that the PE might generate an SError on an
606 * external abort on speculative read. It is safe to assume that an
607 * SError might be generated than it will not be. Hence it has been
608 * classified as FTR_HIGHER_SAFE.
609 */
610 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0),
611 ARM64_FTR_END,
612 };
613
614 static const struct arm64_ftr_bits ftr_id_isar4[] = {
615 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0),
616 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0),
617 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0),
618 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0),
619 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0),
620 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0),
621 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0),
622 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0),
623 ARM64_FTR_END,
624 };
625
626 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
627 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0),
628 ARM64_FTR_END,
629 };
630
631 static const struct arm64_ftr_bits ftr_id_isar6[] = {
632 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0),
633 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0),
634 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0),
635 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0),
636 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0),
637 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0),
638 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0),
639 ARM64_FTR_END,
640 };
641
642 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
643 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0),
644 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0),
645 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0),
646 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0),
647 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0),
648 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0),
649 ARM64_FTR_END,
650 };
651
652 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
653 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0),
654 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0),
655 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0),
656 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0),
657 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0),
658 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0),
659 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0),
660 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0),
661 ARM64_FTR_END,
662 };
663
664 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
665 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0),
666 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0),
667 ARM64_FTR_END,
668 };
669
670 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
671 /* [31:28] TraceFilt */
672 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0),
673 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0),
674 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0),
675 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0),
676 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0),
677 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0),
678 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0),
679 ARM64_FTR_END,
680 };
681
682 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
683 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0),
684 ARM64_FTR_END,
685 };
686
687 /*
688 * Common ftr bits for a 32bit register with all hidden, strict
689 * attributes, with 4bit feature fields and a default safe value of
690 * 0. Covers the following 32bit registers:
691 * id_isar[1-3], id_mmfr[1-3]
692 */
693 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
694 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
695 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
696 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
697 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
698 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
699 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
700 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
701 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
702 ARM64_FTR_END,
703 };
704
705 /* Table for a single 32bit feature value */
706 static const struct arm64_ftr_bits ftr_single32[] = {
707 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
708 ARM64_FTR_END,
709 };
710
711 static const struct arm64_ftr_bits ftr_raz[] = {
712 ARM64_FTR_END,
713 };
714
715 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) { \
716 .sys_id = id, \
717 .reg = &(struct arm64_ftr_reg){ \
718 .name = id_str, \
719 .override = (ovr), \
720 .ftr_bits = &((table)[0]), \
721 }}
722
723 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr) \
724 __ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
725
726 #define ARM64_FTR_REG(id, table) \
727 __ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
728
729 struct arm64_ftr_override id_aa64mmfr0_override;
730 struct arm64_ftr_override id_aa64mmfr1_override;
731 struct arm64_ftr_override id_aa64mmfr2_override;
732 struct arm64_ftr_override id_aa64pfr0_override;
733 struct arm64_ftr_override id_aa64pfr1_override;
734 struct arm64_ftr_override id_aa64zfr0_override;
735 struct arm64_ftr_override id_aa64smfr0_override;
736 struct arm64_ftr_override id_aa64isar1_override;
737 struct arm64_ftr_override id_aa64isar2_override;
738
739 struct arm64_ftr_override arm64_sw_feature_override;
740
741 static const struct __ftr_reg_entry {
742 u32 sys_id;
743 struct arm64_ftr_reg *reg;
744 } arm64_ftr_regs[] = {
745
746 /* Op1 = 0, CRn = 0, CRm = 1 */
747 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
748 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
749 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
750 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
751 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
752 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
753 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
754
755 /* Op1 = 0, CRn = 0, CRm = 2 */
756 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
757 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
758 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
759 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
760 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
761 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
762 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
763 ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
764
765 /* Op1 = 0, CRn = 0, CRm = 3 */
766 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
767 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
768 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
769 ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
770 ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
771 ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
772
773 /* Op1 = 0, CRn = 0, CRm = 4 */
774 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
775 &id_aa64pfr0_override),
776 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
777 &id_aa64pfr1_override),
778 ARM64_FTR_REG(SYS_ID_AA64PFR2_EL1, ftr_id_aa64pfr2),
779 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
780 &id_aa64zfr0_override),
781 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
782 &id_aa64smfr0_override),
783 ARM64_FTR_REG(SYS_ID_AA64FPFR0_EL1, ftr_id_aa64fpfr0),
784
785 /* Op1 = 0, CRn = 0, CRm = 5 */
786 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
787 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
788
789 /* Op1 = 0, CRn = 0, CRm = 6 */
790 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
791 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
792 &id_aa64isar1_override),
793 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
794 &id_aa64isar2_override),
795 ARM64_FTR_REG(SYS_ID_AA64ISAR3_EL1, ftr_id_aa64isar3),
796
797 /* Op1 = 0, CRn = 0, CRm = 7 */
798 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0,
799 &id_aa64mmfr0_override),
800 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
801 &id_aa64mmfr1_override),
802 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2,
803 &id_aa64mmfr2_override),
804 ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3),
805 ARM64_FTR_REG(SYS_ID_AA64MMFR4_EL1, ftr_id_aa64mmfr4),
806
807 /* Op1 = 1, CRn = 0, CRm = 0 */
808 ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
809
810 /* Op1 = 3, CRn = 0, CRm = 0 */
811 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
812 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
813
814 /* Op1 = 3, CRn = 14, CRm = 0 */
815 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
816 };
817
search_cmp_ftr_reg(const void * id,const void * regp)818 static int search_cmp_ftr_reg(const void *id, const void *regp)
819 {
820 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
821 }
822
823 /*
824 * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
825 * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
826 * ascending order of sys_id, we use binary search to find a matching
827 * entry.
828 *
829 * returns - Upon success, matching ftr_reg entry for id.
830 * - NULL on failure. It is upto the caller to decide
831 * the impact of a failure.
832 */
get_arm64_ftr_reg_nowarn(u32 sys_id)833 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
834 {
835 const struct __ftr_reg_entry *ret;
836
837 ret = bsearch((const void *)(unsigned long)sys_id,
838 arm64_ftr_regs,
839 ARRAY_SIZE(arm64_ftr_regs),
840 sizeof(arm64_ftr_regs[0]),
841 search_cmp_ftr_reg);
842 if (ret)
843 return ret->reg;
844 return NULL;
845 }
846
847 /*
848 * get_arm64_ftr_reg - Looks up a feature register entry using
849 * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
850 *
851 * returns - Upon success, matching ftr_reg entry for id.
852 * - NULL on failure but with an WARN_ON().
853 */
get_arm64_ftr_reg(u32 sys_id)854 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
855 {
856 struct arm64_ftr_reg *reg;
857
858 reg = get_arm64_ftr_reg_nowarn(sys_id);
859
860 /*
861 * Requesting a non-existent register search is an error. Warn
862 * and let the caller handle it.
863 */
864 WARN_ON(!reg);
865 return reg;
866 }
867
arm64_ftr_set_value(const struct arm64_ftr_bits * ftrp,s64 reg,s64 ftr_val)868 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
869 s64 ftr_val)
870 {
871 u64 mask = arm64_ftr_mask(ftrp);
872
873 reg &= ~mask;
874 reg |= (ftr_val << ftrp->shift) & mask;
875 return reg;
876 }
877
arm64_ftr_safe_value(const struct arm64_ftr_bits * ftrp,s64 new,s64 cur)878 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
879 s64 cur)
880 {
881 s64 ret = 0;
882
883 switch (ftrp->type) {
884 case FTR_EXACT:
885 ret = ftrp->safe_val;
886 break;
887 case FTR_LOWER_SAFE:
888 ret = min(new, cur);
889 break;
890 case FTR_HIGHER_OR_ZERO_SAFE:
891 if (!cur || !new)
892 break;
893 fallthrough;
894 case FTR_HIGHER_SAFE:
895 ret = max(new, cur);
896 break;
897 default:
898 BUG();
899 }
900
901 return ret;
902 }
903
sort_ftr_regs(void)904 static void __init sort_ftr_regs(void)
905 {
906 unsigned int i;
907
908 for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
909 const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
910 const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
911 unsigned int j = 0;
912
913 /*
914 * Features here must be sorted in descending order with respect
915 * to their shift values and should not overlap with each other.
916 */
917 for (; ftr_bits->width != 0; ftr_bits++, j++) {
918 unsigned int width = ftr_reg->ftr_bits[j].width;
919 unsigned int shift = ftr_reg->ftr_bits[j].shift;
920 unsigned int prev_shift;
921
922 WARN((shift + width) > 64,
923 "%s has invalid feature at shift %d\n",
924 ftr_reg->name, shift);
925
926 /*
927 * Skip the first feature. There is nothing to
928 * compare against for now.
929 */
930 if (j == 0)
931 continue;
932
933 prev_shift = ftr_reg->ftr_bits[j - 1].shift;
934 WARN((shift + width) > prev_shift,
935 "%s has feature overlap at shift %d\n",
936 ftr_reg->name, shift);
937 }
938
939 /*
940 * Skip the first register. There is nothing to
941 * compare against for now.
942 */
943 if (i == 0)
944 continue;
945 /*
946 * Registers here must be sorted in ascending order with respect
947 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
948 * to work correctly.
949 */
950 BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
951 }
952 }
953
954 /*
955 * Initialise the CPU feature register from Boot CPU values.
956 * Also initiliases the strict_mask for the register.
957 * Any bits that are not covered by an arm64_ftr_bits entry are considered
958 * RES0 for the system-wide value, and must strictly match.
959 */
init_cpu_ftr_reg(u32 sys_reg,u64 new)960 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
961 {
962 u64 val = 0;
963 u64 strict_mask = ~0x0ULL;
964 u64 user_mask = 0;
965 u64 valid_mask = 0;
966
967 const struct arm64_ftr_bits *ftrp;
968 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
969
970 if (!reg)
971 return;
972
973 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
974 u64 ftr_mask = arm64_ftr_mask(ftrp);
975 s64 ftr_new = arm64_ftr_value(ftrp, new);
976 s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
977
978 if ((ftr_mask & reg->override->mask) == ftr_mask) {
979 s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
980 char *str = NULL;
981
982 if (ftr_ovr != tmp) {
983 /* Unsafe, remove the override */
984 reg->override->mask &= ~ftr_mask;
985 reg->override->val &= ~ftr_mask;
986 tmp = ftr_ovr;
987 str = "ignoring override";
988 } else if (ftr_new != tmp) {
989 /* Override was valid */
990 ftr_new = tmp;
991 str = "forced";
992 } else if (ftr_ovr == tmp) {
993 /* Override was the safe value */
994 str = "already set";
995 }
996
997 if (str)
998 pr_warn("%s[%d:%d]: %s to %llx\n",
999 reg->name,
1000 ftrp->shift + ftrp->width - 1,
1001 ftrp->shift, str,
1002 tmp & (BIT(ftrp->width) - 1));
1003 } else if ((ftr_mask & reg->override->val) == ftr_mask) {
1004 reg->override->val &= ~ftr_mask;
1005 pr_warn("%s[%d:%d]: impossible override, ignored\n",
1006 reg->name,
1007 ftrp->shift + ftrp->width - 1,
1008 ftrp->shift);
1009 }
1010
1011 val = arm64_ftr_set_value(ftrp, val, ftr_new);
1012
1013 valid_mask |= ftr_mask;
1014 if (!ftrp->strict)
1015 strict_mask &= ~ftr_mask;
1016 if (ftrp->visible)
1017 user_mask |= ftr_mask;
1018 else
1019 reg->user_val = arm64_ftr_set_value(ftrp,
1020 reg->user_val,
1021 ftrp->safe_val);
1022 }
1023
1024 val &= valid_mask;
1025
1026 reg->sys_val = val;
1027 reg->strict_mask = strict_mask;
1028 reg->user_mask = user_mask;
1029 }
1030
1031 extern const struct arm64_cpu_capabilities arm64_errata[];
1032 static const struct arm64_cpu_capabilities arm64_features[];
1033
1034 static void __init
init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities * caps)1035 init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
1036 {
1037 for (; caps->matches; caps++) {
1038 if (WARN(caps->capability >= ARM64_NCAPS,
1039 "Invalid capability %d\n", caps->capability))
1040 continue;
1041 if (WARN(cpucap_ptrs[caps->capability],
1042 "Duplicate entry for capability %d\n",
1043 caps->capability))
1044 continue;
1045 cpucap_ptrs[caps->capability] = caps;
1046 }
1047 }
1048
init_cpucap_indirect_list(void)1049 static void __init init_cpucap_indirect_list(void)
1050 {
1051 init_cpucap_indirect_list_from_array(arm64_features);
1052 init_cpucap_indirect_list_from_array(arm64_errata);
1053 }
1054
1055 static void __init setup_boot_cpu_capabilities(void);
1056
init_32bit_cpu_features(struct cpuinfo_32bit * info)1057 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
1058 {
1059 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
1060 init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
1061 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
1062 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
1063 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
1064 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
1065 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
1066 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
1067 init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
1068 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
1069 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
1070 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
1071 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
1072 init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
1073 init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
1074 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
1075 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
1076 init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
1077 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
1078 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
1079 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
1080 }
1081
1082 #ifdef CONFIG_ARM64_PSEUDO_NMI
1083 static bool enable_pseudo_nmi;
1084
early_enable_pseudo_nmi(char * p)1085 static int __init early_enable_pseudo_nmi(char *p)
1086 {
1087 return kstrtobool(p, &enable_pseudo_nmi);
1088 }
1089 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1090
detect_system_supports_pseudo_nmi(void)1091 static __init void detect_system_supports_pseudo_nmi(void)
1092 {
1093 struct device_node *np;
1094
1095 if (!enable_pseudo_nmi)
1096 return;
1097
1098 /*
1099 * Detect broken MediaTek firmware that doesn't properly save and
1100 * restore GIC priorities.
1101 */
1102 np = of_find_compatible_node(NULL, NULL, "arm,gic-v3");
1103 if (np && of_property_read_bool(np, "mediatek,broken-save-restore-fw")) {
1104 pr_info("Pseudo-NMI disabled due to MediaTek Chromebook GICR save problem\n");
1105 enable_pseudo_nmi = false;
1106 }
1107 of_node_put(np);
1108 }
1109 #else /* CONFIG_ARM64_PSEUDO_NMI */
detect_system_supports_pseudo_nmi(void)1110 static inline void detect_system_supports_pseudo_nmi(void) { }
1111 #endif
1112
init_cpu_features(struct cpuinfo_arm64 * info)1113 void __init init_cpu_features(struct cpuinfo_arm64 *info)
1114 {
1115 /* Before we start using the tables, make sure it is sorted */
1116 sort_ftr_regs();
1117
1118 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
1119 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
1120 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
1121 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
1122 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
1123 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
1124 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
1125 init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
1126 init_cpu_ftr_reg(SYS_ID_AA64ISAR3_EL1, info->reg_id_aa64isar3);
1127 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
1128 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
1129 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
1130 init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1, info->reg_id_aa64mmfr3);
1131 init_cpu_ftr_reg(SYS_ID_AA64MMFR4_EL1, info->reg_id_aa64mmfr4);
1132 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
1133 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
1134 init_cpu_ftr_reg(SYS_ID_AA64PFR2_EL1, info->reg_id_aa64pfr2);
1135 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
1136 init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1137 init_cpu_ftr_reg(SYS_ID_AA64FPFR0_EL1, info->reg_id_aa64fpfr0);
1138
1139 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1140 init_32bit_cpu_features(&info->aarch32);
1141
1142 if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1143 id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1144 unsigned long cpacr = cpacr_save_enable_kernel_sve();
1145
1146 vec_init_vq_map(ARM64_VEC_SVE);
1147
1148 cpacr_restore(cpacr);
1149 }
1150
1151 if (IS_ENABLED(CONFIG_ARM64_SME) &&
1152 id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1153 unsigned long cpacr = cpacr_save_enable_kernel_sme();
1154
1155 /*
1156 * We mask out SMPS since even if the hardware
1157 * supports priorities the kernel does not at present
1158 * and we block access to them.
1159 */
1160 info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1161 vec_init_vq_map(ARM64_VEC_SME);
1162
1163 cpacr_restore(cpacr);
1164 }
1165
1166 if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1167 init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1168 }
1169
update_cpu_ftr_reg(struct arm64_ftr_reg * reg,u64 new)1170 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1171 {
1172 const struct arm64_ftr_bits *ftrp;
1173
1174 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1175 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1176 s64 ftr_new = arm64_ftr_value(ftrp, new);
1177
1178 if (ftr_cur == ftr_new)
1179 continue;
1180 /* Find a safe value */
1181 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1182 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1183 }
1184
1185 }
1186
check_update_ftr_reg(u32 sys_id,int cpu,u64 val,u64 boot)1187 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1188 {
1189 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1190
1191 if (!regp)
1192 return 0;
1193
1194 update_cpu_ftr_reg(regp, val);
1195 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1196 return 0;
1197 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1198 regp->name, boot, cpu, val);
1199 return 1;
1200 }
1201
relax_cpu_ftr_reg(u32 sys_id,int field)1202 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1203 {
1204 const struct arm64_ftr_bits *ftrp;
1205 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1206
1207 if (!regp)
1208 return;
1209
1210 for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1211 if (ftrp->shift == field) {
1212 regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1213 break;
1214 }
1215 }
1216
1217 /* Bogus field? */
1218 WARN_ON(!ftrp->width);
1219 }
1220
lazy_init_32bit_cpu_features(struct cpuinfo_arm64 * info,struct cpuinfo_arm64 * boot)1221 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1222 struct cpuinfo_arm64 *boot)
1223 {
1224 static bool boot_cpu_32bit_regs_overridden = false;
1225
1226 if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1227 return;
1228
1229 if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1230 return;
1231
1232 boot->aarch32 = info->aarch32;
1233 init_32bit_cpu_features(&boot->aarch32);
1234 boot_cpu_32bit_regs_overridden = true;
1235 }
1236
update_32bit_cpu_features(int cpu,struct cpuinfo_32bit * info,struct cpuinfo_32bit * boot)1237 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1238 struct cpuinfo_32bit *boot)
1239 {
1240 int taint = 0;
1241 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1242
1243 /*
1244 * If we don't have AArch32 at EL1, then relax the strictness of
1245 * EL1-dependent register fields to avoid spurious sanity check fails.
1246 */
1247 if (!id_aa64pfr0_32bit_el1(pfr0)) {
1248 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT);
1249 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT);
1250 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT);
1251 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT);
1252 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT);
1253 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT);
1254 }
1255
1256 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1257 info->reg_id_dfr0, boot->reg_id_dfr0);
1258 taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1259 info->reg_id_dfr1, boot->reg_id_dfr1);
1260 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1261 info->reg_id_isar0, boot->reg_id_isar0);
1262 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1263 info->reg_id_isar1, boot->reg_id_isar1);
1264 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1265 info->reg_id_isar2, boot->reg_id_isar2);
1266 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1267 info->reg_id_isar3, boot->reg_id_isar3);
1268 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1269 info->reg_id_isar4, boot->reg_id_isar4);
1270 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1271 info->reg_id_isar5, boot->reg_id_isar5);
1272 taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1273 info->reg_id_isar6, boot->reg_id_isar6);
1274
1275 /*
1276 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1277 * ACTLR formats could differ across CPUs and therefore would have to
1278 * be trapped for virtualization anyway.
1279 */
1280 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1281 info->reg_id_mmfr0, boot->reg_id_mmfr0);
1282 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1283 info->reg_id_mmfr1, boot->reg_id_mmfr1);
1284 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1285 info->reg_id_mmfr2, boot->reg_id_mmfr2);
1286 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1287 info->reg_id_mmfr3, boot->reg_id_mmfr3);
1288 taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1289 info->reg_id_mmfr4, boot->reg_id_mmfr4);
1290 taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1291 info->reg_id_mmfr5, boot->reg_id_mmfr5);
1292 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1293 info->reg_id_pfr0, boot->reg_id_pfr0);
1294 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1295 info->reg_id_pfr1, boot->reg_id_pfr1);
1296 taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1297 info->reg_id_pfr2, boot->reg_id_pfr2);
1298 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1299 info->reg_mvfr0, boot->reg_mvfr0);
1300 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1301 info->reg_mvfr1, boot->reg_mvfr1);
1302 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1303 info->reg_mvfr2, boot->reg_mvfr2);
1304
1305 return taint;
1306 }
1307
1308 /*
1309 * Update system wide CPU feature registers with the values from a
1310 * non-boot CPU. Also performs SANITY checks to make sure that there
1311 * aren't any insane variations from that of the boot CPU.
1312 */
update_cpu_features(int cpu,struct cpuinfo_arm64 * info,struct cpuinfo_arm64 * boot)1313 void update_cpu_features(int cpu,
1314 struct cpuinfo_arm64 *info,
1315 struct cpuinfo_arm64 *boot)
1316 {
1317 int taint = 0;
1318
1319 /*
1320 * The kernel can handle differing I-cache policies, but otherwise
1321 * caches should look identical. Userspace JITs will make use of
1322 * *minLine.
1323 */
1324 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1325 info->reg_ctr, boot->reg_ctr);
1326
1327 /*
1328 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1329 * could result in too much or too little memory being zeroed if a
1330 * process is preempted and migrated between CPUs.
1331 */
1332 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1333 info->reg_dczid, boot->reg_dczid);
1334
1335 /* If different, timekeeping will be broken (especially with KVM) */
1336 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1337 info->reg_cntfrq, boot->reg_cntfrq);
1338
1339 /*
1340 * The kernel uses self-hosted debug features and expects CPUs to
1341 * support identical debug features. We presently need CTX_CMPs, WRPs,
1342 * and BRPs to be identical.
1343 * ID_AA64DFR1 is currently RES0.
1344 */
1345 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1346 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1347 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1348 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1349 /*
1350 * Even in big.LITTLE, processors should be identical instruction-set
1351 * wise.
1352 */
1353 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1354 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1355 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1356 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1357 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1358 info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1359 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR3_EL1, cpu,
1360 info->reg_id_aa64isar3, boot->reg_id_aa64isar3);
1361
1362 /*
1363 * Differing PARange support is fine as long as all peripherals and
1364 * memory are mapped within the minimum PARange of all CPUs.
1365 * Linux should not care about secure memory.
1366 */
1367 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1368 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1369 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1370 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1371 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1372 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1373 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR3_EL1, cpu,
1374 info->reg_id_aa64mmfr3, boot->reg_id_aa64mmfr3);
1375
1376 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1377 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1378 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1379 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1380 taint |= check_update_ftr_reg(SYS_ID_AA64PFR2_EL1, cpu,
1381 info->reg_id_aa64pfr2, boot->reg_id_aa64pfr2);
1382
1383 taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1384 info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1385
1386 taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1387 info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1388
1389 taint |= check_update_ftr_reg(SYS_ID_AA64FPFR0_EL1, cpu,
1390 info->reg_id_aa64fpfr0, boot->reg_id_aa64fpfr0);
1391
1392 /* Probe vector lengths */
1393 if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1394 id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1395 if (!system_capabilities_finalized()) {
1396 unsigned long cpacr = cpacr_save_enable_kernel_sve();
1397
1398 vec_update_vq_map(ARM64_VEC_SVE);
1399
1400 cpacr_restore(cpacr);
1401 }
1402 }
1403
1404 if (IS_ENABLED(CONFIG_ARM64_SME) &&
1405 id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1406 unsigned long cpacr = cpacr_save_enable_kernel_sme();
1407
1408 /*
1409 * We mask out SMPS since even if the hardware
1410 * supports priorities the kernel does not at present
1411 * and we block access to them.
1412 */
1413 info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1414
1415 /* Probe vector lengths */
1416 if (!system_capabilities_finalized())
1417 vec_update_vq_map(ARM64_VEC_SME);
1418
1419 cpacr_restore(cpacr);
1420 }
1421
1422 /*
1423 * The kernel uses the LDGM/STGM instructions and the number of tags
1424 * they read/write depends on the GMID_EL1.BS field. Check that the
1425 * value is the same on all CPUs.
1426 */
1427 if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1428 id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1429 taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1430 info->reg_gmid, boot->reg_gmid);
1431 }
1432
1433 /*
1434 * If we don't have AArch32 at all then skip the checks entirely
1435 * as the register values may be UNKNOWN and we're not going to be
1436 * using them for anything.
1437 *
1438 * This relies on a sanitised view of the AArch64 ID registers
1439 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1440 */
1441 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1442 lazy_init_32bit_cpu_features(info, boot);
1443 taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1444 &boot->aarch32);
1445 }
1446
1447 /*
1448 * Mismatched CPU features are a recipe for disaster. Don't even
1449 * pretend to support them.
1450 */
1451 if (taint) {
1452 pr_warn_once("Unsupported CPU feature variation detected.\n");
1453 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1454 }
1455 }
1456
read_sanitised_ftr_reg(u32 id)1457 u64 read_sanitised_ftr_reg(u32 id)
1458 {
1459 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1460
1461 if (!regp)
1462 return 0;
1463 return regp->sys_val;
1464 }
1465 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1466
1467 #define read_sysreg_case(r) \
1468 case r: val = read_sysreg_s(r); break;
1469
1470 /*
1471 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1472 * Read the system register on the current CPU
1473 */
__read_sysreg_by_encoding(u32 sys_id)1474 u64 __read_sysreg_by_encoding(u32 sys_id)
1475 {
1476 struct arm64_ftr_reg *regp;
1477 u64 val;
1478
1479 switch (sys_id) {
1480 read_sysreg_case(SYS_ID_PFR0_EL1);
1481 read_sysreg_case(SYS_ID_PFR1_EL1);
1482 read_sysreg_case(SYS_ID_PFR2_EL1);
1483 read_sysreg_case(SYS_ID_DFR0_EL1);
1484 read_sysreg_case(SYS_ID_DFR1_EL1);
1485 read_sysreg_case(SYS_ID_MMFR0_EL1);
1486 read_sysreg_case(SYS_ID_MMFR1_EL1);
1487 read_sysreg_case(SYS_ID_MMFR2_EL1);
1488 read_sysreg_case(SYS_ID_MMFR3_EL1);
1489 read_sysreg_case(SYS_ID_MMFR4_EL1);
1490 read_sysreg_case(SYS_ID_MMFR5_EL1);
1491 read_sysreg_case(SYS_ID_ISAR0_EL1);
1492 read_sysreg_case(SYS_ID_ISAR1_EL1);
1493 read_sysreg_case(SYS_ID_ISAR2_EL1);
1494 read_sysreg_case(SYS_ID_ISAR3_EL1);
1495 read_sysreg_case(SYS_ID_ISAR4_EL1);
1496 read_sysreg_case(SYS_ID_ISAR5_EL1);
1497 read_sysreg_case(SYS_ID_ISAR6_EL1);
1498 read_sysreg_case(SYS_MVFR0_EL1);
1499 read_sysreg_case(SYS_MVFR1_EL1);
1500 read_sysreg_case(SYS_MVFR2_EL1);
1501
1502 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1503 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1504 read_sysreg_case(SYS_ID_AA64PFR2_EL1);
1505 read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1506 read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1507 read_sysreg_case(SYS_ID_AA64FPFR0_EL1);
1508 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1509 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1510 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1511 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1512 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1513 read_sysreg_case(SYS_ID_AA64MMFR3_EL1);
1514 read_sysreg_case(SYS_ID_AA64MMFR4_EL1);
1515 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1516 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1517 read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1518 read_sysreg_case(SYS_ID_AA64ISAR3_EL1);
1519
1520 read_sysreg_case(SYS_CNTFRQ_EL0);
1521 read_sysreg_case(SYS_CTR_EL0);
1522 read_sysreg_case(SYS_DCZID_EL0);
1523
1524 default:
1525 BUG();
1526 return 0;
1527 }
1528
1529 regp = get_arm64_ftr_reg(sys_id);
1530 if (regp) {
1531 val &= ~regp->override->mask;
1532 val |= (regp->override->val & regp->override->mask);
1533 }
1534
1535 return val;
1536 }
1537
1538 #include <linux/irqchip/arm-gic-v3.h>
1539
1540 static bool
has_always(const struct arm64_cpu_capabilities * entry,int scope)1541 has_always(const struct arm64_cpu_capabilities *entry, int scope)
1542 {
1543 return true;
1544 }
1545
1546 static bool
feature_matches(u64 reg,const struct arm64_cpu_capabilities * entry)1547 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1548 {
1549 int val, min, max;
1550 u64 tmp;
1551
1552 val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1553 entry->field_width,
1554 entry->sign);
1555
1556 tmp = entry->min_field_value;
1557 tmp <<= entry->field_pos;
1558
1559 min = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1560 entry->field_width,
1561 entry->sign);
1562
1563 tmp = entry->max_field_value;
1564 tmp <<= entry->field_pos;
1565
1566 max = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1567 entry->field_width,
1568 entry->sign);
1569
1570 return val >= min && val <= max;
1571 }
1572
1573 static u64
read_scoped_sysreg(const struct arm64_cpu_capabilities * entry,int scope)1574 read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1575 {
1576 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1577 if (scope == SCOPE_SYSTEM)
1578 return read_sanitised_ftr_reg(entry->sys_reg);
1579 else
1580 return __read_sysreg_by_encoding(entry->sys_reg);
1581 }
1582
1583 static bool
has_user_cpuid_feature(const struct arm64_cpu_capabilities * entry,int scope)1584 has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1585 {
1586 int mask;
1587 struct arm64_ftr_reg *regp;
1588 u64 val = read_scoped_sysreg(entry, scope);
1589
1590 regp = get_arm64_ftr_reg(entry->sys_reg);
1591 if (!regp)
1592 return false;
1593
1594 mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1595 entry->field_pos,
1596 entry->field_width);
1597 if (!mask)
1598 return false;
1599
1600 return feature_matches(val, entry);
1601 }
1602
1603 static bool
has_cpuid_feature(const struct arm64_cpu_capabilities * entry,int scope)1604 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1605 {
1606 u64 val = read_scoped_sysreg(entry, scope);
1607 return feature_matches(val, entry);
1608 }
1609
system_32bit_el0_cpumask(void)1610 const struct cpumask *system_32bit_el0_cpumask(void)
1611 {
1612 if (!system_supports_32bit_el0())
1613 return cpu_none_mask;
1614
1615 if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1616 return cpu_32bit_el0_mask;
1617
1618 return cpu_possible_mask;
1619 }
1620
parse_32bit_el0_param(char * str)1621 static int __init parse_32bit_el0_param(char *str)
1622 {
1623 allow_mismatched_32bit_el0 = true;
1624 return 0;
1625 }
1626 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1627
aarch32_el0_show(struct device * dev,struct device_attribute * attr,char * buf)1628 static ssize_t aarch32_el0_show(struct device *dev,
1629 struct device_attribute *attr, char *buf)
1630 {
1631 const struct cpumask *mask = system_32bit_el0_cpumask();
1632
1633 return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1634 }
1635 static const DEVICE_ATTR_RO(aarch32_el0);
1636
aarch32_el0_sysfs_init(void)1637 static int __init aarch32_el0_sysfs_init(void)
1638 {
1639 struct device *dev_root;
1640 int ret = 0;
1641
1642 if (!allow_mismatched_32bit_el0)
1643 return 0;
1644
1645 dev_root = bus_get_dev_root(&cpu_subsys);
1646 if (dev_root) {
1647 ret = device_create_file(dev_root, &dev_attr_aarch32_el0);
1648 put_device(dev_root);
1649 }
1650 return ret;
1651 }
1652 device_initcall(aarch32_el0_sysfs_init);
1653
has_32bit_el0(const struct arm64_cpu_capabilities * entry,int scope)1654 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1655 {
1656 if (!has_cpuid_feature(entry, scope))
1657 return allow_mismatched_32bit_el0;
1658
1659 if (scope == SCOPE_SYSTEM)
1660 pr_info("detected: 32-bit EL0 Support\n");
1661
1662 return true;
1663 }
1664
has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities * entry,int scope)1665 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1666 {
1667 bool has_sre;
1668
1669 if (!has_cpuid_feature(entry, scope))
1670 return false;
1671
1672 has_sre = gic_enable_sre();
1673 if (!has_sre)
1674 pr_warn_once("%s present but disabled by higher exception level\n",
1675 entry->desc);
1676
1677 return has_sre;
1678 }
1679
has_cache_idc(const struct arm64_cpu_capabilities * entry,int scope)1680 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1681 int scope)
1682 {
1683 u64 ctr;
1684
1685 if (scope == SCOPE_SYSTEM)
1686 ctr = arm64_ftr_reg_ctrel0.sys_val;
1687 else
1688 ctr = read_cpuid_effective_cachetype();
1689
1690 return ctr & BIT(CTR_EL0_IDC_SHIFT);
1691 }
1692
cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities * __unused)1693 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1694 {
1695 /*
1696 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1697 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1698 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1699 * value.
1700 */
1701 if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1702 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1703 }
1704
has_cache_dic(const struct arm64_cpu_capabilities * entry,int scope)1705 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1706 int scope)
1707 {
1708 u64 ctr;
1709
1710 if (scope == SCOPE_SYSTEM)
1711 ctr = arm64_ftr_reg_ctrel0.sys_val;
1712 else
1713 ctr = read_cpuid_cachetype();
1714
1715 return ctr & BIT(CTR_EL0_DIC_SHIFT);
1716 }
1717
1718 static bool __maybe_unused
has_useable_cnp(const struct arm64_cpu_capabilities * entry,int scope)1719 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1720 {
1721 /*
1722 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1723 * may share TLB entries with a CPU stuck in the crashed
1724 * kernel.
1725 */
1726 if (is_kdump_kernel())
1727 return false;
1728
1729 if (cpus_have_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1730 return false;
1731
1732 return has_cpuid_feature(entry, scope);
1733 }
1734
1735 static bool __meltdown_safe = true;
1736 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1737
unmap_kernel_at_el0(const struct arm64_cpu_capabilities * entry,int scope)1738 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1739 int scope)
1740 {
1741 /* List of CPUs that are not vulnerable and don't need KPTI */
1742 static const struct midr_range kpti_safe_list[] = {
1743 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1744 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1745 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1746 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1747 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1748 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1749 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1750 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1751 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1752 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1753 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1754 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1755 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1756 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1757 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1758 { /* sentinel */ }
1759 };
1760 char const *str = "kpti command line option";
1761 bool meltdown_safe;
1762
1763 meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1764
1765 /* Defer to CPU feature registers */
1766 if (has_cpuid_feature(entry, scope))
1767 meltdown_safe = true;
1768
1769 if (!meltdown_safe)
1770 __meltdown_safe = false;
1771
1772 /*
1773 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1774 * ThunderX leads to apparent I-cache corruption of kernel text, which
1775 * ends as well as you might imagine. Don't even try. We cannot rely
1776 * on the cpus_have_*cap() helpers here to detect the CPU erratum
1777 * because cpucap detection order may change. However, since we know
1778 * affected CPUs are always in a homogeneous configuration, it is
1779 * safe to rely on this_cpu_has_cap() here.
1780 */
1781 if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1782 str = "ARM64_WORKAROUND_CAVIUM_27456";
1783 __kpti_forced = -1;
1784 }
1785
1786 /* Useful for KASLR robustness */
1787 if (kaslr_enabled() && kaslr_requires_kpti()) {
1788 if (!__kpti_forced) {
1789 str = "KASLR";
1790 __kpti_forced = 1;
1791 }
1792 }
1793
1794 if (cpu_mitigations_off() && !__kpti_forced) {
1795 str = "mitigations=off";
1796 __kpti_forced = -1;
1797 }
1798
1799 if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1800 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1801 return false;
1802 }
1803
1804 /* Forced? */
1805 if (__kpti_forced) {
1806 pr_info_once("kernel page table isolation forced %s by %s\n",
1807 __kpti_forced > 0 ? "ON" : "OFF", str);
1808 return __kpti_forced > 0;
1809 }
1810
1811 return !meltdown_safe;
1812 }
1813
has_nv1(const struct arm64_cpu_capabilities * entry,int scope)1814 static bool has_nv1(const struct arm64_cpu_capabilities *entry, int scope)
1815 {
1816 /*
1817 * Although the Apple M2 family appears to support NV1, the
1818 * PTW barfs on the nVHE EL2 S1 page table format. Pretend
1819 * that it doesn't support NV1 at all.
1820 */
1821 static const struct midr_range nv1_ni_list[] = {
1822 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD),
1823 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE),
1824 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO),
1825 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO),
1826 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX),
1827 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX),
1828 {}
1829 };
1830
1831 return (__system_matches_cap(ARM64_HAS_NESTED_VIRT) &&
1832 !(has_cpuid_feature(entry, scope) ||
1833 is_midr_in_range_list(read_cpuid_id(), nv1_ni_list)));
1834 }
1835
1836 #if defined(ID_AA64MMFR0_EL1_TGRAN_LPA2) && defined(ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2)
has_lpa2_at_stage1(u64 mmfr0)1837 static bool has_lpa2_at_stage1(u64 mmfr0)
1838 {
1839 unsigned int tgran;
1840
1841 tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1842 ID_AA64MMFR0_EL1_TGRAN_SHIFT);
1843 return tgran == ID_AA64MMFR0_EL1_TGRAN_LPA2;
1844 }
1845
has_lpa2_at_stage2(u64 mmfr0)1846 static bool has_lpa2_at_stage2(u64 mmfr0)
1847 {
1848 unsigned int tgran;
1849
1850 tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1851 ID_AA64MMFR0_EL1_TGRAN_2_SHIFT);
1852 return tgran == ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2;
1853 }
1854
has_lpa2(const struct arm64_cpu_capabilities * entry,int scope)1855 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1856 {
1857 u64 mmfr0;
1858
1859 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1860 return has_lpa2_at_stage1(mmfr0) && has_lpa2_at_stage2(mmfr0);
1861 }
1862 #else
has_lpa2(const struct arm64_cpu_capabilities * entry,int scope)1863 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1864 {
1865 return false;
1866 }
1867 #endif
1868
1869 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1870 #define KPTI_NG_TEMP_VA (-(1UL << PMD_SHIFT))
1871
1872 extern
1873 void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
1874 phys_addr_t size, pgprot_t prot,
1875 phys_addr_t (*pgtable_alloc)(int), int flags);
1876
1877 static phys_addr_t __initdata kpti_ng_temp_alloc;
1878
kpti_ng_pgd_alloc(int shift)1879 static phys_addr_t __init kpti_ng_pgd_alloc(int shift)
1880 {
1881 kpti_ng_temp_alloc -= PAGE_SIZE;
1882 return kpti_ng_temp_alloc;
1883 }
1884
__kpti_install_ng_mappings(void * __unused)1885 static int __init __kpti_install_ng_mappings(void *__unused)
1886 {
1887 typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1888 extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1889 kpti_remap_fn *remap_fn;
1890
1891 int cpu = smp_processor_id();
1892 int levels = CONFIG_PGTABLE_LEVELS;
1893 int order = order_base_2(levels);
1894 u64 kpti_ng_temp_pgd_pa = 0;
1895 pgd_t *kpti_ng_temp_pgd;
1896 u64 alloc = 0;
1897
1898 if (levels == 5 && !pgtable_l5_enabled())
1899 levels = 4;
1900 else if (levels == 4 && !pgtable_l4_enabled())
1901 levels = 3;
1902
1903 remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1904
1905 if (!cpu) {
1906 alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1907 kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1908 kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1909
1910 //
1911 // Create a minimal page table hierarchy that permits us to map
1912 // the swapper page tables temporarily as we traverse them.
1913 //
1914 // The physical pages are laid out as follows:
1915 //
1916 // +--------+-/-------+-/------ +-/------ +-\\\--------+
1917 // : PTE[] : | PMD[] : | PUD[] : | P4D[] : ||| PGD[] :
1918 // +--------+-\-------+-\------ +-\------ +-///--------+
1919 // ^
1920 // The first page is mapped into this hierarchy at a PMD_SHIFT
1921 // aligned virtual address, so that we can manipulate the PTE
1922 // level entries while the mapping is active. The first entry
1923 // covers the PTE[] page itself, the remaining entries are free
1924 // to be used as a ad-hoc fixmap.
1925 //
1926 create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc),
1927 KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
1928 kpti_ng_pgd_alloc, 0);
1929 }
1930
1931 cpu_install_idmap();
1932 remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
1933 cpu_uninstall_idmap();
1934
1935 if (!cpu) {
1936 free_pages(alloc, order);
1937 arm64_use_ng_mappings = true;
1938 }
1939
1940 return 0;
1941 }
1942
kpti_install_ng_mappings(void)1943 static void __init kpti_install_ng_mappings(void)
1944 {
1945 /* Check whether KPTI is going to be used */
1946 if (!arm64_kernel_unmapped_at_el0())
1947 return;
1948
1949 /*
1950 * We don't need to rewrite the page-tables if either we've done
1951 * it already or we have KASLR enabled and therefore have not
1952 * created any global mappings at all.
1953 */
1954 if (arm64_use_ng_mappings)
1955 return;
1956
1957 stop_machine(__kpti_install_ng_mappings, NULL, cpu_online_mask);
1958 }
1959
1960 #else
kpti_install_ng_mappings(void)1961 static inline void kpti_install_ng_mappings(void)
1962 {
1963 }
1964 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1965
cpu_enable_kpti(struct arm64_cpu_capabilities const * cap)1966 static void cpu_enable_kpti(struct arm64_cpu_capabilities const *cap)
1967 {
1968 if (__this_cpu_read(this_cpu_vector) == vectors) {
1969 const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
1970
1971 __this_cpu_write(this_cpu_vector, v);
1972 }
1973
1974 }
1975
parse_kpti(char * str)1976 static int __init parse_kpti(char *str)
1977 {
1978 bool enabled;
1979 int ret = kstrtobool(str, &enabled);
1980
1981 if (ret)
1982 return ret;
1983
1984 __kpti_forced = enabled ? 1 : -1;
1985 return 0;
1986 }
1987 early_param("kpti", parse_kpti);
1988
1989 #ifdef CONFIG_ARM64_HW_AFDBM
1990 static struct cpumask dbm_cpus __read_mostly;
1991
__cpu_enable_hw_dbm(void)1992 static inline void __cpu_enable_hw_dbm(void)
1993 {
1994 u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1995
1996 write_sysreg(tcr, tcr_el1);
1997 isb();
1998 local_flush_tlb_all();
1999 }
2000
cpu_has_broken_dbm(void)2001 static bool cpu_has_broken_dbm(void)
2002 {
2003 /* List of CPUs which have broken DBM support. */
2004 static const struct midr_range cpus[] = {
2005 #ifdef CONFIG_ARM64_ERRATUM_1024718
2006 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
2007 /* Kryo4xx Silver (rdpe => r1p0) */
2008 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
2009 #endif
2010 #ifdef CONFIG_ARM64_ERRATUM_2051678
2011 MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
2012 #endif
2013 {},
2014 };
2015
2016 return is_midr_in_range_list(read_cpuid_id(), cpus);
2017 }
2018
cpu_can_use_dbm(const struct arm64_cpu_capabilities * cap)2019 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
2020 {
2021 return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
2022 !cpu_has_broken_dbm();
2023 }
2024
cpu_enable_hw_dbm(struct arm64_cpu_capabilities const * cap)2025 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
2026 {
2027 if (cpu_can_use_dbm(cap)) {
2028 __cpu_enable_hw_dbm();
2029 cpumask_set_cpu(smp_processor_id(), &dbm_cpus);
2030 }
2031 }
2032
has_hw_dbm(const struct arm64_cpu_capabilities * cap,int __unused)2033 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
2034 int __unused)
2035 {
2036 /*
2037 * DBM is a non-conflicting feature. i.e, the kernel can safely
2038 * run a mix of CPUs with and without the feature. So, we
2039 * unconditionally enable the capability to allow any late CPU
2040 * to use the feature. We only enable the control bits on the
2041 * CPU, if it is supported.
2042 */
2043
2044 return true;
2045 }
2046
2047 #endif
2048
2049 #ifdef CONFIG_ARM64_AMU_EXTN
2050
2051 /*
2052 * The "amu_cpus" cpumask only signals that the CPU implementation for the
2053 * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
2054 * information regarding all the events that it supports. When a CPU bit is
2055 * set in the cpumask, the user of this feature can only rely on the presence
2056 * of the 4 fixed counters for that CPU. But this does not guarantee that the
2057 * counters are enabled or access to these counters is enabled by code
2058 * executed at higher exception levels (firmware).
2059 */
2060 static struct cpumask amu_cpus __read_mostly;
2061
cpu_has_amu_feat(int cpu)2062 bool cpu_has_amu_feat(int cpu)
2063 {
2064 return cpumask_test_cpu(cpu, &amu_cpus);
2065 }
2066
get_cpu_with_amu_feat(void)2067 int get_cpu_with_amu_feat(void)
2068 {
2069 return cpumask_any(&amu_cpus);
2070 }
2071
cpu_amu_enable(struct arm64_cpu_capabilities const * cap)2072 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
2073 {
2074 if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
2075 cpumask_set_cpu(smp_processor_id(), &amu_cpus);
2076
2077 /* 0 reference values signal broken/disabled counters */
2078 if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
2079 update_freq_counters_refs();
2080 }
2081 }
2082
has_amu(const struct arm64_cpu_capabilities * cap,int __unused)2083 static bool has_amu(const struct arm64_cpu_capabilities *cap,
2084 int __unused)
2085 {
2086 /*
2087 * The AMU extension is a non-conflicting feature: the kernel can
2088 * safely run a mix of CPUs with and without support for the
2089 * activity monitors extension. Therefore, unconditionally enable
2090 * the capability to allow any late CPU to use the feature.
2091 *
2092 * With this feature unconditionally enabled, the cpu_enable
2093 * function will be called for all CPUs that match the criteria,
2094 * including secondary and hotplugged, marking this feature as
2095 * present on that respective CPU. The enable function will also
2096 * print a detection message.
2097 */
2098
2099 return true;
2100 }
2101 #else
get_cpu_with_amu_feat(void)2102 int get_cpu_with_amu_feat(void)
2103 {
2104 return nr_cpu_ids;
2105 }
2106 #endif
2107
runs_at_el2(const struct arm64_cpu_capabilities * entry,int __unused)2108 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
2109 {
2110 return is_kernel_in_hyp_mode();
2111 }
2112
cpu_copy_el2regs(const struct arm64_cpu_capabilities * __unused)2113 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
2114 {
2115 /*
2116 * Copy register values that aren't redirected by hardware.
2117 *
2118 * Before code patching, we only set tpidr_el1, all CPUs need to copy
2119 * this value to tpidr_el2 before we patch the code. Once we've done
2120 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
2121 * do anything here.
2122 */
2123 if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
2124 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
2125 }
2126
has_nested_virt_support(const struct arm64_cpu_capabilities * cap,int scope)2127 static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap,
2128 int scope)
2129 {
2130 if (kvm_get_mode() != KVM_MODE_NV)
2131 return false;
2132
2133 if (!has_cpuid_feature(cap, scope)) {
2134 pr_warn("unavailable: %s\n", cap->desc);
2135 return false;
2136 }
2137
2138 return true;
2139 }
2140
hvhe_possible(const struct arm64_cpu_capabilities * entry,int __unused)2141 static bool hvhe_possible(const struct arm64_cpu_capabilities *entry,
2142 int __unused)
2143 {
2144 return arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_HVHE);
2145 }
2146
2147 #ifdef CONFIG_ARM64_PAN
cpu_enable_pan(const struct arm64_cpu_capabilities * __unused)2148 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
2149 {
2150 /*
2151 * We modify PSTATE. This won't work from irq context as the PSTATE
2152 * is discarded once we return from the exception.
2153 */
2154 WARN_ON_ONCE(in_interrupt());
2155
2156 sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
2157 set_pstate_pan(1);
2158 }
2159 #endif /* CONFIG_ARM64_PAN */
2160
2161 #ifdef CONFIG_ARM64_RAS_EXTN
cpu_clear_disr(const struct arm64_cpu_capabilities * __unused)2162 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
2163 {
2164 /* Firmware may have left a deferred SError in this register. */
2165 write_sysreg_s(0, SYS_DISR_EL1);
2166 }
2167 #endif /* CONFIG_ARM64_RAS_EXTN */
2168
2169 #ifdef CONFIG_ARM64_PTR_AUTH
has_address_auth_cpucap(const struct arm64_cpu_capabilities * entry,int scope)2170 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
2171 {
2172 int boot_val, sec_val;
2173
2174 /* We don't expect to be called with SCOPE_SYSTEM */
2175 WARN_ON(scope == SCOPE_SYSTEM);
2176 /*
2177 * The ptr-auth feature levels are not intercompatible with lower
2178 * levels. Hence we must match ptr-auth feature level of the secondary
2179 * CPUs with that of the boot CPU. The level of boot cpu is fetched
2180 * from the sanitised register whereas direct register read is done for
2181 * the secondary CPUs.
2182 * The sanitised feature state is guaranteed to match that of the
2183 * boot CPU as a mismatched secondary CPU is parked before it gets
2184 * a chance to update the state, with the capability.
2185 */
2186 boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
2187 entry->field_pos, entry->sign);
2188 if (scope & SCOPE_BOOT_CPU)
2189 return boot_val >= entry->min_field_value;
2190 /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
2191 sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
2192 entry->field_pos, entry->sign);
2193 return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
2194 }
2195
has_address_auth_metacap(const struct arm64_cpu_capabilities * entry,int scope)2196 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
2197 int scope)
2198 {
2199 bool api = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
2200 bool apa = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
2201 bool apa3 = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
2202
2203 return apa || apa3 || api;
2204 }
2205
has_generic_auth(const struct arm64_cpu_capabilities * entry,int __unused)2206 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
2207 int __unused)
2208 {
2209 bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
2210 bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
2211 bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
2212
2213 return gpa || gpa3 || gpi;
2214 }
2215 #endif /* CONFIG_ARM64_PTR_AUTH */
2216
2217 #ifdef CONFIG_ARM64_E0PD
cpu_enable_e0pd(struct arm64_cpu_capabilities const * cap)2218 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
2219 {
2220 if (this_cpu_has_cap(ARM64_HAS_E0PD))
2221 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
2222 }
2223 #endif /* CONFIG_ARM64_E0PD */
2224
2225 #ifdef CONFIG_ARM64_PSEUDO_NMI
can_use_gic_priorities(const struct arm64_cpu_capabilities * entry,int scope)2226 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2227 int scope)
2228 {
2229 /*
2230 * ARM64_HAS_GIC_CPUIF_SYSREGS has a lower index, and is a boot CPU
2231 * feature, so will be detected earlier.
2232 */
2233 BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GIC_CPUIF_SYSREGS);
2234 if (!cpus_have_cap(ARM64_HAS_GIC_CPUIF_SYSREGS))
2235 return false;
2236
2237 return enable_pseudo_nmi;
2238 }
2239
has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities * entry,int scope)2240 static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry,
2241 int scope)
2242 {
2243 /*
2244 * If we're not using priority masking then we won't be poking PMR_EL1,
2245 * and there's no need to relax synchronization of writes to it, and
2246 * ICC_CTLR_EL1 might not be accessible and we must avoid reads from
2247 * that.
2248 *
2249 * ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU
2250 * feature, so will be detected earlier.
2251 */
2252 BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING);
2253 if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING))
2254 return false;
2255
2256 /*
2257 * When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a
2258 * hint for interrupt distribution, a DSB is not necessary when
2259 * unmasking IRQs via PMR, and we can relax the barrier to a NOP.
2260 *
2261 * Linux itself doesn't use 1:N distribution, so has no need to
2262 * set PMHE. The only reason to have it set is if EL3 requires it
2263 * (and we can't change it).
2264 */
2265 return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0;
2266 }
2267 #endif
2268
2269 #ifdef CONFIG_ARM64_BTI
bti_enable(const struct arm64_cpu_capabilities * __unused)2270 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2271 {
2272 /*
2273 * Use of X16/X17 for tail-calls and trampolines that jump to
2274 * function entry points using BR is a requirement for
2275 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2276 * So, be strict and forbid other BRs using other registers to
2277 * jump onto a PACIxSP instruction:
2278 */
2279 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2280 isb();
2281 }
2282 #endif /* CONFIG_ARM64_BTI */
2283
2284 #ifdef CONFIG_ARM64_MTE
cpu_enable_mte(struct arm64_cpu_capabilities const * cap)2285 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2286 {
2287 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2288
2289 mte_cpu_setup();
2290
2291 /*
2292 * Clear the tags in the zero page. This needs to be done via the
2293 * linear map which has the Tagged attribute.
2294 */
2295 if (try_page_mte_tagging(ZERO_PAGE(0))) {
2296 mte_clear_page_tags(lm_alias(empty_zero_page));
2297 set_page_mte_tagged(ZERO_PAGE(0));
2298 }
2299
2300 kasan_init_hw_tags_cpu();
2301 }
2302 #endif /* CONFIG_ARM64_MTE */
2303
user_feature_fixup(void)2304 static void user_feature_fixup(void)
2305 {
2306 if (cpus_have_cap(ARM64_WORKAROUND_2658417)) {
2307 struct arm64_ftr_reg *regp;
2308
2309 regp = get_arm64_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2310 if (regp)
2311 regp->user_mask &= ~ID_AA64ISAR1_EL1_BF16_MASK;
2312 }
2313
2314 if (cpus_have_cap(ARM64_WORKAROUND_SPECULATIVE_SSBS)) {
2315 struct arm64_ftr_reg *regp;
2316
2317 regp = get_arm64_ftr_reg(SYS_ID_AA64PFR1_EL1);
2318 if (regp)
2319 regp->user_mask &= ~ID_AA64PFR1_EL1_SSBS_MASK;
2320 }
2321 }
2322
elf_hwcap_fixup(void)2323 static void elf_hwcap_fixup(void)
2324 {
2325 #ifdef CONFIG_COMPAT
2326 if (cpus_have_cap(ARM64_WORKAROUND_1742098))
2327 compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2328 #endif /* CONFIG_COMPAT */
2329 }
2330
2331 #ifdef CONFIG_KVM
is_kvm_protected_mode(const struct arm64_cpu_capabilities * entry,int __unused)2332 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2333 {
2334 return kvm_get_mode() == KVM_MODE_PROTECTED;
2335 }
2336 #endif /* CONFIG_KVM */
2337
cpu_trap_el0_impdef(const struct arm64_cpu_capabilities * __unused)2338 static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2339 {
2340 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2341 }
2342
cpu_enable_dit(const struct arm64_cpu_capabilities * __unused)2343 static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused)
2344 {
2345 set_pstate_dit(1);
2346 }
2347
cpu_enable_mops(const struct arm64_cpu_capabilities * __unused)2348 static void cpu_enable_mops(const struct arm64_cpu_capabilities *__unused)
2349 {
2350 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_MSCEn);
2351 }
2352
2353 #ifdef CONFIG_ARM64_POE
cpu_enable_poe(const struct arm64_cpu_capabilities * __unused)2354 static void cpu_enable_poe(const struct arm64_cpu_capabilities *__unused)
2355 {
2356 sysreg_clear_set(REG_TCR2_EL1, 0, TCR2_EL1x_E0POE);
2357 sysreg_clear_set(CPACR_EL1, 0, CPACR_ELx_E0POE);
2358 }
2359 #endif
2360
2361 /* Internal helper functions to match cpu capability type */
2362 static bool
cpucap_late_cpu_optional(const struct arm64_cpu_capabilities * cap)2363 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2364 {
2365 return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2366 }
2367
2368 static bool
cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities * cap)2369 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2370 {
2371 return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2372 }
2373
2374 static bool
cpucap_panic_on_conflict(const struct arm64_cpu_capabilities * cap)2375 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2376 {
2377 return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2378 }
2379
2380 static const struct arm64_cpu_capabilities arm64_features[] = {
2381 {
2382 .capability = ARM64_ALWAYS_BOOT,
2383 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2384 .matches = has_always,
2385 },
2386 {
2387 .capability = ARM64_ALWAYS_SYSTEM,
2388 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2389 .matches = has_always,
2390 },
2391 {
2392 .desc = "GIC system register CPU interface",
2393 .capability = ARM64_HAS_GIC_CPUIF_SYSREGS,
2394 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2395 .matches = has_useable_gicv3_cpuif,
2396 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, GIC, IMP)
2397 },
2398 {
2399 .desc = "Enhanced Counter Virtualization",
2400 .capability = ARM64_HAS_ECV,
2401 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2402 .matches = has_cpuid_feature,
2403 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, IMP)
2404 },
2405 {
2406 .desc = "Enhanced Counter Virtualization (CNTPOFF)",
2407 .capability = ARM64_HAS_ECV_CNTPOFF,
2408 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2409 .matches = has_cpuid_feature,
2410 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, CNTPOFF)
2411 },
2412 #ifdef CONFIG_ARM64_PAN
2413 {
2414 .desc = "Privileged Access Never",
2415 .capability = ARM64_HAS_PAN,
2416 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2417 .matches = has_cpuid_feature,
2418 .cpu_enable = cpu_enable_pan,
2419 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, IMP)
2420 },
2421 #endif /* CONFIG_ARM64_PAN */
2422 #ifdef CONFIG_ARM64_EPAN
2423 {
2424 .desc = "Enhanced Privileged Access Never",
2425 .capability = ARM64_HAS_EPAN,
2426 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2427 .matches = has_cpuid_feature,
2428 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, PAN3)
2429 },
2430 #endif /* CONFIG_ARM64_EPAN */
2431 #ifdef CONFIG_ARM64_LSE_ATOMICS
2432 {
2433 .desc = "LSE atomic instructions",
2434 .capability = ARM64_HAS_LSE_ATOMICS,
2435 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2436 .matches = has_cpuid_feature,
2437 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, ATOMIC, IMP)
2438 },
2439 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2440 {
2441 .desc = "Virtualization Host Extensions",
2442 .capability = ARM64_HAS_VIRT_HOST_EXTN,
2443 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2444 .matches = runs_at_el2,
2445 .cpu_enable = cpu_copy_el2regs,
2446 },
2447 {
2448 .desc = "Nested Virtualization Support",
2449 .capability = ARM64_HAS_NESTED_VIRT,
2450 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2451 .matches = has_nested_virt_support,
2452 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, NV, NV2)
2453 },
2454 {
2455 .capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2456 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2457 .matches = has_32bit_el0,
2458 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL0, AARCH32)
2459 },
2460 #ifdef CONFIG_KVM
2461 {
2462 .desc = "32-bit EL1 Support",
2463 .capability = ARM64_HAS_32BIT_EL1,
2464 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2465 .matches = has_cpuid_feature,
2466 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL1, AARCH32)
2467 },
2468 {
2469 .desc = "Protected KVM",
2470 .capability = ARM64_KVM_PROTECTED_MODE,
2471 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2472 .matches = is_kvm_protected_mode,
2473 },
2474 {
2475 .desc = "HCRX_EL2 register",
2476 .capability = ARM64_HAS_HCX,
2477 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2478 .matches = has_cpuid_feature,
2479 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HCX, IMP)
2480 },
2481 #endif
2482 {
2483 .desc = "Kernel page table isolation (KPTI)",
2484 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
2485 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2486 .cpu_enable = cpu_enable_kpti,
2487 .matches = unmap_kernel_at_el0,
2488 /*
2489 * The ID feature fields below are used to indicate that
2490 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2491 * more details.
2492 */
2493 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, CSV3, IMP)
2494 },
2495 {
2496 .capability = ARM64_HAS_FPSIMD,
2497 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2498 .matches = has_cpuid_feature,
2499 .cpu_enable = cpu_enable_fpsimd,
2500 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, FP, IMP)
2501 },
2502 #ifdef CONFIG_ARM64_PMEM
2503 {
2504 .desc = "Data cache clean to Point of Persistence",
2505 .capability = ARM64_HAS_DCPOP,
2506 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2507 .matches = has_cpuid_feature,
2508 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, IMP)
2509 },
2510 {
2511 .desc = "Data cache clean to Point of Deep Persistence",
2512 .capability = ARM64_HAS_DCPODP,
2513 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2514 .matches = has_cpuid_feature,
2515 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, DPB2)
2516 },
2517 #endif
2518 #ifdef CONFIG_ARM64_SVE
2519 {
2520 .desc = "Scalable Vector Extension",
2521 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2522 .capability = ARM64_SVE,
2523 .cpu_enable = cpu_enable_sve,
2524 .matches = has_cpuid_feature,
2525 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, SVE, IMP)
2526 },
2527 #endif /* CONFIG_ARM64_SVE */
2528 #ifdef CONFIG_ARM64_RAS_EXTN
2529 {
2530 .desc = "RAS Extension Support",
2531 .capability = ARM64_HAS_RAS_EXTN,
2532 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2533 .matches = has_cpuid_feature,
2534 .cpu_enable = cpu_clear_disr,
2535 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2536 },
2537 #endif /* CONFIG_ARM64_RAS_EXTN */
2538 #ifdef CONFIG_ARM64_AMU_EXTN
2539 {
2540 .desc = "Activity Monitors Unit (AMU)",
2541 .capability = ARM64_HAS_AMU_EXTN,
2542 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2543 .matches = has_amu,
2544 .cpu_enable = cpu_amu_enable,
2545 .cpus = &amu_cpus,
2546 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, AMU, IMP)
2547 },
2548 #endif /* CONFIG_ARM64_AMU_EXTN */
2549 {
2550 .desc = "Data cache clean to the PoU not required for I/D coherence",
2551 .capability = ARM64_HAS_CACHE_IDC,
2552 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2553 .matches = has_cache_idc,
2554 .cpu_enable = cpu_emulate_effective_ctr,
2555 },
2556 {
2557 .desc = "Instruction cache invalidation not required for I/D coherence",
2558 .capability = ARM64_HAS_CACHE_DIC,
2559 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2560 .matches = has_cache_dic,
2561 },
2562 {
2563 .desc = "Stage-2 Force Write-Back",
2564 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2565 .capability = ARM64_HAS_STAGE2_FWB,
2566 .matches = has_cpuid_feature,
2567 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, FWB, IMP)
2568 },
2569 {
2570 .desc = "ARMv8.4 Translation Table Level",
2571 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2572 .capability = ARM64_HAS_ARMv8_4_TTL,
2573 .matches = has_cpuid_feature,
2574 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, TTL, IMP)
2575 },
2576 {
2577 .desc = "TLB range maintenance instructions",
2578 .capability = ARM64_HAS_TLB_RANGE,
2579 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2580 .matches = has_cpuid_feature,
2581 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, TLB, RANGE)
2582 },
2583 #ifdef CONFIG_ARM64_HW_AFDBM
2584 {
2585 .desc = "Hardware dirty bit management",
2586 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2587 .capability = ARM64_HW_DBM,
2588 .matches = has_hw_dbm,
2589 .cpu_enable = cpu_enable_hw_dbm,
2590 .cpus = &dbm_cpus,
2591 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, DBM)
2592 },
2593 #endif
2594 {
2595 .desc = "CRC32 instructions",
2596 .capability = ARM64_HAS_CRC32,
2597 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2598 .matches = has_cpuid_feature,
2599 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, CRC32, IMP)
2600 },
2601 {
2602 .desc = "Speculative Store Bypassing Safe (SSBS)",
2603 .capability = ARM64_SSBS,
2604 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2605 .matches = has_cpuid_feature,
2606 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SSBS, IMP)
2607 },
2608 #ifdef CONFIG_ARM64_CNP
2609 {
2610 .desc = "Common not Private translations",
2611 .capability = ARM64_HAS_CNP,
2612 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2613 .matches = has_useable_cnp,
2614 .cpu_enable = cpu_enable_cnp,
2615 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, CnP, IMP)
2616 },
2617 #endif
2618 {
2619 .desc = "Speculation barrier (SB)",
2620 .capability = ARM64_HAS_SB,
2621 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2622 .matches = has_cpuid_feature,
2623 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, SB, IMP)
2624 },
2625 #ifdef CONFIG_ARM64_PTR_AUTH
2626 {
2627 .desc = "Address authentication (architected QARMA5 algorithm)",
2628 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2629 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2630 .matches = has_address_auth_cpucap,
2631 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, APA, PAuth)
2632 },
2633 {
2634 .desc = "Address authentication (architected QARMA3 algorithm)",
2635 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2636 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2637 .matches = has_address_auth_cpucap,
2638 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, APA3, PAuth)
2639 },
2640 {
2641 .desc = "Address authentication (IMP DEF algorithm)",
2642 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2643 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2644 .matches = has_address_auth_cpucap,
2645 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, API, PAuth)
2646 },
2647 {
2648 .capability = ARM64_HAS_ADDRESS_AUTH,
2649 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2650 .matches = has_address_auth_metacap,
2651 },
2652 {
2653 .desc = "Generic authentication (architected QARMA5 algorithm)",
2654 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2655 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2656 .matches = has_cpuid_feature,
2657 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPA, IMP)
2658 },
2659 {
2660 .desc = "Generic authentication (architected QARMA3 algorithm)",
2661 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2662 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2663 .matches = has_cpuid_feature,
2664 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, GPA3, IMP)
2665 },
2666 {
2667 .desc = "Generic authentication (IMP DEF algorithm)",
2668 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2669 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2670 .matches = has_cpuid_feature,
2671 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPI, IMP)
2672 },
2673 {
2674 .capability = ARM64_HAS_GENERIC_AUTH,
2675 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2676 .matches = has_generic_auth,
2677 },
2678 #endif /* CONFIG_ARM64_PTR_AUTH */
2679 #ifdef CONFIG_ARM64_PSEUDO_NMI
2680 {
2681 /*
2682 * Depends on having GICv3
2683 */
2684 .desc = "IRQ priority masking",
2685 .capability = ARM64_HAS_GIC_PRIO_MASKING,
2686 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2687 .matches = can_use_gic_priorities,
2688 },
2689 {
2690 /*
2691 * Depends on ARM64_HAS_GIC_PRIO_MASKING
2692 */
2693 .capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC,
2694 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2695 .matches = has_gic_prio_relaxed_sync,
2696 },
2697 #endif
2698 #ifdef CONFIG_ARM64_E0PD
2699 {
2700 .desc = "E0PD",
2701 .capability = ARM64_HAS_E0PD,
2702 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2703 .cpu_enable = cpu_enable_e0pd,
2704 .matches = has_cpuid_feature,
2705 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, E0PD, IMP)
2706 },
2707 #endif
2708 {
2709 .desc = "Random Number Generator",
2710 .capability = ARM64_HAS_RNG,
2711 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2712 .matches = has_cpuid_feature,
2713 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, RNDR, IMP)
2714 },
2715 #ifdef CONFIG_ARM64_BTI
2716 {
2717 .desc = "Branch Target Identification",
2718 .capability = ARM64_BTI,
2719 #ifdef CONFIG_ARM64_BTI_KERNEL
2720 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2721 #else
2722 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2723 #endif
2724 .matches = has_cpuid_feature,
2725 .cpu_enable = bti_enable,
2726 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, BT, IMP)
2727 },
2728 #endif
2729 #ifdef CONFIG_ARM64_MTE
2730 {
2731 .desc = "Memory Tagging Extension",
2732 .capability = ARM64_MTE,
2733 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2734 .matches = has_cpuid_feature,
2735 .cpu_enable = cpu_enable_mte,
2736 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE2)
2737 },
2738 {
2739 .desc = "Asymmetric MTE Tag Check Fault",
2740 .capability = ARM64_MTE_ASYMM,
2741 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2742 .matches = has_cpuid_feature,
2743 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE3)
2744 },
2745 #endif /* CONFIG_ARM64_MTE */
2746 {
2747 .desc = "RCpc load-acquire (LDAPR)",
2748 .capability = ARM64_HAS_LDAPR,
2749 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2750 .matches = has_cpuid_feature,
2751 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LRCPC, IMP)
2752 },
2753 {
2754 .desc = "Fine Grained Traps",
2755 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2756 .capability = ARM64_HAS_FGT,
2757 .matches = has_cpuid_feature,
2758 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, IMP)
2759 },
2760 #ifdef CONFIG_ARM64_SME
2761 {
2762 .desc = "Scalable Matrix Extension",
2763 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2764 .capability = ARM64_SME,
2765 .matches = has_cpuid_feature,
2766 .cpu_enable = cpu_enable_sme,
2767 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, IMP)
2768 },
2769 /* FA64 should be sorted after the base SME capability */
2770 {
2771 .desc = "FA64",
2772 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2773 .capability = ARM64_SME_FA64,
2774 .matches = has_cpuid_feature,
2775 .cpu_enable = cpu_enable_fa64,
2776 ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1, FA64, IMP)
2777 },
2778 {
2779 .desc = "SME2",
2780 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2781 .capability = ARM64_SME2,
2782 .matches = has_cpuid_feature,
2783 .cpu_enable = cpu_enable_sme2,
2784 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, SME2)
2785 },
2786 #endif /* CONFIG_ARM64_SME */
2787 {
2788 .desc = "WFx with timeout",
2789 .capability = ARM64_HAS_WFXT,
2790 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2791 .matches = has_cpuid_feature,
2792 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, WFxT, IMP)
2793 },
2794 {
2795 .desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
2796 .capability = ARM64_HAS_TIDCP1,
2797 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2798 .matches = has_cpuid_feature,
2799 .cpu_enable = cpu_trap_el0_impdef,
2800 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, TIDCP1, IMP)
2801 },
2802 {
2803 .desc = "Data independent timing control (DIT)",
2804 .capability = ARM64_HAS_DIT,
2805 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2806 .matches = has_cpuid_feature,
2807 .cpu_enable = cpu_enable_dit,
2808 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, DIT, IMP)
2809 },
2810 {
2811 .desc = "Memory Copy and Memory Set instructions",
2812 .capability = ARM64_HAS_MOPS,
2813 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2814 .matches = has_cpuid_feature,
2815 .cpu_enable = cpu_enable_mops,
2816 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, MOPS, IMP)
2817 },
2818 {
2819 .capability = ARM64_HAS_TCR2,
2820 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2821 .matches = has_cpuid_feature,
2822 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, TCRX, IMP)
2823 },
2824 {
2825 .desc = "Stage-1 Permission Indirection Extension (S1PIE)",
2826 .capability = ARM64_HAS_S1PIE,
2827 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2828 .matches = has_cpuid_feature,
2829 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1PIE, IMP)
2830 },
2831 {
2832 .desc = "VHE for hypervisor only",
2833 .capability = ARM64_KVM_HVHE,
2834 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2835 .matches = hvhe_possible,
2836 },
2837 {
2838 .desc = "Enhanced Virtualization Traps",
2839 .capability = ARM64_HAS_EVT,
2840 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2841 .matches = has_cpuid_feature,
2842 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, EVT, IMP)
2843 },
2844 {
2845 .desc = "52-bit Virtual Addressing for KVM (LPA2)",
2846 .capability = ARM64_HAS_LPA2,
2847 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2848 .matches = has_lpa2,
2849 },
2850 {
2851 .desc = "FPMR",
2852 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2853 .capability = ARM64_HAS_FPMR,
2854 .matches = has_cpuid_feature,
2855 .cpu_enable = cpu_enable_fpmr,
2856 ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, FPMR, IMP)
2857 },
2858 #ifdef CONFIG_ARM64_VA_BITS_52
2859 {
2860 .capability = ARM64_HAS_VA52,
2861 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2862 .matches = has_cpuid_feature,
2863 #ifdef CONFIG_ARM64_64K_PAGES
2864 .desc = "52-bit Virtual Addressing (LVA)",
2865 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, VARange, 52)
2866 #else
2867 .desc = "52-bit Virtual Addressing (LPA2)",
2868 #ifdef CONFIG_ARM64_4K_PAGES
2869 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN4, 52_BIT)
2870 #else
2871 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN16, 52_BIT)
2872 #endif
2873 #endif
2874 },
2875 #endif
2876 {
2877 .desc = "NV1",
2878 .capability = ARM64_HAS_HCR_NV1,
2879 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2880 .matches = has_nv1,
2881 ARM64_CPUID_FIELDS_NEG(ID_AA64MMFR4_EL1, E2H0, NI_NV1)
2882 },
2883 #ifdef CONFIG_ARM64_POE
2884 {
2885 .desc = "Stage-1 Permission Overlay Extension (S1POE)",
2886 .capability = ARM64_HAS_S1POE,
2887 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2888 .matches = has_cpuid_feature,
2889 .cpu_enable = cpu_enable_poe,
2890 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1POE, IMP)
2891 },
2892 #endif
2893 {},
2894 };
2895
2896 #define HWCAP_CPUID_MATCH(reg, field, min_value) \
2897 .matches = has_user_cpuid_feature, \
2898 ARM64_CPUID_FIELDS(reg, field, min_value)
2899
2900 #define __HWCAP_CAP(name, cap_type, cap) \
2901 .desc = name, \
2902 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \
2903 .hwcap_type = cap_type, \
2904 .hwcap = cap, \
2905
2906 #define HWCAP_CAP(reg, field, min_value, cap_type, cap) \
2907 { \
2908 __HWCAP_CAP(#cap, cap_type, cap) \
2909 HWCAP_CPUID_MATCH(reg, field, min_value) \
2910 }
2911
2912 #define HWCAP_MULTI_CAP(list, cap_type, cap) \
2913 { \
2914 __HWCAP_CAP(#cap, cap_type, cap) \
2915 .matches = cpucap_multi_entry_cap_matches, \
2916 .match_list = list, \
2917 }
2918
2919 #define HWCAP_CAP_MATCH(match, cap_type, cap) \
2920 { \
2921 __HWCAP_CAP(#cap, cap_type, cap) \
2922 .matches = match, \
2923 }
2924
2925 #ifdef CONFIG_ARM64_PTR_AUTH
2926 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2927 {
2928 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth)
2929 },
2930 {
2931 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth)
2932 },
2933 {
2934 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth)
2935 },
2936 {},
2937 };
2938
2939 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2940 {
2941 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP)
2942 },
2943 {
2944 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP)
2945 },
2946 {
2947 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP)
2948 },
2949 {},
2950 };
2951 #endif
2952
2953 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2954 HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2955 HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES),
2956 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2957 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2958 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2959 HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2960 HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2961 HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, FEAT_LSE128, CAP_HWCAP, KERNEL_HWCAP_LSE128),
2962 HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2963 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2964 HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3),
2965 HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4),
2966 HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2967 HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2968 HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2969 HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2970 HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG),
2971 HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP),
2972 HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2973 HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2974 HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2975 HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT),
2976 HWCAP_CAP(ID_AA64PFR2_EL1, FPMR, IMP, CAP_HWCAP, KERNEL_HWCAP_FPMR),
2977 HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2978 HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2979 HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2980 HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2981 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2982 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2983 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC3, CAP_HWCAP, KERNEL_HWCAP_LRCPC3),
2984 HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2985 HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB),
2986 HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16),
2987 HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16),
2988 HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH),
2989 HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2990 HWCAP_CAP(ID_AA64ISAR2_EL1, LUT, IMP, CAP_HWCAP, KERNEL_HWCAP_LUT),
2991 HWCAP_CAP(ID_AA64ISAR3_EL1, FAMINMAX, IMP, CAP_HWCAP, KERNEL_HWCAP_FAMINMAX),
2992 HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2993 #ifdef CONFIG_ARM64_SVE
2994 HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
2995 HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1),
2996 HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2997 HWCAP_CAP(ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2998 HWCAP_CAP(ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2999 HWCAP_CAP(ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
3000 HWCAP_CAP(ID_AA64ZFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_B16B16),
3001 HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
3002 HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
3003 HWCAP_CAP(ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
3004 HWCAP_CAP(ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
3005 HWCAP_CAP(ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
3006 HWCAP_CAP(ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
3007 HWCAP_CAP(ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
3008 #endif
3009 HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
3010 #ifdef CONFIG_ARM64_BTI
3011 HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
3012 #endif
3013 #ifdef CONFIG_ARM64_PTR_AUTH
3014 HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
3015 HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
3016 #endif
3017 #ifdef CONFIG_ARM64_MTE
3018 HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
3019 HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
3020 #endif /* CONFIG_ARM64_MTE */
3021 HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV),
3022 HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP),
3023 HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC),
3024 HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM),
3025 HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES),
3026 HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
3027 HWCAP_CAP(ID_AA64ISAR2_EL1, MOPS, IMP, CAP_HWCAP, KERNEL_HWCAP_MOPS),
3028 HWCAP_CAP(ID_AA64ISAR2_EL1, BC, IMP, CAP_HWCAP, KERNEL_HWCAP_HBC),
3029 #ifdef CONFIG_ARM64_SME
3030 HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
3031 HWCAP_CAP(ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
3032 HWCAP_CAP(ID_AA64SMFR0_EL1, LUTv2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_LUTV2),
3033 HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1),
3034 HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2),
3035 HWCAP_CAP(ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
3036 HWCAP_CAP(ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
3037 HWCAP_CAP(ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32),
3038 HWCAP_CAP(ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16),
3039 HWCAP_CAP(ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16),
3040 HWCAP_CAP(ID_AA64SMFR0_EL1, F8F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F16),
3041 HWCAP_CAP(ID_AA64SMFR0_EL1, F8F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F32),
3042 HWCAP_CAP(ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
3043 HWCAP_CAP(ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
3044 HWCAP_CAP(ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
3045 HWCAP_CAP(ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32),
3046 HWCAP_CAP(ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
3047 HWCAP_CAP(ID_AA64SMFR0_EL1, SF8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8FMA),
3048 HWCAP_CAP(ID_AA64SMFR0_EL1, SF8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP4),
3049 HWCAP_CAP(ID_AA64SMFR0_EL1, SF8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP2),
3050 #endif /* CONFIG_ARM64_SME */
3051 HWCAP_CAP(ID_AA64FPFR0_EL1, F8CVT, IMP, CAP_HWCAP, KERNEL_HWCAP_F8CVT),
3052 HWCAP_CAP(ID_AA64FPFR0_EL1, F8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_F8FMA),
3053 HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP4),
3054 HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP2),
3055 HWCAP_CAP(ID_AA64FPFR0_EL1, F8E4M3, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E4M3),
3056 HWCAP_CAP(ID_AA64FPFR0_EL1, F8E5M2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E5M2),
3057 #ifdef CONFIG_ARM64_POE
3058 HWCAP_CAP(ID_AA64MMFR3_EL1, S1POE, IMP, CAP_HWCAP, KERNEL_HWCAP_POE),
3059 #endif
3060 {},
3061 };
3062
3063 #ifdef CONFIG_COMPAT
compat_has_neon(const struct arm64_cpu_capabilities * cap,int scope)3064 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
3065 {
3066 /*
3067 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
3068 * in line with that of arm32 as in vfp_init(). We make sure that the
3069 * check is future proof, by making sure value is non-zero.
3070 */
3071 u32 mvfr1;
3072
3073 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
3074 if (scope == SCOPE_SYSTEM)
3075 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
3076 else
3077 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
3078
3079 return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) &&
3080 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) &&
3081 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT);
3082 }
3083 #endif
3084
3085 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
3086 #ifdef CONFIG_COMPAT
3087 HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
3088 HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
3089 /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
3090 HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
3091 HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
3092 HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP),
3093 HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP),
3094 HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
3095 HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
3096 HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
3097 HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
3098 HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
3099 HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP),
3100 HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM),
3101 HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB),
3102 HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16),
3103 HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM),
3104 HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS),
3105 #endif
3106 {},
3107 };
3108
cap_set_elf_hwcap(const struct arm64_cpu_capabilities * cap)3109 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3110 {
3111 switch (cap->hwcap_type) {
3112 case CAP_HWCAP:
3113 cpu_set_feature(cap->hwcap);
3114 break;
3115 #ifdef CONFIG_COMPAT
3116 case CAP_COMPAT_HWCAP:
3117 compat_elf_hwcap |= (u32)cap->hwcap;
3118 break;
3119 case CAP_COMPAT_HWCAP2:
3120 compat_elf_hwcap2 |= (u32)cap->hwcap;
3121 break;
3122 #endif
3123 default:
3124 WARN_ON(1);
3125 break;
3126 }
3127 }
3128
3129 /* Check if we have a particular HWCAP enabled */
cpus_have_elf_hwcap(const struct arm64_cpu_capabilities * cap)3130 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3131 {
3132 bool rc;
3133
3134 switch (cap->hwcap_type) {
3135 case CAP_HWCAP:
3136 rc = cpu_have_feature(cap->hwcap);
3137 break;
3138 #ifdef CONFIG_COMPAT
3139 case CAP_COMPAT_HWCAP:
3140 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
3141 break;
3142 case CAP_COMPAT_HWCAP2:
3143 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
3144 break;
3145 #endif
3146 default:
3147 WARN_ON(1);
3148 rc = false;
3149 }
3150
3151 return rc;
3152 }
3153
setup_elf_hwcaps(const struct arm64_cpu_capabilities * hwcaps)3154 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
3155 {
3156 /* We support emulation of accesses to CPU ID feature registers */
3157 cpu_set_named_feature(CPUID);
3158 for (; hwcaps->matches; hwcaps++)
3159 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
3160 cap_set_elf_hwcap(hwcaps);
3161 }
3162
update_cpu_capabilities(u16 scope_mask)3163 static void update_cpu_capabilities(u16 scope_mask)
3164 {
3165 int i;
3166 const struct arm64_cpu_capabilities *caps;
3167
3168 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3169 for (i = 0; i < ARM64_NCAPS; i++) {
3170 caps = cpucap_ptrs[i];
3171 if (!caps || !(caps->type & scope_mask) ||
3172 cpus_have_cap(caps->capability) ||
3173 !caps->matches(caps, cpucap_default_scope(caps)))
3174 continue;
3175
3176 if (caps->desc && !caps->cpus)
3177 pr_info("detected: %s\n", caps->desc);
3178
3179 __set_bit(caps->capability, system_cpucaps);
3180
3181 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
3182 set_bit(caps->capability, boot_cpucaps);
3183 }
3184 }
3185
3186 /*
3187 * Enable all the available capabilities on this CPU. The capabilities
3188 * with BOOT_CPU scope are handled separately and hence skipped here.
3189 */
cpu_enable_non_boot_scope_capabilities(void * __unused)3190 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
3191 {
3192 int i;
3193 u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
3194
3195 for_each_available_cap(i) {
3196 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[i];
3197
3198 if (WARN_ON(!cap))
3199 continue;
3200
3201 if (!(cap->type & non_boot_scope))
3202 continue;
3203
3204 if (cap->cpu_enable)
3205 cap->cpu_enable(cap);
3206 }
3207 return 0;
3208 }
3209
3210 /*
3211 * Run through the enabled capabilities and enable() it on all active
3212 * CPUs
3213 */
enable_cpu_capabilities(u16 scope_mask)3214 static void __init enable_cpu_capabilities(u16 scope_mask)
3215 {
3216 int i;
3217 const struct arm64_cpu_capabilities *caps;
3218 bool boot_scope;
3219
3220 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3221 boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
3222
3223 for (i = 0; i < ARM64_NCAPS; i++) {
3224 caps = cpucap_ptrs[i];
3225 if (!caps || !(caps->type & scope_mask) ||
3226 !cpus_have_cap(caps->capability))
3227 continue;
3228
3229 if (boot_scope && caps->cpu_enable)
3230 /*
3231 * Capabilities with SCOPE_BOOT_CPU scope are finalised
3232 * before any secondary CPU boots. Thus, each secondary
3233 * will enable the capability as appropriate via
3234 * check_local_cpu_capabilities(). The only exception is
3235 * the boot CPU, for which the capability must be
3236 * enabled here. This approach avoids costly
3237 * stop_machine() calls for this case.
3238 */
3239 caps->cpu_enable(caps);
3240 }
3241
3242 /*
3243 * For all non-boot scope capabilities, use stop_machine()
3244 * as it schedules the work allowing us to modify PSTATE,
3245 * instead of on_each_cpu() which uses an IPI, giving us a
3246 * PSTATE that disappears when we return.
3247 */
3248 if (!boot_scope)
3249 stop_machine(cpu_enable_non_boot_scope_capabilities,
3250 NULL, cpu_online_mask);
3251 }
3252
3253 /*
3254 * Run through the list of capabilities to check for conflicts.
3255 * If the system has already detected a capability, take necessary
3256 * action on this CPU.
3257 */
verify_local_cpu_caps(u16 scope_mask)3258 static void verify_local_cpu_caps(u16 scope_mask)
3259 {
3260 int i;
3261 bool cpu_has_cap, system_has_cap;
3262 const struct arm64_cpu_capabilities *caps;
3263
3264 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3265
3266 for (i = 0; i < ARM64_NCAPS; i++) {
3267 caps = cpucap_ptrs[i];
3268 if (!caps || !(caps->type & scope_mask))
3269 continue;
3270
3271 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
3272 system_has_cap = cpus_have_cap(caps->capability);
3273
3274 if (system_has_cap) {
3275 /*
3276 * Check if the new CPU misses an advertised feature,
3277 * which is not safe to miss.
3278 */
3279 if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
3280 break;
3281 /*
3282 * We have to issue cpu_enable() irrespective of
3283 * whether the CPU has it or not, as it is enabeld
3284 * system wide. It is upto the call back to take
3285 * appropriate action on this CPU.
3286 */
3287 if (caps->cpu_enable)
3288 caps->cpu_enable(caps);
3289 } else {
3290 /*
3291 * Check if the CPU has this capability if it isn't
3292 * safe to have when the system doesn't.
3293 */
3294 if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3295 break;
3296 }
3297 }
3298
3299 if (i < ARM64_NCAPS) {
3300 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3301 smp_processor_id(), caps->capability,
3302 caps->desc, system_has_cap, cpu_has_cap);
3303
3304 if (cpucap_panic_on_conflict(caps))
3305 cpu_panic_kernel();
3306 else
3307 cpu_die_early();
3308 }
3309 }
3310
3311 /*
3312 * Check for CPU features that are used in early boot
3313 * based on the Boot CPU value.
3314 */
check_early_cpu_features(void)3315 static void check_early_cpu_features(void)
3316 {
3317 verify_cpu_asid_bits();
3318
3319 verify_local_cpu_caps(SCOPE_BOOT_CPU);
3320 }
3321
3322 static void
__verify_local_elf_hwcaps(const struct arm64_cpu_capabilities * caps)3323 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3324 {
3325
3326 for (; caps->matches; caps++)
3327 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3328 pr_crit("CPU%d: missing HWCAP: %s\n",
3329 smp_processor_id(), caps->desc);
3330 cpu_die_early();
3331 }
3332 }
3333
verify_local_elf_hwcaps(void)3334 static void verify_local_elf_hwcaps(void)
3335 {
3336 __verify_local_elf_hwcaps(arm64_elf_hwcaps);
3337
3338 if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3339 __verify_local_elf_hwcaps(compat_elf_hwcaps);
3340 }
3341
verify_sve_features(void)3342 static void verify_sve_features(void)
3343 {
3344 unsigned long cpacr = cpacr_save_enable_kernel_sve();
3345
3346 if (vec_verify_vq_map(ARM64_VEC_SVE)) {
3347 pr_crit("CPU%d: SVE: vector length support mismatch\n",
3348 smp_processor_id());
3349 cpu_die_early();
3350 }
3351
3352 cpacr_restore(cpacr);
3353 }
3354
verify_sme_features(void)3355 static void verify_sme_features(void)
3356 {
3357 unsigned long cpacr = cpacr_save_enable_kernel_sme();
3358
3359 if (vec_verify_vq_map(ARM64_VEC_SME)) {
3360 pr_crit("CPU%d: SME: vector length support mismatch\n",
3361 smp_processor_id());
3362 cpu_die_early();
3363 }
3364
3365 cpacr_restore(cpacr);
3366 }
3367
verify_hyp_capabilities(void)3368 static void verify_hyp_capabilities(void)
3369 {
3370 u64 safe_mmfr1, mmfr0, mmfr1;
3371 int parange, ipa_max;
3372 unsigned int safe_vmid_bits, vmid_bits;
3373
3374 if (!IS_ENABLED(CONFIG_KVM))
3375 return;
3376
3377 safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3378 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
3379 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3380
3381 /* Verify VMID bits */
3382 safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3383 vmid_bits = get_vmid_bits(mmfr1);
3384 if (vmid_bits < safe_vmid_bits) {
3385 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3386 cpu_die_early();
3387 }
3388
3389 /* Verify IPA range */
3390 parange = cpuid_feature_extract_unsigned_field(mmfr0,
3391 ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3392 ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3393 if (ipa_max < get_kvm_ipa_limit()) {
3394 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3395 cpu_die_early();
3396 }
3397 }
3398
3399 /*
3400 * Run through the enabled system capabilities and enable() it on this CPU.
3401 * The capabilities were decided based on the available CPUs at the boot time.
3402 * Any new CPU should match the system wide status of the capability. If the
3403 * new CPU doesn't have a capability which the system now has enabled, we
3404 * cannot do anything to fix it up and could cause unexpected failures. So
3405 * we park the CPU.
3406 */
verify_local_cpu_capabilities(void)3407 static void verify_local_cpu_capabilities(void)
3408 {
3409 /*
3410 * The capabilities with SCOPE_BOOT_CPU are checked from
3411 * check_early_cpu_features(), as they need to be verified
3412 * on all secondary CPUs.
3413 */
3414 verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3415 verify_local_elf_hwcaps();
3416
3417 if (system_supports_sve())
3418 verify_sve_features();
3419
3420 if (system_supports_sme())
3421 verify_sme_features();
3422
3423 if (is_hyp_mode_available())
3424 verify_hyp_capabilities();
3425 }
3426
check_local_cpu_capabilities(void)3427 void check_local_cpu_capabilities(void)
3428 {
3429 /*
3430 * All secondary CPUs should conform to the early CPU features
3431 * in use by the kernel based on boot CPU.
3432 */
3433 check_early_cpu_features();
3434
3435 /*
3436 * If we haven't finalised the system capabilities, this CPU gets
3437 * a chance to update the errata work arounds and local features.
3438 * Otherwise, this CPU should verify that it has all the system
3439 * advertised capabilities.
3440 */
3441 if (!system_capabilities_finalized())
3442 update_cpu_capabilities(SCOPE_LOCAL_CPU);
3443 else
3444 verify_local_cpu_capabilities();
3445 }
3446
this_cpu_has_cap(unsigned int n)3447 bool this_cpu_has_cap(unsigned int n)
3448 {
3449 if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3450 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3451
3452 if (cap)
3453 return cap->matches(cap, SCOPE_LOCAL_CPU);
3454 }
3455
3456 return false;
3457 }
3458 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3459
3460 /*
3461 * This helper function is used in a narrow window when,
3462 * - The system wide safe registers are set with all the SMP CPUs and,
3463 * - The SYSTEM_FEATURE system_cpucaps may not have been set.
3464 */
__system_matches_cap(unsigned int n)3465 static bool __maybe_unused __system_matches_cap(unsigned int n)
3466 {
3467 if (n < ARM64_NCAPS) {
3468 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3469
3470 if (cap)
3471 return cap->matches(cap, SCOPE_SYSTEM);
3472 }
3473 return false;
3474 }
3475
cpu_set_feature(unsigned int num)3476 void cpu_set_feature(unsigned int num)
3477 {
3478 set_bit(num, elf_hwcap);
3479 }
3480
cpu_have_feature(unsigned int num)3481 bool cpu_have_feature(unsigned int num)
3482 {
3483 return test_bit(num, elf_hwcap);
3484 }
3485 EXPORT_SYMBOL_GPL(cpu_have_feature);
3486
cpu_get_elf_hwcap(void)3487 unsigned long cpu_get_elf_hwcap(void)
3488 {
3489 /*
3490 * We currently only populate the first 32 bits of AT_HWCAP. Please
3491 * note that for userspace compatibility we guarantee that bits 62
3492 * and 63 will always be returned as 0.
3493 */
3494 return elf_hwcap[0];
3495 }
3496
cpu_get_elf_hwcap2(void)3497 unsigned long cpu_get_elf_hwcap2(void)
3498 {
3499 return elf_hwcap[1];
3500 }
3501
setup_boot_cpu_capabilities(void)3502 static void __init setup_boot_cpu_capabilities(void)
3503 {
3504 /*
3505 * The boot CPU's feature register values have been recorded. Detect
3506 * boot cpucaps and local cpucaps for the boot CPU, then enable and
3507 * patch alternatives for the available boot cpucaps.
3508 */
3509 update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3510 enable_cpu_capabilities(SCOPE_BOOT_CPU);
3511 apply_boot_alternatives();
3512 }
3513
setup_boot_cpu_features(void)3514 void __init setup_boot_cpu_features(void)
3515 {
3516 /*
3517 * Initialize the indirect array of CPU capabilities pointers before we
3518 * handle the boot CPU.
3519 */
3520 init_cpucap_indirect_list();
3521
3522 /*
3523 * Detect broken pseudo-NMI. Must be called _before_ the call to
3524 * setup_boot_cpu_capabilities() since it interacts with
3525 * can_use_gic_priorities().
3526 */
3527 detect_system_supports_pseudo_nmi();
3528
3529 setup_boot_cpu_capabilities();
3530 }
3531
setup_system_capabilities(void)3532 static void __init setup_system_capabilities(void)
3533 {
3534 /*
3535 * The system-wide safe feature register values have been finalized.
3536 * Detect, enable, and patch alternatives for the available system
3537 * cpucaps.
3538 */
3539 update_cpu_capabilities(SCOPE_SYSTEM);
3540 enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3541 apply_alternatives_all();
3542
3543 /*
3544 * Log any cpucaps with a cpumask as these aren't logged by
3545 * update_cpu_capabilities().
3546 */
3547 for (int i = 0; i < ARM64_NCAPS; i++) {
3548 const struct arm64_cpu_capabilities *caps = cpucap_ptrs[i];
3549
3550 if (caps && caps->cpus && caps->desc &&
3551 cpumask_any(caps->cpus) < nr_cpu_ids)
3552 pr_info("detected: %s on CPU%*pbl\n",
3553 caps->desc, cpumask_pr_args(caps->cpus));
3554 }
3555
3556 /*
3557 * TTBR0 PAN doesn't have its own cpucap, so log it manually.
3558 */
3559 if (system_uses_ttbr0_pan())
3560 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3561 }
3562
setup_system_features(void)3563 void __init setup_system_features(void)
3564 {
3565 setup_system_capabilities();
3566
3567 kpti_install_ng_mappings();
3568
3569 sve_setup();
3570 sme_setup();
3571
3572 /*
3573 * Check for sane CTR_EL0.CWG value.
3574 */
3575 if (!cache_type_cwg())
3576 pr_warn("No Cache Writeback Granule information, assuming %d\n",
3577 ARCH_DMA_MINALIGN);
3578 }
3579
setup_user_features(void)3580 void __init setup_user_features(void)
3581 {
3582 user_feature_fixup();
3583
3584 setup_elf_hwcaps(arm64_elf_hwcaps);
3585
3586 if (system_supports_32bit_el0()) {
3587 setup_elf_hwcaps(compat_elf_hwcaps);
3588 elf_hwcap_fixup();
3589 }
3590
3591 minsigstksz_setup();
3592 }
3593
enable_mismatched_32bit_el0(unsigned int cpu)3594 static int enable_mismatched_32bit_el0(unsigned int cpu)
3595 {
3596 /*
3597 * The first 32-bit-capable CPU we detected and so can no longer
3598 * be offlined by userspace. -1 indicates we haven't yet onlined
3599 * a 32-bit-capable CPU.
3600 */
3601 static int lucky_winner = -1;
3602
3603 struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3604 bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
3605
3606 if (cpu_32bit) {
3607 cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3608 static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
3609 }
3610
3611 if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
3612 return 0;
3613
3614 if (lucky_winner >= 0)
3615 return 0;
3616
3617 /*
3618 * We've detected a mismatch. We need to keep one of our CPUs with
3619 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3620 * every CPU in the system for a 32-bit task.
3621 */
3622 lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3623 cpu_active_mask);
3624 get_cpu_device(lucky_winner)->offline_disabled = true;
3625 setup_elf_hwcaps(compat_elf_hwcaps);
3626 elf_hwcap_fixup();
3627 pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3628 cpu, lucky_winner);
3629 return 0;
3630 }
3631
init_32bit_el0_mask(void)3632 static int __init init_32bit_el0_mask(void)
3633 {
3634 if (!allow_mismatched_32bit_el0)
3635 return 0;
3636
3637 if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3638 return -ENOMEM;
3639
3640 return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3641 "arm64/mismatched_32bit_el0:online",
3642 enable_mismatched_32bit_el0, NULL);
3643 }
3644 subsys_initcall_sync(init_32bit_el0_mask);
3645
cpu_enable_cnp(struct arm64_cpu_capabilities const * cap)3646 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3647 {
3648 cpu_enable_swapper_cnp();
3649 }
3650
3651 /*
3652 * We emulate only the following system register space.
3653 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
3654 * See Table C5-6 System instruction encodings for System register accesses,
3655 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3656 */
is_emulated(u32 id)3657 static inline bool __attribute_const__ is_emulated(u32 id)
3658 {
3659 return (sys_reg_Op0(id) == 0x3 &&
3660 sys_reg_CRn(id) == 0x0 &&
3661 sys_reg_Op1(id) == 0x0 &&
3662 (sys_reg_CRm(id) == 0 ||
3663 ((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
3664 }
3665
3666 /*
3667 * With CRm == 0, reg should be one of :
3668 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3669 */
emulate_id_reg(u32 id,u64 * valp)3670 static inline int emulate_id_reg(u32 id, u64 *valp)
3671 {
3672 switch (id) {
3673 case SYS_MIDR_EL1:
3674 *valp = read_cpuid_id();
3675 break;
3676 case SYS_MPIDR_EL1:
3677 *valp = SYS_MPIDR_SAFE_VAL;
3678 break;
3679 case SYS_REVIDR_EL1:
3680 /* IMPLEMENTATION DEFINED values are emulated with 0 */
3681 *valp = 0;
3682 break;
3683 default:
3684 return -EINVAL;
3685 }
3686
3687 return 0;
3688 }
3689
emulate_sys_reg(u32 id,u64 * valp)3690 static int emulate_sys_reg(u32 id, u64 *valp)
3691 {
3692 struct arm64_ftr_reg *regp;
3693
3694 if (!is_emulated(id))
3695 return -EINVAL;
3696
3697 if (sys_reg_CRm(id) == 0)
3698 return emulate_id_reg(id, valp);
3699
3700 regp = get_arm64_ftr_reg_nowarn(id);
3701 if (regp)
3702 *valp = arm64_ftr_reg_user_value(regp);
3703 else
3704 /*
3705 * The untracked registers are either IMPLEMENTATION DEFINED
3706 * (e.g, ID_AFR0_EL1) or reserved RAZ.
3707 */
3708 *valp = 0;
3709 return 0;
3710 }
3711
do_emulate_mrs(struct pt_regs * regs,u32 sys_reg,u32 rt)3712 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3713 {
3714 int rc;
3715 u64 val;
3716
3717 rc = emulate_sys_reg(sys_reg, &val);
3718 if (!rc) {
3719 pt_regs_write_reg(regs, rt, val);
3720 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3721 }
3722 return rc;
3723 }
3724
try_emulate_mrs(struct pt_regs * regs,u32 insn)3725 bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
3726 {
3727 u32 sys_reg, rt;
3728
3729 if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
3730 return false;
3731
3732 /*
3733 * sys_reg values are defined as used in mrs/msr instruction.
3734 * shift the imm value to get the encoding.
3735 */
3736 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3737 rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3738 return do_emulate_mrs(regs, sys_reg, rt) == 0;
3739 }
3740
arm64_get_meltdown_state(void)3741 enum mitigation_state arm64_get_meltdown_state(void)
3742 {
3743 if (__meltdown_safe)
3744 return SPECTRE_UNAFFECTED;
3745
3746 if (arm64_kernel_unmapped_at_el0())
3747 return SPECTRE_MITIGATED;
3748
3749 return SPECTRE_VULNERABLE;
3750 }
3751
cpu_show_meltdown(struct device * dev,struct device_attribute * attr,char * buf)3752 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
3753 char *buf)
3754 {
3755 switch (arm64_get_meltdown_state()) {
3756 case SPECTRE_UNAFFECTED:
3757 return sprintf(buf, "Not affected\n");
3758
3759 case SPECTRE_MITIGATED:
3760 return sprintf(buf, "Mitigation: PTI\n");
3761
3762 default:
3763 return sprintf(buf, "Vulnerable\n");
3764 }
3765 }
3766