xref: /linux/arch/arm64/kernel/hibernate.c (revision f86fd32d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*:
3  * Hibernate support specific for ARM64
4  *
5  * Derived from work on ARM hibernation support by:
6  *
7  * Ubuntu project, hibernation support for mach-dove
8  * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu)
9  * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.)
10  *  https://lkml.org/lkml/2010/6/18/4
11  *  https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html
12  *  https://patchwork.kernel.org/patch/96442/
13  *
14  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
15  */
16 #define pr_fmt(x) "hibernate: " x
17 #include <linux/cpu.h>
18 #include <linux/kvm_host.h>
19 #include <linux/mm.h>
20 #include <linux/pm.h>
21 #include <linux/sched.h>
22 #include <linux/suspend.h>
23 #include <linux/utsname.h>
24 #include <linux/version.h>
25 
26 #include <asm/barrier.h>
27 #include <asm/cacheflush.h>
28 #include <asm/cputype.h>
29 #include <asm/daifflags.h>
30 #include <asm/irqflags.h>
31 #include <asm/kexec.h>
32 #include <asm/memory.h>
33 #include <asm/mmu_context.h>
34 #include <asm/pgalloc.h>
35 #include <asm/pgtable.h>
36 #include <asm/pgtable-hwdef.h>
37 #include <asm/sections.h>
38 #include <asm/smp.h>
39 #include <asm/smp_plat.h>
40 #include <asm/suspend.h>
41 #include <asm/sysreg.h>
42 #include <asm/virt.h>
43 
44 /*
45  * Hibernate core relies on this value being 0 on resume, and marks it
46  * __nosavedata assuming it will keep the resume kernel's '0' value. This
47  * doesn't happen with either KASLR.
48  *
49  * defined as "__visible int in_suspend __nosavedata" in
50  * kernel/power/hibernate.c
51  */
52 extern int in_suspend;
53 
54 /* Do we need to reset el2? */
55 #define el2_reset_needed() (is_hyp_mode_available() && !is_kernel_in_hyp_mode())
56 
57 /* temporary el2 vectors in the __hibernate_exit_text section. */
58 extern char hibernate_el2_vectors[];
59 
60 /* hyp-stub vectors, used to restore el2 during resume from hibernate. */
61 extern char __hyp_stub_vectors[];
62 
63 /*
64  * The logical cpu number we should resume on, initialised to a non-cpu
65  * number.
66  */
67 static int sleep_cpu = -EINVAL;
68 
69 /*
70  * Values that may not change over hibernate/resume. We put the build number
71  * and date in here so that we guarantee not to resume with a different
72  * kernel.
73  */
74 struct arch_hibernate_hdr_invariants {
75 	char		uts_version[__NEW_UTS_LEN + 1];
76 };
77 
78 /* These values need to be know across a hibernate/restore. */
79 static struct arch_hibernate_hdr {
80 	struct arch_hibernate_hdr_invariants invariants;
81 
82 	/* These are needed to find the relocated kernel if built with kaslr */
83 	phys_addr_t	ttbr1_el1;
84 	void		(*reenter_kernel)(void);
85 
86 	/*
87 	 * We need to know where the __hyp_stub_vectors are after restore to
88 	 * re-configure el2.
89 	 */
90 	phys_addr_t	__hyp_stub_vectors;
91 
92 	u64		sleep_cpu_mpidr;
93 } resume_hdr;
94 
95 static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i)
96 {
97 	memset(i, 0, sizeof(*i));
98 	memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version));
99 }
100 
101 int pfn_is_nosave(unsigned long pfn)
102 {
103 	unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin);
104 	unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1);
105 
106 	return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) ||
107 		crash_is_nosave(pfn);
108 }
109 
110 void notrace save_processor_state(void)
111 {
112 	WARN_ON(num_online_cpus() != 1);
113 }
114 
115 void notrace restore_processor_state(void)
116 {
117 }
118 
119 int arch_hibernation_header_save(void *addr, unsigned int max_size)
120 {
121 	struct arch_hibernate_hdr *hdr = addr;
122 
123 	if (max_size < sizeof(*hdr))
124 		return -EOVERFLOW;
125 
126 	arch_hdr_invariants(&hdr->invariants);
127 	hdr->ttbr1_el1		= __pa_symbol(swapper_pg_dir);
128 	hdr->reenter_kernel	= _cpu_resume;
129 
130 	/* We can't use __hyp_get_vectors() because kvm may still be loaded */
131 	if (el2_reset_needed())
132 		hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors);
133 	else
134 		hdr->__hyp_stub_vectors = 0;
135 
136 	/* Save the mpidr of the cpu we called cpu_suspend() on... */
137 	if (sleep_cpu < 0) {
138 		pr_err("Failing to hibernate on an unknown CPU.\n");
139 		return -ENODEV;
140 	}
141 	hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu);
142 	pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
143 		hdr->sleep_cpu_mpidr);
144 
145 	return 0;
146 }
147 EXPORT_SYMBOL(arch_hibernation_header_save);
148 
149 int arch_hibernation_header_restore(void *addr)
150 {
151 	int ret;
152 	struct arch_hibernate_hdr_invariants invariants;
153 	struct arch_hibernate_hdr *hdr = addr;
154 
155 	arch_hdr_invariants(&invariants);
156 	if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) {
157 		pr_crit("Hibernate image not generated by this kernel!\n");
158 		return -EINVAL;
159 	}
160 
161 	sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr);
162 	pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
163 		hdr->sleep_cpu_mpidr);
164 	if (sleep_cpu < 0) {
165 		pr_crit("Hibernated on a CPU not known to this kernel!\n");
166 		sleep_cpu = -EINVAL;
167 		return -EINVAL;
168 	}
169 	if (!cpu_online(sleep_cpu)) {
170 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
171 		ret = cpu_up(sleep_cpu);
172 		if (ret) {
173 			pr_err("Failed to bring hibernate-CPU up!\n");
174 			sleep_cpu = -EINVAL;
175 			return ret;
176 		}
177 	}
178 
179 	resume_hdr = *hdr;
180 
181 	return 0;
182 }
183 EXPORT_SYMBOL(arch_hibernation_header_restore);
184 
185 static int trans_pgd_map_page(pgd_t *trans_pgd, void *page,
186 		       unsigned long dst_addr,
187 		       pgprot_t pgprot)
188 {
189 	pgd_t *pgdp;
190 	pud_t *pudp;
191 	pmd_t *pmdp;
192 	pte_t *ptep;
193 
194 	pgdp = pgd_offset_raw(trans_pgd, dst_addr);
195 	if (pgd_none(READ_ONCE(*pgdp))) {
196 		pudp = (void *)get_safe_page(GFP_ATOMIC);
197 		if (!pudp)
198 			return -ENOMEM;
199 		pgd_populate(&init_mm, pgdp, pudp);
200 	}
201 
202 	pudp = pud_offset(pgdp, dst_addr);
203 	if (pud_none(READ_ONCE(*pudp))) {
204 		pmdp = (void *)get_safe_page(GFP_ATOMIC);
205 		if (!pmdp)
206 			return -ENOMEM;
207 		pud_populate(&init_mm, pudp, pmdp);
208 	}
209 
210 	pmdp = pmd_offset(pudp, dst_addr);
211 	if (pmd_none(READ_ONCE(*pmdp))) {
212 		ptep = (void *)get_safe_page(GFP_ATOMIC);
213 		if (!ptep)
214 			return -ENOMEM;
215 		pmd_populate_kernel(&init_mm, pmdp, ptep);
216 	}
217 
218 	ptep = pte_offset_kernel(pmdp, dst_addr);
219 	set_pte(ptep, pfn_pte(virt_to_pfn(page), PAGE_KERNEL_EXEC));
220 
221 	return 0;
222 }
223 
224 /*
225  * Copies length bytes, starting at src_start into an new page,
226  * perform cache maintenance, then maps it at the specified address low
227  * address as executable.
228  *
229  * This is used by hibernate to copy the code it needs to execute when
230  * overwriting the kernel text. This function generates a new set of page
231  * tables, which it loads into ttbr0.
232  *
233  * Length is provided as we probably only want 4K of data, even on a 64K
234  * page system.
235  */
236 static int create_safe_exec_page(void *src_start, size_t length,
237 				 unsigned long dst_addr,
238 				 phys_addr_t *phys_dst_addr)
239 {
240 	void *page = (void *)get_safe_page(GFP_ATOMIC);
241 	pgd_t *trans_pgd;
242 	int rc;
243 
244 	if (!page)
245 		return -ENOMEM;
246 
247 	memcpy(page, src_start, length);
248 	__flush_icache_range((unsigned long)page, (unsigned long)page + length);
249 
250 	trans_pgd = (void *)get_safe_page(GFP_ATOMIC);
251 	if (!trans_pgd)
252 		return -ENOMEM;
253 
254 	rc = trans_pgd_map_page(trans_pgd, page, dst_addr,
255 				PAGE_KERNEL_EXEC);
256 	if (rc)
257 		return rc;
258 
259 	/*
260 	 * Load our new page tables. A strict BBM approach requires that we
261 	 * ensure that TLBs are free of any entries that may overlap with the
262 	 * global mappings we are about to install.
263 	 *
264 	 * For a real hibernate/resume cycle TTBR0 currently points to a zero
265 	 * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI
266 	 * runtime services), while for a userspace-driven test_resume cycle it
267 	 * points to userspace page tables (and we must point it at a zero page
268 	 * ourselves). Elsewhere we only (un)install the idmap with preemption
269 	 * disabled, so T0SZ should be as required regardless.
270 	 */
271 	cpu_set_reserved_ttbr0();
272 	local_flush_tlb_all();
273 	write_sysreg(phys_to_ttbr(virt_to_phys(trans_pgd)), ttbr0_el1);
274 	isb();
275 
276 	*phys_dst_addr = virt_to_phys(page);
277 
278 	return 0;
279 }
280 
281 #define dcache_clean_range(start, end)	__flush_dcache_area(start, (end - start))
282 
283 int swsusp_arch_suspend(void)
284 {
285 	int ret = 0;
286 	unsigned long flags;
287 	struct sleep_stack_data state;
288 
289 	if (cpus_are_stuck_in_kernel()) {
290 		pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n");
291 		return -EBUSY;
292 	}
293 
294 	flags = local_daif_save();
295 
296 	if (__cpu_suspend_enter(&state)) {
297 		/* make the crash dump kernel image visible/saveable */
298 		crash_prepare_suspend();
299 
300 		sleep_cpu = smp_processor_id();
301 		ret = swsusp_save();
302 	} else {
303 		/* Clean kernel core startup/idle code to PoC*/
304 		dcache_clean_range(__mmuoff_data_start, __mmuoff_data_end);
305 		dcache_clean_range(__idmap_text_start, __idmap_text_end);
306 
307 		/* Clean kvm setup code to PoC? */
308 		if (el2_reset_needed()) {
309 			dcache_clean_range(__hyp_idmap_text_start, __hyp_idmap_text_end);
310 			dcache_clean_range(__hyp_text_start, __hyp_text_end);
311 		}
312 
313 		/* make the crash dump kernel image protected again */
314 		crash_post_resume();
315 
316 		/*
317 		 * Tell the hibernation core that we've just restored
318 		 * the memory
319 		 */
320 		in_suspend = 0;
321 
322 		sleep_cpu = -EINVAL;
323 		__cpu_suspend_exit();
324 
325 		/*
326 		 * Just in case the boot kernel did turn the SSBD
327 		 * mitigation off behind our back, let's set the state
328 		 * to what we expect it to be.
329 		 */
330 		switch (arm64_get_ssbd_state()) {
331 		case ARM64_SSBD_FORCE_ENABLE:
332 		case ARM64_SSBD_KERNEL:
333 			arm64_set_ssbd_mitigation(true);
334 		}
335 	}
336 
337 	local_daif_restore(flags);
338 
339 	return ret;
340 }
341 
342 static void _copy_pte(pte_t *dst_ptep, pte_t *src_ptep, unsigned long addr)
343 {
344 	pte_t pte = READ_ONCE(*src_ptep);
345 
346 	if (pte_valid(pte)) {
347 		/*
348 		 * Resume will overwrite areas that may be marked
349 		 * read only (code, rodata). Clear the RDONLY bit from
350 		 * the temporary mappings we use during restore.
351 		 */
352 		set_pte(dst_ptep, pte_mkwrite(pte));
353 	} else if (debug_pagealloc_enabled() && !pte_none(pte)) {
354 		/*
355 		 * debug_pagealloc will removed the PTE_VALID bit if
356 		 * the page isn't in use by the resume kernel. It may have
357 		 * been in use by the original kernel, in which case we need
358 		 * to put it back in our copy to do the restore.
359 		 *
360 		 * Before marking this entry valid, check the pfn should
361 		 * be mapped.
362 		 */
363 		BUG_ON(!pfn_valid(pte_pfn(pte)));
364 
365 		set_pte(dst_ptep, pte_mkpresent(pte_mkwrite(pte)));
366 	}
367 }
368 
369 static int copy_pte(pmd_t *dst_pmdp, pmd_t *src_pmdp, unsigned long start,
370 		    unsigned long end)
371 {
372 	pte_t *src_ptep;
373 	pte_t *dst_ptep;
374 	unsigned long addr = start;
375 
376 	dst_ptep = (pte_t *)get_safe_page(GFP_ATOMIC);
377 	if (!dst_ptep)
378 		return -ENOMEM;
379 	pmd_populate_kernel(&init_mm, dst_pmdp, dst_ptep);
380 	dst_ptep = pte_offset_kernel(dst_pmdp, start);
381 
382 	src_ptep = pte_offset_kernel(src_pmdp, start);
383 	do {
384 		_copy_pte(dst_ptep, src_ptep, addr);
385 	} while (dst_ptep++, src_ptep++, addr += PAGE_SIZE, addr != end);
386 
387 	return 0;
388 }
389 
390 static int copy_pmd(pud_t *dst_pudp, pud_t *src_pudp, unsigned long start,
391 		    unsigned long end)
392 {
393 	pmd_t *src_pmdp;
394 	pmd_t *dst_pmdp;
395 	unsigned long next;
396 	unsigned long addr = start;
397 
398 	if (pud_none(READ_ONCE(*dst_pudp))) {
399 		dst_pmdp = (pmd_t *)get_safe_page(GFP_ATOMIC);
400 		if (!dst_pmdp)
401 			return -ENOMEM;
402 		pud_populate(&init_mm, dst_pudp, dst_pmdp);
403 	}
404 	dst_pmdp = pmd_offset(dst_pudp, start);
405 
406 	src_pmdp = pmd_offset(src_pudp, start);
407 	do {
408 		pmd_t pmd = READ_ONCE(*src_pmdp);
409 
410 		next = pmd_addr_end(addr, end);
411 		if (pmd_none(pmd))
412 			continue;
413 		if (pmd_table(pmd)) {
414 			if (copy_pte(dst_pmdp, src_pmdp, addr, next))
415 				return -ENOMEM;
416 		} else {
417 			set_pmd(dst_pmdp,
418 				__pmd(pmd_val(pmd) & ~PMD_SECT_RDONLY));
419 		}
420 	} while (dst_pmdp++, src_pmdp++, addr = next, addr != end);
421 
422 	return 0;
423 }
424 
425 static int copy_pud(pgd_t *dst_pgdp, pgd_t *src_pgdp, unsigned long start,
426 		    unsigned long end)
427 {
428 	pud_t *dst_pudp;
429 	pud_t *src_pudp;
430 	unsigned long next;
431 	unsigned long addr = start;
432 
433 	if (pgd_none(READ_ONCE(*dst_pgdp))) {
434 		dst_pudp = (pud_t *)get_safe_page(GFP_ATOMIC);
435 		if (!dst_pudp)
436 			return -ENOMEM;
437 		pgd_populate(&init_mm, dst_pgdp, dst_pudp);
438 	}
439 	dst_pudp = pud_offset(dst_pgdp, start);
440 
441 	src_pudp = pud_offset(src_pgdp, start);
442 	do {
443 		pud_t pud = READ_ONCE(*src_pudp);
444 
445 		next = pud_addr_end(addr, end);
446 		if (pud_none(pud))
447 			continue;
448 		if (pud_table(pud)) {
449 			if (copy_pmd(dst_pudp, src_pudp, addr, next))
450 				return -ENOMEM;
451 		} else {
452 			set_pud(dst_pudp,
453 				__pud(pud_val(pud) & ~PUD_SECT_RDONLY));
454 		}
455 	} while (dst_pudp++, src_pudp++, addr = next, addr != end);
456 
457 	return 0;
458 }
459 
460 static int copy_page_tables(pgd_t *dst_pgdp, unsigned long start,
461 			    unsigned long end)
462 {
463 	unsigned long next;
464 	unsigned long addr = start;
465 	pgd_t *src_pgdp = pgd_offset_k(start);
466 
467 	dst_pgdp = pgd_offset_raw(dst_pgdp, start);
468 	do {
469 		next = pgd_addr_end(addr, end);
470 		if (pgd_none(READ_ONCE(*src_pgdp)))
471 			continue;
472 		if (copy_pud(dst_pgdp, src_pgdp, addr, next))
473 			return -ENOMEM;
474 	} while (dst_pgdp++, src_pgdp++, addr = next, addr != end);
475 
476 	return 0;
477 }
478 
479 static int trans_pgd_create_copy(pgd_t **dst_pgdp, unsigned long start,
480 			  unsigned long end)
481 {
482 	int rc;
483 	pgd_t *trans_pgd = (pgd_t *)get_safe_page(GFP_ATOMIC);
484 
485 	if (!trans_pgd) {
486 		pr_err("Failed to allocate memory for temporary page tables.\n");
487 		return -ENOMEM;
488 	}
489 
490 	rc = copy_page_tables(trans_pgd, start, end);
491 	if (!rc)
492 		*dst_pgdp = trans_pgd;
493 
494 	return rc;
495 }
496 
497 /*
498  * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit().
499  *
500  * Memory allocated by get_safe_page() will be dealt with by the hibernate code,
501  * we don't need to free it here.
502  */
503 int swsusp_arch_resume(void)
504 {
505 	int rc;
506 	void *zero_page;
507 	size_t exit_size;
508 	pgd_t *tmp_pg_dir;
509 	phys_addr_t phys_hibernate_exit;
510 	void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *,
511 					  void *, phys_addr_t, phys_addr_t);
512 
513 	/*
514 	 * Restoring the memory image will overwrite the ttbr1 page tables.
515 	 * Create a second copy of just the linear map, and use this when
516 	 * restoring.
517 	 */
518 	rc = trans_pgd_create_copy(&tmp_pg_dir, PAGE_OFFSET, PAGE_END);
519 	if (rc)
520 		return rc;
521 
522 	/*
523 	 * We need a zero page that is zero before & after resume in order to
524 	 * to break before make on the ttbr1 page tables.
525 	 */
526 	zero_page = (void *)get_safe_page(GFP_ATOMIC);
527 	if (!zero_page) {
528 		pr_err("Failed to allocate zero page.\n");
529 		return -ENOMEM;
530 	}
531 
532 	/*
533 	 * Locate the exit code in the bottom-but-one page, so that *NULL
534 	 * still has disastrous affects.
535 	 */
536 	hibernate_exit = (void *)PAGE_SIZE;
537 	exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start;
538 	/*
539 	 * Copy swsusp_arch_suspend_exit() to a safe page. This will generate
540 	 * a new set of ttbr0 page tables and load them.
541 	 */
542 	rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size,
543 				   (unsigned long)hibernate_exit,
544 				   &phys_hibernate_exit);
545 	if (rc) {
546 		pr_err("Failed to create safe executable page for hibernate_exit code.\n");
547 		return rc;
548 	}
549 
550 	/*
551 	 * The hibernate exit text contains a set of el2 vectors, that will
552 	 * be executed at el2 with the mmu off in order to reload hyp-stub.
553 	 */
554 	__flush_dcache_area(hibernate_exit, exit_size);
555 
556 	/*
557 	 * KASLR will cause the el2 vectors to be in a different location in
558 	 * the resumed kernel. Load hibernate's temporary copy into el2.
559 	 *
560 	 * We can skip this step if we booted at EL1, or are running with VHE.
561 	 */
562 	if (el2_reset_needed()) {
563 		phys_addr_t el2_vectors = phys_hibernate_exit;  /* base */
564 		el2_vectors += hibernate_el2_vectors -
565 			       __hibernate_exit_text_start;     /* offset */
566 
567 		__hyp_set_vectors(el2_vectors);
568 	}
569 
570 	hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1,
571 		       resume_hdr.reenter_kernel, restore_pblist,
572 		       resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page));
573 
574 	return 0;
575 }
576 
577 int hibernate_resume_nonboot_cpu_disable(void)
578 {
579 	if (sleep_cpu < 0) {
580 		pr_err("Failing to resume from hibernate on an unknown CPU.\n");
581 		return -ENODEV;
582 	}
583 
584 	return freeze_secondary_cpus(sleep_cpu);
585 }
586