xref: /linux/arch/arm64/kernel/module-plts.c (revision d642ef71)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
4  */
5 
6 #include <linux/elf.h>
7 #include <linux/ftrace.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/moduleloader.h>
11 #include <linux/sort.h>
12 
13 static struct plt_entry __get_adrp_add_pair(u64 dst, u64 pc,
14 					    enum aarch64_insn_register reg)
15 {
16 	u32 adrp, add;
17 
18 	adrp = aarch64_insn_gen_adr(pc, dst, reg, AARCH64_INSN_ADR_TYPE_ADRP);
19 	add = aarch64_insn_gen_add_sub_imm(reg, reg, dst % SZ_4K,
20 					   AARCH64_INSN_VARIANT_64BIT,
21 					   AARCH64_INSN_ADSB_ADD);
22 
23 	return (struct plt_entry){ cpu_to_le32(adrp), cpu_to_le32(add) };
24 }
25 
26 struct plt_entry get_plt_entry(u64 dst, void *pc)
27 {
28 	struct plt_entry plt;
29 	static u32 br;
30 
31 	if (!br)
32 		br = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_16,
33 						 AARCH64_INSN_BRANCH_NOLINK);
34 
35 	plt = __get_adrp_add_pair(dst, (u64)pc, AARCH64_INSN_REG_16);
36 	plt.br = cpu_to_le32(br);
37 
38 	return plt;
39 }
40 
41 static bool plt_entries_equal(const struct plt_entry *a,
42 			      const struct plt_entry *b)
43 {
44 	u64 p, q;
45 
46 	/*
47 	 * Check whether both entries refer to the same target:
48 	 * do the cheapest checks first.
49 	 * If the 'add' or 'br' opcodes are different, then the target
50 	 * cannot be the same.
51 	 */
52 	if (a->add != b->add || a->br != b->br)
53 		return false;
54 
55 	p = ALIGN_DOWN((u64)a, SZ_4K);
56 	q = ALIGN_DOWN((u64)b, SZ_4K);
57 
58 	/*
59 	 * If the 'adrp' opcodes are the same then we just need to check
60 	 * that they refer to the same 4k region.
61 	 */
62 	if (a->adrp == b->adrp && p == q)
63 		return true;
64 
65 	return (p + aarch64_insn_adrp_get_offset(le32_to_cpu(a->adrp))) ==
66 	       (q + aarch64_insn_adrp_get_offset(le32_to_cpu(b->adrp)));
67 }
68 
69 u64 module_emit_plt_entry(struct module *mod, Elf64_Shdr *sechdrs,
70 			  void *loc, const Elf64_Rela *rela,
71 			  Elf64_Sym *sym)
72 {
73 	struct mod_plt_sec *pltsec = !within_module_init((unsigned long)loc, mod) ?
74 						&mod->arch.core : &mod->arch.init;
75 	struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
76 	int i = pltsec->plt_num_entries;
77 	int j = i - 1;
78 	u64 val = sym->st_value + rela->r_addend;
79 
80 	if (is_forbidden_offset_for_adrp(&plt[i].adrp))
81 		i++;
82 
83 	plt[i] = get_plt_entry(val, &plt[i]);
84 
85 	/*
86 	 * Check if the entry we just created is a duplicate. Given that the
87 	 * relocations are sorted, this will be the last entry we allocated.
88 	 * (if one exists).
89 	 */
90 	if (j >= 0 && plt_entries_equal(plt + i, plt + j))
91 		return (u64)&plt[j];
92 
93 	pltsec->plt_num_entries += i - j;
94 	if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
95 		return 0;
96 
97 	return (u64)&plt[i];
98 }
99 
100 #ifdef CONFIG_ARM64_ERRATUM_843419
101 u64 module_emit_veneer_for_adrp(struct module *mod, Elf64_Shdr *sechdrs,
102 				void *loc, u64 val)
103 {
104 	struct mod_plt_sec *pltsec = !within_module_init((unsigned long)loc, mod) ?
105 						&mod->arch.core : &mod->arch.init;
106 	struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
107 	int i = pltsec->plt_num_entries++;
108 	u32 br;
109 	int rd;
110 
111 	if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
112 		return 0;
113 
114 	if (is_forbidden_offset_for_adrp(&plt[i].adrp))
115 		i = pltsec->plt_num_entries++;
116 
117 	/* get the destination register of the ADRP instruction */
118 	rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD,
119 					  le32_to_cpup((__le32 *)loc));
120 
121 	br = aarch64_insn_gen_branch_imm((u64)&plt[i].br, (u64)loc + 4,
122 					 AARCH64_INSN_BRANCH_NOLINK);
123 
124 	plt[i] = __get_adrp_add_pair(val, (u64)&plt[i], rd);
125 	plt[i].br = cpu_to_le32(br);
126 
127 	return (u64)&plt[i];
128 }
129 #endif
130 
131 #define cmp_3way(a, b)	((a) < (b) ? -1 : (a) > (b))
132 
133 static int cmp_rela(const void *a, const void *b)
134 {
135 	const Elf64_Rela *x = a, *y = b;
136 	int i;
137 
138 	/* sort by type, symbol index and addend */
139 	i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
140 	if (i == 0)
141 		i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
142 	if (i == 0)
143 		i = cmp_3way(x->r_addend, y->r_addend);
144 	return i;
145 }
146 
147 static bool duplicate_rel(const Elf64_Rela *rela, int num)
148 {
149 	/*
150 	 * Entries are sorted by type, symbol index and addend. That means
151 	 * that, if a duplicate entry exists, it must be in the preceding
152 	 * slot.
153 	 */
154 	return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
155 }
156 
157 static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num,
158 			       Elf64_Word dstidx, Elf_Shdr *dstsec)
159 {
160 	unsigned int ret = 0;
161 	Elf64_Sym *s;
162 	int i;
163 
164 	for (i = 0; i < num; i++) {
165 		u64 min_align;
166 
167 		switch (ELF64_R_TYPE(rela[i].r_info)) {
168 		case R_AARCH64_JUMP26:
169 		case R_AARCH64_CALL26:
170 			/*
171 			 * We only have to consider branch targets that resolve
172 			 * to symbols that are defined in a different section.
173 			 * This is not simply a heuristic, it is a fundamental
174 			 * limitation, since there is no guaranteed way to emit
175 			 * PLT entries sufficiently close to the branch if the
176 			 * section size exceeds the range of a branch
177 			 * instruction. So ignore relocations against defined
178 			 * symbols if they live in the same section as the
179 			 * relocation target.
180 			 */
181 			s = syms + ELF64_R_SYM(rela[i].r_info);
182 			if (s->st_shndx == dstidx)
183 				break;
184 
185 			/*
186 			 * Jump relocations with non-zero addends against
187 			 * undefined symbols are supported by the ELF spec, but
188 			 * do not occur in practice (e.g., 'jump n bytes past
189 			 * the entry point of undefined function symbol f').
190 			 * So we need to support them, but there is no need to
191 			 * take them into consideration when trying to optimize
192 			 * this code. So let's only check for duplicates when
193 			 * the addend is zero: this allows us to record the PLT
194 			 * entry address in the symbol table itself, rather than
195 			 * having to search the list for duplicates each time we
196 			 * emit one.
197 			 */
198 			if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
199 				ret++;
200 			break;
201 		case R_AARCH64_ADR_PREL_PG_HI21_NC:
202 		case R_AARCH64_ADR_PREL_PG_HI21:
203 			if (!cpus_have_final_cap(ARM64_WORKAROUND_843419))
204 				break;
205 
206 			/*
207 			 * Determine the minimal safe alignment for this ADRP
208 			 * instruction: the section alignment at which it is
209 			 * guaranteed not to appear at a vulnerable offset.
210 			 *
211 			 * This comes down to finding the least significant zero
212 			 * bit in bits [11:3] of the section offset, and
213 			 * increasing the section's alignment so that the
214 			 * resulting address of this instruction is guaranteed
215 			 * to equal the offset in that particular bit (as well
216 			 * as all less significant bits). This ensures that the
217 			 * address modulo 4 KB != 0xfff8 or 0xfffc (which would
218 			 * have all ones in bits [11:3])
219 			 */
220 			min_align = 2ULL << ffz(rela[i].r_offset | 0x7);
221 
222 			/*
223 			 * Allocate veneer space for each ADRP that may appear
224 			 * at a vulnerable offset nonetheless. At relocation
225 			 * time, some of these will remain unused since some
226 			 * ADRP instructions can be patched to ADR instructions
227 			 * instead.
228 			 */
229 			if (min_align > SZ_4K)
230 				ret++;
231 			else
232 				dstsec->sh_addralign = max(dstsec->sh_addralign,
233 							   min_align);
234 			break;
235 		}
236 	}
237 
238 	if (cpus_have_final_cap(ARM64_WORKAROUND_843419)) {
239 		/*
240 		 * Add some slack so we can skip PLT slots that may trigger
241 		 * the erratum due to the placement of the ADRP instruction.
242 		 */
243 		ret += DIV_ROUND_UP(ret, (SZ_4K / sizeof(struct plt_entry)));
244 	}
245 
246 	return ret;
247 }
248 
249 static bool branch_rela_needs_plt(Elf64_Sym *syms, Elf64_Rela *rela,
250 				  Elf64_Word dstidx)
251 {
252 
253 	Elf64_Sym *s = syms + ELF64_R_SYM(rela->r_info);
254 
255 	if (s->st_shndx == dstidx)
256 		return false;
257 
258 	return ELF64_R_TYPE(rela->r_info) == R_AARCH64_JUMP26 ||
259 	       ELF64_R_TYPE(rela->r_info) == R_AARCH64_CALL26;
260 }
261 
262 /* Group branch PLT relas at the front end of the array. */
263 static int partition_branch_plt_relas(Elf64_Sym *syms, Elf64_Rela *rela,
264 				      int numrels, Elf64_Word dstidx)
265 {
266 	int i = 0, j = numrels - 1;
267 
268 	while (i < j) {
269 		if (branch_rela_needs_plt(syms, &rela[i], dstidx))
270 			i++;
271 		else if (branch_rela_needs_plt(syms, &rela[j], dstidx))
272 			swap(rela[i], rela[j]);
273 		else
274 			j--;
275 	}
276 
277 	return i;
278 }
279 
280 int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
281 			      char *secstrings, struct module *mod)
282 {
283 	unsigned long core_plts = 0;
284 	unsigned long init_plts = 0;
285 	Elf64_Sym *syms = NULL;
286 	Elf_Shdr *pltsec, *tramp = NULL;
287 	int i;
288 
289 	/*
290 	 * Find the empty .plt section so we can expand it to store the PLT
291 	 * entries. Record the symtab address as well.
292 	 */
293 	for (i = 0; i < ehdr->e_shnum; i++) {
294 		if (!strcmp(secstrings + sechdrs[i].sh_name, ".plt"))
295 			mod->arch.core.plt_shndx = i;
296 		else if (!strcmp(secstrings + sechdrs[i].sh_name, ".init.plt"))
297 			mod->arch.init.plt_shndx = i;
298 		else if (!strcmp(secstrings + sechdrs[i].sh_name,
299 				 ".text.ftrace_trampoline"))
300 			tramp = sechdrs + i;
301 		else if (sechdrs[i].sh_type == SHT_SYMTAB)
302 			syms = (Elf64_Sym *)sechdrs[i].sh_addr;
303 	}
304 
305 	if (!mod->arch.core.plt_shndx || !mod->arch.init.plt_shndx) {
306 		pr_err("%s: module PLT section(s) missing\n", mod->name);
307 		return -ENOEXEC;
308 	}
309 	if (!syms) {
310 		pr_err("%s: module symtab section missing\n", mod->name);
311 		return -ENOEXEC;
312 	}
313 
314 	for (i = 0; i < ehdr->e_shnum; i++) {
315 		Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
316 		int nents, numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
317 		Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;
318 
319 		if (sechdrs[i].sh_type != SHT_RELA)
320 			continue;
321 
322 		/* ignore relocations that operate on non-exec sections */
323 		if (!(dstsec->sh_flags & SHF_EXECINSTR))
324 			continue;
325 
326 		/*
327 		 * sort branch relocations requiring a PLT by type, symbol index
328 		 * and addend
329 		 */
330 		nents = partition_branch_plt_relas(syms, rels, numrels,
331 						   sechdrs[i].sh_info);
332 		if (nents)
333 			sort(rels, nents, sizeof(Elf64_Rela), cmp_rela, NULL);
334 
335 		if (!module_init_layout_section(secstrings + dstsec->sh_name))
336 			core_plts += count_plts(syms, rels, numrels,
337 						sechdrs[i].sh_info, dstsec);
338 		else
339 			init_plts += count_plts(syms, rels, numrels,
340 						sechdrs[i].sh_info, dstsec);
341 	}
342 
343 	pltsec = sechdrs + mod->arch.core.plt_shndx;
344 	pltsec->sh_type = SHT_NOBITS;
345 	pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
346 	pltsec->sh_addralign = L1_CACHE_BYTES;
347 	pltsec->sh_size = (core_plts  + 1) * sizeof(struct plt_entry);
348 	mod->arch.core.plt_num_entries = 0;
349 	mod->arch.core.plt_max_entries = core_plts;
350 
351 	pltsec = sechdrs + mod->arch.init.plt_shndx;
352 	pltsec->sh_type = SHT_NOBITS;
353 	pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
354 	pltsec->sh_addralign = L1_CACHE_BYTES;
355 	pltsec->sh_size = (init_plts + 1) * sizeof(struct plt_entry);
356 	mod->arch.init.plt_num_entries = 0;
357 	mod->arch.init.plt_max_entries = init_plts;
358 
359 	if (tramp) {
360 		tramp->sh_type = SHT_NOBITS;
361 		tramp->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
362 		tramp->sh_addralign = __alignof__(struct plt_entry);
363 		tramp->sh_size = NR_FTRACE_PLTS * sizeof(struct plt_entry);
364 	}
365 
366 	return 0;
367 }
368