xref: /linux/arch/arm64/kvm/hyp/include/hyp/switch.h (revision 021bc4b9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #ifndef __ARM64_KVM_HYP_SWITCH_H__
8 #define __ARM64_KVM_HYP_SWITCH_H__
9 
10 #include <hyp/adjust_pc.h>
11 #include <hyp/fault.h>
12 
13 #include <linux/arm-smccc.h>
14 #include <linux/kvm_host.h>
15 #include <linux/types.h>
16 #include <linux/jump_label.h>
17 #include <uapi/linux/psci.h>
18 
19 #include <kvm/arm_psci.h>
20 
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
23 #include <asm/extable.h>
24 #include <asm/kprobes.h>
25 #include <asm/kvm_asm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_hyp.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_nested.h>
30 #include <asm/fpsimd.h>
31 #include <asm/debug-monitors.h>
32 #include <asm/processor.h>
33 #include <asm/traps.h>
34 
35 struct kvm_exception_table_entry {
36 	int insn, fixup;
37 };
38 
39 extern struct kvm_exception_table_entry __start___kvm_ex_table;
40 extern struct kvm_exception_table_entry __stop___kvm_ex_table;
41 
42 /* Check whether the FP regs are owned by the guest */
43 static inline bool guest_owns_fp_regs(struct kvm_vcpu *vcpu)
44 {
45 	return vcpu->arch.fp_state == FP_STATE_GUEST_OWNED;
46 }
47 
48 /* Save the 32-bit only FPSIMD system register state */
49 static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
50 {
51 	if (!vcpu_el1_is_32bit(vcpu))
52 		return;
53 
54 	__vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2);
55 }
56 
57 static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
58 {
59 	/*
60 	 * We are about to set CPTR_EL2.TFP to trap all floating point
61 	 * register accesses to EL2, however, the ARM ARM clearly states that
62 	 * traps are only taken to EL2 if the operation would not otherwise
63 	 * trap to EL1.  Therefore, always make sure that for 32-bit guests,
64 	 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
65 	 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
66 	 * it will cause an exception.
67 	 */
68 	if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
69 		write_sysreg(1 << 30, fpexc32_el2);
70 		isb();
71 	}
72 }
73 
74 #define compute_clr_set(vcpu, reg, clr, set)				\
75 	do {								\
76 		u64 hfg;						\
77 		hfg = __vcpu_sys_reg(vcpu, reg) & ~__ ## reg ## _RES0;	\
78 		set |= hfg & __ ## reg ## _MASK; 			\
79 		clr |= ~hfg & __ ## reg ## _nMASK; 			\
80 	} while(0)
81 
82 #define update_fgt_traps_cs(vcpu, reg, clr, set)			\
83 	do {								\
84 		struct kvm_cpu_context *hctxt =				\
85 			&this_cpu_ptr(&kvm_host_data)->host_ctxt;	\
86 		u64 c = 0, s = 0;					\
87 									\
88 		ctxt_sys_reg(hctxt, reg) = read_sysreg_s(SYS_ ## reg);	\
89 		compute_clr_set(vcpu, reg, c, s);			\
90 		s |= set;						\
91 		c |= clr;						\
92 		if (c || s) {						\
93 			u64 val = __ ## reg ## _nMASK;			\
94 			val |= s;					\
95 			val &= ~c;					\
96 			write_sysreg_s(val, SYS_ ## reg);		\
97 		}							\
98 	} while(0)
99 
100 #define update_fgt_traps(vcpu, reg)		\
101 	update_fgt_traps_cs(vcpu, reg, 0, 0)
102 
103 /*
104  * Validate the fine grain trap masks.
105  * Check that the masks do not overlap and that all bits are accounted for.
106  */
107 #define CHECK_FGT_MASKS(reg)							\
108 	do {									\
109 		BUILD_BUG_ON((__ ## reg ## _MASK) & (__ ## reg ## _nMASK));	\
110 		BUILD_BUG_ON(~((__ ## reg ## _RES0) ^ (__ ## reg ## _MASK) ^	\
111 			       (__ ## reg ## _nMASK)));				\
112 	} while(0)
113 
114 static inline bool cpu_has_amu(void)
115 {
116        u64 pfr0 = read_sysreg_s(SYS_ID_AA64PFR0_EL1);
117 
118        return cpuid_feature_extract_unsigned_field(pfr0,
119                ID_AA64PFR0_EL1_AMU_SHIFT);
120 }
121 
122 static inline void __activate_traps_hfgxtr(struct kvm_vcpu *vcpu)
123 {
124 	struct kvm_cpu_context *hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
125 	u64 r_clr = 0, w_clr = 0, r_set = 0, w_set = 0, tmp;
126 	u64 r_val, w_val;
127 
128 	CHECK_FGT_MASKS(HFGRTR_EL2);
129 	CHECK_FGT_MASKS(HFGWTR_EL2);
130 	CHECK_FGT_MASKS(HFGITR_EL2);
131 	CHECK_FGT_MASKS(HDFGRTR_EL2);
132 	CHECK_FGT_MASKS(HDFGWTR_EL2);
133 	CHECK_FGT_MASKS(HAFGRTR_EL2);
134 	CHECK_FGT_MASKS(HCRX_EL2);
135 
136 	if (!cpus_have_final_cap(ARM64_HAS_FGT))
137 		return;
138 
139 	ctxt_sys_reg(hctxt, HFGRTR_EL2) = read_sysreg_s(SYS_HFGRTR_EL2);
140 	ctxt_sys_reg(hctxt, HFGWTR_EL2) = read_sysreg_s(SYS_HFGWTR_EL2);
141 
142 	if (cpus_have_final_cap(ARM64_SME)) {
143 		tmp = HFGxTR_EL2_nSMPRI_EL1_MASK | HFGxTR_EL2_nTPIDR2_EL0_MASK;
144 
145 		r_clr |= tmp;
146 		w_clr |= tmp;
147 	}
148 
149 	/*
150 	 * Trap guest writes to TCR_EL1 to prevent it from enabling HA or HD.
151 	 */
152 	if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
153 		w_set |= HFGxTR_EL2_TCR_EL1_MASK;
154 
155 	if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
156 		compute_clr_set(vcpu, HFGRTR_EL2, r_clr, r_set);
157 		compute_clr_set(vcpu, HFGWTR_EL2, w_clr, w_set);
158 	}
159 
160 	/* The default to trap everything not handled or supported in KVM. */
161 	tmp = HFGxTR_EL2_nAMAIR2_EL1 | HFGxTR_EL2_nMAIR2_EL1 | HFGxTR_EL2_nS2POR_EL1 |
162 	      HFGxTR_EL2_nPOR_EL1 | HFGxTR_EL2_nPOR_EL0 | HFGxTR_EL2_nACCDATA_EL1;
163 
164 	r_val = __HFGRTR_EL2_nMASK & ~tmp;
165 	r_val |= r_set;
166 	r_val &= ~r_clr;
167 
168 	w_val = __HFGWTR_EL2_nMASK & ~tmp;
169 	w_val |= w_set;
170 	w_val &= ~w_clr;
171 
172 	write_sysreg_s(r_val, SYS_HFGRTR_EL2);
173 	write_sysreg_s(w_val, SYS_HFGWTR_EL2);
174 
175 	if (!vcpu_has_nv(vcpu) || is_hyp_ctxt(vcpu))
176 		return;
177 
178 	update_fgt_traps(vcpu, HFGITR_EL2);
179 	update_fgt_traps(vcpu, HDFGRTR_EL2);
180 	update_fgt_traps(vcpu, HDFGWTR_EL2);
181 
182 	if (cpu_has_amu())
183 		update_fgt_traps(vcpu, HAFGRTR_EL2);
184 }
185 
186 static inline void __deactivate_traps_hfgxtr(struct kvm_vcpu *vcpu)
187 {
188 	struct kvm_cpu_context *hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
189 
190 	if (!cpus_have_final_cap(ARM64_HAS_FGT))
191 		return;
192 
193 	write_sysreg_s(ctxt_sys_reg(hctxt, HFGRTR_EL2), SYS_HFGRTR_EL2);
194 	write_sysreg_s(ctxt_sys_reg(hctxt, HFGWTR_EL2), SYS_HFGWTR_EL2);
195 
196 	if (!vcpu_has_nv(vcpu) || is_hyp_ctxt(vcpu))
197 		return;
198 
199 	write_sysreg_s(ctxt_sys_reg(hctxt, HFGITR_EL2), SYS_HFGITR_EL2);
200 	write_sysreg_s(ctxt_sys_reg(hctxt, HDFGRTR_EL2), SYS_HDFGRTR_EL2);
201 	write_sysreg_s(ctxt_sys_reg(hctxt, HDFGWTR_EL2), SYS_HDFGWTR_EL2);
202 
203 	if (cpu_has_amu())
204 		write_sysreg_s(ctxt_sys_reg(hctxt, HAFGRTR_EL2), SYS_HAFGRTR_EL2);
205 }
206 
207 static inline void __activate_traps_common(struct kvm_vcpu *vcpu)
208 {
209 	/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
210 	write_sysreg(1 << 15, hstr_el2);
211 
212 	/*
213 	 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
214 	 * PMSELR_EL0 to make sure it never contains the cycle
215 	 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
216 	 * EL1 instead of being trapped to EL2.
217 	 */
218 	if (kvm_arm_support_pmu_v3()) {
219 		struct kvm_cpu_context *hctxt;
220 
221 		write_sysreg(0, pmselr_el0);
222 
223 		hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
224 		ctxt_sys_reg(hctxt, PMUSERENR_EL0) = read_sysreg(pmuserenr_el0);
225 		write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
226 		vcpu_set_flag(vcpu, PMUSERENR_ON_CPU);
227 	}
228 
229 	vcpu->arch.mdcr_el2_host = read_sysreg(mdcr_el2);
230 	write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
231 
232 	if (cpus_have_final_cap(ARM64_HAS_HCX)) {
233 		u64 hcrx = HCRX_GUEST_FLAGS;
234 		if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
235 			u64 clr = 0, set = 0;
236 
237 			compute_clr_set(vcpu, HCRX_EL2, clr, set);
238 
239 			hcrx |= set;
240 			hcrx &= ~clr;
241 		}
242 
243 		write_sysreg_s(hcrx, SYS_HCRX_EL2);
244 	}
245 
246 	__activate_traps_hfgxtr(vcpu);
247 }
248 
249 static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu)
250 {
251 	write_sysreg(vcpu->arch.mdcr_el2_host, mdcr_el2);
252 
253 	write_sysreg(0, hstr_el2);
254 	if (kvm_arm_support_pmu_v3()) {
255 		struct kvm_cpu_context *hctxt;
256 
257 		hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
258 		write_sysreg(ctxt_sys_reg(hctxt, PMUSERENR_EL0), pmuserenr_el0);
259 		vcpu_clear_flag(vcpu, PMUSERENR_ON_CPU);
260 	}
261 
262 	if (cpus_have_final_cap(ARM64_HAS_HCX))
263 		write_sysreg_s(HCRX_HOST_FLAGS, SYS_HCRX_EL2);
264 
265 	__deactivate_traps_hfgxtr(vcpu);
266 }
267 
268 static inline void ___activate_traps(struct kvm_vcpu *vcpu)
269 {
270 	u64 hcr = vcpu->arch.hcr_el2;
271 
272 	if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
273 		hcr |= HCR_TVM;
274 
275 	write_sysreg(hcr, hcr_el2);
276 
277 	if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
278 		write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
279 }
280 
281 static inline void ___deactivate_traps(struct kvm_vcpu *vcpu)
282 {
283 	/*
284 	 * If we pended a virtual abort, preserve it until it gets
285 	 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
286 	 * the crucial bit is "On taking a vSError interrupt,
287 	 * HCR_EL2.VSE is cleared to 0."
288 	 */
289 	if (vcpu->arch.hcr_el2 & HCR_VSE) {
290 		vcpu->arch.hcr_el2 &= ~HCR_VSE;
291 		vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
292 	}
293 }
294 
295 static inline bool __populate_fault_info(struct kvm_vcpu *vcpu)
296 {
297 	return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault);
298 }
299 
300 static bool kvm_hyp_handle_mops(struct kvm_vcpu *vcpu, u64 *exit_code)
301 {
302 	*vcpu_pc(vcpu) = read_sysreg_el2(SYS_ELR);
303 	arm64_mops_reset_regs(vcpu_gp_regs(vcpu), vcpu->arch.fault.esr_el2);
304 	write_sysreg_el2(*vcpu_pc(vcpu), SYS_ELR);
305 
306 	/*
307 	 * Finish potential single step before executing the prologue
308 	 * instruction.
309 	 */
310 	*vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS;
311 	write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);
312 
313 	return true;
314 }
315 
316 static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu)
317 {
318 	sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2);
319 	__sve_restore_state(vcpu_sve_pffr(vcpu),
320 			    &vcpu->arch.ctxt.fp_regs.fpsr);
321 	write_sysreg_el1(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR);
322 }
323 
324 /*
325  * We trap the first access to the FP/SIMD to save the host context and
326  * restore the guest context lazily.
327  * If FP/SIMD is not implemented, handle the trap and inject an undefined
328  * instruction exception to the guest. Similarly for trapped SVE accesses.
329  */
330 static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code)
331 {
332 	bool sve_guest;
333 	u8 esr_ec;
334 	u64 reg;
335 
336 	if (!system_supports_fpsimd())
337 		return false;
338 
339 	sve_guest = vcpu_has_sve(vcpu);
340 	esr_ec = kvm_vcpu_trap_get_class(vcpu);
341 
342 	/* Only handle traps the vCPU can support here: */
343 	switch (esr_ec) {
344 	case ESR_ELx_EC_FP_ASIMD:
345 		break;
346 	case ESR_ELx_EC_SVE:
347 		if (!sve_guest)
348 			return false;
349 		break;
350 	default:
351 		return false;
352 	}
353 
354 	/* Valid trap.  Switch the context: */
355 
356 	/* First disable enough traps to allow us to update the registers */
357 	if (has_vhe() || has_hvhe()) {
358 		reg = CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN;
359 		if (sve_guest)
360 			reg |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN;
361 
362 		sysreg_clear_set(cpacr_el1, 0, reg);
363 	} else {
364 		reg = CPTR_EL2_TFP;
365 		if (sve_guest)
366 			reg |= CPTR_EL2_TZ;
367 
368 		sysreg_clear_set(cptr_el2, reg, 0);
369 	}
370 	isb();
371 
372 	/* Write out the host state if it's in the registers */
373 	if (vcpu->arch.fp_state == FP_STATE_HOST_OWNED)
374 		__fpsimd_save_state(vcpu->arch.host_fpsimd_state);
375 
376 	/* Restore the guest state */
377 	if (sve_guest)
378 		__hyp_sve_restore_guest(vcpu);
379 	else
380 		__fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs);
381 
382 	/* Skip restoring fpexc32 for AArch64 guests */
383 	if (!(read_sysreg(hcr_el2) & HCR_RW))
384 		write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2);
385 
386 	vcpu->arch.fp_state = FP_STATE_GUEST_OWNED;
387 
388 	return true;
389 }
390 
391 static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu)
392 {
393 	u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
394 	int rt = kvm_vcpu_sys_get_rt(vcpu);
395 	u64 val = vcpu_get_reg(vcpu, rt);
396 
397 	/*
398 	 * The normal sysreg handling code expects to see the traps,
399 	 * let's not do anything here.
400 	 */
401 	if (vcpu->arch.hcr_el2 & HCR_TVM)
402 		return false;
403 
404 	switch (sysreg) {
405 	case SYS_SCTLR_EL1:
406 		write_sysreg_el1(val, SYS_SCTLR);
407 		break;
408 	case SYS_TTBR0_EL1:
409 		write_sysreg_el1(val, SYS_TTBR0);
410 		break;
411 	case SYS_TTBR1_EL1:
412 		write_sysreg_el1(val, SYS_TTBR1);
413 		break;
414 	case SYS_TCR_EL1:
415 		write_sysreg_el1(val, SYS_TCR);
416 		break;
417 	case SYS_ESR_EL1:
418 		write_sysreg_el1(val, SYS_ESR);
419 		break;
420 	case SYS_FAR_EL1:
421 		write_sysreg_el1(val, SYS_FAR);
422 		break;
423 	case SYS_AFSR0_EL1:
424 		write_sysreg_el1(val, SYS_AFSR0);
425 		break;
426 	case SYS_AFSR1_EL1:
427 		write_sysreg_el1(val, SYS_AFSR1);
428 		break;
429 	case SYS_MAIR_EL1:
430 		write_sysreg_el1(val, SYS_MAIR);
431 		break;
432 	case SYS_AMAIR_EL1:
433 		write_sysreg_el1(val, SYS_AMAIR);
434 		break;
435 	case SYS_CONTEXTIDR_EL1:
436 		write_sysreg_el1(val, SYS_CONTEXTIDR);
437 		break;
438 	default:
439 		return false;
440 	}
441 
442 	__kvm_skip_instr(vcpu);
443 	return true;
444 }
445 
446 static inline bool esr_is_ptrauth_trap(u64 esr)
447 {
448 	switch (esr_sys64_to_sysreg(esr)) {
449 	case SYS_APIAKEYLO_EL1:
450 	case SYS_APIAKEYHI_EL1:
451 	case SYS_APIBKEYLO_EL1:
452 	case SYS_APIBKEYHI_EL1:
453 	case SYS_APDAKEYLO_EL1:
454 	case SYS_APDAKEYHI_EL1:
455 	case SYS_APDBKEYLO_EL1:
456 	case SYS_APDBKEYHI_EL1:
457 	case SYS_APGAKEYLO_EL1:
458 	case SYS_APGAKEYHI_EL1:
459 		return true;
460 	}
461 
462 	return false;
463 }
464 
465 #define __ptrauth_save_key(ctxt, key)					\
466 	do {								\
467 	u64 __val;                                                      \
468 	__val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1);                \
469 	ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val;                   \
470 	__val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1);                \
471 	ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val;                   \
472 } while(0)
473 
474 DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
475 
476 static bool kvm_hyp_handle_ptrauth(struct kvm_vcpu *vcpu, u64 *exit_code)
477 {
478 	struct kvm_cpu_context *ctxt;
479 	u64 val;
480 
481 	if (!vcpu_has_ptrauth(vcpu))
482 		return false;
483 
484 	ctxt = this_cpu_ptr(&kvm_hyp_ctxt);
485 	__ptrauth_save_key(ctxt, APIA);
486 	__ptrauth_save_key(ctxt, APIB);
487 	__ptrauth_save_key(ctxt, APDA);
488 	__ptrauth_save_key(ctxt, APDB);
489 	__ptrauth_save_key(ctxt, APGA);
490 
491 	vcpu_ptrauth_enable(vcpu);
492 
493 	val = read_sysreg(hcr_el2);
494 	val |= (HCR_API | HCR_APK);
495 	write_sysreg(val, hcr_el2);
496 
497 	return true;
498 }
499 
500 static bool kvm_hyp_handle_cntpct(struct kvm_vcpu *vcpu)
501 {
502 	struct arch_timer_context *ctxt;
503 	u32 sysreg;
504 	u64 val;
505 
506 	/*
507 	 * We only get here for 64bit guests, 32bit guests will hit
508 	 * the long and winding road all the way to the standard
509 	 * handling. Yes, it sucks to be irrelevant.
510 	 */
511 	sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
512 
513 	switch (sysreg) {
514 	case SYS_CNTPCT_EL0:
515 	case SYS_CNTPCTSS_EL0:
516 		if (vcpu_has_nv(vcpu)) {
517 			if (is_hyp_ctxt(vcpu)) {
518 				ctxt = vcpu_hptimer(vcpu);
519 				break;
520 			}
521 
522 			/* Check for guest hypervisor trapping */
523 			val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
524 			if (!vcpu_el2_e2h_is_set(vcpu))
525 				val = (val & CNTHCTL_EL1PCTEN) << 10;
526 
527 			if (!(val & (CNTHCTL_EL1PCTEN << 10)))
528 				return false;
529 		}
530 
531 		ctxt = vcpu_ptimer(vcpu);
532 		break;
533 	default:
534 		return false;
535 	}
536 
537 	val = arch_timer_read_cntpct_el0();
538 
539 	if (ctxt->offset.vm_offset)
540 		val -= *kern_hyp_va(ctxt->offset.vm_offset);
541 	if (ctxt->offset.vcpu_offset)
542 		val -= *kern_hyp_va(ctxt->offset.vcpu_offset);
543 
544 	vcpu_set_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu), val);
545 	__kvm_skip_instr(vcpu);
546 	return true;
547 }
548 
549 static bool handle_ampere1_tcr(struct kvm_vcpu *vcpu)
550 {
551 	u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
552 	int rt = kvm_vcpu_sys_get_rt(vcpu);
553 	u64 val = vcpu_get_reg(vcpu, rt);
554 
555 	if (sysreg != SYS_TCR_EL1)
556 		return false;
557 
558 	/*
559 	 * Affected parts do not advertise support for hardware Access Flag /
560 	 * Dirty state management in ID_AA64MMFR1_EL1.HAFDBS, but the underlying
561 	 * control bits are still functional. The architecture requires these be
562 	 * RES0 on systems that do not implement FEAT_HAFDBS.
563 	 *
564 	 * Uphold the requirements of the architecture by masking guest writes
565 	 * to TCR_EL1.{HA,HD} here.
566 	 */
567 	val &= ~(TCR_HD | TCR_HA);
568 	write_sysreg_el1(val, SYS_TCR);
569 	__kvm_skip_instr(vcpu);
570 	return true;
571 }
572 
573 static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code)
574 {
575 	if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
576 	    handle_tx2_tvm(vcpu))
577 		return true;
578 
579 	if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38) &&
580 	    handle_ampere1_tcr(vcpu))
581 		return true;
582 
583 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
584 	    __vgic_v3_perform_cpuif_access(vcpu) == 1)
585 		return true;
586 
587 	if (esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu)))
588 		return kvm_hyp_handle_ptrauth(vcpu, exit_code);
589 
590 	if (kvm_hyp_handle_cntpct(vcpu))
591 		return true;
592 
593 	return false;
594 }
595 
596 static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code)
597 {
598 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
599 	    __vgic_v3_perform_cpuif_access(vcpu) == 1)
600 		return true;
601 
602 	return false;
603 }
604 
605 static bool kvm_hyp_handle_memory_fault(struct kvm_vcpu *vcpu, u64 *exit_code)
606 {
607 	if (!__populate_fault_info(vcpu))
608 		return true;
609 
610 	return false;
611 }
612 static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
613 	__alias(kvm_hyp_handle_memory_fault);
614 static bool kvm_hyp_handle_watchpt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
615 	__alias(kvm_hyp_handle_memory_fault);
616 
617 static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
618 {
619 	if (kvm_hyp_handle_memory_fault(vcpu, exit_code))
620 		return true;
621 
622 	if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
623 		bool valid;
624 
625 		valid = kvm_vcpu_trap_is_translation_fault(vcpu) &&
626 			kvm_vcpu_dabt_isvalid(vcpu) &&
627 			!kvm_vcpu_abt_issea(vcpu) &&
628 			!kvm_vcpu_abt_iss1tw(vcpu);
629 
630 		if (valid) {
631 			int ret = __vgic_v2_perform_cpuif_access(vcpu);
632 
633 			if (ret == 1)
634 				return true;
635 
636 			/* Promote an illegal access to an SError.*/
637 			if (ret == -1)
638 				*exit_code = ARM_EXCEPTION_EL1_SERROR;
639 		}
640 	}
641 
642 	return false;
643 }
644 
645 typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *);
646 
647 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu);
648 
649 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code);
650 
651 /*
652  * Allow the hypervisor to handle the exit with an exit handler if it has one.
653  *
654  * Returns true if the hypervisor handled the exit, and control should go back
655  * to the guest, or false if it hasn't.
656  */
657 static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
658 {
659 	const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu);
660 	exit_handler_fn fn;
661 
662 	fn = handlers[kvm_vcpu_trap_get_class(vcpu)];
663 
664 	if (fn)
665 		return fn(vcpu, exit_code);
666 
667 	return false;
668 }
669 
670 static inline void synchronize_vcpu_pstate(struct kvm_vcpu *vcpu, u64 *exit_code)
671 {
672 	/*
673 	 * Check for the conditions of Cortex-A510's #2077057. When these occur
674 	 * SPSR_EL2 can't be trusted, but isn't needed either as it is
675 	 * unchanged from the value in vcpu_gp_regs(vcpu)->pstate.
676 	 * Are we single-stepping the guest, and took a PAC exception from the
677 	 * active-not-pending state?
678 	 */
679 	if (cpus_have_final_cap(ARM64_WORKAROUND_2077057)		&&
680 	    vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP			&&
681 	    *vcpu_cpsr(vcpu) & DBG_SPSR_SS				&&
682 	    ESR_ELx_EC(read_sysreg_el2(SYS_ESR)) == ESR_ELx_EC_PAC)
683 		write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);
684 
685 	vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR);
686 }
687 
688 /*
689  * Return true when we were able to fixup the guest exit and should return to
690  * the guest, false when we should restore the host state and return to the
691  * main run loop.
692  */
693 static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
694 {
695 	/*
696 	 * Save PSTATE early so that we can evaluate the vcpu mode
697 	 * early on.
698 	 */
699 	synchronize_vcpu_pstate(vcpu, exit_code);
700 
701 	/*
702 	 * Check whether we want to repaint the state one way or
703 	 * another.
704 	 */
705 	early_exit_filter(vcpu, exit_code);
706 
707 	if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
708 		vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
709 
710 	if (ARM_SERROR_PENDING(*exit_code) &&
711 	    ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) {
712 		u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
713 
714 		/*
715 		 * HVC already have an adjusted PC, which we need to
716 		 * correct in order to return to after having injected
717 		 * the SError.
718 		 *
719 		 * SMC, on the other hand, is *trapped*, meaning its
720 		 * preferred return address is the SMC itself.
721 		 */
722 		if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64)
723 			write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR);
724 	}
725 
726 	/*
727 	 * We're using the raw exception code in order to only process
728 	 * the trap if no SError is pending. We will come back to the
729 	 * same PC once the SError has been injected, and replay the
730 	 * trapping instruction.
731 	 */
732 	if (*exit_code != ARM_EXCEPTION_TRAP)
733 		goto exit;
734 
735 	/* Check if there's an exit handler and allow it to handle the exit. */
736 	if (kvm_hyp_handle_exit(vcpu, exit_code))
737 		goto guest;
738 exit:
739 	/* Return to the host kernel and handle the exit */
740 	return false;
741 
742 guest:
743 	/* Re-enter the guest */
744 	asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412));
745 	return true;
746 }
747 
748 static inline void __kvm_unexpected_el2_exception(void)
749 {
750 	extern char __guest_exit_panic[];
751 	unsigned long addr, fixup;
752 	struct kvm_exception_table_entry *entry, *end;
753 	unsigned long elr_el2 = read_sysreg(elr_el2);
754 
755 	entry = &__start___kvm_ex_table;
756 	end = &__stop___kvm_ex_table;
757 
758 	while (entry < end) {
759 		addr = (unsigned long)&entry->insn + entry->insn;
760 		fixup = (unsigned long)&entry->fixup + entry->fixup;
761 
762 		if (addr != elr_el2) {
763 			entry++;
764 			continue;
765 		}
766 
767 		write_sysreg(fixup, elr_el2);
768 		return;
769 	}
770 
771 	/* Trigger a panic after restoring the hyp context. */
772 	write_sysreg(__guest_exit_panic, elr_el2);
773 }
774 
775 #endif /* __ARM64_KVM_HYP_SWITCH_H__ */
776