1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #include <hyp/switch.h>
8 #include <hyp/sysreg-sr.h>
9
10 #include <linux/arm-smccc.h>
11 #include <linux/kvm_host.h>
12 #include <linux/types.h>
13 #include <linux/jump_label.h>
14 #include <uapi/linux/psci.h>
15
16 #include <kvm/arm_psci.h>
17
18 #include <asm/barrier.h>
19 #include <asm/cpufeature.h>
20 #include <asm/kprobes.h>
21 #include <asm/kvm_asm.h>
22 #include <asm/kvm_emulate.h>
23 #include <asm/kvm_hyp.h>
24 #include <asm/kvm_mmu.h>
25 #include <asm/fpsimd.h>
26 #include <asm/debug-monitors.h>
27 #include <asm/processor.h>
28
29 #include <nvhe/fixed_config.h>
30 #include <nvhe/mem_protect.h>
31
32 /* Non-VHE specific context */
33 DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data);
34 DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
35 DEFINE_PER_CPU(unsigned long, kvm_hyp_vector);
36
37 extern void kvm_nvhe_prepare_backtrace(unsigned long fp, unsigned long pc);
38
__activate_traps(struct kvm_vcpu * vcpu)39 static void __activate_traps(struct kvm_vcpu *vcpu)
40 {
41 u64 val;
42
43 ___activate_traps(vcpu, vcpu->arch.hcr_el2);
44 __activate_traps_common(vcpu);
45
46 val = vcpu->arch.cptr_el2;
47 val |= CPTR_EL2_TAM; /* Same bit irrespective of E2H */
48 val |= has_hvhe() ? CPACR_EL1_TTA : CPTR_EL2_TTA;
49 if (cpus_have_final_cap(ARM64_SME)) {
50 if (has_hvhe())
51 val &= ~CPACR_ELx_SMEN;
52 else
53 val |= CPTR_EL2_TSM;
54 }
55
56 if (!guest_owns_fp_regs()) {
57 if (has_hvhe())
58 val &= ~(CPACR_ELx_FPEN | CPACR_ELx_ZEN);
59 else
60 val |= CPTR_EL2_TFP | CPTR_EL2_TZ;
61
62 __activate_traps_fpsimd32(vcpu);
63 }
64
65 kvm_write_cptr_el2(val);
66 write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el2);
67
68 if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
69 struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
70
71 isb();
72 /*
73 * At this stage, and thanks to the above isb(), S2 is
74 * configured and enabled. We can now restore the guest's S1
75 * configuration: SCTLR, and only then TCR.
76 */
77 write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR);
78 isb();
79 write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1), SYS_TCR);
80 }
81 }
82
__deactivate_traps(struct kvm_vcpu * vcpu)83 static void __deactivate_traps(struct kvm_vcpu *vcpu)
84 {
85 extern char __kvm_hyp_host_vector[];
86
87 ___deactivate_traps(vcpu);
88
89 if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
90 u64 val;
91
92 /*
93 * Set the TCR and SCTLR registers in the exact opposite
94 * sequence as __activate_traps (first prevent walks,
95 * then force the MMU on). A generous sprinkling of isb()
96 * ensure that things happen in this exact order.
97 */
98 val = read_sysreg_el1(SYS_TCR);
99 write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR);
100 isb();
101 val = read_sysreg_el1(SYS_SCTLR);
102 write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR);
103 isb();
104 }
105
106 __deactivate_traps_common(vcpu);
107
108 write_sysreg(this_cpu_ptr(&kvm_init_params)->hcr_el2, hcr_el2);
109
110 kvm_reset_cptr_el2(vcpu);
111 write_sysreg(__kvm_hyp_host_vector, vbar_el2);
112 }
113
114 /* Save VGICv3 state on non-VHE systems */
__hyp_vgic_save_state(struct kvm_vcpu * vcpu)115 static void __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
116 {
117 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
118 __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
119 __vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
120 }
121 }
122
123 /* Restore VGICv3 state on non-VHE systems */
__hyp_vgic_restore_state(struct kvm_vcpu * vcpu)124 static void __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
125 {
126 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
127 __vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
128 __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
129 }
130 }
131
132 /*
133 * Disable host events, enable guest events
134 */
135 #ifdef CONFIG_HW_PERF_EVENTS
__pmu_switch_to_guest(struct kvm_vcpu * vcpu)136 static bool __pmu_switch_to_guest(struct kvm_vcpu *vcpu)
137 {
138 struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
139
140 if (pmu->events_host)
141 write_sysreg(pmu->events_host, pmcntenclr_el0);
142
143 if (pmu->events_guest)
144 write_sysreg(pmu->events_guest, pmcntenset_el0);
145
146 return (pmu->events_host || pmu->events_guest);
147 }
148
149 /*
150 * Disable guest events, enable host events
151 */
__pmu_switch_to_host(struct kvm_vcpu * vcpu)152 static void __pmu_switch_to_host(struct kvm_vcpu *vcpu)
153 {
154 struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
155
156 if (pmu->events_guest)
157 write_sysreg(pmu->events_guest, pmcntenclr_el0);
158
159 if (pmu->events_host)
160 write_sysreg(pmu->events_host, pmcntenset_el0);
161 }
162 #else
163 #define __pmu_switch_to_guest(v) ({ false; })
164 #define __pmu_switch_to_host(v) do {} while (0)
165 #endif
166
167 /*
168 * Handler for protected VM MSR, MRS or System instruction execution in AArch64.
169 *
170 * Returns true if the hypervisor has handled the exit, and control should go
171 * back to the guest, or false if it hasn't.
172 */
kvm_handle_pvm_sys64(struct kvm_vcpu * vcpu,u64 * exit_code)173 static bool kvm_handle_pvm_sys64(struct kvm_vcpu *vcpu, u64 *exit_code)
174 {
175 /*
176 * Make sure we handle the exit for workarounds before the pKVM
177 * handling, as the latter could decide to UNDEF.
178 */
179 return (kvm_hyp_handle_sysreg(vcpu, exit_code) ||
180 kvm_handle_pvm_sysreg(vcpu, exit_code));
181 }
182
kvm_hyp_save_fpsimd_host(struct kvm_vcpu * vcpu)183 static void kvm_hyp_save_fpsimd_host(struct kvm_vcpu *vcpu)
184 {
185 /*
186 * Non-protected kvm relies on the host restoring its sve state.
187 * Protected kvm restores the host's sve state as not to reveal that
188 * fpsimd was used by a guest nor leak upper sve bits.
189 */
190 if (unlikely(is_protected_kvm_enabled() && system_supports_sve())) {
191 __hyp_sve_save_host();
192
193 /* Re-enable SVE traps if not supported for the guest vcpu. */
194 if (!vcpu_has_sve(vcpu))
195 cpacr_clear_set(CPACR_ELx_ZEN, 0);
196
197 } else {
198 __fpsimd_save_state(*host_data_ptr(fpsimd_state));
199 }
200
201 if (kvm_has_fpmr(kern_hyp_va(vcpu->kvm))) {
202 u64 val = read_sysreg_s(SYS_FPMR);
203
204 if (unlikely(is_protected_kvm_enabled()))
205 *host_data_ptr(fpmr) = val;
206 else
207 **host_data_ptr(fpmr_ptr) = val;
208 }
209 }
210
211 static const exit_handler_fn hyp_exit_handlers[] = {
212 [0 ... ESR_ELx_EC_MAX] = NULL,
213 [ESR_ELx_EC_CP15_32] = kvm_hyp_handle_cp15_32,
214 [ESR_ELx_EC_SYS64] = kvm_hyp_handle_sysreg,
215 [ESR_ELx_EC_SVE] = kvm_hyp_handle_fpsimd,
216 [ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd,
217 [ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low,
218 [ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low,
219 [ESR_ELx_EC_WATCHPT_LOW] = kvm_hyp_handle_watchpt_low,
220 [ESR_ELx_EC_MOPS] = kvm_hyp_handle_mops,
221 };
222
223 static const exit_handler_fn pvm_exit_handlers[] = {
224 [0 ... ESR_ELx_EC_MAX] = NULL,
225 [ESR_ELx_EC_SYS64] = kvm_handle_pvm_sys64,
226 [ESR_ELx_EC_SVE] = kvm_handle_pvm_restricted,
227 [ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd,
228 [ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low,
229 [ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low,
230 [ESR_ELx_EC_WATCHPT_LOW] = kvm_hyp_handle_watchpt_low,
231 [ESR_ELx_EC_MOPS] = kvm_hyp_handle_mops,
232 };
233
kvm_get_exit_handler_array(struct kvm_vcpu * vcpu)234 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu)
235 {
236 if (unlikely(vcpu_is_protected(vcpu)))
237 return pvm_exit_handlers;
238
239 return hyp_exit_handlers;
240 }
241
242 /*
243 * Some guests (e.g., protected VMs) are not be allowed to run in AArch32.
244 * The ARMv8 architecture does not give the hypervisor a mechanism to prevent a
245 * guest from dropping to AArch32 EL0 if implemented by the CPU. If the
246 * hypervisor spots a guest in such a state ensure it is handled, and don't
247 * trust the host to spot or fix it. The check below is based on the one in
248 * kvm_arch_vcpu_ioctl_run().
249 *
250 * Returns false if the guest ran in AArch32 when it shouldn't have, and
251 * thus should exit to the host, or true if a the guest run loop can continue.
252 */
early_exit_filter(struct kvm_vcpu * vcpu,u64 * exit_code)253 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code)
254 {
255 if (unlikely(vcpu_is_protected(vcpu) && vcpu_mode_is_32bit(vcpu))) {
256 /*
257 * As we have caught the guest red-handed, decide that it isn't
258 * fit for purpose anymore by making the vcpu invalid. The VMM
259 * can try and fix it by re-initializing the vcpu with
260 * KVM_ARM_VCPU_INIT, however, this is likely not possible for
261 * protected VMs.
262 */
263 vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
264 *exit_code &= BIT(ARM_EXIT_WITH_SERROR_BIT);
265 *exit_code |= ARM_EXCEPTION_IL;
266 }
267 }
268
269 /* Switch to the guest for legacy non-VHE systems */
__kvm_vcpu_run(struct kvm_vcpu * vcpu)270 int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
271 {
272 struct kvm_cpu_context *host_ctxt;
273 struct kvm_cpu_context *guest_ctxt;
274 struct kvm_s2_mmu *mmu;
275 bool pmu_switch_needed;
276 u64 exit_code;
277
278 /*
279 * Having IRQs masked via PMR when entering the guest means the GIC
280 * will not signal the CPU of interrupts of lower priority, and the
281 * only way to get out will be via guest exceptions.
282 * Naturally, we want to avoid this.
283 */
284 if (system_uses_irq_prio_masking()) {
285 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
286 pmr_sync();
287 }
288
289 host_ctxt = host_data_ptr(host_ctxt);
290 host_ctxt->__hyp_running_vcpu = vcpu;
291 guest_ctxt = &vcpu->arch.ctxt;
292
293 pmu_switch_needed = __pmu_switch_to_guest(vcpu);
294
295 __sysreg_save_state_nvhe(host_ctxt);
296 /*
297 * We must flush and disable the SPE buffer for nVHE, as
298 * the translation regime(EL1&0) is going to be loaded with
299 * that of the guest. And we must do this before we change the
300 * translation regime to EL2 (via MDCR_EL2_E2PB == 0) and
301 * before we load guest Stage1.
302 */
303 __debug_save_host_buffers_nvhe(vcpu);
304
305 /*
306 * We're about to restore some new MMU state. Make sure
307 * ongoing page-table walks that have started before we
308 * trapped to EL2 have completed. This also synchronises the
309 * above disabling of SPE and TRBE.
310 *
311 * See DDI0487I.a D8.1.5 "Out-of-context translation regimes",
312 * rule R_LFHQG and subsequent information statements.
313 */
314 dsb(nsh);
315
316 __kvm_adjust_pc(vcpu);
317
318 /*
319 * We must restore the 32-bit state before the sysregs, thanks
320 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
321 *
322 * Also, and in order to be able to deal with erratum #1319537 (A57)
323 * and #1319367 (A72), we must ensure that all VM-related sysreg are
324 * restored before we enable S2 translation.
325 */
326 __sysreg32_restore_state(vcpu);
327 __sysreg_restore_state_nvhe(guest_ctxt);
328
329 mmu = kern_hyp_va(vcpu->arch.hw_mmu);
330 __load_stage2(mmu, kern_hyp_va(mmu->arch));
331 __activate_traps(vcpu);
332
333 __hyp_vgic_restore_state(vcpu);
334 __timer_enable_traps(vcpu);
335
336 __debug_switch_to_guest(vcpu);
337
338 do {
339 /* Jump in the fire! */
340 exit_code = __guest_enter(vcpu);
341
342 /* And we're baaack! */
343 } while (fixup_guest_exit(vcpu, &exit_code));
344
345 __sysreg_save_state_nvhe(guest_ctxt);
346 __sysreg32_save_state(vcpu);
347 __timer_disable_traps(vcpu);
348 __hyp_vgic_save_state(vcpu);
349
350 /*
351 * Same thing as before the guest run: we're about to switch
352 * the MMU context, so let's make sure we don't have any
353 * ongoing EL1&0 translations.
354 */
355 dsb(nsh);
356
357 __deactivate_traps(vcpu);
358 __load_host_stage2();
359
360 __sysreg_restore_state_nvhe(host_ctxt);
361
362 if (guest_owns_fp_regs())
363 __fpsimd_save_fpexc32(vcpu);
364
365 __debug_switch_to_host(vcpu);
366 /*
367 * This must come after restoring the host sysregs, since a non-VHE
368 * system may enable SPE here and make use of the TTBRs.
369 */
370 __debug_restore_host_buffers_nvhe(vcpu);
371
372 if (pmu_switch_needed)
373 __pmu_switch_to_host(vcpu);
374
375 /* Returning to host will clear PSR.I, remask PMR if needed */
376 if (system_uses_irq_prio_masking())
377 gic_write_pmr(GIC_PRIO_IRQOFF);
378
379 host_ctxt->__hyp_running_vcpu = NULL;
380
381 return exit_code;
382 }
383
hyp_panic(void)384 asmlinkage void __noreturn hyp_panic(void)
385 {
386 u64 spsr = read_sysreg_el2(SYS_SPSR);
387 u64 elr = read_sysreg_el2(SYS_ELR);
388 u64 par = read_sysreg_par();
389 struct kvm_cpu_context *host_ctxt;
390 struct kvm_vcpu *vcpu;
391
392 host_ctxt = host_data_ptr(host_ctxt);
393 vcpu = host_ctxt->__hyp_running_vcpu;
394
395 if (vcpu) {
396 __timer_disable_traps(vcpu);
397 __deactivate_traps(vcpu);
398 __load_host_stage2();
399 __sysreg_restore_state_nvhe(host_ctxt);
400 }
401
402 /* Prepare to dump kvm nvhe hyp stacktrace */
403 kvm_nvhe_prepare_backtrace((unsigned long)__builtin_frame_address(0),
404 _THIS_IP_);
405
406 __hyp_do_panic(host_ctxt, spsr, elr, par);
407 unreachable();
408 }
409
hyp_panic_bad_stack(void)410 asmlinkage void __noreturn hyp_panic_bad_stack(void)
411 {
412 hyp_panic();
413 }
414
kvm_unexpected_el2_exception(void)415 asmlinkage void kvm_unexpected_el2_exception(void)
416 {
417 __kvm_unexpected_el2_exception();
418 }
419