xref: /linux/arch/arm64/kvm/hyp/vhe/switch.c (revision 84b9b44b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <hyp/switch.h>
8 
9 #include <linux/arm-smccc.h>
10 #include <linux/kvm_host.h>
11 #include <linux/types.h>
12 #include <linux/jump_label.h>
13 #include <linux/percpu.h>
14 #include <uapi/linux/psci.h>
15 
16 #include <kvm/arm_psci.h>
17 
18 #include <asm/barrier.h>
19 #include <asm/cpufeature.h>
20 #include <asm/kprobes.h>
21 #include <asm/kvm_asm.h>
22 #include <asm/kvm_emulate.h>
23 #include <asm/kvm_hyp.h>
24 #include <asm/kvm_mmu.h>
25 #include <asm/fpsimd.h>
26 #include <asm/debug-monitors.h>
27 #include <asm/processor.h>
28 #include <asm/thread_info.h>
29 #include <asm/vectors.h>
30 
31 /* VHE specific context */
32 DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data);
33 DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
34 DEFINE_PER_CPU(unsigned long, kvm_hyp_vector);
35 
36 static void __activate_traps(struct kvm_vcpu *vcpu)
37 {
38 	u64 val;
39 
40 	___activate_traps(vcpu);
41 
42 	val = read_sysreg(cpacr_el1);
43 	val |= CPACR_ELx_TTA;
44 	val &= ~(CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN |
45 		 CPACR_EL1_SMEN_EL0EN | CPACR_EL1_SMEN_EL1EN);
46 
47 	/*
48 	 * With VHE (HCR.E2H == 1), accesses to CPACR_EL1 are routed to
49 	 * CPTR_EL2. In general, CPACR_EL1 has the same layout as CPTR_EL2,
50 	 * except for some missing controls, such as TAM.
51 	 * In this case, CPTR_EL2.TAM has the same position with or without
52 	 * VHE (HCR.E2H == 1) which allows us to use here the CPTR_EL2.TAM
53 	 * shift value for trapping the AMU accesses.
54 	 */
55 
56 	val |= CPTR_EL2_TAM;
57 
58 	if (guest_owns_fp_regs(vcpu)) {
59 		if (vcpu_has_sve(vcpu))
60 			val |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN;
61 	} else {
62 		val &= ~(CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN);
63 		__activate_traps_fpsimd32(vcpu);
64 	}
65 
66 	write_sysreg(val, cpacr_el1);
67 
68 	write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el1);
69 }
70 NOKPROBE_SYMBOL(__activate_traps);
71 
72 static void __deactivate_traps(struct kvm_vcpu *vcpu)
73 {
74 	const char *host_vectors = vectors;
75 
76 	___deactivate_traps(vcpu);
77 
78 	write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
79 
80 	/*
81 	 * ARM errata 1165522 and 1530923 require the actual execution of the
82 	 * above before we can switch to the EL2/EL0 translation regime used by
83 	 * the host.
84 	 */
85 	asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
86 
87 	write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
88 
89 	if (!arm64_kernel_unmapped_at_el0())
90 		host_vectors = __this_cpu_read(this_cpu_vector);
91 	write_sysreg(host_vectors, vbar_el1);
92 }
93 NOKPROBE_SYMBOL(__deactivate_traps);
94 
95 void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
96 {
97 	__activate_traps_common(vcpu);
98 }
99 
100 void deactivate_traps_vhe_put(struct kvm_vcpu *vcpu)
101 {
102 	__deactivate_traps_common(vcpu);
103 }
104 
105 static const exit_handler_fn hyp_exit_handlers[] = {
106 	[0 ... ESR_ELx_EC_MAX]		= NULL,
107 	[ESR_ELx_EC_CP15_32]		= kvm_hyp_handle_cp15_32,
108 	[ESR_ELx_EC_SYS64]		= kvm_hyp_handle_sysreg,
109 	[ESR_ELx_EC_SVE]		= kvm_hyp_handle_fpsimd,
110 	[ESR_ELx_EC_FP_ASIMD]		= kvm_hyp_handle_fpsimd,
111 	[ESR_ELx_EC_IABT_LOW]		= kvm_hyp_handle_iabt_low,
112 	[ESR_ELx_EC_DABT_LOW]		= kvm_hyp_handle_dabt_low,
113 	[ESR_ELx_EC_WATCHPT_LOW]	= kvm_hyp_handle_watchpt_low,
114 	[ESR_ELx_EC_PAC]		= kvm_hyp_handle_ptrauth,
115 };
116 
117 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu)
118 {
119 	return hyp_exit_handlers;
120 }
121 
122 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code)
123 {
124 	/*
125 	 * If we were in HYP context on entry, adjust the PSTATE view
126 	 * so that the usual helpers work correctly.
127 	 */
128 	if (unlikely(vcpu_get_flag(vcpu, VCPU_HYP_CONTEXT))) {
129 		u64 mode = *vcpu_cpsr(vcpu) & (PSR_MODE_MASK | PSR_MODE32_BIT);
130 
131 		switch (mode) {
132 		case PSR_MODE_EL1t:
133 			mode = PSR_MODE_EL2t;
134 			break;
135 		case PSR_MODE_EL1h:
136 			mode = PSR_MODE_EL2h;
137 			break;
138 		}
139 
140 		*vcpu_cpsr(vcpu) &= ~(PSR_MODE_MASK | PSR_MODE32_BIT);
141 		*vcpu_cpsr(vcpu) |= mode;
142 	}
143 }
144 
145 /* Switch to the guest for VHE systems running in EL2 */
146 static int __kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
147 {
148 	struct kvm_cpu_context *host_ctxt;
149 	struct kvm_cpu_context *guest_ctxt;
150 	u64 exit_code;
151 
152 	host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
153 	host_ctxt->__hyp_running_vcpu = vcpu;
154 	guest_ctxt = &vcpu->arch.ctxt;
155 
156 	sysreg_save_host_state_vhe(host_ctxt);
157 
158 	/*
159 	 * ARM erratum 1165522 requires us to configure both stage 1 and
160 	 * stage 2 translation for the guest context before we clear
161 	 * HCR_EL2.TGE.
162 	 *
163 	 * We have already configured the guest's stage 1 translation in
164 	 * kvm_vcpu_load_sysregs_vhe above.  We must now call
165 	 * __load_stage2 before __activate_traps, because
166 	 * __load_stage2 configures stage 2 translation, and
167 	 * __activate_traps clear HCR_EL2.TGE (among other things).
168 	 */
169 	__load_stage2(vcpu->arch.hw_mmu, vcpu->arch.hw_mmu->arch);
170 	__activate_traps(vcpu);
171 
172 	__kvm_adjust_pc(vcpu);
173 
174 	sysreg_restore_guest_state_vhe(guest_ctxt);
175 	__debug_switch_to_guest(vcpu);
176 
177 	if (is_hyp_ctxt(vcpu))
178 		vcpu_set_flag(vcpu, VCPU_HYP_CONTEXT);
179 	else
180 		vcpu_clear_flag(vcpu, VCPU_HYP_CONTEXT);
181 
182 	do {
183 		/* Jump in the fire! */
184 		exit_code = __guest_enter(vcpu);
185 
186 		/* And we're baaack! */
187 	} while (fixup_guest_exit(vcpu, &exit_code));
188 
189 	sysreg_save_guest_state_vhe(guest_ctxt);
190 
191 	__deactivate_traps(vcpu);
192 
193 	sysreg_restore_host_state_vhe(host_ctxt);
194 
195 	if (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED)
196 		__fpsimd_save_fpexc32(vcpu);
197 
198 	__debug_switch_to_host(vcpu);
199 
200 	return exit_code;
201 }
202 NOKPROBE_SYMBOL(__kvm_vcpu_run_vhe);
203 
204 int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
205 {
206 	int ret;
207 
208 	local_daif_mask();
209 
210 	/*
211 	 * Having IRQs masked via PMR when entering the guest means the GIC
212 	 * will not signal the CPU of interrupts of lower priority, and the
213 	 * only way to get out will be via guest exceptions.
214 	 * Naturally, we want to avoid this.
215 	 *
216 	 * local_daif_mask() already sets GIC_PRIO_PSR_I_SET, we just need a
217 	 * dsb to ensure the redistributor is forwards EL2 IRQs to the CPU.
218 	 */
219 	pmr_sync();
220 
221 	ret = __kvm_vcpu_run_vhe(vcpu);
222 
223 	/*
224 	 * local_daif_restore() takes care to properly restore PSTATE.DAIF
225 	 * and the GIC PMR if the host is using IRQ priorities.
226 	 */
227 	local_daif_restore(DAIF_PROCCTX_NOIRQ);
228 
229 	/*
230 	 * When we exit from the guest we change a number of CPU configuration
231 	 * parameters, such as traps.  We rely on the isb() in kvm_call_hyp*()
232 	 * to make sure these changes take effect before running the host or
233 	 * additional guests.
234 	 */
235 	return ret;
236 }
237 
238 static void __hyp_call_panic(u64 spsr, u64 elr, u64 par)
239 {
240 	struct kvm_cpu_context *host_ctxt;
241 	struct kvm_vcpu *vcpu;
242 
243 	host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
244 	vcpu = host_ctxt->__hyp_running_vcpu;
245 
246 	__deactivate_traps(vcpu);
247 	sysreg_restore_host_state_vhe(host_ctxt);
248 
249 	panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n",
250 	      spsr, elr,
251 	      read_sysreg_el2(SYS_ESR), read_sysreg_el2(SYS_FAR),
252 	      read_sysreg(hpfar_el2), par, vcpu);
253 }
254 NOKPROBE_SYMBOL(__hyp_call_panic);
255 
256 void __noreturn hyp_panic(void)
257 {
258 	u64 spsr = read_sysreg_el2(SYS_SPSR);
259 	u64 elr = read_sysreg_el2(SYS_ELR);
260 	u64 par = read_sysreg_par();
261 
262 	__hyp_call_panic(spsr, elr, par);
263 	unreachable();
264 }
265 
266 asmlinkage void kvm_unexpected_el2_exception(void)
267 {
268 	__kvm_unexpected_el2_exception();
269 }
270