xref: /linux/arch/arm64/mm/hugetlbpage.c (revision dd093fb0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * arch/arm64/mm/hugetlbpage.c
4  *
5  * Copyright (C) 2013 Linaro Ltd.
6  *
7  * Based on arch/x86/mm/hugetlbpage.c.
8  */
9 
10 #include <linux/init.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/pagemap.h>
15 #include <linux/err.h>
16 #include <linux/sysctl.h>
17 #include <asm/mman.h>
18 #include <asm/tlb.h>
19 #include <asm/tlbflush.h>
20 
21 /*
22  * HugeTLB Support Matrix
23  *
24  * ---------------------------------------------------
25  * | Page Size | CONT PTE |  PMD  | CONT PMD |  PUD  |
26  * ---------------------------------------------------
27  * |     4K    |   64K    |   2M  |    32M   |   1G  |
28  * |    16K    |    2M    |  32M  |     1G   |       |
29  * |    64K    |    2M    | 512M  |    16G   |       |
30  * ---------------------------------------------------
31  */
32 
33 /*
34  * Reserve CMA areas for the largest supported gigantic
35  * huge page when requested. Any other smaller gigantic
36  * huge pages could still be served from those areas.
37  */
38 #ifdef CONFIG_CMA
39 void __init arm64_hugetlb_cma_reserve(void)
40 {
41 	int order;
42 
43 	if (pud_sect_supported())
44 		order = PUD_SHIFT - PAGE_SHIFT;
45 	else
46 		order = CONT_PMD_SHIFT - PAGE_SHIFT;
47 
48 	/*
49 	 * HugeTLB CMA reservation is required for gigantic
50 	 * huge pages which could not be allocated via the
51 	 * page allocator. Just warn if there is any change
52 	 * breaking this assumption.
53 	 */
54 	WARN_ON(order <= MAX_ORDER);
55 	hugetlb_cma_reserve(order);
56 }
57 #endif /* CONFIG_CMA */
58 
59 static bool __hugetlb_valid_size(unsigned long size)
60 {
61 	switch (size) {
62 #ifndef __PAGETABLE_PMD_FOLDED
63 	case PUD_SIZE:
64 		return pud_sect_supported();
65 #endif
66 	case CONT_PMD_SIZE:
67 	case PMD_SIZE:
68 	case CONT_PTE_SIZE:
69 		return true;
70 	}
71 
72 	return false;
73 }
74 
75 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
76 bool arch_hugetlb_migration_supported(struct hstate *h)
77 {
78 	size_t pagesize = huge_page_size(h);
79 
80 	if (!__hugetlb_valid_size(pagesize)) {
81 		pr_warn("%s: unrecognized huge page size 0x%lx\n",
82 			__func__, pagesize);
83 		return false;
84 	}
85 	return true;
86 }
87 #endif
88 
89 int pmd_huge(pmd_t pmd)
90 {
91 	return pmd_val(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT);
92 }
93 
94 int pud_huge(pud_t pud)
95 {
96 #ifndef __PAGETABLE_PMD_FOLDED
97 	return pud_val(pud) && !(pud_val(pud) & PUD_TABLE_BIT);
98 #else
99 	return 0;
100 #endif
101 }
102 
103 static int find_num_contig(struct mm_struct *mm, unsigned long addr,
104 			   pte_t *ptep, size_t *pgsize)
105 {
106 	pgd_t *pgdp = pgd_offset(mm, addr);
107 	p4d_t *p4dp;
108 	pud_t *pudp;
109 	pmd_t *pmdp;
110 
111 	*pgsize = PAGE_SIZE;
112 	p4dp = p4d_offset(pgdp, addr);
113 	pudp = pud_offset(p4dp, addr);
114 	pmdp = pmd_offset(pudp, addr);
115 	if ((pte_t *)pmdp == ptep) {
116 		*pgsize = PMD_SIZE;
117 		return CONT_PMDS;
118 	}
119 	return CONT_PTES;
120 }
121 
122 static inline int num_contig_ptes(unsigned long size, size_t *pgsize)
123 {
124 	int contig_ptes = 0;
125 
126 	*pgsize = size;
127 
128 	switch (size) {
129 #ifndef __PAGETABLE_PMD_FOLDED
130 	case PUD_SIZE:
131 		if (pud_sect_supported())
132 			contig_ptes = 1;
133 		break;
134 #endif
135 	case PMD_SIZE:
136 		contig_ptes = 1;
137 		break;
138 	case CONT_PMD_SIZE:
139 		*pgsize = PMD_SIZE;
140 		contig_ptes = CONT_PMDS;
141 		break;
142 	case CONT_PTE_SIZE:
143 		*pgsize = PAGE_SIZE;
144 		contig_ptes = CONT_PTES;
145 		break;
146 	}
147 
148 	return contig_ptes;
149 }
150 
151 pte_t huge_ptep_get(pte_t *ptep)
152 {
153 	int ncontig, i;
154 	size_t pgsize;
155 	pte_t orig_pte = ptep_get(ptep);
156 
157 	if (!pte_present(orig_pte) || !pte_cont(orig_pte))
158 		return orig_pte;
159 
160 	ncontig = num_contig_ptes(page_size(pte_page(orig_pte)), &pgsize);
161 	for (i = 0; i < ncontig; i++, ptep++) {
162 		pte_t pte = ptep_get(ptep);
163 
164 		if (pte_dirty(pte))
165 			orig_pte = pte_mkdirty(orig_pte);
166 
167 		if (pte_young(pte))
168 			orig_pte = pte_mkyoung(orig_pte);
169 	}
170 	return orig_pte;
171 }
172 
173 /*
174  * Changing some bits of contiguous entries requires us to follow a
175  * Break-Before-Make approach, breaking the whole contiguous set
176  * before we can change any entries. See ARM DDI 0487A.k_iss10775,
177  * "Misprogramming of the Contiguous bit", page D4-1762.
178  *
179  * This helper performs the break step.
180  */
181 static pte_t get_clear_contig(struct mm_struct *mm,
182 			     unsigned long addr,
183 			     pte_t *ptep,
184 			     unsigned long pgsize,
185 			     unsigned long ncontig)
186 {
187 	pte_t orig_pte = ptep_get(ptep);
188 	unsigned long i;
189 
190 	for (i = 0; i < ncontig; i++, addr += pgsize, ptep++) {
191 		pte_t pte = ptep_get_and_clear(mm, addr, ptep);
192 
193 		/*
194 		 * If HW_AFDBM is enabled, then the HW could turn on
195 		 * the dirty or accessed bit for any page in the set,
196 		 * so check them all.
197 		 */
198 		if (pte_dirty(pte))
199 			orig_pte = pte_mkdirty(orig_pte);
200 
201 		if (pte_young(pte))
202 			orig_pte = pte_mkyoung(orig_pte);
203 	}
204 	return orig_pte;
205 }
206 
207 static pte_t get_clear_contig_flush(struct mm_struct *mm,
208 				    unsigned long addr,
209 				    pte_t *ptep,
210 				    unsigned long pgsize,
211 				    unsigned long ncontig)
212 {
213 	pte_t orig_pte = get_clear_contig(mm, addr, ptep, pgsize, ncontig);
214 	struct vm_area_struct vma = TLB_FLUSH_VMA(mm, 0);
215 
216 	flush_tlb_range(&vma, addr, addr + (pgsize * ncontig));
217 	return orig_pte;
218 }
219 
220 /*
221  * Changing some bits of contiguous entries requires us to follow a
222  * Break-Before-Make approach, breaking the whole contiguous set
223  * before we can change any entries. See ARM DDI 0487A.k_iss10775,
224  * "Misprogramming of the Contiguous bit", page D4-1762.
225  *
226  * This helper performs the break step for use cases where the
227  * original pte is not needed.
228  */
229 static void clear_flush(struct mm_struct *mm,
230 			     unsigned long addr,
231 			     pte_t *ptep,
232 			     unsigned long pgsize,
233 			     unsigned long ncontig)
234 {
235 	struct vm_area_struct vma = TLB_FLUSH_VMA(mm, 0);
236 	unsigned long i, saddr = addr;
237 
238 	for (i = 0; i < ncontig; i++, addr += pgsize, ptep++)
239 		pte_clear(mm, addr, ptep);
240 
241 	flush_tlb_range(&vma, saddr, addr);
242 }
243 
244 static inline struct folio *hugetlb_swap_entry_to_folio(swp_entry_t entry)
245 {
246 	VM_BUG_ON(!is_migration_entry(entry) && !is_hwpoison_entry(entry));
247 
248 	return page_folio(pfn_to_page(swp_offset_pfn(entry)));
249 }
250 
251 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
252 			    pte_t *ptep, pte_t pte)
253 {
254 	size_t pgsize;
255 	int i;
256 	int ncontig;
257 	unsigned long pfn, dpfn;
258 	pgprot_t hugeprot;
259 
260 	if (!pte_present(pte)) {
261 		struct folio *folio;
262 
263 		folio = hugetlb_swap_entry_to_folio(pte_to_swp_entry(pte));
264 		ncontig = num_contig_ptes(folio_size(folio), &pgsize);
265 
266 		for (i = 0; i < ncontig; i++, ptep++)
267 			set_pte_at(mm, addr, ptep, pte);
268 		return;
269 	}
270 
271 	if (!pte_cont(pte)) {
272 		set_pte_at(mm, addr, ptep, pte);
273 		return;
274 	}
275 
276 	ncontig = find_num_contig(mm, addr, ptep, &pgsize);
277 	pfn = pte_pfn(pte);
278 	dpfn = pgsize >> PAGE_SHIFT;
279 	hugeprot = pte_pgprot(pte);
280 
281 	clear_flush(mm, addr, ptep, pgsize, ncontig);
282 
283 	for (i = 0; i < ncontig; i++, ptep++, addr += pgsize, pfn += dpfn)
284 		set_pte_at(mm, addr, ptep, pfn_pte(pfn, hugeprot));
285 }
286 
287 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
288 		      unsigned long addr, unsigned long sz)
289 {
290 	pgd_t *pgdp;
291 	p4d_t *p4dp;
292 	pud_t *pudp;
293 	pmd_t *pmdp;
294 	pte_t *ptep = NULL;
295 
296 	pgdp = pgd_offset(mm, addr);
297 	p4dp = p4d_offset(pgdp, addr);
298 	pudp = pud_alloc(mm, p4dp, addr);
299 	if (!pudp)
300 		return NULL;
301 
302 	if (sz == PUD_SIZE) {
303 		ptep = (pte_t *)pudp;
304 	} else if (sz == (CONT_PTE_SIZE)) {
305 		pmdp = pmd_alloc(mm, pudp, addr);
306 		if (!pmdp)
307 			return NULL;
308 
309 		WARN_ON(addr & (sz - 1));
310 		/*
311 		 * Note that if this code were ever ported to the
312 		 * 32-bit arm platform then it will cause trouble in
313 		 * the case where CONFIG_HIGHPTE is set, since there
314 		 * will be no pte_unmap() to correspond with this
315 		 * pte_alloc_map().
316 		 */
317 		ptep = pte_alloc_map(mm, pmdp, addr);
318 	} else if (sz == PMD_SIZE) {
319 		if (want_pmd_share(vma, addr) && pud_none(READ_ONCE(*pudp)))
320 			ptep = huge_pmd_share(mm, vma, addr, pudp);
321 		else
322 			ptep = (pte_t *)pmd_alloc(mm, pudp, addr);
323 	} else if (sz == (CONT_PMD_SIZE)) {
324 		pmdp = pmd_alloc(mm, pudp, addr);
325 		WARN_ON(addr & (sz - 1));
326 		return (pte_t *)pmdp;
327 	}
328 
329 	return ptep;
330 }
331 
332 pte_t *huge_pte_offset(struct mm_struct *mm,
333 		       unsigned long addr, unsigned long sz)
334 {
335 	pgd_t *pgdp;
336 	p4d_t *p4dp;
337 	pud_t *pudp, pud;
338 	pmd_t *pmdp, pmd;
339 
340 	pgdp = pgd_offset(mm, addr);
341 	if (!pgd_present(READ_ONCE(*pgdp)))
342 		return NULL;
343 
344 	p4dp = p4d_offset(pgdp, addr);
345 	if (!p4d_present(READ_ONCE(*p4dp)))
346 		return NULL;
347 
348 	pudp = pud_offset(p4dp, addr);
349 	pud = READ_ONCE(*pudp);
350 	if (sz != PUD_SIZE && pud_none(pud))
351 		return NULL;
352 	/* hugepage or swap? */
353 	if (pud_huge(pud) || !pud_present(pud))
354 		return (pte_t *)pudp;
355 	/* table; check the next level */
356 
357 	if (sz == CONT_PMD_SIZE)
358 		addr &= CONT_PMD_MASK;
359 
360 	pmdp = pmd_offset(pudp, addr);
361 	pmd = READ_ONCE(*pmdp);
362 	if (!(sz == PMD_SIZE || sz == CONT_PMD_SIZE) &&
363 	    pmd_none(pmd))
364 		return NULL;
365 	if (pmd_huge(pmd) || !pmd_present(pmd))
366 		return (pte_t *)pmdp;
367 
368 	if (sz == CONT_PTE_SIZE)
369 		return pte_offset_kernel(pmdp, (addr & CONT_PTE_MASK));
370 
371 	return NULL;
372 }
373 
374 unsigned long hugetlb_mask_last_page(struct hstate *h)
375 {
376 	unsigned long hp_size = huge_page_size(h);
377 
378 	switch (hp_size) {
379 #ifndef __PAGETABLE_PMD_FOLDED
380 	case PUD_SIZE:
381 		return PGDIR_SIZE - PUD_SIZE;
382 #endif
383 	case CONT_PMD_SIZE:
384 		return PUD_SIZE - CONT_PMD_SIZE;
385 	case PMD_SIZE:
386 		return PUD_SIZE - PMD_SIZE;
387 	case CONT_PTE_SIZE:
388 		return PMD_SIZE - CONT_PTE_SIZE;
389 	default:
390 		break;
391 	}
392 
393 	return 0UL;
394 }
395 
396 pte_t arch_make_huge_pte(pte_t entry, unsigned int shift, vm_flags_t flags)
397 {
398 	size_t pagesize = 1UL << shift;
399 
400 	entry = pte_mkhuge(entry);
401 	if (pagesize == CONT_PTE_SIZE) {
402 		entry = pte_mkcont(entry);
403 	} else if (pagesize == CONT_PMD_SIZE) {
404 		entry = pmd_pte(pmd_mkcont(pte_pmd(entry)));
405 	} else if (pagesize != PUD_SIZE && pagesize != PMD_SIZE) {
406 		pr_warn("%s: unrecognized huge page size 0x%lx\n",
407 			__func__, pagesize);
408 	}
409 	return entry;
410 }
411 
412 void huge_pte_clear(struct mm_struct *mm, unsigned long addr,
413 		    pte_t *ptep, unsigned long sz)
414 {
415 	int i, ncontig;
416 	size_t pgsize;
417 
418 	ncontig = num_contig_ptes(sz, &pgsize);
419 
420 	for (i = 0; i < ncontig; i++, addr += pgsize, ptep++)
421 		pte_clear(mm, addr, ptep);
422 }
423 
424 pte_t huge_ptep_get_and_clear(struct mm_struct *mm,
425 			      unsigned long addr, pte_t *ptep)
426 {
427 	int ncontig;
428 	size_t pgsize;
429 	pte_t orig_pte = ptep_get(ptep);
430 
431 	if (!pte_cont(orig_pte))
432 		return ptep_get_and_clear(mm, addr, ptep);
433 
434 	ncontig = find_num_contig(mm, addr, ptep, &pgsize);
435 
436 	return get_clear_contig(mm, addr, ptep, pgsize, ncontig);
437 }
438 
439 /*
440  * huge_ptep_set_access_flags will update access flags (dirty, accesssed)
441  * and write permission.
442  *
443  * For a contiguous huge pte range we need to check whether or not write
444  * permission has to change only on the first pte in the set. Then for
445  * all the contiguous ptes we need to check whether or not there is a
446  * discrepancy between dirty or young.
447  */
448 static int __cont_access_flags_changed(pte_t *ptep, pte_t pte, int ncontig)
449 {
450 	int i;
451 
452 	if (pte_write(pte) != pte_write(ptep_get(ptep)))
453 		return 1;
454 
455 	for (i = 0; i < ncontig; i++) {
456 		pte_t orig_pte = ptep_get(ptep + i);
457 
458 		if (pte_dirty(pte) != pte_dirty(orig_pte))
459 			return 1;
460 
461 		if (pte_young(pte) != pte_young(orig_pte))
462 			return 1;
463 	}
464 
465 	return 0;
466 }
467 
468 int huge_ptep_set_access_flags(struct vm_area_struct *vma,
469 			       unsigned long addr, pte_t *ptep,
470 			       pte_t pte, int dirty)
471 {
472 	int ncontig, i;
473 	size_t pgsize = 0;
474 	unsigned long pfn = pte_pfn(pte), dpfn;
475 	struct mm_struct *mm = vma->vm_mm;
476 	pgprot_t hugeprot;
477 	pte_t orig_pte;
478 
479 	if (!pte_cont(pte))
480 		return ptep_set_access_flags(vma, addr, ptep, pte, dirty);
481 
482 	ncontig = find_num_contig(mm, addr, ptep, &pgsize);
483 	dpfn = pgsize >> PAGE_SHIFT;
484 
485 	if (!__cont_access_flags_changed(ptep, pte, ncontig))
486 		return 0;
487 
488 	orig_pte = get_clear_contig_flush(mm, addr, ptep, pgsize, ncontig);
489 
490 	/* Make sure we don't lose the dirty or young state */
491 	if (pte_dirty(orig_pte))
492 		pte = pte_mkdirty(pte);
493 
494 	if (pte_young(orig_pte))
495 		pte = pte_mkyoung(pte);
496 
497 	hugeprot = pte_pgprot(pte);
498 	for (i = 0; i < ncontig; i++, ptep++, addr += pgsize, pfn += dpfn)
499 		set_pte_at(mm, addr, ptep, pfn_pte(pfn, hugeprot));
500 
501 	return 1;
502 }
503 
504 void huge_ptep_set_wrprotect(struct mm_struct *mm,
505 			     unsigned long addr, pte_t *ptep)
506 {
507 	unsigned long pfn, dpfn;
508 	pgprot_t hugeprot;
509 	int ncontig, i;
510 	size_t pgsize;
511 	pte_t pte;
512 
513 	if (!pte_cont(READ_ONCE(*ptep))) {
514 		ptep_set_wrprotect(mm, addr, ptep);
515 		return;
516 	}
517 
518 	ncontig = find_num_contig(mm, addr, ptep, &pgsize);
519 	dpfn = pgsize >> PAGE_SHIFT;
520 
521 	pte = get_clear_contig_flush(mm, addr, ptep, pgsize, ncontig);
522 	pte = pte_wrprotect(pte);
523 
524 	hugeprot = pte_pgprot(pte);
525 	pfn = pte_pfn(pte);
526 
527 	for (i = 0; i < ncontig; i++, ptep++, addr += pgsize, pfn += dpfn)
528 		set_pte_at(mm, addr, ptep, pfn_pte(pfn, hugeprot));
529 }
530 
531 pte_t huge_ptep_clear_flush(struct vm_area_struct *vma,
532 			    unsigned long addr, pte_t *ptep)
533 {
534 	struct mm_struct *mm = vma->vm_mm;
535 	size_t pgsize;
536 	int ncontig;
537 
538 	if (!pte_cont(READ_ONCE(*ptep)))
539 		return ptep_clear_flush(vma, addr, ptep);
540 
541 	ncontig = find_num_contig(mm, addr, ptep, &pgsize);
542 	return get_clear_contig_flush(mm, addr, ptep, pgsize, ncontig);
543 }
544 
545 static int __init hugetlbpage_init(void)
546 {
547 	if (pud_sect_supported())
548 		hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
549 
550 	hugetlb_add_hstate(CONT_PMD_SHIFT - PAGE_SHIFT);
551 	hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT);
552 	hugetlb_add_hstate(CONT_PTE_SHIFT - PAGE_SHIFT);
553 
554 	return 0;
555 }
556 arch_initcall(hugetlbpage_init);
557 
558 bool __init arch_hugetlb_valid_size(unsigned long size)
559 {
560 	return __hugetlb_valid_size(size);
561 }
562 
563 pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
564 {
565 	if (IS_ENABLED(CONFIG_ARM64_ERRATUM_2645198) &&
566 	    cpus_have_const_cap(ARM64_WORKAROUND_2645198)) {
567 		/*
568 		 * Break-before-make (BBM) is required for all user space mappings
569 		 * when the permission changes from executable to non-executable
570 		 * in cases where cpu is affected with errata #2645198.
571 		 */
572 		if (pte_user_exec(READ_ONCE(*ptep)))
573 			return huge_ptep_clear_flush(vma, addr, ptep);
574 	}
575 	return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep);
576 }
577 
578 void huge_ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
579 				  pte_t old_pte, pte_t pte)
580 {
581 	set_huge_pte_at(vma->vm_mm, addr, ptep, pte);
582 }
583