xref: /linux/arch/arm64/net/bpf_jit_comp.c (revision dd093fb0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * BPF JIT compiler for ARM64
4  *
5  * Copyright (C) 2014-2016 Zi Shen Lim <zlim.lnx@gmail.com>
6  */
7 
8 #define pr_fmt(fmt) "bpf_jit: " fmt
9 
10 #include <linux/bitfield.h>
11 #include <linux/bpf.h>
12 #include <linux/filter.h>
13 #include <linux/memory.h>
14 #include <linux/printk.h>
15 #include <linux/slab.h>
16 
17 #include <asm/asm-extable.h>
18 #include <asm/byteorder.h>
19 #include <asm/cacheflush.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/insn.h>
22 #include <asm/patching.h>
23 #include <asm/set_memory.h>
24 
25 #include "bpf_jit.h"
26 
27 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
28 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
29 #define TCALL_CNT (MAX_BPF_JIT_REG + 2)
30 #define TMP_REG_3 (MAX_BPF_JIT_REG + 3)
31 #define FP_BOTTOM (MAX_BPF_JIT_REG + 4)
32 
33 #define check_imm(bits, imm) do {				\
34 	if ((((imm) > 0) && ((imm) >> (bits))) ||		\
35 	    (((imm) < 0) && (~(imm) >> (bits)))) {		\
36 		pr_info("[%2d] imm=%d(0x%x) out of range\n",	\
37 			i, imm, imm);				\
38 		return -EINVAL;					\
39 	}							\
40 } while (0)
41 #define check_imm19(imm) check_imm(19, imm)
42 #define check_imm26(imm) check_imm(26, imm)
43 
44 /* Map BPF registers to A64 registers */
45 static const int bpf2a64[] = {
46 	/* return value from in-kernel function, and exit value from eBPF */
47 	[BPF_REG_0] = A64_R(7),
48 	/* arguments from eBPF program to in-kernel function */
49 	[BPF_REG_1] = A64_R(0),
50 	[BPF_REG_2] = A64_R(1),
51 	[BPF_REG_3] = A64_R(2),
52 	[BPF_REG_4] = A64_R(3),
53 	[BPF_REG_5] = A64_R(4),
54 	/* callee saved registers that in-kernel function will preserve */
55 	[BPF_REG_6] = A64_R(19),
56 	[BPF_REG_7] = A64_R(20),
57 	[BPF_REG_8] = A64_R(21),
58 	[BPF_REG_9] = A64_R(22),
59 	/* read-only frame pointer to access stack */
60 	[BPF_REG_FP] = A64_R(25),
61 	/* temporary registers for BPF JIT */
62 	[TMP_REG_1] = A64_R(10),
63 	[TMP_REG_2] = A64_R(11),
64 	[TMP_REG_3] = A64_R(12),
65 	/* tail_call_cnt */
66 	[TCALL_CNT] = A64_R(26),
67 	/* temporary register for blinding constants */
68 	[BPF_REG_AX] = A64_R(9),
69 	[FP_BOTTOM] = A64_R(27),
70 };
71 
72 struct jit_ctx {
73 	const struct bpf_prog *prog;
74 	int idx;
75 	int epilogue_offset;
76 	int *offset;
77 	int exentry_idx;
78 	__le32 *image;
79 	u32 stack_size;
80 	int fpb_offset;
81 };
82 
83 struct bpf_plt {
84 	u32 insn_ldr; /* load target */
85 	u32 insn_br;  /* branch to target */
86 	u64 target;   /* target value */
87 };
88 
89 #define PLT_TARGET_SIZE   sizeof_field(struct bpf_plt, target)
90 #define PLT_TARGET_OFFSET offsetof(struct bpf_plt, target)
91 
92 static inline void emit(const u32 insn, struct jit_ctx *ctx)
93 {
94 	if (ctx->image != NULL)
95 		ctx->image[ctx->idx] = cpu_to_le32(insn);
96 
97 	ctx->idx++;
98 }
99 
100 static inline void emit_a64_mov_i(const int is64, const int reg,
101 				  const s32 val, struct jit_ctx *ctx)
102 {
103 	u16 hi = val >> 16;
104 	u16 lo = val & 0xffff;
105 
106 	if (hi & 0x8000) {
107 		if (hi == 0xffff) {
108 			emit(A64_MOVN(is64, reg, (u16)~lo, 0), ctx);
109 		} else {
110 			emit(A64_MOVN(is64, reg, (u16)~hi, 16), ctx);
111 			if (lo != 0xffff)
112 				emit(A64_MOVK(is64, reg, lo, 0), ctx);
113 		}
114 	} else {
115 		emit(A64_MOVZ(is64, reg, lo, 0), ctx);
116 		if (hi)
117 			emit(A64_MOVK(is64, reg, hi, 16), ctx);
118 	}
119 }
120 
121 static int i64_i16_blocks(const u64 val, bool inverse)
122 {
123 	return (((val >>  0) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
124 	       (((val >> 16) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
125 	       (((val >> 32) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
126 	       (((val >> 48) & 0xffff) != (inverse ? 0xffff : 0x0000));
127 }
128 
129 static inline void emit_a64_mov_i64(const int reg, const u64 val,
130 				    struct jit_ctx *ctx)
131 {
132 	u64 nrm_tmp = val, rev_tmp = ~val;
133 	bool inverse;
134 	int shift;
135 
136 	if (!(nrm_tmp >> 32))
137 		return emit_a64_mov_i(0, reg, (u32)val, ctx);
138 
139 	inverse = i64_i16_blocks(nrm_tmp, true) < i64_i16_blocks(nrm_tmp, false);
140 	shift = max(round_down((inverse ? (fls64(rev_tmp) - 1) :
141 					  (fls64(nrm_tmp) - 1)), 16), 0);
142 	if (inverse)
143 		emit(A64_MOVN(1, reg, (rev_tmp >> shift) & 0xffff, shift), ctx);
144 	else
145 		emit(A64_MOVZ(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
146 	shift -= 16;
147 	while (shift >= 0) {
148 		if (((nrm_tmp >> shift) & 0xffff) != (inverse ? 0xffff : 0x0000))
149 			emit(A64_MOVK(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
150 		shift -= 16;
151 	}
152 }
153 
154 static inline void emit_bti(u32 insn, struct jit_ctx *ctx)
155 {
156 	if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL))
157 		emit(insn, ctx);
158 }
159 
160 /*
161  * Kernel addresses in the vmalloc space use at most 48 bits, and the
162  * remaining bits are guaranteed to be 0x1. So we can compose the address
163  * with a fixed length movn/movk/movk sequence.
164  */
165 static inline void emit_addr_mov_i64(const int reg, const u64 val,
166 				     struct jit_ctx *ctx)
167 {
168 	u64 tmp = val;
169 	int shift = 0;
170 
171 	emit(A64_MOVN(1, reg, ~tmp & 0xffff, shift), ctx);
172 	while (shift < 32) {
173 		tmp >>= 16;
174 		shift += 16;
175 		emit(A64_MOVK(1, reg, tmp & 0xffff, shift), ctx);
176 	}
177 }
178 
179 static inline void emit_call(u64 target, struct jit_ctx *ctx)
180 {
181 	u8 tmp = bpf2a64[TMP_REG_1];
182 
183 	emit_addr_mov_i64(tmp, target, ctx);
184 	emit(A64_BLR(tmp), ctx);
185 }
186 
187 static inline int bpf2a64_offset(int bpf_insn, int off,
188 				 const struct jit_ctx *ctx)
189 {
190 	/* BPF JMP offset is relative to the next instruction */
191 	bpf_insn++;
192 	/*
193 	 * Whereas arm64 branch instructions encode the offset
194 	 * from the branch itself, so we must subtract 1 from the
195 	 * instruction offset.
196 	 */
197 	return ctx->offset[bpf_insn + off] - (ctx->offset[bpf_insn] - 1);
198 }
199 
200 static void jit_fill_hole(void *area, unsigned int size)
201 {
202 	__le32 *ptr;
203 	/* We are guaranteed to have aligned memory. */
204 	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
205 		*ptr++ = cpu_to_le32(AARCH64_BREAK_FAULT);
206 }
207 
208 static inline int epilogue_offset(const struct jit_ctx *ctx)
209 {
210 	int to = ctx->epilogue_offset;
211 	int from = ctx->idx;
212 
213 	return to - from;
214 }
215 
216 static bool is_addsub_imm(u32 imm)
217 {
218 	/* Either imm12 or shifted imm12. */
219 	return !(imm & ~0xfff) || !(imm & ~0xfff000);
220 }
221 
222 /*
223  * There are 3 types of AArch64 LDR/STR (immediate) instruction:
224  * Post-index, Pre-index, Unsigned offset.
225  *
226  * For BPF ldr/str, the "unsigned offset" type is sufficient.
227  *
228  * "Unsigned offset" type LDR(immediate) format:
229  *
230  *    3                   2                   1                   0
231  *  1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
232  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
233  * |x x|1 1 1 0 0 1 0 1|         imm12         |    Rn   |    Rt   |
234  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
235  * scale
236  *
237  * "Unsigned offset" type STR(immediate) format:
238  *    3                   2                   1                   0
239  *  1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
240  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
241  * |x x|1 1 1 0 0 1 0 0|         imm12         |    Rn   |    Rt   |
242  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
243  * scale
244  *
245  * The offset is calculated from imm12 and scale in the following way:
246  *
247  * offset = (u64)imm12 << scale
248  */
249 static bool is_lsi_offset(int offset, int scale)
250 {
251 	if (offset < 0)
252 		return false;
253 
254 	if (offset > (0xFFF << scale))
255 		return false;
256 
257 	if (offset & ((1 << scale) - 1))
258 		return false;
259 
260 	return true;
261 }
262 
263 /* generated prologue:
264  *      bti c // if CONFIG_ARM64_BTI_KERNEL
265  *      mov x9, lr
266  *      nop  // POKE_OFFSET
267  *      paciasp // if CONFIG_ARM64_PTR_AUTH_KERNEL
268  *      stp x29, lr, [sp, #-16]!
269  *      mov x29, sp
270  *      stp x19, x20, [sp, #-16]!
271  *      stp x21, x22, [sp, #-16]!
272  *      stp x25, x26, [sp, #-16]!
273  *      stp x27, x28, [sp, #-16]!
274  *      mov x25, sp
275  *      mov tcc, #0
276  *      // PROLOGUE_OFFSET
277  */
278 
279 #define BTI_INSNS (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) ? 1 : 0)
280 #define PAC_INSNS (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) ? 1 : 0)
281 
282 /* Offset of nop instruction in bpf prog entry to be poked */
283 #define POKE_OFFSET (BTI_INSNS + 1)
284 
285 /* Tail call offset to jump into */
286 #define PROLOGUE_OFFSET (BTI_INSNS + 2 + PAC_INSNS + 8)
287 
288 static int build_prologue(struct jit_ctx *ctx, bool ebpf_from_cbpf)
289 {
290 	const struct bpf_prog *prog = ctx->prog;
291 	const bool is_main_prog = prog->aux->func_idx == 0;
292 	const u8 r6 = bpf2a64[BPF_REG_6];
293 	const u8 r7 = bpf2a64[BPF_REG_7];
294 	const u8 r8 = bpf2a64[BPF_REG_8];
295 	const u8 r9 = bpf2a64[BPF_REG_9];
296 	const u8 fp = bpf2a64[BPF_REG_FP];
297 	const u8 tcc = bpf2a64[TCALL_CNT];
298 	const u8 fpb = bpf2a64[FP_BOTTOM];
299 	const int idx0 = ctx->idx;
300 	int cur_offset;
301 
302 	/*
303 	 * BPF prog stack layout
304 	 *
305 	 *                         high
306 	 * original A64_SP =>   0:+-----+ BPF prologue
307 	 *                        |FP/LR|
308 	 * current A64_FP =>  -16:+-----+
309 	 *                        | ... | callee saved registers
310 	 * BPF fp register => -64:+-----+ <= (BPF_FP)
311 	 *                        |     |
312 	 *                        | ... | BPF prog stack
313 	 *                        |     |
314 	 *                        +-----+ <= (BPF_FP - prog->aux->stack_depth)
315 	 *                        |RSVD | padding
316 	 * current A64_SP =>      +-----+ <= (BPF_FP - ctx->stack_size)
317 	 *                        |     |
318 	 *                        | ... | Function call stack
319 	 *                        |     |
320 	 *                        +-----+
321 	 *                          low
322 	 *
323 	 */
324 
325 	emit_bti(A64_BTI_C, ctx);
326 
327 	emit(A64_MOV(1, A64_R(9), A64_LR), ctx);
328 	emit(A64_NOP, ctx);
329 
330 	/* Sign lr */
331 	if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL))
332 		emit(A64_PACIASP, ctx);
333 
334 	/* Save FP and LR registers to stay align with ARM64 AAPCS */
335 	emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx);
336 	emit(A64_MOV(1, A64_FP, A64_SP), ctx);
337 
338 	/* Save callee-saved registers */
339 	emit(A64_PUSH(r6, r7, A64_SP), ctx);
340 	emit(A64_PUSH(r8, r9, A64_SP), ctx);
341 	emit(A64_PUSH(fp, tcc, A64_SP), ctx);
342 	emit(A64_PUSH(fpb, A64_R(28), A64_SP), ctx);
343 
344 	/* Set up BPF prog stack base register */
345 	emit(A64_MOV(1, fp, A64_SP), ctx);
346 
347 	if (!ebpf_from_cbpf && is_main_prog) {
348 		/* Initialize tail_call_cnt */
349 		emit(A64_MOVZ(1, tcc, 0, 0), ctx);
350 
351 		cur_offset = ctx->idx - idx0;
352 		if (cur_offset != PROLOGUE_OFFSET) {
353 			pr_err_once("PROLOGUE_OFFSET = %d, expected %d!\n",
354 				    cur_offset, PROLOGUE_OFFSET);
355 			return -1;
356 		}
357 
358 		/* BTI landing pad for the tail call, done with a BR */
359 		emit_bti(A64_BTI_J, ctx);
360 	}
361 
362 	emit(A64_SUB_I(1, fpb, fp, ctx->fpb_offset), ctx);
363 
364 	/* Stack must be multiples of 16B */
365 	ctx->stack_size = round_up(prog->aux->stack_depth, 16);
366 
367 	/* Set up function call stack */
368 	emit(A64_SUB_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
369 	return 0;
370 }
371 
372 static int out_offset = -1; /* initialized on the first pass of build_body() */
373 static int emit_bpf_tail_call(struct jit_ctx *ctx)
374 {
375 	/* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
376 	const u8 r2 = bpf2a64[BPF_REG_2];
377 	const u8 r3 = bpf2a64[BPF_REG_3];
378 
379 	const u8 tmp = bpf2a64[TMP_REG_1];
380 	const u8 prg = bpf2a64[TMP_REG_2];
381 	const u8 tcc = bpf2a64[TCALL_CNT];
382 	const int idx0 = ctx->idx;
383 #define cur_offset (ctx->idx - idx0)
384 #define jmp_offset (out_offset - (cur_offset))
385 	size_t off;
386 
387 	/* if (index >= array->map.max_entries)
388 	 *     goto out;
389 	 */
390 	off = offsetof(struct bpf_array, map.max_entries);
391 	emit_a64_mov_i64(tmp, off, ctx);
392 	emit(A64_LDR32(tmp, r2, tmp), ctx);
393 	emit(A64_MOV(0, r3, r3), ctx);
394 	emit(A64_CMP(0, r3, tmp), ctx);
395 	emit(A64_B_(A64_COND_CS, jmp_offset), ctx);
396 
397 	/*
398 	 * if (tail_call_cnt >= MAX_TAIL_CALL_CNT)
399 	 *     goto out;
400 	 * tail_call_cnt++;
401 	 */
402 	emit_a64_mov_i64(tmp, MAX_TAIL_CALL_CNT, ctx);
403 	emit(A64_CMP(1, tcc, tmp), ctx);
404 	emit(A64_B_(A64_COND_CS, jmp_offset), ctx);
405 	emit(A64_ADD_I(1, tcc, tcc, 1), ctx);
406 
407 	/* prog = array->ptrs[index];
408 	 * if (prog == NULL)
409 	 *     goto out;
410 	 */
411 	off = offsetof(struct bpf_array, ptrs);
412 	emit_a64_mov_i64(tmp, off, ctx);
413 	emit(A64_ADD(1, tmp, r2, tmp), ctx);
414 	emit(A64_LSL(1, prg, r3, 3), ctx);
415 	emit(A64_LDR64(prg, tmp, prg), ctx);
416 	emit(A64_CBZ(1, prg, jmp_offset), ctx);
417 
418 	/* goto *(prog->bpf_func + prologue_offset); */
419 	off = offsetof(struct bpf_prog, bpf_func);
420 	emit_a64_mov_i64(tmp, off, ctx);
421 	emit(A64_LDR64(tmp, prg, tmp), ctx);
422 	emit(A64_ADD_I(1, tmp, tmp, sizeof(u32) * PROLOGUE_OFFSET), ctx);
423 	emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
424 	emit(A64_BR(tmp), ctx);
425 
426 	/* out: */
427 	if (out_offset == -1)
428 		out_offset = cur_offset;
429 	if (cur_offset != out_offset) {
430 		pr_err_once("tail_call out_offset = %d, expected %d!\n",
431 			    cur_offset, out_offset);
432 		return -1;
433 	}
434 	return 0;
435 #undef cur_offset
436 #undef jmp_offset
437 }
438 
439 #ifdef CONFIG_ARM64_LSE_ATOMICS
440 static int emit_lse_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx)
441 {
442 	const u8 code = insn->code;
443 	const u8 dst = bpf2a64[insn->dst_reg];
444 	const u8 src = bpf2a64[insn->src_reg];
445 	const u8 tmp = bpf2a64[TMP_REG_1];
446 	const u8 tmp2 = bpf2a64[TMP_REG_2];
447 	const bool isdw = BPF_SIZE(code) == BPF_DW;
448 	const s16 off = insn->off;
449 	u8 reg;
450 
451 	if (!off) {
452 		reg = dst;
453 	} else {
454 		emit_a64_mov_i(1, tmp, off, ctx);
455 		emit(A64_ADD(1, tmp, tmp, dst), ctx);
456 		reg = tmp;
457 	}
458 
459 	switch (insn->imm) {
460 	/* lock *(u32/u64 *)(dst_reg + off) <op>= src_reg */
461 	case BPF_ADD:
462 		emit(A64_STADD(isdw, reg, src), ctx);
463 		break;
464 	case BPF_AND:
465 		emit(A64_MVN(isdw, tmp2, src), ctx);
466 		emit(A64_STCLR(isdw, reg, tmp2), ctx);
467 		break;
468 	case BPF_OR:
469 		emit(A64_STSET(isdw, reg, src), ctx);
470 		break;
471 	case BPF_XOR:
472 		emit(A64_STEOR(isdw, reg, src), ctx);
473 		break;
474 	/* src_reg = atomic_fetch_<op>(dst_reg + off, src_reg) */
475 	case BPF_ADD | BPF_FETCH:
476 		emit(A64_LDADDAL(isdw, src, reg, src), ctx);
477 		break;
478 	case BPF_AND | BPF_FETCH:
479 		emit(A64_MVN(isdw, tmp2, src), ctx);
480 		emit(A64_LDCLRAL(isdw, src, reg, tmp2), ctx);
481 		break;
482 	case BPF_OR | BPF_FETCH:
483 		emit(A64_LDSETAL(isdw, src, reg, src), ctx);
484 		break;
485 	case BPF_XOR | BPF_FETCH:
486 		emit(A64_LDEORAL(isdw, src, reg, src), ctx);
487 		break;
488 	/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
489 	case BPF_XCHG:
490 		emit(A64_SWPAL(isdw, src, reg, src), ctx);
491 		break;
492 	/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
493 	case BPF_CMPXCHG:
494 		emit(A64_CASAL(isdw, src, reg, bpf2a64[BPF_REG_0]), ctx);
495 		break;
496 	default:
497 		pr_err_once("unknown atomic op code %02x\n", insn->imm);
498 		return -EINVAL;
499 	}
500 
501 	return 0;
502 }
503 #else
504 static inline int emit_lse_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx)
505 {
506 	return -EINVAL;
507 }
508 #endif
509 
510 static int emit_ll_sc_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx)
511 {
512 	const u8 code = insn->code;
513 	const u8 dst = bpf2a64[insn->dst_reg];
514 	const u8 src = bpf2a64[insn->src_reg];
515 	const u8 tmp = bpf2a64[TMP_REG_1];
516 	const u8 tmp2 = bpf2a64[TMP_REG_2];
517 	const u8 tmp3 = bpf2a64[TMP_REG_3];
518 	const int i = insn - ctx->prog->insnsi;
519 	const s32 imm = insn->imm;
520 	const s16 off = insn->off;
521 	const bool isdw = BPF_SIZE(code) == BPF_DW;
522 	u8 reg;
523 	s32 jmp_offset;
524 
525 	if (!off) {
526 		reg = dst;
527 	} else {
528 		emit_a64_mov_i(1, tmp, off, ctx);
529 		emit(A64_ADD(1, tmp, tmp, dst), ctx);
530 		reg = tmp;
531 	}
532 
533 	if (imm == BPF_ADD || imm == BPF_AND ||
534 	    imm == BPF_OR || imm == BPF_XOR) {
535 		/* lock *(u32/u64 *)(dst_reg + off) <op>= src_reg */
536 		emit(A64_LDXR(isdw, tmp2, reg), ctx);
537 		if (imm == BPF_ADD)
538 			emit(A64_ADD(isdw, tmp2, tmp2, src), ctx);
539 		else if (imm == BPF_AND)
540 			emit(A64_AND(isdw, tmp2, tmp2, src), ctx);
541 		else if (imm == BPF_OR)
542 			emit(A64_ORR(isdw, tmp2, tmp2, src), ctx);
543 		else
544 			emit(A64_EOR(isdw, tmp2, tmp2, src), ctx);
545 		emit(A64_STXR(isdw, tmp2, reg, tmp3), ctx);
546 		jmp_offset = -3;
547 		check_imm19(jmp_offset);
548 		emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
549 	} else if (imm == (BPF_ADD | BPF_FETCH) ||
550 		   imm == (BPF_AND | BPF_FETCH) ||
551 		   imm == (BPF_OR | BPF_FETCH) ||
552 		   imm == (BPF_XOR | BPF_FETCH)) {
553 		/* src_reg = atomic_fetch_<op>(dst_reg + off, src_reg) */
554 		const u8 ax = bpf2a64[BPF_REG_AX];
555 
556 		emit(A64_MOV(isdw, ax, src), ctx);
557 		emit(A64_LDXR(isdw, src, reg), ctx);
558 		if (imm == (BPF_ADD | BPF_FETCH))
559 			emit(A64_ADD(isdw, tmp2, src, ax), ctx);
560 		else if (imm == (BPF_AND | BPF_FETCH))
561 			emit(A64_AND(isdw, tmp2, src, ax), ctx);
562 		else if (imm == (BPF_OR | BPF_FETCH))
563 			emit(A64_ORR(isdw, tmp2, src, ax), ctx);
564 		else
565 			emit(A64_EOR(isdw, tmp2, src, ax), ctx);
566 		emit(A64_STLXR(isdw, tmp2, reg, tmp3), ctx);
567 		jmp_offset = -3;
568 		check_imm19(jmp_offset);
569 		emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
570 		emit(A64_DMB_ISH, ctx);
571 	} else if (imm == BPF_XCHG) {
572 		/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
573 		emit(A64_MOV(isdw, tmp2, src), ctx);
574 		emit(A64_LDXR(isdw, src, reg), ctx);
575 		emit(A64_STLXR(isdw, tmp2, reg, tmp3), ctx);
576 		jmp_offset = -2;
577 		check_imm19(jmp_offset);
578 		emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
579 		emit(A64_DMB_ISH, ctx);
580 	} else if (imm == BPF_CMPXCHG) {
581 		/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
582 		const u8 r0 = bpf2a64[BPF_REG_0];
583 
584 		emit(A64_MOV(isdw, tmp2, r0), ctx);
585 		emit(A64_LDXR(isdw, r0, reg), ctx);
586 		emit(A64_EOR(isdw, tmp3, r0, tmp2), ctx);
587 		jmp_offset = 4;
588 		check_imm19(jmp_offset);
589 		emit(A64_CBNZ(isdw, tmp3, jmp_offset), ctx);
590 		emit(A64_STLXR(isdw, src, reg, tmp3), ctx);
591 		jmp_offset = -4;
592 		check_imm19(jmp_offset);
593 		emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
594 		emit(A64_DMB_ISH, ctx);
595 	} else {
596 		pr_err_once("unknown atomic op code %02x\n", imm);
597 		return -EINVAL;
598 	}
599 
600 	return 0;
601 }
602 
603 void dummy_tramp(void);
604 
605 asm (
606 "	.pushsection .text, \"ax\", @progbits\n"
607 "	.global dummy_tramp\n"
608 "	.type dummy_tramp, %function\n"
609 "dummy_tramp:"
610 #if IS_ENABLED(CONFIG_ARM64_BTI_KERNEL)
611 "	bti j\n" /* dummy_tramp is called via "br x10" */
612 #endif
613 "	mov x10, x30\n"
614 "	mov x30, x9\n"
615 "	ret x10\n"
616 "	.size dummy_tramp, .-dummy_tramp\n"
617 "	.popsection\n"
618 );
619 
620 /* build a plt initialized like this:
621  *
622  * plt:
623  *      ldr tmp, target
624  *      br tmp
625  * target:
626  *      .quad dummy_tramp
627  *
628  * when a long jump trampoline is attached, target is filled with the
629  * trampoline address, and when the trampoline is removed, target is
630  * restored to dummy_tramp address.
631  */
632 static void build_plt(struct jit_ctx *ctx)
633 {
634 	const u8 tmp = bpf2a64[TMP_REG_1];
635 	struct bpf_plt *plt = NULL;
636 
637 	/* make sure target is 64-bit aligned */
638 	if ((ctx->idx + PLT_TARGET_OFFSET / AARCH64_INSN_SIZE) % 2)
639 		emit(A64_NOP, ctx);
640 
641 	plt = (struct bpf_plt *)(ctx->image + ctx->idx);
642 	/* plt is called via bl, no BTI needed here */
643 	emit(A64_LDR64LIT(tmp, 2 * AARCH64_INSN_SIZE), ctx);
644 	emit(A64_BR(tmp), ctx);
645 
646 	if (ctx->image)
647 		plt->target = (u64)&dummy_tramp;
648 }
649 
650 static void build_epilogue(struct jit_ctx *ctx)
651 {
652 	const u8 r0 = bpf2a64[BPF_REG_0];
653 	const u8 r6 = bpf2a64[BPF_REG_6];
654 	const u8 r7 = bpf2a64[BPF_REG_7];
655 	const u8 r8 = bpf2a64[BPF_REG_8];
656 	const u8 r9 = bpf2a64[BPF_REG_9];
657 	const u8 fp = bpf2a64[BPF_REG_FP];
658 	const u8 fpb = bpf2a64[FP_BOTTOM];
659 
660 	/* We're done with BPF stack */
661 	emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
662 
663 	/* Restore x27 and x28 */
664 	emit(A64_POP(fpb, A64_R(28), A64_SP), ctx);
665 	/* Restore fs (x25) and x26 */
666 	emit(A64_POP(fp, A64_R(26), A64_SP), ctx);
667 
668 	/* Restore callee-saved register */
669 	emit(A64_POP(r8, r9, A64_SP), ctx);
670 	emit(A64_POP(r6, r7, A64_SP), ctx);
671 
672 	/* Restore FP/LR registers */
673 	emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx);
674 
675 	/* Set return value */
676 	emit(A64_MOV(1, A64_R(0), r0), ctx);
677 
678 	/* Authenticate lr */
679 	if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL))
680 		emit(A64_AUTIASP, ctx);
681 
682 	emit(A64_RET(A64_LR), ctx);
683 }
684 
685 #define BPF_FIXUP_OFFSET_MASK	GENMASK(26, 0)
686 #define BPF_FIXUP_REG_MASK	GENMASK(31, 27)
687 
688 bool ex_handler_bpf(const struct exception_table_entry *ex,
689 		    struct pt_regs *regs)
690 {
691 	off_t offset = FIELD_GET(BPF_FIXUP_OFFSET_MASK, ex->fixup);
692 	int dst_reg = FIELD_GET(BPF_FIXUP_REG_MASK, ex->fixup);
693 
694 	regs->regs[dst_reg] = 0;
695 	regs->pc = (unsigned long)&ex->fixup - offset;
696 	return true;
697 }
698 
699 /* For accesses to BTF pointers, add an entry to the exception table */
700 static int add_exception_handler(const struct bpf_insn *insn,
701 				 struct jit_ctx *ctx,
702 				 int dst_reg)
703 {
704 	off_t offset;
705 	unsigned long pc;
706 	struct exception_table_entry *ex;
707 
708 	if (!ctx->image)
709 		/* First pass */
710 		return 0;
711 
712 	if (BPF_MODE(insn->code) != BPF_PROBE_MEM)
713 		return 0;
714 
715 	if (!ctx->prog->aux->extable ||
716 	    WARN_ON_ONCE(ctx->exentry_idx >= ctx->prog->aux->num_exentries))
717 		return -EINVAL;
718 
719 	ex = &ctx->prog->aux->extable[ctx->exentry_idx];
720 	pc = (unsigned long)&ctx->image[ctx->idx - 1];
721 
722 	offset = pc - (long)&ex->insn;
723 	if (WARN_ON_ONCE(offset >= 0 || offset < INT_MIN))
724 		return -ERANGE;
725 	ex->insn = offset;
726 
727 	/*
728 	 * Since the extable follows the program, the fixup offset is always
729 	 * negative and limited to BPF_JIT_REGION_SIZE. Store a positive value
730 	 * to keep things simple, and put the destination register in the upper
731 	 * bits. We don't need to worry about buildtime or runtime sort
732 	 * modifying the upper bits because the table is already sorted, and
733 	 * isn't part of the main exception table.
734 	 */
735 	offset = (long)&ex->fixup - (pc + AARCH64_INSN_SIZE);
736 	if (!FIELD_FIT(BPF_FIXUP_OFFSET_MASK, offset))
737 		return -ERANGE;
738 
739 	ex->fixup = FIELD_PREP(BPF_FIXUP_OFFSET_MASK, offset) |
740 		    FIELD_PREP(BPF_FIXUP_REG_MASK, dst_reg);
741 
742 	ex->type = EX_TYPE_BPF;
743 
744 	ctx->exentry_idx++;
745 	return 0;
746 }
747 
748 /* JITs an eBPF instruction.
749  * Returns:
750  * 0  - successfully JITed an 8-byte eBPF instruction.
751  * >0 - successfully JITed a 16-byte eBPF instruction.
752  * <0 - failed to JIT.
753  */
754 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx,
755 		      bool extra_pass)
756 {
757 	const u8 code = insn->code;
758 	const u8 dst = bpf2a64[insn->dst_reg];
759 	const u8 src = bpf2a64[insn->src_reg];
760 	const u8 tmp = bpf2a64[TMP_REG_1];
761 	const u8 tmp2 = bpf2a64[TMP_REG_2];
762 	const u8 fp = bpf2a64[BPF_REG_FP];
763 	const u8 fpb = bpf2a64[FP_BOTTOM];
764 	const s16 off = insn->off;
765 	const s32 imm = insn->imm;
766 	const int i = insn - ctx->prog->insnsi;
767 	const bool is64 = BPF_CLASS(code) == BPF_ALU64 ||
768 			  BPF_CLASS(code) == BPF_JMP;
769 	u8 jmp_cond;
770 	s32 jmp_offset;
771 	u32 a64_insn;
772 	u8 src_adj;
773 	u8 dst_adj;
774 	int off_adj;
775 	int ret;
776 
777 	switch (code) {
778 	/* dst = src */
779 	case BPF_ALU | BPF_MOV | BPF_X:
780 	case BPF_ALU64 | BPF_MOV | BPF_X:
781 		emit(A64_MOV(is64, dst, src), ctx);
782 		break;
783 	/* dst = dst OP src */
784 	case BPF_ALU | BPF_ADD | BPF_X:
785 	case BPF_ALU64 | BPF_ADD | BPF_X:
786 		emit(A64_ADD(is64, dst, dst, src), ctx);
787 		break;
788 	case BPF_ALU | BPF_SUB | BPF_X:
789 	case BPF_ALU64 | BPF_SUB | BPF_X:
790 		emit(A64_SUB(is64, dst, dst, src), ctx);
791 		break;
792 	case BPF_ALU | BPF_AND | BPF_X:
793 	case BPF_ALU64 | BPF_AND | BPF_X:
794 		emit(A64_AND(is64, dst, dst, src), ctx);
795 		break;
796 	case BPF_ALU | BPF_OR | BPF_X:
797 	case BPF_ALU64 | BPF_OR | BPF_X:
798 		emit(A64_ORR(is64, dst, dst, src), ctx);
799 		break;
800 	case BPF_ALU | BPF_XOR | BPF_X:
801 	case BPF_ALU64 | BPF_XOR | BPF_X:
802 		emit(A64_EOR(is64, dst, dst, src), ctx);
803 		break;
804 	case BPF_ALU | BPF_MUL | BPF_X:
805 	case BPF_ALU64 | BPF_MUL | BPF_X:
806 		emit(A64_MUL(is64, dst, dst, src), ctx);
807 		break;
808 	case BPF_ALU | BPF_DIV | BPF_X:
809 	case BPF_ALU64 | BPF_DIV | BPF_X:
810 		emit(A64_UDIV(is64, dst, dst, src), ctx);
811 		break;
812 	case BPF_ALU | BPF_MOD | BPF_X:
813 	case BPF_ALU64 | BPF_MOD | BPF_X:
814 		emit(A64_UDIV(is64, tmp, dst, src), ctx);
815 		emit(A64_MSUB(is64, dst, dst, tmp, src), ctx);
816 		break;
817 	case BPF_ALU | BPF_LSH | BPF_X:
818 	case BPF_ALU64 | BPF_LSH | BPF_X:
819 		emit(A64_LSLV(is64, dst, dst, src), ctx);
820 		break;
821 	case BPF_ALU | BPF_RSH | BPF_X:
822 	case BPF_ALU64 | BPF_RSH | BPF_X:
823 		emit(A64_LSRV(is64, dst, dst, src), ctx);
824 		break;
825 	case BPF_ALU | BPF_ARSH | BPF_X:
826 	case BPF_ALU64 | BPF_ARSH | BPF_X:
827 		emit(A64_ASRV(is64, dst, dst, src), ctx);
828 		break;
829 	/* dst = -dst */
830 	case BPF_ALU | BPF_NEG:
831 	case BPF_ALU64 | BPF_NEG:
832 		emit(A64_NEG(is64, dst, dst), ctx);
833 		break;
834 	/* dst = BSWAP##imm(dst) */
835 	case BPF_ALU | BPF_END | BPF_FROM_LE:
836 	case BPF_ALU | BPF_END | BPF_FROM_BE:
837 #ifdef CONFIG_CPU_BIG_ENDIAN
838 		if (BPF_SRC(code) == BPF_FROM_BE)
839 			goto emit_bswap_uxt;
840 #else /* !CONFIG_CPU_BIG_ENDIAN */
841 		if (BPF_SRC(code) == BPF_FROM_LE)
842 			goto emit_bswap_uxt;
843 #endif
844 		switch (imm) {
845 		case 16:
846 			emit(A64_REV16(is64, dst, dst), ctx);
847 			/* zero-extend 16 bits into 64 bits */
848 			emit(A64_UXTH(is64, dst, dst), ctx);
849 			break;
850 		case 32:
851 			emit(A64_REV32(is64, dst, dst), ctx);
852 			/* upper 32 bits already cleared */
853 			break;
854 		case 64:
855 			emit(A64_REV64(dst, dst), ctx);
856 			break;
857 		}
858 		break;
859 emit_bswap_uxt:
860 		switch (imm) {
861 		case 16:
862 			/* zero-extend 16 bits into 64 bits */
863 			emit(A64_UXTH(is64, dst, dst), ctx);
864 			break;
865 		case 32:
866 			/* zero-extend 32 bits into 64 bits */
867 			emit(A64_UXTW(is64, dst, dst), ctx);
868 			break;
869 		case 64:
870 			/* nop */
871 			break;
872 		}
873 		break;
874 	/* dst = imm */
875 	case BPF_ALU | BPF_MOV | BPF_K:
876 	case BPF_ALU64 | BPF_MOV | BPF_K:
877 		emit_a64_mov_i(is64, dst, imm, ctx);
878 		break;
879 	/* dst = dst OP imm */
880 	case BPF_ALU | BPF_ADD | BPF_K:
881 	case BPF_ALU64 | BPF_ADD | BPF_K:
882 		if (is_addsub_imm(imm)) {
883 			emit(A64_ADD_I(is64, dst, dst, imm), ctx);
884 		} else if (is_addsub_imm(-imm)) {
885 			emit(A64_SUB_I(is64, dst, dst, -imm), ctx);
886 		} else {
887 			emit_a64_mov_i(is64, tmp, imm, ctx);
888 			emit(A64_ADD(is64, dst, dst, tmp), ctx);
889 		}
890 		break;
891 	case BPF_ALU | BPF_SUB | BPF_K:
892 	case BPF_ALU64 | BPF_SUB | BPF_K:
893 		if (is_addsub_imm(imm)) {
894 			emit(A64_SUB_I(is64, dst, dst, imm), ctx);
895 		} else if (is_addsub_imm(-imm)) {
896 			emit(A64_ADD_I(is64, dst, dst, -imm), ctx);
897 		} else {
898 			emit_a64_mov_i(is64, tmp, imm, ctx);
899 			emit(A64_SUB(is64, dst, dst, tmp), ctx);
900 		}
901 		break;
902 	case BPF_ALU | BPF_AND | BPF_K:
903 	case BPF_ALU64 | BPF_AND | BPF_K:
904 		a64_insn = A64_AND_I(is64, dst, dst, imm);
905 		if (a64_insn != AARCH64_BREAK_FAULT) {
906 			emit(a64_insn, ctx);
907 		} else {
908 			emit_a64_mov_i(is64, tmp, imm, ctx);
909 			emit(A64_AND(is64, dst, dst, tmp), ctx);
910 		}
911 		break;
912 	case BPF_ALU | BPF_OR | BPF_K:
913 	case BPF_ALU64 | BPF_OR | BPF_K:
914 		a64_insn = A64_ORR_I(is64, dst, dst, imm);
915 		if (a64_insn != AARCH64_BREAK_FAULT) {
916 			emit(a64_insn, ctx);
917 		} else {
918 			emit_a64_mov_i(is64, tmp, imm, ctx);
919 			emit(A64_ORR(is64, dst, dst, tmp), ctx);
920 		}
921 		break;
922 	case BPF_ALU | BPF_XOR | BPF_K:
923 	case BPF_ALU64 | BPF_XOR | BPF_K:
924 		a64_insn = A64_EOR_I(is64, dst, dst, imm);
925 		if (a64_insn != AARCH64_BREAK_FAULT) {
926 			emit(a64_insn, ctx);
927 		} else {
928 			emit_a64_mov_i(is64, tmp, imm, ctx);
929 			emit(A64_EOR(is64, dst, dst, tmp), ctx);
930 		}
931 		break;
932 	case BPF_ALU | BPF_MUL | BPF_K:
933 	case BPF_ALU64 | BPF_MUL | BPF_K:
934 		emit_a64_mov_i(is64, tmp, imm, ctx);
935 		emit(A64_MUL(is64, dst, dst, tmp), ctx);
936 		break;
937 	case BPF_ALU | BPF_DIV | BPF_K:
938 	case BPF_ALU64 | BPF_DIV | BPF_K:
939 		emit_a64_mov_i(is64, tmp, imm, ctx);
940 		emit(A64_UDIV(is64, dst, dst, tmp), ctx);
941 		break;
942 	case BPF_ALU | BPF_MOD | BPF_K:
943 	case BPF_ALU64 | BPF_MOD | BPF_K:
944 		emit_a64_mov_i(is64, tmp2, imm, ctx);
945 		emit(A64_UDIV(is64, tmp, dst, tmp2), ctx);
946 		emit(A64_MSUB(is64, dst, dst, tmp, tmp2), ctx);
947 		break;
948 	case BPF_ALU | BPF_LSH | BPF_K:
949 	case BPF_ALU64 | BPF_LSH | BPF_K:
950 		emit(A64_LSL(is64, dst, dst, imm), ctx);
951 		break;
952 	case BPF_ALU | BPF_RSH | BPF_K:
953 	case BPF_ALU64 | BPF_RSH | BPF_K:
954 		emit(A64_LSR(is64, dst, dst, imm), ctx);
955 		break;
956 	case BPF_ALU | BPF_ARSH | BPF_K:
957 	case BPF_ALU64 | BPF_ARSH | BPF_K:
958 		emit(A64_ASR(is64, dst, dst, imm), ctx);
959 		break;
960 
961 	/* JUMP off */
962 	case BPF_JMP | BPF_JA:
963 		jmp_offset = bpf2a64_offset(i, off, ctx);
964 		check_imm26(jmp_offset);
965 		emit(A64_B(jmp_offset), ctx);
966 		break;
967 	/* IF (dst COND src) JUMP off */
968 	case BPF_JMP | BPF_JEQ | BPF_X:
969 	case BPF_JMP | BPF_JGT | BPF_X:
970 	case BPF_JMP | BPF_JLT | BPF_X:
971 	case BPF_JMP | BPF_JGE | BPF_X:
972 	case BPF_JMP | BPF_JLE | BPF_X:
973 	case BPF_JMP | BPF_JNE | BPF_X:
974 	case BPF_JMP | BPF_JSGT | BPF_X:
975 	case BPF_JMP | BPF_JSLT | BPF_X:
976 	case BPF_JMP | BPF_JSGE | BPF_X:
977 	case BPF_JMP | BPF_JSLE | BPF_X:
978 	case BPF_JMP32 | BPF_JEQ | BPF_X:
979 	case BPF_JMP32 | BPF_JGT | BPF_X:
980 	case BPF_JMP32 | BPF_JLT | BPF_X:
981 	case BPF_JMP32 | BPF_JGE | BPF_X:
982 	case BPF_JMP32 | BPF_JLE | BPF_X:
983 	case BPF_JMP32 | BPF_JNE | BPF_X:
984 	case BPF_JMP32 | BPF_JSGT | BPF_X:
985 	case BPF_JMP32 | BPF_JSLT | BPF_X:
986 	case BPF_JMP32 | BPF_JSGE | BPF_X:
987 	case BPF_JMP32 | BPF_JSLE | BPF_X:
988 		emit(A64_CMP(is64, dst, src), ctx);
989 emit_cond_jmp:
990 		jmp_offset = bpf2a64_offset(i, off, ctx);
991 		check_imm19(jmp_offset);
992 		switch (BPF_OP(code)) {
993 		case BPF_JEQ:
994 			jmp_cond = A64_COND_EQ;
995 			break;
996 		case BPF_JGT:
997 			jmp_cond = A64_COND_HI;
998 			break;
999 		case BPF_JLT:
1000 			jmp_cond = A64_COND_CC;
1001 			break;
1002 		case BPF_JGE:
1003 			jmp_cond = A64_COND_CS;
1004 			break;
1005 		case BPF_JLE:
1006 			jmp_cond = A64_COND_LS;
1007 			break;
1008 		case BPF_JSET:
1009 		case BPF_JNE:
1010 			jmp_cond = A64_COND_NE;
1011 			break;
1012 		case BPF_JSGT:
1013 			jmp_cond = A64_COND_GT;
1014 			break;
1015 		case BPF_JSLT:
1016 			jmp_cond = A64_COND_LT;
1017 			break;
1018 		case BPF_JSGE:
1019 			jmp_cond = A64_COND_GE;
1020 			break;
1021 		case BPF_JSLE:
1022 			jmp_cond = A64_COND_LE;
1023 			break;
1024 		default:
1025 			return -EFAULT;
1026 		}
1027 		emit(A64_B_(jmp_cond, jmp_offset), ctx);
1028 		break;
1029 	case BPF_JMP | BPF_JSET | BPF_X:
1030 	case BPF_JMP32 | BPF_JSET | BPF_X:
1031 		emit(A64_TST(is64, dst, src), ctx);
1032 		goto emit_cond_jmp;
1033 	/* IF (dst COND imm) JUMP off */
1034 	case BPF_JMP | BPF_JEQ | BPF_K:
1035 	case BPF_JMP | BPF_JGT | BPF_K:
1036 	case BPF_JMP | BPF_JLT | BPF_K:
1037 	case BPF_JMP | BPF_JGE | BPF_K:
1038 	case BPF_JMP | BPF_JLE | BPF_K:
1039 	case BPF_JMP | BPF_JNE | BPF_K:
1040 	case BPF_JMP | BPF_JSGT | BPF_K:
1041 	case BPF_JMP | BPF_JSLT | BPF_K:
1042 	case BPF_JMP | BPF_JSGE | BPF_K:
1043 	case BPF_JMP | BPF_JSLE | BPF_K:
1044 	case BPF_JMP32 | BPF_JEQ | BPF_K:
1045 	case BPF_JMP32 | BPF_JGT | BPF_K:
1046 	case BPF_JMP32 | BPF_JLT | BPF_K:
1047 	case BPF_JMP32 | BPF_JGE | BPF_K:
1048 	case BPF_JMP32 | BPF_JLE | BPF_K:
1049 	case BPF_JMP32 | BPF_JNE | BPF_K:
1050 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1051 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1052 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1053 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1054 		if (is_addsub_imm(imm)) {
1055 			emit(A64_CMP_I(is64, dst, imm), ctx);
1056 		} else if (is_addsub_imm(-imm)) {
1057 			emit(A64_CMN_I(is64, dst, -imm), ctx);
1058 		} else {
1059 			emit_a64_mov_i(is64, tmp, imm, ctx);
1060 			emit(A64_CMP(is64, dst, tmp), ctx);
1061 		}
1062 		goto emit_cond_jmp;
1063 	case BPF_JMP | BPF_JSET | BPF_K:
1064 	case BPF_JMP32 | BPF_JSET | BPF_K:
1065 		a64_insn = A64_TST_I(is64, dst, imm);
1066 		if (a64_insn != AARCH64_BREAK_FAULT) {
1067 			emit(a64_insn, ctx);
1068 		} else {
1069 			emit_a64_mov_i(is64, tmp, imm, ctx);
1070 			emit(A64_TST(is64, dst, tmp), ctx);
1071 		}
1072 		goto emit_cond_jmp;
1073 	/* function call */
1074 	case BPF_JMP | BPF_CALL:
1075 	{
1076 		const u8 r0 = bpf2a64[BPF_REG_0];
1077 		bool func_addr_fixed;
1078 		u64 func_addr;
1079 
1080 		ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
1081 					    &func_addr, &func_addr_fixed);
1082 		if (ret < 0)
1083 			return ret;
1084 		emit_call(func_addr, ctx);
1085 		emit(A64_MOV(1, r0, A64_R(0)), ctx);
1086 		break;
1087 	}
1088 	/* tail call */
1089 	case BPF_JMP | BPF_TAIL_CALL:
1090 		if (emit_bpf_tail_call(ctx))
1091 			return -EFAULT;
1092 		break;
1093 	/* function return */
1094 	case BPF_JMP | BPF_EXIT:
1095 		/* Optimization: when last instruction is EXIT,
1096 		   simply fallthrough to epilogue. */
1097 		if (i == ctx->prog->len - 1)
1098 			break;
1099 		jmp_offset = epilogue_offset(ctx);
1100 		check_imm26(jmp_offset);
1101 		emit(A64_B(jmp_offset), ctx);
1102 		break;
1103 
1104 	/* dst = imm64 */
1105 	case BPF_LD | BPF_IMM | BPF_DW:
1106 	{
1107 		const struct bpf_insn insn1 = insn[1];
1108 		u64 imm64;
1109 
1110 		imm64 = (u64)insn1.imm << 32 | (u32)imm;
1111 		if (bpf_pseudo_func(insn))
1112 			emit_addr_mov_i64(dst, imm64, ctx);
1113 		else
1114 			emit_a64_mov_i64(dst, imm64, ctx);
1115 
1116 		return 1;
1117 	}
1118 
1119 	/* LDX: dst = *(size *)(src + off) */
1120 	case BPF_LDX | BPF_MEM | BPF_W:
1121 	case BPF_LDX | BPF_MEM | BPF_H:
1122 	case BPF_LDX | BPF_MEM | BPF_B:
1123 	case BPF_LDX | BPF_MEM | BPF_DW:
1124 	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1125 	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1126 	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1127 	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1128 		if (ctx->fpb_offset > 0 && src == fp) {
1129 			src_adj = fpb;
1130 			off_adj = off + ctx->fpb_offset;
1131 		} else {
1132 			src_adj = src;
1133 			off_adj = off;
1134 		}
1135 		switch (BPF_SIZE(code)) {
1136 		case BPF_W:
1137 			if (is_lsi_offset(off_adj, 2)) {
1138 				emit(A64_LDR32I(dst, src_adj, off_adj), ctx);
1139 			} else {
1140 				emit_a64_mov_i(1, tmp, off, ctx);
1141 				emit(A64_LDR32(dst, src, tmp), ctx);
1142 			}
1143 			break;
1144 		case BPF_H:
1145 			if (is_lsi_offset(off_adj, 1)) {
1146 				emit(A64_LDRHI(dst, src_adj, off_adj), ctx);
1147 			} else {
1148 				emit_a64_mov_i(1, tmp, off, ctx);
1149 				emit(A64_LDRH(dst, src, tmp), ctx);
1150 			}
1151 			break;
1152 		case BPF_B:
1153 			if (is_lsi_offset(off_adj, 0)) {
1154 				emit(A64_LDRBI(dst, src_adj, off_adj), ctx);
1155 			} else {
1156 				emit_a64_mov_i(1, tmp, off, ctx);
1157 				emit(A64_LDRB(dst, src, tmp), ctx);
1158 			}
1159 			break;
1160 		case BPF_DW:
1161 			if (is_lsi_offset(off_adj, 3)) {
1162 				emit(A64_LDR64I(dst, src_adj, off_adj), ctx);
1163 			} else {
1164 				emit_a64_mov_i(1, tmp, off, ctx);
1165 				emit(A64_LDR64(dst, src, tmp), ctx);
1166 			}
1167 			break;
1168 		}
1169 
1170 		ret = add_exception_handler(insn, ctx, dst);
1171 		if (ret)
1172 			return ret;
1173 		break;
1174 
1175 	/* speculation barrier */
1176 	case BPF_ST | BPF_NOSPEC:
1177 		/*
1178 		 * Nothing required here.
1179 		 *
1180 		 * In case of arm64, we rely on the firmware mitigation of
1181 		 * Speculative Store Bypass as controlled via the ssbd kernel
1182 		 * parameter. Whenever the mitigation is enabled, it works
1183 		 * for all of the kernel code with no need to provide any
1184 		 * additional instructions.
1185 		 */
1186 		break;
1187 
1188 	/* ST: *(size *)(dst + off) = imm */
1189 	case BPF_ST | BPF_MEM | BPF_W:
1190 	case BPF_ST | BPF_MEM | BPF_H:
1191 	case BPF_ST | BPF_MEM | BPF_B:
1192 	case BPF_ST | BPF_MEM | BPF_DW:
1193 		if (ctx->fpb_offset > 0 && dst == fp) {
1194 			dst_adj = fpb;
1195 			off_adj = off + ctx->fpb_offset;
1196 		} else {
1197 			dst_adj = dst;
1198 			off_adj = off;
1199 		}
1200 		/* Load imm to a register then store it */
1201 		emit_a64_mov_i(1, tmp, imm, ctx);
1202 		switch (BPF_SIZE(code)) {
1203 		case BPF_W:
1204 			if (is_lsi_offset(off_adj, 2)) {
1205 				emit(A64_STR32I(tmp, dst_adj, off_adj), ctx);
1206 			} else {
1207 				emit_a64_mov_i(1, tmp2, off, ctx);
1208 				emit(A64_STR32(tmp, dst, tmp2), ctx);
1209 			}
1210 			break;
1211 		case BPF_H:
1212 			if (is_lsi_offset(off_adj, 1)) {
1213 				emit(A64_STRHI(tmp, dst_adj, off_adj), ctx);
1214 			} else {
1215 				emit_a64_mov_i(1, tmp2, off, ctx);
1216 				emit(A64_STRH(tmp, dst, tmp2), ctx);
1217 			}
1218 			break;
1219 		case BPF_B:
1220 			if (is_lsi_offset(off_adj, 0)) {
1221 				emit(A64_STRBI(tmp, dst_adj, off_adj), ctx);
1222 			} else {
1223 				emit_a64_mov_i(1, tmp2, off, ctx);
1224 				emit(A64_STRB(tmp, dst, tmp2), ctx);
1225 			}
1226 			break;
1227 		case BPF_DW:
1228 			if (is_lsi_offset(off_adj, 3)) {
1229 				emit(A64_STR64I(tmp, dst_adj, off_adj), ctx);
1230 			} else {
1231 				emit_a64_mov_i(1, tmp2, off, ctx);
1232 				emit(A64_STR64(tmp, dst, tmp2), ctx);
1233 			}
1234 			break;
1235 		}
1236 		break;
1237 
1238 	/* STX: *(size *)(dst + off) = src */
1239 	case BPF_STX | BPF_MEM | BPF_W:
1240 	case BPF_STX | BPF_MEM | BPF_H:
1241 	case BPF_STX | BPF_MEM | BPF_B:
1242 	case BPF_STX | BPF_MEM | BPF_DW:
1243 		if (ctx->fpb_offset > 0 && dst == fp) {
1244 			dst_adj = fpb;
1245 			off_adj = off + ctx->fpb_offset;
1246 		} else {
1247 			dst_adj = dst;
1248 			off_adj = off;
1249 		}
1250 		switch (BPF_SIZE(code)) {
1251 		case BPF_W:
1252 			if (is_lsi_offset(off_adj, 2)) {
1253 				emit(A64_STR32I(src, dst_adj, off_adj), ctx);
1254 			} else {
1255 				emit_a64_mov_i(1, tmp, off, ctx);
1256 				emit(A64_STR32(src, dst, tmp), ctx);
1257 			}
1258 			break;
1259 		case BPF_H:
1260 			if (is_lsi_offset(off_adj, 1)) {
1261 				emit(A64_STRHI(src, dst_adj, off_adj), ctx);
1262 			} else {
1263 				emit_a64_mov_i(1, tmp, off, ctx);
1264 				emit(A64_STRH(src, dst, tmp), ctx);
1265 			}
1266 			break;
1267 		case BPF_B:
1268 			if (is_lsi_offset(off_adj, 0)) {
1269 				emit(A64_STRBI(src, dst_adj, off_adj), ctx);
1270 			} else {
1271 				emit_a64_mov_i(1, tmp, off, ctx);
1272 				emit(A64_STRB(src, dst, tmp), ctx);
1273 			}
1274 			break;
1275 		case BPF_DW:
1276 			if (is_lsi_offset(off_adj, 3)) {
1277 				emit(A64_STR64I(src, dst_adj, off_adj), ctx);
1278 			} else {
1279 				emit_a64_mov_i(1, tmp, off, ctx);
1280 				emit(A64_STR64(src, dst, tmp), ctx);
1281 			}
1282 			break;
1283 		}
1284 		break;
1285 
1286 	case BPF_STX | BPF_ATOMIC | BPF_W:
1287 	case BPF_STX | BPF_ATOMIC | BPF_DW:
1288 		if (cpus_have_cap(ARM64_HAS_LSE_ATOMICS))
1289 			ret = emit_lse_atomic(insn, ctx);
1290 		else
1291 			ret = emit_ll_sc_atomic(insn, ctx);
1292 		if (ret)
1293 			return ret;
1294 		break;
1295 
1296 	default:
1297 		pr_err_once("unknown opcode %02x\n", code);
1298 		return -EINVAL;
1299 	}
1300 
1301 	return 0;
1302 }
1303 
1304 /*
1305  * Return 0 if FP may change at runtime, otherwise find the minimum negative
1306  * offset to FP, converts it to positive number, and align down to 8 bytes.
1307  */
1308 static int find_fpb_offset(struct bpf_prog *prog)
1309 {
1310 	int i;
1311 	int offset = 0;
1312 
1313 	for (i = 0; i < prog->len; i++) {
1314 		const struct bpf_insn *insn = &prog->insnsi[i];
1315 		const u8 class = BPF_CLASS(insn->code);
1316 		const u8 mode = BPF_MODE(insn->code);
1317 		const u8 src = insn->src_reg;
1318 		const u8 dst = insn->dst_reg;
1319 		const s32 imm = insn->imm;
1320 		const s16 off = insn->off;
1321 
1322 		switch (class) {
1323 		case BPF_STX:
1324 		case BPF_ST:
1325 			/* fp holds atomic operation result */
1326 			if (class == BPF_STX && mode == BPF_ATOMIC &&
1327 			    ((imm == BPF_XCHG ||
1328 			      imm == (BPF_FETCH | BPF_ADD) ||
1329 			      imm == (BPF_FETCH | BPF_AND) ||
1330 			      imm == (BPF_FETCH | BPF_XOR) ||
1331 			      imm == (BPF_FETCH | BPF_OR)) &&
1332 			     src == BPF_REG_FP))
1333 				return 0;
1334 
1335 			if (mode == BPF_MEM && dst == BPF_REG_FP &&
1336 			    off < offset)
1337 				offset = insn->off;
1338 			break;
1339 
1340 		case BPF_JMP32:
1341 		case BPF_JMP:
1342 			break;
1343 
1344 		case BPF_LDX:
1345 		case BPF_LD:
1346 			/* fp holds load result */
1347 			if (dst == BPF_REG_FP)
1348 				return 0;
1349 
1350 			if (class == BPF_LDX && mode == BPF_MEM &&
1351 			    src == BPF_REG_FP && off < offset)
1352 				offset = off;
1353 			break;
1354 
1355 		case BPF_ALU:
1356 		case BPF_ALU64:
1357 		default:
1358 			/* fp holds ALU result */
1359 			if (dst == BPF_REG_FP)
1360 				return 0;
1361 		}
1362 	}
1363 
1364 	if (offset < 0) {
1365 		/*
1366 		 * safely be converted to a positive 'int', since insn->off
1367 		 * is 's16'
1368 		 */
1369 		offset = -offset;
1370 		/* align down to 8 bytes */
1371 		offset = ALIGN_DOWN(offset, 8);
1372 	}
1373 
1374 	return offset;
1375 }
1376 
1377 static int build_body(struct jit_ctx *ctx, bool extra_pass)
1378 {
1379 	const struct bpf_prog *prog = ctx->prog;
1380 	int i;
1381 
1382 	/*
1383 	 * - offset[0] offset of the end of prologue,
1384 	 *   start of the 1st instruction.
1385 	 * - offset[1] - offset of the end of 1st instruction,
1386 	 *   start of the 2nd instruction
1387 	 * [....]
1388 	 * - offset[3] - offset of the end of 3rd instruction,
1389 	 *   start of 4th instruction
1390 	 */
1391 	for (i = 0; i < prog->len; i++) {
1392 		const struct bpf_insn *insn = &prog->insnsi[i];
1393 		int ret;
1394 
1395 		if (ctx->image == NULL)
1396 			ctx->offset[i] = ctx->idx;
1397 		ret = build_insn(insn, ctx, extra_pass);
1398 		if (ret > 0) {
1399 			i++;
1400 			if (ctx->image == NULL)
1401 				ctx->offset[i] = ctx->idx;
1402 			continue;
1403 		}
1404 		if (ret)
1405 			return ret;
1406 	}
1407 	/*
1408 	 * offset is allocated with prog->len + 1 so fill in
1409 	 * the last element with the offset after the last
1410 	 * instruction (end of program)
1411 	 */
1412 	if (ctx->image == NULL)
1413 		ctx->offset[i] = ctx->idx;
1414 
1415 	return 0;
1416 }
1417 
1418 static int validate_code(struct jit_ctx *ctx)
1419 {
1420 	int i;
1421 
1422 	for (i = 0; i < ctx->idx; i++) {
1423 		u32 a64_insn = le32_to_cpu(ctx->image[i]);
1424 
1425 		if (a64_insn == AARCH64_BREAK_FAULT)
1426 			return -1;
1427 	}
1428 	return 0;
1429 }
1430 
1431 static int validate_ctx(struct jit_ctx *ctx)
1432 {
1433 	if (validate_code(ctx))
1434 		return -1;
1435 
1436 	if (WARN_ON_ONCE(ctx->exentry_idx != ctx->prog->aux->num_exentries))
1437 		return -1;
1438 
1439 	return 0;
1440 }
1441 
1442 static inline void bpf_flush_icache(void *start, void *end)
1443 {
1444 	flush_icache_range((unsigned long)start, (unsigned long)end);
1445 }
1446 
1447 struct arm64_jit_data {
1448 	struct bpf_binary_header *header;
1449 	u8 *image;
1450 	struct jit_ctx ctx;
1451 };
1452 
1453 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1454 {
1455 	int image_size, prog_size, extable_size, extable_align, extable_offset;
1456 	struct bpf_prog *tmp, *orig_prog = prog;
1457 	struct bpf_binary_header *header;
1458 	struct arm64_jit_data *jit_data;
1459 	bool was_classic = bpf_prog_was_classic(prog);
1460 	bool tmp_blinded = false;
1461 	bool extra_pass = false;
1462 	struct jit_ctx ctx;
1463 	u8 *image_ptr;
1464 
1465 	if (!prog->jit_requested)
1466 		return orig_prog;
1467 
1468 	tmp = bpf_jit_blind_constants(prog);
1469 	/* If blinding was requested and we failed during blinding,
1470 	 * we must fall back to the interpreter.
1471 	 */
1472 	if (IS_ERR(tmp))
1473 		return orig_prog;
1474 	if (tmp != prog) {
1475 		tmp_blinded = true;
1476 		prog = tmp;
1477 	}
1478 
1479 	jit_data = prog->aux->jit_data;
1480 	if (!jit_data) {
1481 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1482 		if (!jit_data) {
1483 			prog = orig_prog;
1484 			goto out;
1485 		}
1486 		prog->aux->jit_data = jit_data;
1487 	}
1488 	if (jit_data->ctx.offset) {
1489 		ctx = jit_data->ctx;
1490 		image_ptr = jit_data->image;
1491 		header = jit_data->header;
1492 		extra_pass = true;
1493 		prog_size = sizeof(u32) * ctx.idx;
1494 		goto skip_init_ctx;
1495 	}
1496 	memset(&ctx, 0, sizeof(ctx));
1497 	ctx.prog = prog;
1498 
1499 	ctx.offset = kvcalloc(prog->len + 1, sizeof(int), GFP_KERNEL);
1500 	if (ctx.offset == NULL) {
1501 		prog = orig_prog;
1502 		goto out_off;
1503 	}
1504 
1505 	ctx.fpb_offset = find_fpb_offset(prog);
1506 
1507 	/*
1508 	 * 1. Initial fake pass to compute ctx->idx and ctx->offset.
1509 	 *
1510 	 * BPF line info needs ctx->offset[i] to be the offset of
1511 	 * instruction[i] in jited image, so build prologue first.
1512 	 */
1513 	if (build_prologue(&ctx, was_classic)) {
1514 		prog = orig_prog;
1515 		goto out_off;
1516 	}
1517 
1518 	if (build_body(&ctx, extra_pass)) {
1519 		prog = orig_prog;
1520 		goto out_off;
1521 	}
1522 
1523 	ctx.epilogue_offset = ctx.idx;
1524 	build_epilogue(&ctx);
1525 	build_plt(&ctx);
1526 
1527 	extable_align = __alignof__(struct exception_table_entry);
1528 	extable_size = prog->aux->num_exentries *
1529 		sizeof(struct exception_table_entry);
1530 
1531 	/* Now we know the actual image size. */
1532 	prog_size = sizeof(u32) * ctx.idx;
1533 	/* also allocate space for plt target */
1534 	extable_offset = round_up(prog_size + PLT_TARGET_SIZE, extable_align);
1535 	image_size = extable_offset + extable_size;
1536 	header = bpf_jit_binary_alloc(image_size, &image_ptr,
1537 				      sizeof(u32), jit_fill_hole);
1538 	if (header == NULL) {
1539 		prog = orig_prog;
1540 		goto out_off;
1541 	}
1542 
1543 	/* 2. Now, the actual pass. */
1544 
1545 	ctx.image = (__le32 *)image_ptr;
1546 	if (extable_size)
1547 		prog->aux->extable = (void *)image_ptr + extable_offset;
1548 skip_init_ctx:
1549 	ctx.idx = 0;
1550 	ctx.exentry_idx = 0;
1551 
1552 	build_prologue(&ctx, was_classic);
1553 
1554 	if (build_body(&ctx, extra_pass)) {
1555 		bpf_jit_binary_free(header);
1556 		prog = orig_prog;
1557 		goto out_off;
1558 	}
1559 
1560 	build_epilogue(&ctx);
1561 	build_plt(&ctx);
1562 
1563 	/* 3. Extra pass to validate JITed code. */
1564 	if (validate_ctx(&ctx)) {
1565 		bpf_jit_binary_free(header);
1566 		prog = orig_prog;
1567 		goto out_off;
1568 	}
1569 
1570 	/* And we're done. */
1571 	if (bpf_jit_enable > 1)
1572 		bpf_jit_dump(prog->len, prog_size, 2, ctx.image);
1573 
1574 	bpf_flush_icache(header, ctx.image + ctx.idx);
1575 
1576 	if (!prog->is_func || extra_pass) {
1577 		if (extra_pass && ctx.idx != jit_data->ctx.idx) {
1578 			pr_err_once("multi-func JIT bug %d != %d\n",
1579 				    ctx.idx, jit_data->ctx.idx);
1580 			bpf_jit_binary_free(header);
1581 			prog->bpf_func = NULL;
1582 			prog->jited = 0;
1583 			prog->jited_len = 0;
1584 			goto out_off;
1585 		}
1586 		bpf_jit_binary_lock_ro(header);
1587 	} else {
1588 		jit_data->ctx = ctx;
1589 		jit_data->image = image_ptr;
1590 		jit_data->header = header;
1591 	}
1592 	prog->bpf_func = (void *)ctx.image;
1593 	prog->jited = 1;
1594 	prog->jited_len = prog_size;
1595 
1596 	if (!prog->is_func || extra_pass) {
1597 		int i;
1598 
1599 		/* offset[prog->len] is the size of program */
1600 		for (i = 0; i <= prog->len; i++)
1601 			ctx.offset[i] *= AARCH64_INSN_SIZE;
1602 		bpf_prog_fill_jited_linfo(prog, ctx.offset + 1);
1603 out_off:
1604 		kvfree(ctx.offset);
1605 		kfree(jit_data);
1606 		prog->aux->jit_data = NULL;
1607 	}
1608 out:
1609 	if (tmp_blinded)
1610 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
1611 					   tmp : orig_prog);
1612 	return prog;
1613 }
1614 
1615 bool bpf_jit_supports_kfunc_call(void)
1616 {
1617 	return true;
1618 }
1619 
1620 u64 bpf_jit_alloc_exec_limit(void)
1621 {
1622 	return VMALLOC_END - VMALLOC_START;
1623 }
1624 
1625 void *bpf_jit_alloc_exec(unsigned long size)
1626 {
1627 	/* Memory is intended to be executable, reset the pointer tag. */
1628 	return kasan_reset_tag(vmalloc(size));
1629 }
1630 
1631 void bpf_jit_free_exec(void *addr)
1632 {
1633 	return vfree(addr);
1634 }
1635 
1636 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
1637 bool bpf_jit_supports_subprog_tailcalls(void)
1638 {
1639 	return true;
1640 }
1641 
1642 static void invoke_bpf_prog(struct jit_ctx *ctx, struct bpf_tramp_link *l,
1643 			    int args_off, int retval_off, int run_ctx_off,
1644 			    bool save_ret)
1645 {
1646 	__le32 *branch;
1647 	u64 enter_prog;
1648 	u64 exit_prog;
1649 	struct bpf_prog *p = l->link.prog;
1650 	int cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
1651 
1652 	enter_prog = (u64)bpf_trampoline_enter(p);
1653 	exit_prog = (u64)bpf_trampoline_exit(p);
1654 
1655 	if (l->cookie == 0) {
1656 		/* if cookie is zero, one instruction is enough to store it */
1657 		emit(A64_STR64I(A64_ZR, A64_SP, run_ctx_off + cookie_off), ctx);
1658 	} else {
1659 		emit_a64_mov_i64(A64_R(10), l->cookie, ctx);
1660 		emit(A64_STR64I(A64_R(10), A64_SP, run_ctx_off + cookie_off),
1661 		     ctx);
1662 	}
1663 
1664 	/* save p to callee saved register x19 to avoid loading p with mov_i64
1665 	 * each time.
1666 	 */
1667 	emit_addr_mov_i64(A64_R(19), (const u64)p, ctx);
1668 
1669 	/* arg1: prog */
1670 	emit(A64_MOV(1, A64_R(0), A64_R(19)), ctx);
1671 	/* arg2: &run_ctx */
1672 	emit(A64_ADD_I(1, A64_R(1), A64_SP, run_ctx_off), ctx);
1673 
1674 	emit_call(enter_prog, ctx);
1675 
1676 	/* if (__bpf_prog_enter(prog) == 0)
1677 	 *         goto skip_exec_of_prog;
1678 	 */
1679 	branch = ctx->image + ctx->idx;
1680 	emit(A64_NOP, ctx);
1681 
1682 	/* save return value to callee saved register x20 */
1683 	emit(A64_MOV(1, A64_R(20), A64_R(0)), ctx);
1684 
1685 	emit(A64_ADD_I(1, A64_R(0), A64_SP, args_off), ctx);
1686 	if (!p->jited)
1687 		emit_addr_mov_i64(A64_R(1), (const u64)p->insnsi, ctx);
1688 
1689 	emit_call((const u64)p->bpf_func, ctx);
1690 
1691 	if (save_ret)
1692 		emit(A64_STR64I(A64_R(0), A64_SP, retval_off), ctx);
1693 
1694 	if (ctx->image) {
1695 		int offset = &ctx->image[ctx->idx] - branch;
1696 		*branch = cpu_to_le32(A64_CBZ(1, A64_R(0), offset));
1697 	}
1698 
1699 	/* arg1: prog */
1700 	emit(A64_MOV(1, A64_R(0), A64_R(19)), ctx);
1701 	/* arg2: start time */
1702 	emit(A64_MOV(1, A64_R(1), A64_R(20)), ctx);
1703 	/* arg3: &run_ctx */
1704 	emit(A64_ADD_I(1, A64_R(2), A64_SP, run_ctx_off), ctx);
1705 
1706 	emit_call(exit_prog, ctx);
1707 }
1708 
1709 static void invoke_bpf_mod_ret(struct jit_ctx *ctx, struct bpf_tramp_links *tl,
1710 			       int args_off, int retval_off, int run_ctx_off,
1711 			       __le32 **branches)
1712 {
1713 	int i;
1714 
1715 	/* The first fmod_ret program will receive a garbage return value.
1716 	 * Set this to 0 to avoid confusing the program.
1717 	 */
1718 	emit(A64_STR64I(A64_ZR, A64_SP, retval_off), ctx);
1719 	for (i = 0; i < tl->nr_links; i++) {
1720 		invoke_bpf_prog(ctx, tl->links[i], args_off, retval_off,
1721 				run_ctx_off, true);
1722 		/* if (*(u64 *)(sp + retval_off) !=  0)
1723 		 *	goto do_fexit;
1724 		 */
1725 		emit(A64_LDR64I(A64_R(10), A64_SP, retval_off), ctx);
1726 		/* Save the location of branch, and generate a nop.
1727 		 * This nop will be replaced with a cbnz later.
1728 		 */
1729 		branches[i] = ctx->image + ctx->idx;
1730 		emit(A64_NOP, ctx);
1731 	}
1732 }
1733 
1734 static void save_args(struct jit_ctx *ctx, int args_off, int nargs)
1735 {
1736 	int i;
1737 
1738 	for (i = 0; i < nargs; i++) {
1739 		emit(A64_STR64I(i, A64_SP, args_off), ctx);
1740 		args_off += 8;
1741 	}
1742 }
1743 
1744 static void restore_args(struct jit_ctx *ctx, int args_off, int nargs)
1745 {
1746 	int i;
1747 
1748 	for (i = 0; i < nargs; i++) {
1749 		emit(A64_LDR64I(i, A64_SP, args_off), ctx);
1750 		args_off += 8;
1751 	}
1752 }
1753 
1754 /* Based on the x86's implementation of arch_prepare_bpf_trampoline().
1755  *
1756  * bpf prog and function entry before bpf trampoline hooked:
1757  *   mov x9, lr
1758  *   nop
1759  *
1760  * bpf prog and function entry after bpf trampoline hooked:
1761  *   mov x9, lr
1762  *   bl  <bpf_trampoline or plt>
1763  *
1764  */
1765 static int prepare_trampoline(struct jit_ctx *ctx, struct bpf_tramp_image *im,
1766 			      struct bpf_tramp_links *tlinks, void *orig_call,
1767 			      int nargs, u32 flags)
1768 {
1769 	int i;
1770 	int stack_size;
1771 	int retaddr_off;
1772 	int regs_off;
1773 	int retval_off;
1774 	int args_off;
1775 	int nargs_off;
1776 	int ip_off;
1777 	int run_ctx_off;
1778 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
1779 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
1780 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
1781 	bool save_ret;
1782 	__le32 **branches = NULL;
1783 
1784 	/* trampoline stack layout:
1785 	 *                  [ parent ip         ]
1786 	 *                  [ FP                ]
1787 	 * SP + retaddr_off [ self ip           ]
1788 	 *                  [ FP                ]
1789 	 *
1790 	 *                  [ padding           ] align SP to multiples of 16
1791 	 *
1792 	 *                  [ x20               ] callee saved reg x20
1793 	 * SP + regs_off    [ x19               ] callee saved reg x19
1794 	 *
1795 	 * SP + retval_off  [ return value      ] BPF_TRAMP_F_CALL_ORIG or
1796 	 *                                        BPF_TRAMP_F_RET_FENTRY_RET
1797 	 *
1798 	 *                  [ argN              ]
1799 	 *                  [ ...               ]
1800 	 * SP + args_off    [ arg1              ]
1801 	 *
1802 	 * SP + nargs_off   [ args count        ]
1803 	 *
1804 	 * SP + ip_off      [ traced function   ] BPF_TRAMP_F_IP_ARG flag
1805 	 *
1806 	 * SP + run_ctx_off [ bpf_tramp_run_ctx ]
1807 	 */
1808 
1809 	stack_size = 0;
1810 	run_ctx_off = stack_size;
1811 	/* room for bpf_tramp_run_ctx */
1812 	stack_size += round_up(sizeof(struct bpf_tramp_run_ctx), 8);
1813 
1814 	ip_off = stack_size;
1815 	/* room for IP address argument */
1816 	if (flags & BPF_TRAMP_F_IP_ARG)
1817 		stack_size += 8;
1818 
1819 	nargs_off = stack_size;
1820 	/* room for args count */
1821 	stack_size += 8;
1822 
1823 	args_off = stack_size;
1824 	/* room for args */
1825 	stack_size += nargs * 8;
1826 
1827 	/* room for return value */
1828 	retval_off = stack_size;
1829 	save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
1830 	if (save_ret)
1831 		stack_size += 8;
1832 
1833 	/* room for callee saved registers, currently x19 and x20 are used */
1834 	regs_off = stack_size;
1835 	stack_size += 16;
1836 
1837 	/* round up to multiples of 16 to avoid SPAlignmentFault */
1838 	stack_size = round_up(stack_size, 16);
1839 
1840 	/* return address locates above FP */
1841 	retaddr_off = stack_size + 8;
1842 
1843 	/* bpf trampoline may be invoked by 3 instruction types:
1844 	 * 1. bl, attached to bpf prog or kernel function via short jump
1845 	 * 2. br, attached to bpf prog or kernel function via long jump
1846 	 * 3. blr, working as a function pointer, used by struct_ops.
1847 	 * So BTI_JC should used here to support both br and blr.
1848 	 */
1849 	emit_bti(A64_BTI_JC, ctx);
1850 
1851 	/* frame for parent function */
1852 	emit(A64_PUSH(A64_FP, A64_R(9), A64_SP), ctx);
1853 	emit(A64_MOV(1, A64_FP, A64_SP), ctx);
1854 
1855 	/* frame for patched function */
1856 	emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx);
1857 	emit(A64_MOV(1, A64_FP, A64_SP), ctx);
1858 
1859 	/* allocate stack space */
1860 	emit(A64_SUB_I(1, A64_SP, A64_SP, stack_size), ctx);
1861 
1862 	if (flags & BPF_TRAMP_F_IP_ARG) {
1863 		/* save ip address of the traced function */
1864 		emit_addr_mov_i64(A64_R(10), (const u64)orig_call, ctx);
1865 		emit(A64_STR64I(A64_R(10), A64_SP, ip_off), ctx);
1866 	}
1867 
1868 	/* save args count*/
1869 	emit(A64_MOVZ(1, A64_R(10), nargs, 0), ctx);
1870 	emit(A64_STR64I(A64_R(10), A64_SP, nargs_off), ctx);
1871 
1872 	/* save args */
1873 	save_args(ctx, args_off, nargs);
1874 
1875 	/* save callee saved registers */
1876 	emit(A64_STR64I(A64_R(19), A64_SP, regs_off), ctx);
1877 	emit(A64_STR64I(A64_R(20), A64_SP, regs_off + 8), ctx);
1878 
1879 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
1880 		emit_addr_mov_i64(A64_R(0), (const u64)im, ctx);
1881 		emit_call((const u64)__bpf_tramp_enter, ctx);
1882 	}
1883 
1884 	for (i = 0; i < fentry->nr_links; i++)
1885 		invoke_bpf_prog(ctx, fentry->links[i], args_off,
1886 				retval_off, run_ctx_off,
1887 				flags & BPF_TRAMP_F_RET_FENTRY_RET);
1888 
1889 	if (fmod_ret->nr_links) {
1890 		branches = kcalloc(fmod_ret->nr_links, sizeof(__le32 *),
1891 				   GFP_KERNEL);
1892 		if (!branches)
1893 			return -ENOMEM;
1894 
1895 		invoke_bpf_mod_ret(ctx, fmod_ret, args_off, retval_off,
1896 				   run_ctx_off, branches);
1897 	}
1898 
1899 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
1900 		restore_args(ctx, args_off, nargs);
1901 		/* call original func */
1902 		emit(A64_LDR64I(A64_R(10), A64_SP, retaddr_off), ctx);
1903 		emit(A64_BLR(A64_R(10)), ctx);
1904 		/* store return value */
1905 		emit(A64_STR64I(A64_R(0), A64_SP, retval_off), ctx);
1906 		/* reserve a nop for bpf_tramp_image_put */
1907 		im->ip_after_call = ctx->image + ctx->idx;
1908 		emit(A64_NOP, ctx);
1909 	}
1910 
1911 	/* update the branches saved in invoke_bpf_mod_ret with cbnz */
1912 	for (i = 0; i < fmod_ret->nr_links && ctx->image != NULL; i++) {
1913 		int offset = &ctx->image[ctx->idx] - branches[i];
1914 		*branches[i] = cpu_to_le32(A64_CBNZ(1, A64_R(10), offset));
1915 	}
1916 
1917 	for (i = 0; i < fexit->nr_links; i++)
1918 		invoke_bpf_prog(ctx, fexit->links[i], args_off, retval_off,
1919 				run_ctx_off, false);
1920 
1921 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
1922 		im->ip_epilogue = ctx->image + ctx->idx;
1923 		emit_addr_mov_i64(A64_R(0), (const u64)im, ctx);
1924 		emit_call((const u64)__bpf_tramp_exit, ctx);
1925 	}
1926 
1927 	if (flags & BPF_TRAMP_F_RESTORE_REGS)
1928 		restore_args(ctx, args_off, nargs);
1929 
1930 	/* restore callee saved register x19 and x20 */
1931 	emit(A64_LDR64I(A64_R(19), A64_SP, regs_off), ctx);
1932 	emit(A64_LDR64I(A64_R(20), A64_SP, regs_off + 8), ctx);
1933 
1934 	if (save_ret)
1935 		emit(A64_LDR64I(A64_R(0), A64_SP, retval_off), ctx);
1936 
1937 	/* reset SP  */
1938 	emit(A64_MOV(1, A64_SP, A64_FP), ctx);
1939 
1940 	/* pop frames  */
1941 	emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx);
1942 	emit(A64_POP(A64_FP, A64_R(9), A64_SP), ctx);
1943 
1944 	if (flags & BPF_TRAMP_F_SKIP_FRAME) {
1945 		/* skip patched function, return to parent */
1946 		emit(A64_MOV(1, A64_LR, A64_R(9)), ctx);
1947 		emit(A64_RET(A64_R(9)), ctx);
1948 	} else {
1949 		/* return to patched function */
1950 		emit(A64_MOV(1, A64_R(10), A64_LR), ctx);
1951 		emit(A64_MOV(1, A64_LR, A64_R(9)), ctx);
1952 		emit(A64_RET(A64_R(10)), ctx);
1953 	}
1954 
1955 	if (ctx->image)
1956 		bpf_flush_icache(ctx->image, ctx->image + ctx->idx);
1957 
1958 	kfree(branches);
1959 
1960 	return ctx->idx;
1961 }
1962 
1963 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image,
1964 				void *image_end, const struct btf_func_model *m,
1965 				u32 flags, struct bpf_tramp_links *tlinks,
1966 				void *orig_call)
1967 {
1968 	int i, ret;
1969 	int nargs = m->nr_args;
1970 	int max_insns = ((long)image_end - (long)image) / AARCH64_INSN_SIZE;
1971 	struct jit_ctx ctx = {
1972 		.image = NULL,
1973 		.idx = 0,
1974 	};
1975 
1976 	/* the first 8 arguments are passed by registers */
1977 	if (nargs > 8)
1978 		return -ENOTSUPP;
1979 
1980 	/* don't support struct argument */
1981 	for (i = 0; i < MAX_BPF_FUNC_ARGS; i++) {
1982 		if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
1983 			return -ENOTSUPP;
1984 	}
1985 
1986 	ret = prepare_trampoline(&ctx, im, tlinks, orig_call, nargs, flags);
1987 	if (ret < 0)
1988 		return ret;
1989 
1990 	if (ret > max_insns)
1991 		return -EFBIG;
1992 
1993 	ctx.image = image;
1994 	ctx.idx = 0;
1995 
1996 	jit_fill_hole(image, (unsigned int)(image_end - image));
1997 	ret = prepare_trampoline(&ctx, im, tlinks, orig_call, nargs, flags);
1998 
1999 	if (ret > 0 && validate_code(&ctx) < 0)
2000 		ret = -EINVAL;
2001 
2002 	if (ret > 0)
2003 		ret *= AARCH64_INSN_SIZE;
2004 
2005 	return ret;
2006 }
2007 
2008 static bool is_long_jump(void *ip, void *target)
2009 {
2010 	long offset;
2011 
2012 	/* NULL target means this is a NOP */
2013 	if (!target)
2014 		return false;
2015 
2016 	offset = (long)target - (long)ip;
2017 	return offset < -SZ_128M || offset >= SZ_128M;
2018 }
2019 
2020 static int gen_branch_or_nop(enum aarch64_insn_branch_type type, void *ip,
2021 			     void *addr, void *plt, u32 *insn)
2022 {
2023 	void *target;
2024 
2025 	if (!addr) {
2026 		*insn = aarch64_insn_gen_nop();
2027 		return 0;
2028 	}
2029 
2030 	if (is_long_jump(ip, addr))
2031 		target = plt;
2032 	else
2033 		target = addr;
2034 
2035 	*insn = aarch64_insn_gen_branch_imm((unsigned long)ip,
2036 					    (unsigned long)target,
2037 					    type);
2038 
2039 	return *insn != AARCH64_BREAK_FAULT ? 0 : -EFAULT;
2040 }
2041 
2042 /* Replace the branch instruction from @ip to @old_addr in a bpf prog or a bpf
2043  * trampoline with the branch instruction from @ip to @new_addr. If @old_addr
2044  * or @new_addr is NULL, the old or new instruction is NOP.
2045  *
2046  * When @ip is the bpf prog entry, a bpf trampoline is being attached or
2047  * detached. Since bpf trampoline and bpf prog are allocated separately with
2048  * vmalloc, the address distance may exceed 128MB, the maximum branch range.
2049  * So long jump should be handled.
2050  *
2051  * When a bpf prog is constructed, a plt pointing to empty trampoline
2052  * dummy_tramp is placed at the end:
2053  *
2054  *      bpf_prog:
2055  *              mov x9, lr
2056  *              nop // patchsite
2057  *              ...
2058  *              ret
2059  *
2060  *      plt:
2061  *              ldr x10, target
2062  *              br x10
2063  *      target:
2064  *              .quad dummy_tramp // plt target
2065  *
2066  * This is also the state when no trampoline is attached.
2067  *
2068  * When a short-jump bpf trampoline is attached, the patchsite is patched
2069  * to a bl instruction to the trampoline directly:
2070  *
2071  *      bpf_prog:
2072  *              mov x9, lr
2073  *              bl <short-jump bpf trampoline address> // patchsite
2074  *              ...
2075  *              ret
2076  *
2077  *      plt:
2078  *              ldr x10, target
2079  *              br x10
2080  *      target:
2081  *              .quad dummy_tramp // plt target
2082  *
2083  * When a long-jump bpf trampoline is attached, the plt target is filled with
2084  * the trampoline address and the patchsite is patched to a bl instruction to
2085  * the plt:
2086  *
2087  *      bpf_prog:
2088  *              mov x9, lr
2089  *              bl plt // patchsite
2090  *              ...
2091  *              ret
2092  *
2093  *      plt:
2094  *              ldr x10, target
2095  *              br x10
2096  *      target:
2097  *              .quad <long-jump bpf trampoline address> // plt target
2098  *
2099  * The dummy_tramp is used to prevent another CPU from jumping to unknown
2100  * locations during the patching process, making the patching process easier.
2101  */
2102 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type poke_type,
2103 		       void *old_addr, void *new_addr)
2104 {
2105 	int ret;
2106 	u32 old_insn;
2107 	u32 new_insn;
2108 	u32 replaced;
2109 	struct bpf_plt *plt = NULL;
2110 	unsigned long size = 0UL;
2111 	unsigned long offset = ~0UL;
2112 	enum aarch64_insn_branch_type branch_type;
2113 	char namebuf[KSYM_NAME_LEN];
2114 	void *image = NULL;
2115 	u64 plt_target = 0ULL;
2116 	bool poking_bpf_entry;
2117 
2118 	if (!__bpf_address_lookup((unsigned long)ip, &size, &offset, namebuf))
2119 		/* Only poking bpf text is supported. Since kernel function
2120 		 * entry is set up by ftrace, we reply on ftrace to poke kernel
2121 		 * functions.
2122 		 */
2123 		return -ENOTSUPP;
2124 
2125 	image = ip - offset;
2126 	/* zero offset means we're poking bpf prog entry */
2127 	poking_bpf_entry = (offset == 0UL);
2128 
2129 	/* bpf prog entry, find plt and the real patchsite */
2130 	if (poking_bpf_entry) {
2131 		/* plt locates at the end of bpf prog */
2132 		plt = image + size - PLT_TARGET_OFFSET;
2133 
2134 		/* skip to the nop instruction in bpf prog entry:
2135 		 * bti c // if BTI enabled
2136 		 * mov x9, x30
2137 		 * nop
2138 		 */
2139 		ip = image + POKE_OFFSET * AARCH64_INSN_SIZE;
2140 	}
2141 
2142 	/* long jump is only possible at bpf prog entry */
2143 	if (WARN_ON((is_long_jump(ip, new_addr) || is_long_jump(ip, old_addr)) &&
2144 		    !poking_bpf_entry))
2145 		return -EINVAL;
2146 
2147 	if (poke_type == BPF_MOD_CALL)
2148 		branch_type = AARCH64_INSN_BRANCH_LINK;
2149 	else
2150 		branch_type = AARCH64_INSN_BRANCH_NOLINK;
2151 
2152 	if (gen_branch_or_nop(branch_type, ip, old_addr, plt, &old_insn) < 0)
2153 		return -EFAULT;
2154 
2155 	if (gen_branch_or_nop(branch_type, ip, new_addr, plt, &new_insn) < 0)
2156 		return -EFAULT;
2157 
2158 	if (is_long_jump(ip, new_addr))
2159 		plt_target = (u64)new_addr;
2160 	else if (is_long_jump(ip, old_addr))
2161 		/* if the old target is a long jump and the new target is not,
2162 		 * restore the plt target to dummy_tramp, so there is always a
2163 		 * legal and harmless address stored in plt target, and we'll
2164 		 * never jump from plt to an unknown place.
2165 		 */
2166 		plt_target = (u64)&dummy_tramp;
2167 
2168 	if (plt_target) {
2169 		/* non-zero plt_target indicates we're patching a bpf prog,
2170 		 * which is read only.
2171 		 */
2172 		if (set_memory_rw(PAGE_MASK & ((uintptr_t)&plt->target), 1))
2173 			return -EFAULT;
2174 		WRITE_ONCE(plt->target, plt_target);
2175 		set_memory_ro(PAGE_MASK & ((uintptr_t)&plt->target), 1);
2176 		/* since plt target points to either the new trampoline
2177 		 * or dummy_tramp, even if another CPU reads the old plt
2178 		 * target value before fetching the bl instruction to plt,
2179 		 * it will be brought back by dummy_tramp, so no barrier is
2180 		 * required here.
2181 		 */
2182 	}
2183 
2184 	/* if the old target and the new target are both long jumps, no
2185 	 * patching is required
2186 	 */
2187 	if (old_insn == new_insn)
2188 		return 0;
2189 
2190 	mutex_lock(&text_mutex);
2191 	if (aarch64_insn_read(ip, &replaced)) {
2192 		ret = -EFAULT;
2193 		goto out;
2194 	}
2195 
2196 	if (replaced != old_insn) {
2197 		ret = -EFAULT;
2198 		goto out;
2199 	}
2200 
2201 	/* We call aarch64_insn_patch_text_nosync() to replace instruction
2202 	 * atomically, so no other CPUs will fetch a half-new and half-old
2203 	 * instruction. But there is chance that another CPU executes the
2204 	 * old instruction after the patching operation finishes (e.g.,
2205 	 * pipeline not flushed, or icache not synchronized yet).
2206 	 *
2207 	 * 1. when a new trampoline is attached, it is not a problem for
2208 	 *    different CPUs to jump to different trampolines temporarily.
2209 	 *
2210 	 * 2. when an old trampoline is freed, we should wait for all other
2211 	 *    CPUs to exit the trampoline and make sure the trampoline is no
2212 	 *    longer reachable, since bpf_tramp_image_put() function already
2213 	 *    uses percpu_ref and task-based rcu to do the sync, no need to call
2214 	 *    the sync version here, see bpf_tramp_image_put() for details.
2215 	 */
2216 	ret = aarch64_insn_patch_text_nosync(ip, new_insn);
2217 out:
2218 	mutex_unlock(&text_mutex);
2219 
2220 	return ret;
2221 }
2222