xref: /linux/arch/loongarch/kernel/smp.c (revision 021bc4b9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2020-2022 Loongson Technology Corporation Limited
4  *
5  * Derived from MIPS:
6  * Copyright (C) 2000, 2001 Kanoj Sarcar
7  * Copyright (C) 2000, 2001 Ralf Baechle
8  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
9  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
10  */
11 #include <linux/acpi.h>
12 #include <linux/cpu.h>
13 #include <linux/cpumask.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/profile.h>
17 #include <linux/seq_file.h>
18 #include <linux/smp.h>
19 #include <linux/threads.h>
20 #include <linux/export.h>
21 #include <linux/syscore_ops.h>
22 #include <linux/time.h>
23 #include <linux/tracepoint.h>
24 #include <linux/sched/hotplug.h>
25 #include <linux/sched/task_stack.h>
26 
27 #include <asm/cpu.h>
28 #include <asm/idle.h>
29 #include <asm/loongson.h>
30 #include <asm/mmu_context.h>
31 #include <asm/numa.h>
32 #include <asm/processor.h>
33 #include <asm/setup.h>
34 #include <asm/time.h>
35 
36 int __cpu_number_map[NR_CPUS];   /* Map physical to logical */
37 EXPORT_SYMBOL(__cpu_number_map);
38 
39 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
40 EXPORT_SYMBOL(__cpu_logical_map);
41 
42 /* Representing the threads (siblings) of each logical CPU */
43 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
44 EXPORT_SYMBOL(cpu_sibling_map);
45 
46 /* Representing the core map of multi-core chips of each logical CPU */
47 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
48 EXPORT_SYMBOL(cpu_core_map);
49 
50 static DECLARE_COMPLETION(cpu_starting);
51 static DECLARE_COMPLETION(cpu_running);
52 
53 /*
54  * A logcal cpu mask containing only one VPE per core to
55  * reduce the number of IPIs on large MT systems.
56  */
57 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
58 EXPORT_SYMBOL(cpu_foreign_map);
59 
60 /* representing cpus for which sibling maps can be computed */
61 static cpumask_t cpu_sibling_setup_map;
62 
63 /* representing cpus for which core maps can be computed */
64 static cpumask_t cpu_core_setup_map;
65 
66 struct secondary_data cpuboot_data;
67 static DEFINE_PER_CPU(int, cpu_state);
68 
69 enum ipi_msg_type {
70 	IPI_RESCHEDULE,
71 	IPI_CALL_FUNCTION,
72 };
73 
74 static const char *ipi_types[NR_IPI] __tracepoint_string = {
75 	[IPI_RESCHEDULE] = "Rescheduling interrupts",
76 	[IPI_CALL_FUNCTION] = "Function call interrupts",
77 };
78 
79 void show_ipi_list(struct seq_file *p, int prec)
80 {
81 	unsigned int cpu, i;
82 
83 	for (i = 0; i < NR_IPI; i++) {
84 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : "");
85 		for_each_online_cpu(cpu)
86 			seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).ipi_irqs[i]);
87 		seq_printf(p, " LoongArch  %d  %s\n", i + 1, ipi_types[i]);
88 	}
89 }
90 
91 /* Send mailbox buffer via Mail_Send */
92 static void csr_mail_send(uint64_t data, int cpu, int mailbox)
93 {
94 	uint64_t val;
95 
96 	/* Send high 32 bits */
97 	val = IOCSR_MBUF_SEND_BLOCKING;
98 	val |= (IOCSR_MBUF_SEND_BOX_HI(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
99 	val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
100 	val |= (data & IOCSR_MBUF_SEND_H32_MASK);
101 	iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
102 
103 	/* Send low 32 bits */
104 	val = IOCSR_MBUF_SEND_BLOCKING;
105 	val |= (IOCSR_MBUF_SEND_BOX_LO(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
106 	val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
107 	val |= (data << IOCSR_MBUF_SEND_BUF_SHIFT);
108 	iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
109 };
110 
111 static u32 ipi_read_clear(int cpu)
112 {
113 	u32 action;
114 
115 	/* Load the ipi register to figure out what we're supposed to do */
116 	action = iocsr_read32(LOONGARCH_IOCSR_IPI_STATUS);
117 	/* Clear the ipi register to clear the interrupt */
118 	iocsr_write32(action, LOONGARCH_IOCSR_IPI_CLEAR);
119 	wbflush();
120 
121 	return action;
122 }
123 
124 static void ipi_write_action(int cpu, u32 action)
125 {
126 	unsigned int irq = 0;
127 
128 	while ((irq = ffs(action))) {
129 		uint32_t val = IOCSR_IPI_SEND_BLOCKING;
130 
131 		val |= (irq - 1);
132 		val |= (cpu << IOCSR_IPI_SEND_CPU_SHIFT);
133 		iocsr_write32(val, LOONGARCH_IOCSR_IPI_SEND);
134 		action &= ~BIT(irq - 1);
135 	}
136 }
137 
138 void loongson_send_ipi_single(int cpu, unsigned int action)
139 {
140 	ipi_write_action(cpu_logical_map(cpu), (u32)action);
141 }
142 
143 void loongson_send_ipi_mask(const struct cpumask *mask, unsigned int action)
144 {
145 	unsigned int i;
146 
147 	for_each_cpu(i, mask)
148 		ipi_write_action(cpu_logical_map(i), (u32)action);
149 }
150 
151 /*
152  * This function sends a 'reschedule' IPI to another CPU.
153  * it goes straight through and wastes no time serializing
154  * anything. Worst case is that we lose a reschedule ...
155  */
156 void arch_smp_send_reschedule(int cpu)
157 {
158 	loongson_send_ipi_single(cpu, SMP_RESCHEDULE);
159 }
160 EXPORT_SYMBOL_GPL(arch_smp_send_reschedule);
161 
162 irqreturn_t loongson_ipi_interrupt(int irq, void *dev)
163 {
164 	unsigned int action;
165 	unsigned int cpu = smp_processor_id();
166 
167 	action = ipi_read_clear(cpu_logical_map(cpu));
168 
169 	if (action & SMP_RESCHEDULE) {
170 		scheduler_ipi();
171 		per_cpu(irq_stat, cpu).ipi_irqs[IPI_RESCHEDULE]++;
172 	}
173 
174 	if (action & SMP_CALL_FUNCTION) {
175 		generic_smp_call_function_interrupt();
176 		per_cpu(irq_stat, cpu).ipi_irqs[IPI_CALL_FUNCTION]++;
177 	}
178 
179 	return IRQ_HANDLED;
180 }
181 
182 static void __init fdt_smp_setup(void)
183 {
184 #ifdef CONFIG_OF
185 	unsigned int cpu, cpuid;
186 	struct device_node *node = NULL;
187 
188 	for_each_of_cpu_node(node) {
189 		if (!of_device_is_available(node))
190 			continue;
191 
192 		cpuid = of_get_cpu_hwid(node, 0);
193 		if (cpuid >= nr_cpu_ids)
194 			continue;
195 
196 		if (cpuid == loongson_sysconf.boot_cpu_id) {
197 			cpu = 0;
198 			numa_add_cpu(cpu);
199 		} else {
200 			cpu = cpumask_next_zero(-1, cpu_present_mask);
201 		}
202 
203 		num_processors++;
204 		set_cpu_possible(cpu, true);
205 		set_cpu_present(cpu, true);
206 		__cpu_number_map[cpuid] = cpu;
207 		__cpu_logical_map[cpu] = cpuid;
208 	}
209 
210 	loongson_sysconf.nr_cpus = num_processors;
211 	set_bit(0, loongson_sysconf.cores_io_master);
212 #endif
213 }
214 
215 void __init loongson_smp_setup(void)
216 {
217 	fdt_smp_setup();
218 
219 	if (loongson_sysconf.cores_per_package == 0)
220 		loongson_sysconf.cores_per_package = num_processors;
221 
222 	cpu_data[0].core = cpu_logical_map(0) % loongson_sysconf.cores_per_package;
223 	cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package;
224 
225 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
226 	pr_info("Detected %i available CPU(s)\n", loongson_sysconf.nr_cpus);
227 }
228 
229 void __init loongson_prepare_cpus(unsigned int max_cpus)
230 {
231 	int i = 0;
232 
233 	parse_acpi_topology();
234 
235 	for (i = 0; i < loongson_sysconf.nr_cpus; i++) {
236 		set_cpu_present(i, true);
237 		csr_mail_send(0, __cpu_logical_map[i], 0);
238 		cpu_data[i].global_id = __cpu_logical_map[i];
239 	}
240 
241 	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
242 }
243 
244 /*
245  * Setup the PC, SP, and TP of a secondary processor and start it running!
246  */
247 void loongson_boot_secondary(int cpu, struct task_struct *idle)
248 {
249 	unsigned long entry;
250 
251 	pr_info("Booting CPU#%d...\n", cpu);
252 
253 	entry = __pa_symbol((unsigned long)&smpboot_entry);
254 	cpuboot_data.stack = (unsigned long)__KSTK_TOS(idle);
255 	cpuboot_data.thread_info = (unsigned long)task_thread_info(idle);
256 
257 	csr_mail_send(entry, cpu_logical_map(cpu), 0);
258 
259 	loongson_send_ipi_single(cpu, SMP_BOOT_CPU);
260 }
261 
262 /*
263  * SMP init and finish on secondary CPUs
264  */
265 void loongson_init_secondary(void)
266 {
267 	unsigned int cpu = smp_processor_id();
268 	unsigned int imask = ECFGF_IP0 | ECFGF_IP1 | ECFGF_IP2 |
269 			     ECFGF_IPI | ECFGF_PMC | ECFGF_TIMER;
270 
271 	change_csr_ecfg(ECFG0_IM, imask);
272 
273 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
274 
275 #ifdef CONFIG_NUMA
276 	numa_add_cpu(cpu);
277 #endif
278 	per_cpu(cpu_state, cpu) = CPU_ONLINE;
279 	cpu_data[cpu].package =
280 		     cpu_logical_map(cpu) / loongson_sysconf.cores_per_package;
281 	cpu_data[cpu].core = pptt_enabled ? cpu_data[cpu].core :
282 		     cpu_logical_map(cpu) % loongson_sysconf.cores_per_package;
283 }
284 
285 void loongson_smp_finish(void)
286 {
287 	local_irq_enable();
288 	iocsr_write64(0, LOONGARCH_IOCSR_MBUF0);
289 	pr_info("CPU#%d finished\n", smp_processor_id());
290 }
291 
292 #ifdef CONFIG_HOTPLUG_CPU
293 
294 int loongson_cpu_disable(void)
295 {
296 	unsigned long flags;
297 	unsigned int cpu = smp_processor_id();
298 
299 	if (io_master(cpu))
300 		return -EBUSY;
301 
302 #ifdef CONFIG_NUMA
303 	numa_remove_cpu(cpu);
304 #endif
305 	set_cpu_online(cpu, false);
306 	calculate_cpu_foreign_map();
307 	local_irq_save(flags);
308 	irq_migrate_all_off_this_cpu();
309 	clear_csr_ecfg(ECFG0_IM);
310 	local_irq_restore(flags);
311 	local_flush_tlb_all();
312 
313 	return 0;
314 }
315 
316 void loongson_cpu_die(unsigned int cpu)
317 {
318 	while (per_cpu(cpu_state, cpu) != CPU_DEAD)
319 		cpu_relax();
320 
321 	mb();
322 }
323 
324 void __noreturn arch_cpu_idle_dead(void)
325 {
326 	register uint64_t addr;
327 	register void (*init_fn)(void);
328 
329 	idle_task_exit();
330 	local_irq_enable();
331 	set_csr_ecfg(ECFGF_IPI);
332 	__this_cpu_write(cpu_state, CPU_DEAD);
333 
334 	__smp_mb();
335 	do {
336 		__asm__ __volatile__("idle 0\n\t");
337 		addr = iocsr_read64(LOONGARCH_IOCSR_MBUF0);
338 	} while (addr == 0);
339 
340 	init_fn = (void *)TO_CACHE(addr);
341 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_CLEAR);
342 
343 	init_fn();
344 	BUG();
345 }
346 
347 #endif
348 
349 /*
350  * Power management
351  */
352 #ifdef CONFIG_PM
353 
354 static int loongson_ipi_suspend(void)
355 {
356 	return 0;
357 }
358 
359 static void loongson_ipi_resume(void)
360 {
361 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
362 }
363 
364 static struct syscore_ops loongson_ipi_syscore_ops = {
365 	.resume         = loongson_ipi_resume,
366 	.suspend        = loongson_ipi_suspend,
367 };
368 
369 /*
370  * Enable boot cpu ipi before enabling nonboot cpus
371  * during syscore_resume.
372  */
373 static int __init ipi_pm_init(void)
374 {
375 	register_syscore_ops(&loongson_ipi_syscore_ops);
376 	return 0;
377 }
378 
379 core_initcall(ipi_pm_init);
380 #endif
381 
382 static inline void set_cpu_sibling_map(int cpu)
383 {
384 	int i;
385 
386 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
387 
388 	for_each_cpu(i, &cpu_sibling_setup_map) {
389 		if (cpus_are_siblings(cpu, i)) {
390 			cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
391 			cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
392 		}
393 	}
394 }
395 
396 static inline void set_cpu_core_map(int cpu)
397 {
398 	int i;
399 
400 	cpumask_set_cpu(cpu, &cpu_core_setup_map);
401 
402 	for_each_cpu(i, &cpu_core_setup_map) {
403 		if (cpu_data[cpu].package == cpu_data[i].package) {
404 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
405 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
406 		}
407 	}
408 }
409 
410 /*
411  * Calculate a new cpu_foreign_map mask whenever a
412  * new cpu appears or disappears.
413  */
414 void calculate_cpu_foreign_map(void)
415 {
416 	int i, k, core_present;
417 	cpumask_t temp_foreign_map;
418 
419 	/* Re-calculate the mask */
420 	cpumask_clear(&temp_foreign_map);
421 	for_each_online_cpu(i) {
422 		core_present = 0;
423 		for_each_cpu(k, &temp_foreign_map)
424 			if (cpus_are_siblings(i, k))
425 				core_present = 1;
426 		if (!core_present)
427 			cpumask_set_cpu(i, &temp_foreign_map);
428 	}
429 
430 	for_each_online_cpu(i)
431 		cpumask_andnot(&cpu_foreign_map[i],
432 			       &temp_foreign_map, &cpu_sibling_map[i]);
433 }
434 
435 /* Preload SMP state for boot cpu */
436 void smp_prepare_boot_cpu(void)
437 {
438 	unsigned int cpu, node, rr_node;
439 
440 	set_cpu_possible(0, true);
441 	set_cpu_online(0, true);
442 	set_my_cpu_offset(per_cpu_offset(0));
443 
444 	rr_node = first_node(node_online_map);
445 	for_each_possible_cpu(cpu) {
446 		node = early_cpu_to_node(cpu);
447 
448 		/*
449 		 * The mapping between present cpus and nodes has been
450 		 * built during MADT and SRAT parsing.
451 		 *
452 		 * If possible cpus = present cpus here, early_cpu_to_node
453 		 * will return valid node.
454 		 *
455 		 * If possible cpus > present cpus here (e.g. some possible
456 		 * cpus will be added by cpu-hotplug later), for possible but
457 		 * not present cpus, early_cpu_to_node will return NUMA_NO_NODE,
458 		 * and we just map them to online nodes in round-robin way.
459 		 * Once hotplugged, new correct mapping will be built for them.
460 		 */
461 		if (node != NUMA_NO_NODE)
462 			set_cpu_numa_node(cpu, node);
463 		else {
464 			set_cpu_numa_node(cpu, rr_node);
465 			rr_node = next_node_in(rr_node, node_online_map);
466 		}
467 	}
468 }
469 
470 /* called from main before smp_init() */
471 void __init smp_prepare_cpus(unsigned int max_cpus)
472 {
473 	init_new_context(current, &init_mm);
474 	current_thread_info()->cpu = 0;
475 	loongson_prepare_cpus(max_cpus);
476 	set_cpu_sibling_map(0);
477 	set_cpu_core_map(0);
478 	calculate_cpu_foreign_map();
479 #ifndef CONFIG_HOTPLUG_CPU
480 	init_cpu_present(cpu_possible_mask);
481 #endif
482 }
483 
484 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
485 {
486 	loongson_boot_secondary(cpu, tidle);
487 
488 	/* Wait for CPU to start and be ready to sync counters */
489 	if (!wait_for_completion_timeout(&cpu_starting,
490 					 msecs_to_jiffies(5000))) {
491 		pr_crit("CPU%u: failed to start\n", cpu);
492 		return -EIO;
493 	}
494 
495 	/* Wait for CPU to finish startup & mark itself online before return */
496 	wait_for_completion(&cpu_running);
497 
498 	return 0;
499 }
500 
501 /*
502  * First C code run on the secondary CPUs after being started up by
503  * the master.
504  */
505 asmlinkage void start_secondary(void)
506 {
507 	unsigned int cpu;
508 
509 	sync_counter();
510 	cpu = raw_smp_processor_id();
511 	set_my_cpu_offset(per_cpu_offset(cpu));
512 
513 	cpu_probe();
514 	constant_clockevent_init();
515 	loongson_init_secondary();
516 
517 	set_cpu_sibling_map(cpu);
518 	set_cpu_core_map(cpu);
519 
520 	notify_cpu_starting(cpu);
521 
522 	/* Notify boot CPU that we're starting */
523 	complete(&cpu_starting);
524 
525 	/* The CPU is running, now mark it online */
526 	set_cpu_online(cpu, true);
527 
528 	calculate_cpu_foreign_map();
529 
530 	/*
531 	 * Notify boot CPU that we're up & online and it can safely return
532 	 * from __cpu_up()
533 	 */
534 	complete(&cpu_running);
535 
536 	/*
537 	 * irq will be enabled in loongson_smp_finish(), enabling it too
538 	 * early is dangerous.
539 	 */
540 	WARN_ON_ONCE(!irqs_disabled());
541 	loongson_smp_finish();
542 
543 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
544 }
545 
546 void __init smp_cpus_done(unsigned int max_cpus)
547 {
548 }
549 
550 static void stop_this_cpu(void *dummy)
551 {
552 	set_cpu_online(smp_processor_id(), false);
553 	calculate_cpu_foreign_map();
554 	local_irq_disable();
555 	while (true);
556 }
557 
558 void smp_send_stop(void)
559 {
560 	smp_call_function(stop_this_cpu, NULL, 0);
561 }
562 
563 #ifdef CONFIG_PROFILING
564 int setup_profiling_timer(unsigned int multiplier)
565 {
566 	return 0;
567 }
568 #endif
569 
570 static void flush_tlb_all_ipi(void *info)
571 {
572 	local_flush_tlb_all();
573 }
574 
575 void flush_tlb_all(void)
576 {
577 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
578 }
579 
580 static void flush_tlb_mm_ipi(void *mm)
581 {
582 	local_flush_tlb_mm((struct mm_struct *)mm);
583 }
584 
585 void flush_tlb_mm(struct mm_struct *mm)
586 {
587 	if (atomic_read(&mm->mm_users) == 0)
588 		return;		/* happens as a result of exit_mmap() */
589 
590 	preempt_disable();
591 
592 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
593 		on_each_cpu_mask(mm_cpumask(mm), flush_tlb_mm_ipi, mm, 1);
594 	} else {
595 		unsigned int cpu;
596 
597 		for_each_online_cpu(cpu) {
598 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
599 				cpu_context(cpu, mm) = 0;
600 		}
601 		local_flush_tlb_mm(mm);
602 	}
603 
604 	preempt_enable();
605 }
606 
607 struct flush_tlb_data {
608 	struct vm_area_struct *vma;
609 	unsigned long addr1;
610 	unsigned long addr2;
611 };
612 
613 static void flush_tlb_range_ipi(void *info)
614 {
615 	struct flush_tlb_data *fd = info;
616 
617 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
618 }
619 
620 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
621 {
622 	struct mm_struct *mm = vma->vm_mm;
623 
624 	preempt_disable();
625 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
626 		struct flush_tlb_data fd = {
627 			.vma = vma,
628 			.addr1 = start,
629 			.addr2 = end,
630 		};
631 
632 		on_each_cpu_mask(mm_cpumask(mm), flush_tlb_range_ipi, &fd, 1);
633 	} else {
634 		unsigned int cpu;
635 
636 		for_each_online_cpu(cpu) {
637 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
638 				cpu_context(cpu, mm) = 0;
639 		}
640 		local_flush_tlb_range(vma, start, end);
641 	}
642 	preempt_enable();
643 }
644 
645 static void flush_tlb_kernel_range_ipi(void *info)
646 {
647 	struct flush_tlb_data *fd = info;
648 
649 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
650 }
651 
652 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
653 {
654 	struct flush_tlb_data fd = {
655 		.addr1 = start,
656 		.addr2 = end,
657 	};
658 
659 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
660 }
661 
662 static void flush_tlb_page_ipi(void *info)
663 {
664 	struct flush_tlb_data *fd = info;
665 
666 	local_flush_tlb_page(fd->vma, fd->addr1);
667 }
668 
669 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
670 {
671 	preempt_disable();
672 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
673 		struct flush_tlb_data fd = {
674 			.vma = vma,
675 			.addr1 = page,
676 		};
677 
678 		on_each_cpu_mask(mm_cpumask(vma->vm_mm), flush_tlb_page_ipi, &fd, 1);
679 	} else {
680 		unsigned int cpu;
681 
682 		for_each_online_cpu(cpu) {
683 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
684 				cpu_context(cpu, vma->vm_mm) = 0;
685 		}
686 		local_flush_tlb_page(vma, page);
687 	}
688 	preempt_enable();
689 }
690 EXPORT_SYMBOL(flush_tlb_page);
691 
692 static void flush_tlb_one_ipi(void *info)
693 {
694 	unsigned long vaddr = (unsigned long) info;
695 
696 	local_flush_tlb_one(vaddr);
697 }
698 
699 void flush_tlb_one(unsigned long vaddr)
700 {
701 	on_each_cpu(flush_tlb_one_ipi, (void *)vaddr, 1);
702 }
703 EXPORT_SYMBOL(flush_tlb_one);
704