xref: /linux/arch/mips/include/asm/bitops.h (revision d642ef71)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (c) 1994 - 1997, 99, 2000, 06, 07  Ralf Baechle (ralf@linux-mips.org)
7  * Copyright (c) 1999, 2000  Silicon Graphics, Inc.
8  */
9 #ifndef _ASM_BITOPS_H
10 #define _ASM_BITOPS_H
11 
12 #ifndef _LINUX_BITOPS_H
13 #error only <linux/bitops.h> can be included directly
14 #endif
15 
16 #include <linux/bits.h>
17 #include <linux/compiler.h>
18 #include <linux/types.h>
19 #include <asm/asm.h>
20 #include <asm/barrier.h>
21 #include <asm/byteorder.h>		/* sigh ... */
22 #include <asm/compiler.h>
23 #include <asm/cpu-features.h>
24 #include <asm/sgidefs.h>
25 
26 #define __bit_op(mem, insn, inputs...) do {			\
27 	unsigned long __temp;					\
28 								\
29 	asm volatile(						\
30 	"	.set		push			\n"	\
31 	"	.set		" MIPS_ISA_LEVEL "	\n"	\
32 	"	" __SYNC(full, loongson3_war) "		\n"	\
33 	"1:	" __stringify(LONG_LL)	"	%0, %1	\n"	\
34 	"	" insn		"			\n"	\
35 	"	" __stringify(LONG_SC)	"	%0, %1	\n"	\
36 	"	" __stringify(SC_BEQZ)	"	%0, 1b	\n"	\
37 	"	.set		pop			\n"	\
38 	: "=&r"(__temp), "+" GCC_OFF_SMALL_ASM()(mem)		\
39 	: inputs						\
40 	: __LLSC_CLOBBER);					\
41 } while (0)
42 
43 #define __test_bit_op(mem, ll_dst, insn, inputs...) ({		\
44 	unsigned long __orig, __temp;				\
45 								\
46 	asm volatile(						\
47 	"	.set		push			\n"	\
48 	"	.set		" MIPS_ISA_LEVEL "	\n"	\
49 	"	" __SYNC(full, loongson3_war) "		\n"	\
50 	"1:	" __stringify(LONG_LL) " "	ll_dst ", %2\n"	\
51 	"	" insn		"			\n"	\
52 	"	" __stringify(LONG_SC)	"	%1, %2	\n"	\
53 	"	" __stringify(SC_BEQZ)	"	%1, 1b	\n"	\
54 	"	.set		pop			\n"	\
55 	: "=&r"(__orig), "=&r"(__temp),				\
56 	  "+" GCC_OFF_SMALL_ASM()(mem)				\
57 	: inputs						\
58 	: __LLSC_CLOBBER);					\
59 								\
60 	__orig;							\
61 })
62 
63 /*
64  * These are the "slower" versions of the functions and are in bitops.c.
65  * These functions call raw_local_irq_{save,restore}().
66  */
67 void __mips_set_bit(unsigned long nr, volatile unsigned long *addr);
68 void __mips_clear_bit(unsigned long nr, volatile unsigned long *addr);
69 void __mips_change_bit(unsigned long nr, volatile unsigned long *addr);
70 int __mips_test_and_set_bit_lock(unsigned long nr,
71 				 volatile unsigned long *addr);
72 int __mips_test_and_clear_bit(unsigned long nr,
73 			      volatile unsigned long *addr);
74 int __mips_test_and_change_bit(unsigned long nr,
75 			       volatile unsigned long *addr);
76 bool __mips_xor_is_negative_byte(unsigned long mask,
77 		volatile unsigned long *addr);
78 
79 /*
80  * set_bit - Atomically set a bit in memory
81  * @nr: the bit to set
82  * @addr: the address to start counting from
83  *
84  * This function is atomic and may not be reordered.  See __set_bit()
85  * if you do not require the atomic guarantees.
86  * Note that @nr may be almost arbitrarily large; this function is not
87  * restricted to acting on a single-word quantity.
88  */
89 static inline void set_bit(unsigned long nr, volatile unsigned long *addr)
90 {
91 	volatile unsigned long *m = &addr[BIT_WORD(nr)];
92 	int bit = nr % BITS_PER_LONG;
93 
94 	if (!kernel_uses_llsc) {
95 		__mips_set_bit(nr, addr);
96 		return;
97 	}
98 
99 	if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(bit) && (bit >= 16)) {
100 		__bit_op(*m, __stringify(LONG_INS) " %0, %3, %2, 1", "i"(bit), "r"(~0));
101 		return;
102 	}
103 
104 	__bit_op(*m, "or\t%0, %2", "ir"(BIT(bit)));
105 }
106 
107 /*
108  * clear_bit - Clears a bit in memory
109  * @nr: Bit to clear
110  * @addr: Address to start counting from
111  *
112  * clear_bit() is atomic and may not be reordered.  However, it does
113  * not contain a memory barrier, so if it is used for locking purposes,
114  * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
115  * in order to ensure changes are visible on other processors.
116  */
117 static inline void clear_bit(unsigned long nr, volatile unsigned long *addr)
118 {
119 	volatile unsigned long *m = &addr[BIT_WORD(nr)];
120 	int bit = nr % BITS_PER_LONG;
121 
122 	if (!kernel_uses_llsc) {
123 		__mips_clear_bit(nr, addr);
124 		return;
125 	}
126 
127 	if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(bit)) {
128 		__bit_op(*m, __stringify(LONG_INS) " %0, $0, %2, 1", "i"(bit));
129 		return;
130 	}
131 
132 	__bit_op(*m, "and\t%0, %2", "ir"(~BIT(bit)));
133 }
134 
135 /*
136  * clear_bit_unlock - Clears a bit in memory
137  * @nr: Bit to clear
138  * @addr: Address to start counting from
139  *
140  * clear_bit() is atomic and implies release semantics before the memory
141  * operation. It can be used for an unlock.
142  */
143 static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
144 {
145 	smp_mb__before_atomic();
146 	clear_bit(nr, addr);
147 }
148 
149 /*
150  * change_bit - Toggle a bit in memory
151  * @nr: Bit to change
152  * @addr: Address to start counting from
153  *
154  * change_bit() is atomic and may not be reordered.
155  * Note that @nr may be almost arbitrarily large; this function is not
156  * restricted to acting on a single-word quantity.
157  */
158 static inline void change_bit(unsigned long nr, volatile unsigned long *addr)
159 {
160 	volatile unsigned long *m = &addr[BIT_WORD(nr)];
161 	int bit = nr % BITS_PER_LONG;
162 
163 	if (!kernel_uses_llsc) {
164 		__mips_change_bit(nr, addr);
165 		return;
166 	}
167 
168 	__bit_op(*m, "xor\t%0, %2", "ir"(BIT(bit)));
169 }
170 
171 /*
172  * test_and_set_bit_lock - Set a bit and return its old value
173  * @nr: Bit to set
174  * @addr: Address to count from
175  *
176  * This operation is atomic and implies acquire ordering semantics
177  * after the memory operation.
178  */
179 static inline int test_and_set_bit_lock(unsigned long nr,
180 	volatile unsigned long *addr)
181 {
182 	volatile unsigned long *m = &addr[BIT_WORD(nr)];
183 	int bit = nr % BITS_PER_LONG;
184 	unsigned long res, orig;
185 
186 	if (!kernel_uses_llsc) {
187 		res = __mips_test_and_set_bit_lock(nr, addr);
188 	} else {
189 		orig = __test_bit_op(*m, "%0",
190 				     "or\t%1, %0, %3",
191 				     "ir"(BIT(bit)));
192 		res = (orig & BIT(bit)) != 0;
193 	}
194 
195 	smp_llsc_mb();
196 
197 	return res;
198 }
199 
200 /*
201  * test_and_set_bit - Set a bit and return its old value
202  * @nr: Bit to set
203  * @addr: Address to count from
204  *
205  * This operation is atomic and cannot be reordered.
206  * It also implies a memory barrier.
207  */
208 static inline int test_and_set_bit(unsigned long nr,
209 	volatile unsigned long *addr)
210 {
211 	smp_mb__before_atomic();
212 	return test_and_set_bit_lock(nr, addr);
213 }
214 
215 /*
216  * test_and_clear_bit - Clear a bit and return its old value
217  * @nr: Bit to clear
218  * @addr: Address to count from
219  *
220  * This operation is atomic and cannot be reordered.
221  * It also implies a memory barrier.
222  */
223 static inline int test_and_clear_bit(unsigned long nr,
224 	volatile unsigned long *addr)
225 {
226 	volatile unsigned long *m = &addr[BIT_WORD(nr)];
227 	int bit = nr % BITS_PER_LONG;
228 	unsigned long res, orig;
229 
230 	smp_mb__before_atomic();
231 
232 	if (!kernel_uses_llsc) {
233 		res = __mips_test_and_clear_bit(nr, addr);
234 	} else if ((MIPS_ISA_REV >= 2) && __builtin_constant_p(nr)) {
235 		res = __test_bit_op(*m, "%1",
236 				    __stringify(LONG_EXT) " %0, %1, %3, 1;"
237 				    __stringify(LONG_INS) " %1, $0, %3, 1",
238 				    "i"(bit));
239 	} else {
240 		orig = __test_bit_op(*m, "%0",
241 				     "or\t%1, %0, %3;"
242 				     "xor\t%1, %1, %3",
243 				     "ir"(BIT(bit)));
244 		res = (orig & BIT(bit)) != 0;
245 	}
246 
247 	smp_llsc_mb();
248 
249 	return res;
250 }
251 
252 /*
253  * test_and_change_bit - Change a bit and return its old value
254  * @nr: Bit to change
255  * @addr: Address to count from
256  *
257  * This operation is atomic and cannot be reordered.
258  * It also implies a memory barrier.
259  */
260 static inline int test_and_change_bit(unsigned long nr,
261 	volatile unsigned long *addr)
262 {
263 	volatile unsigned long *m = &addr[BIT_WORD(nr)];
264 	int bit = nr % BITS_PER_LONG;
265 	unsigned long res, orig;
266 
267 	smp_mb__before_atomic();
268 
269 	if (!kernel_uses_llsc) {
270 		res = __mips_test_and_change_bit(nr, addr);
271 	} else {
272 		orig = __test_bit_op(*m, "%0",
273 				     "xor\t%1, %0, %3",
274 				     "ir"(BIT(bit)));
275 		res = (orig & BIT(bit)) != 0;
276 	}
277 
278 	smp_llsc_mb();
279 
280 	return res;
281 }
282 
283 static inline bool xor_unlock_is_negative_byte(unsigned long mask,
284 		volatile unsigned long *p)
285 {
286 	unsigned long orig;
287 	bool res;
288 
289 	smp_mb__before_atomic();
290 
291 	if (!kernel_uses_llsc) {
292 		res = __mips_xor_is_negative_byte(mask, p);
293 	} else {
294 		orig = __test_bit_op(*p, "%0",
295 				     "xor\t%1, %0, %3",
296 				     "ir"(mask));
297 		res = (orig & BIT(7)) != 0;
298 	}
299 
300 	smp_llsc_mb();
301 
302 	return res;
303 }
304 
305 #undef __bit_op
306 #undef __test_bit_op
307 
308 #include <asm-generic/bitops/non-atomic.h>
309 
310 /*
311  * __clear_bit_unlock - Clears a bit in memory
312  * @nr: Bit to clear
313  * @addr: Address to start counting from
314  *
315  * __clear_bit() is non-atomic and implies release semantics before the memory
316  * operation. It can be used for an unlock if no other CPUs can concurrently
317  * modify other bits in the word.
318  */
319 static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
320 {
321 	smp_mb__before_llsc();
322 	__clear_bit(nr, addr);
323 	nudge_writes();
324 }
325 
326 /*
327  * Return the bit position (0..63) of the most significant 1 bit in a word
328  * Returns -1 if no 1 bit exists
329  */
330 static __always_inline unsigned long __fls(unsigned long word)
331 {
332 	int num;
333 
334 	if (BITS_PER_LONG == 32 && !__builtin_constant_p(word) &&
335 	    __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
336 		__asm__(
337 		"	.set	push					\n"
338 		"	.set	"MIPS_ISA_LEVEL"			\n"
339 		"	clz	%0, %1					\n"
340 		"	.set	pop					\n"
341 		: "=r" (num)
342 		: "r" (word));
343 
344 		return 31 - num;
345 	}
346 
347 	if (BITS_PER_LONG == 64 && !__builtin_constant_p(word) &&
348 	    __builtin_constant_p(cpu_has_mips64) && cpu_has_mips64) {
349 		__asm__(
350 		"	.set	push					\n"
351 		"	.set	"MIPS_ISA_LEVEL"			\n"
352 		"	dclz	%0, %1					\n"
353 		"	.set	pop					\n"
354 		: "=r" (num)
355 		: "r" (word));
356 
357 		return 63 - num;
358 	}
359 
360 	num = BITS_PER_LONG - 1;
361 
362 #if BITS_PER_LONG == 64
363 	if (!(word & (~0ul << 32))) {
364 		num -= 32;
365 		word <<= 32;
366 	}
367 #endif
368 	if (!(word & (~0ul << (BITS_PER_LONG-16)))) {
369 		num -= 16;
370 		word <<= 16;
371 	}
372 	if (!(word & (~0ul << (BITS_PER_LONG-8)))) {
373 		num -= 8;
374 		word <<= 8;
375 	}
376 	if (!(word & (~0ul << (BITS_PER_LONG-4)))) {
377 		num -= 4;
378 		word <<= 4;
379 	}
380 	if (!(word & (~0ul << (BITS_PER_LONG-2)))) {
381 		num -= 2;
382 		word <<= 2;
383 	}
384 	if (!(word & (~0ul << (BITS_PER_LONG-1))))
385 		num -= 1;
386 	return num;
387 }
388 
389 /*
390  * __ffs - find first bit in word.
391  * @word: The word to search
392  *
393  * Returns 0..SZLONG-1
394  * Undefined if no bit exists, so code should check against 0 first.
395  */
396 static __always_inline unsigned long __ffs(unsigned long word)
397 {
398 	return __fls(word & -word);
399 }
400 
401 /*
402  * fls - find last bit set.
403  * @word: The word to search
404  *
405  * This is defined the same way as ffs.
406  * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
407  */
408 static inline int fls(unsigned int x)
409 {
410 	int r;
411 
412 	if (!__builtin_constant_p(x) &&
413 	    __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) {
414 		__asm__(
415 		"	.set	push					\n"
416 		"	.set	"MIPS_ISA_LEVEL"			\n"
417 		"	clz	%0, %1					\n"
418 		"	.set	pop					\n"
419 		: "=r" (x)
420 		: "r" (x));
421 
422 		return 32 - x;
423 	}
424 
425 	r = 32;
426 	if (!x)
427 		return 0;
428 	if (!(x & 0xffff0000u)) {
429 		x <<= 16;
430 		r -= 16;
431 	}
432 	if (!(x & 0xff000000u)) {
433 		x <<= 8;
434 		r -= 8;
435 	}
436 	if (!(x & 0xf0000000u)) {
437 		x <<= 4;
438 		r -= 4;
439 	}
440 	if (!(x & 0xc0000000u)) {
441 		x <<= 2;
442 		r -= 2;
443 	}
444 	if (!(x & 0x80000000u)) {
445 		x <<= 1;
446 		r -= 1;
447 	}
448 	return r;
449 }
450 
451 #include <asm-generic/bitops/fls64.h>
452 
453 /*
454  * ffs - find first bit set.
455  * @word: The word to search
456  *
457  * This is defined the same way as
458  * the libc and compiler builtin ffs routines, therefore
459  * differs in spirit from the below ffz (man ffs).
460  */
461 static inline int ffs(int word)
462 {
463 	if (!word)
464 		return 0;
465 
466 	return fls(word & -word);
467 }
468 
469 #include <asm-generic/bitops/ffz.h>
470 
471 #ifdef __KERNEL__
472 
473 #include <asm-generic/bitops/sched.h>
474 
475 #include <asm/arch_hweight.h>
476 #include <asm-generic/bitops/const_hweight.h>
477 
478 #include <asm-generic/bitops/le.h>
479 #include <asm-generic/bitops/ext2-atomic.h>
480 
481 #endif /* __KERNEL__ */
482 
483 #endif /* _ASM_BITOPS_H */
484