xref: /linux/arch/mips/mm/c-r4k.c (revision 52338415)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
7  * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  */
10 #include <linux/cpu_pm.h>
11 #include <linux/hardirq.h>
12 #include <linux/init.h>
13 #include <linux/highmem.h>
14 #include <linux/kernel.h>
15 #include <linux/linkage.h>
16 #include <linux/preempt.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
19 #include <linux/mm.h>
20 #include <linux/export.h>
21 #include <linux/bitops.h>
22 
23 #include <asm/bcache.h>
24 #include <asm/bootinfo.h>
25 #include <asm/cache.h>
26 #include <asm/cacheops.h>
27 #include <asm/cpu.h>
28 #include <asm/cpu-features.h>
29 #include <asm/cpu-type.h>
30 #include <asm/io.h>
31 #include <asm/page.h>
32 #include <asm/pgtable.h>
33 #include <asm/r4kcache.h>
34 #include <asm/sections.h>
35 #include <asm/mmu_context.h>
36 #include <asm/war.h>
37 #include <asm/cacheflush.h> /* for run_uncached() */
38 #include <asm/traps.h>
39 #include <asm/dma-coherence.h>
40 #include <asm/mips-cps.h>
41 
42 /*
43  * Bits describing what cache ops an SMP callback function may perform.
44  *
45  * R4K_HIT   -	Virtual user or kernel address based cache operations. The
46  *		active_mm must be checked before using user addresses, falling
47  *		back to kmap.
48  * R4K_INDEX -	Index based cache operations.
49  */
50 
51 #define R4K_HIT		BIT(0)
52 #define R4K_INDEX	BIT(1)
53 
54 /**
55  * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
56  * @type:	Type of cache operations (R4K_HIT or R4K_INDEX).
57  *
58  * Decides whether a cache op needs to be performed on every core in the system.
59  * This may change depending on the @type of cache operation, as well as the set
60  * of online CPUs, so preemption should be disabled by the caller to prevent CPU
61  * hotplug from changing the result.
62  *
63  * Returns:	1 if the cache operation @type should be done on every core in
64  *		the system.
65  *		0 if the cache operation @type is globalized and only needs to
66  *		be performed on a simple CPU.
67  */
68 static inline bool r4k_op_needs_ipi(unsigned int type)
69 {
70 	/* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
71 	if (type == R4K_HIT && mips_cm_present())
72 		return false;
73 
74 	/*
75 	 * Hardware doesn't globalize the required cache ops, so SMP calls may
76 	 * be needed, but only if there are foreign CPUs (non-siblings with
77 	 * separate caches).
78 	 */
79 	/* cpu_foreign_map[] undeclared when !CONFIG_SMP */
80 #ifdef CONFIG_SMP
81 	return !cpumask_empty(&cpu_foreign_map[0]);
82 #else
83 	return false;
84 #endif
85 }
86 
87 /*
88  * Special Variant of smp_call_function for use by cache functions:
89  *
90  *  o No return value
91  *  o collapses to normal function call on UP kernels
92  *  o collapses to normal function call on systems with a single shared
93  *    primary cache.
94  *  o doesn't disable interrupts on the local CPU
95  */
96 static inline void r4k_on_each_cpu(unsigned int type,
97 				   void (*func)(void *info), void *info)
98 {
99 	preempt_disable();
100 	if (r4k_op_needs_ipi(type))
101 		smp_call_function_many(&cpu_foreign_map[smp_processor_id()],
102 				       func, info, 1);
103 	func(info);
104 	preempt_enable();
105 }
106 
107 /*
108  * Must die.
109  */
110 static unsigned long icache_size __read_mostly;
111 static unsigned long dcache_size __read_mostly;
112 static unsigned long vcache_size __read_mostly;
113 static unsigned long scache_size __read_mostly;
114 
115 /*
116  * Dummy cache handling routines for machines without boardcaches
117  */
118 static void cache_noop(void) {}
119 
120 static struct bcache_ops no_sc_ops = {
121 	.bc_enable = (void *)cache_noop,
122 	.bc_disable = (void *)cache_noop,
123 	.bc_wback_inv = (void *)cache_noop,
124 	.bc_inv = (void *)cache_noop
125 };
126 
127 struct bcache_ops *bcops = &no_sc_ops;
128 
129 #define cpu_is_r4600_v1_x()	((read_c0_prid() & 0xfffffff0) == 0x00002010)
130 #define cpu_is_r4600_v2_x()	((read_c0_prid() & 0xfffffff0) == 0x00002020)
131 
132 #define R4600_HIT_CACHEOP_WAR_IMPL					\
133 do {									\
134 	if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x())		\
135 		*(volatile unsigned long *)CKSEG1;			\
136 	if (R4600_V1_HIT_CACHEOP_WAR)					\
137 		__asm__ __volatile__("nop;nop;nop;nop");		\
138 } while (0)
139 
140 static void (*r4k_blast_dcache_page)(unsigned long addr);
141 
142 static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
143 {
144 	R4600_HIT_CACHEOP_WAR_IMPL;
145 	blast_dcache32_page(addr);
146 }
147 
148 static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
149 {
150 	blast_dcache64_page(addr);
151 }
152 
153 static inline void r4k_blast_dcache_page_dc128(unsigned long addr)
154 {
155 	blast_dcache128_page(addr);
156 }
157 
158 static void r4k_blast_dcache_page_setup(void)
159 {
160 	unsigned long  dc_lsize = cpu_dcache_line_size();
161 
162 	switch (dc_lsize) {
163 	case 0:
164 		r4k_blast_dcache_page = (void *)cache_noop;
165 		break;
166 	case 16:
167 		r4k_blast_dcache_page = blast_dcache16_page;
168 		break;
169 	case 32:
170 		r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
171 		break;
172 	case 64:
173 		r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
174 		break;
175 	case 128:
176 		r4k_blast_dcache_page = r4k_blast_dcache_page_dc128;
177 		break;
178 	default:
179 		break;
180 	}
181 }
182 
183 #ifndef CONFIG_EVA
184 #define r4k_blast_dcache_user_page  r4k_blast_dcache_page
185 #else
186 
187 static void (*r4k_blast_dcache_user_page)(unsigned long addr);
188 
189 static void r4k_blast_dcache_user_page_setup(void)
190 {
191 	unsigned long  dc_lsize = cpu_dcache_line_size();
192 
193 	if (dc_lsize == 0)
194 		r4k_blast_dcache_user_page = (void *)cache_noop;
195 	else if (dc_lsize == 16)
196 		r4k_blast_dcache_user_page = blast_dcache16_user_page;
197 	else if (dc_lsize == 32)
198 		r4k_blast_dcache_user_page = blast_dcache32_user_page;
199 	else if (dc_lsize == 64)
200 		r4k_blast_dcache_user_page = blast_dcache64_user_page;
201 }
202 
203 #endif
204 
205 static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
206 
207 static void r4k_blast_dcache_page_indexed_setup(void)
208 {
209 	unsigned long dc_lsize = cpu_dcache_line_size();
210 
211 	if (dc_lsize == 0)
212 		r4k_blast_dcache_page_indexed = (void *)cache_noop;
213 	else if (dc_lsize == 16)
214 		r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
215 	else if (dc_lsize == 32)
216 		r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
217 	else if (dc_lsize == 64)
218 		r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
219 	else if (dc_lsize == 128)
220 		r4k_blast_dcache_page_indexed = blast_dcache128_page_indexed;
221 }
222 
223 void (* r4k_blast_dcache)(void);
224 EXPORT_SYMBOL(r4k_blast_dcache);
225 
226 static void r4k_blast_dcache_setup(void)
227 {
228 	unsigned long dc_lsize = cpu_dcache_line_size();
229 
230 	if (dc_lsize == 0)
231 		r4k_blast_dcache = (void *)cache_noop;
232 	else if (dc_lsize == 16)
233 		r4k_blast_dcache = blast_dcache16;
234 	else if (dc_lsize == 32)
235 		r4k_blast_dcache = blast_dcache32;
236 	else if (dc_lsize == 64)
237 		r4k_blast_dcache = blast_dcache64;
238 	else if (dc_lsize == 128)
239 		r4k_blast_dcache = blast_dcache128;
240 }
241 
242 /* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */
243 #define JUMP_TO_ALIGN(order) \
244 	__asm__ __volatile__( \
245 		"b\t1f\n\t" \
246 		".align\t" #order "\n\t" \
247 		"1:\n\t" \
248 		)
249 #define CACHE32_UNROLL32_ALIGN	JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
250 #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
251 
252 static inline void blast_r4600_v1_icache32(void)
253 {
254 	unsigned long flags;
255 
256 	local_irq_save(flags);
257 	blast_icache32();
258 	local_irq_restore(flags);
259 }
260 
261 static inline void tx49_blast_icache32(void)
262 {
263 	unsigned long start = INDEX_BASE;
264 	unsigned long end = start + current_cpu_data.icache.waysize;
265 	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
266 	unsigned long ws_end = current_cpu_data.icache.ways <<
267 			       current_cpu_data.icache.waybit;
268 	unsigned long ws, addr;
269 
270 	CACHE32_UNROLL32_ALIGN2;
271 	/* I'm in even chunk.  blast odd chunks */
272 	for (ws = 0; ws < ws_end; ws += ws_inc)
273 		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
274 			cache32_unroll32(addr|ws, Index_Invalidate_I);
275 	CACHE32_UNROLL32_ALIGN;
276 	/* I'm in odd chunk.  blast even chunks */
277 	for (ws = 0; ws < ws_end; ws += ws_inc)
278 		for (addr = start; addr < end; addr += 0x400 * 2)
279 			cache32_unroll32(addr|ws, Index_Invalidate_I);
280 }
281 
282 static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
283 {
284 	unsigned long flags;
285 
286 	local_irq_save(flags);
287 	blast_icache32_page_indexed(page);
288 	local_irq_restore(flags);
289 }
290 
291 static inline void tx49_blast_icache32_page_indexed(unsigned long page)
292 {
293 	unsigned long indexmask = current_cpu_data.icache.waysize - 1;
294 	unsigned long start = INDEX_BASE + (page & indexmask);
295 	unsigned long end = start + PAGE_SIZE;
296 	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
297 	unsigned long ws_end = current_cpu_data.icache.ways <<
298 			       current_cpu_data.icache.waybit;
299 	unsigned long ws, addr;
300 
301 	CACHE32_UNROLL32_ALIGN2;
302 	/* I'm in even chunk.  blast odd chunks */
303 	for (ws = 0; ws < ws_end; ws += ws_inc)
304 		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
305 			cache32_unroll32(addr|ws, Index_Invalidate_I);
306 	CACHE32_UNROLL32_ALIGN;
307 	/* I'm in odd chunk.  blast even chunks */
308 	for (ws = 0; ws < ws_end; ws += ws_inc)
309 		for (addr = start; addr < end; addr += 0x400 * 2)
310 			cache32_unroll32(addr|ws, Index_Invalidate_I);
311 }
312 
313 static void (* r4k_blast_icache_page)(unsigned long addr);
314 
315 static void r4k_blast_icache_page_setup(void)
316 {
317 	unsigned long ic_lsize = cpu_icache_line_size();
318 
319 	if (ic_lsize == 0)
320 		r4k_blast_icache_page = (void *)cache_noop;
321 	else if (ic_lsize == 16)
322 		r4k_blast_icache_page = blast_icache16_page;
323 	else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2)
324 		r4k_blast_icache_page = loongson2_blast_icache32_page;
325 	else if (ic_lsize == 32)
326 		r4k_blast_icache_page = blast_icache32_page;
327 	else if (ic_lsize == 64)
328 		r4k_blast_icache_page = blast_icache64_page;
329 	else if (ic_lsize == 128)
330 		r4k_blast_icache_page = blast_icache128_page;
331 }
332 
333 #ifndef CONFIG_EVA
334 #define r4k_blast_icache_user_page  r4k_blast_icache_page
335 #else
336 
337 static void (*r4k_blast_icache_user_page)(unsigned long addr);
338 
339 static void r4k_blast_icache_user_page_setup(void)
340 {
341 	unsigned long ic_lsize = cpu_icache_line_size();
342 
343 	if (ic_lsize == 0)
344 		r4k_blast_icache_user_page = (void *)cache_noop;
345 	else if (ic_lsize == 16)
346 		r4k_blast_icache_user_page = blast_icache16_user_page;
347 	else if (ic_lsize == 32)
348 		r4k_blast_icache_user_page = blast_icache32_user_page;
349 	else if (ic_lsize == 64)
350 		r4k_blast_icache_user_page = blast_icache64_user_page;
351 }
352 
353 #endif
354 
355 static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
356 
357 static void r4k_blast_icache_page_indexed_setup(void)
358 {
359 	unsigned long ic_lsize = cpu_icache_line_size();
360 
361 	if (ic_lsize == 0)
362 		r4k_blast_icache_page_indexed = (void *)cache_noop;
363 	else if (ic_lsize == 16)
364 		r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
365 	else if (ic_lsize == 32) {
366 		if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
367 			r4k_blast_icache_page_indexed =
368 				blast_icache32_r4600_v1_page_indexed;
369 		else if (TX49XX_ICACHE_INDEX_INV_WAR)
370 			r4k_blast_icache_page_indexed =
371 				tx49_blast_icache32_page_indexed;
372 		else if (current_cpu_type() == CPU_LOONGSON2)
373 			r4k_blast_icache_page_indexed =
374 				loongson2_blast_icache32_page_indexed;
375 		else
376 			r4k_blast_icache_page_indexed =
377 				blast_icache32_page_indexed;
378 	} else if (ic_lsize == 64)
379 		r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
380 }
381 
382 void (* r4k_blast_icache)(void);
383 EXPORT_SYMBOL(r4k_blast_icache);
384 
385 static void r4k_blast_icache_setup(void)
386 {
387 	unsigned long ic_lsize = cpu_icache_line_size();
388 
389 	if (ic_lsize == 0)
390 		r4k_blast_icache = (void *)cache_noop;
391 	else if (ic_lsize == 16)
392 		r4k_blast_icache = blast_icache16;
393 	else if (ic_lsize == 32) {
394 		if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
395 			r4k_blast_icache = blast_r4600_v1_icache32;
396 		else if (TX49XX_ICACHE_INDEX_INV_WAR)
397 			r4k_blast_icache = tx49_blast_icache32;
398 		else if (current_cpu_type() == CPU_LOONGSON2)
399 			r4k_blast_icache = loongson2_blast_icache32;
400 		else
401 			r4k_blast_icache = blast_icache32;
402 	} else if (ic_lsize == 64)
403 		r4k_blast_icache = blast_icache64;
404 	else if (ic_lsize == 128)
405 		r4k_blast_icache = blast_icache128;
406 }
407 
408 static void (* r4k_blast_scache_page)(unsigned long addr);
409 
410 static void r4k_blast_scache_page_setup(void)
411 {
412 	unsigned long sc_lsize = cpu_scache_line_size();
413 
414 	if (scache_size == 0)
415 		r4k_blast_scache_page = (void *)cache_noop;
416 	else if (sc_lsize == 16)
417 		r4k_blast_scache_page = blast_scache16_page;
418 	else if (sc_lsize == 32)
419 		r4k_blast_scache_page = blast_scache32_page;
420 	else if (sc_lsize == 64)
421 		r4k_blast_scache_page = blast_scache64_page;
422 	else if (sc_lsize == 128)
423 		r4k_blast_scache_page = blast_scache128_page;
424 }
425 
426 static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
427 
428 static void r4k_blast_scache_page_indexed_setup(void)
429 {
430 	unsigned long sc_lsize = cpu_scache_line_size();
431 
432 	if (scache_size == 0)
433 		r4k_blast_scache_page_indexed = (void *)cache_noop;
434 	else if (sc_lsize == 16)
435 		r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
436 	else if (sc_lsize == 32)
437 		r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
438 	else if (sc_lsize == 64)
439 		r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
440 	else if (sc_lsize == 128)
441 		r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
442 }
443 
444 static void (* r4k_blast_scache)(void);
445 
446 static void r4k_blast_scache_setup(void)
447 {
448 	unsigned long sc_lsize = cpu_scache_line_size();
449 
450 	if (scache_size == 0)
451 		r4k_blast_scache = (void *)cache_noop;
452 	else if (sc_lsize == 16)
453 		r4k_blast_scache = blast_scache16;
454 	else if (sc_lsize == 32)
455 		r4k_blast_scache = blast_scache32;
456 	else if (sc_lsize == 64)
457 		r4k_blast_scache = blast_scache64;
458 	else if (sc_lsize == 128)
459 		r4k_blast_scache = blast_scache128;
460 }
461 
462 static void (*r4k_blast_scache_node)(long node);
463 
464 static void r4k_blast_scache_node_setup(void)
465 {
466 	unsigned long sc_lsize = cpu_scache_line_size();
467 
468 	if (current_cpu_type() != CPU_LOONGSON3)
469 		r4k_blast_scache_node = (void *)cache_noop;
470 	else if (sc_lsize == 16)
471 		r4k_blast_scache_node = blast_scache16_node;
472 	else if (sc_lsize == 32)
473 		r4k_blast_scache_node = blast_scache32_node;
474 	else if (sc_lsize == 64)
475 		r4k_blast_scache_node = blast_scache64_node;
476 	else if (sc_lsize == 128)
477 		r4k_blast_scache_node = blast_scache128_node;
478 }
479 
480 static inline void local_r4k___flush_cache_all(void * args)
481 {
482 	switch (current_cpu_type()) {
483 	case CPU_LOONGSON2:
484 	case CPU_R4000SC:
485 	case CPU_R4000MC:
486 	case CPU_R4400SC:
487 	case CPU_R4400MC:
488 	case CPU_R10000:
489 	case CPU_R12000:
490 	case CPU_R14000:
491 	case CPU_R16000:
492 		/*
493 		 * These caches are inclusive caches, that is, if something
494 		 * is not cached in the S-cache, we know it also won't be
495 		 * in one of the primary caches.
496 		 */
497 		r4k_blast_scache();
498 		break;
499 
500 	case CPU_LOONGSON3:
501 		/* Use get_ebase_cpunum() for both NUMA=y/n */
502 		r4k_blast_scache_node(get_ebase_cpunum() >> 2);
503 		break;
504 
505 	case CPU_BMIPS5000:
506 		r4k_blast_scache();
507 		__sync();
508 		break;
509 
510 	default:
511 		r4k_blast_dcache();
512 		r4k_blast_icache();
513 		break;
514 	}
515 }
516 
517 static void r4k___flush_cache_all(void)
518 {
519 	r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
520 }
521 
522 /**
523  * has_valid_asid() - Determine if an mm already has an ASID.
524  * @mm:		Memory map.
525  * @type:	R4K_HIT or R4K_INDEX, type of cache op.
526  *
527  * Determines whether @mm already has an ASID on any of the CPUs which cache ops
528  * of type @type within an r4k_on_each_cpu() call will affect. If
529  * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
530  * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
531  * will need to be checked.
532  *
533  * Must be called in non-preemptive context.
534  *
535  * Returns:	1 if the CPUs affected by @type cache ops have an ASID for @mm.
536  *		0 otherwise.
537  */
538 static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type)
539 {
540 	unsigned int i;
541 	const cpumask_t *mask = cpu_present_mask;
542 
543 	if (cpu_has_mmid)
544 		return cpu_context(0, mm) != 0;
545 
546 	/* cpu_sibling_map[] undeclared when !CONFIG_SMP */
547 #ifdef CONFIG_SMP
548 	/*
549 	 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
550 	 * each foreign core, so we only need to worry about siblings.
551 	 * Otherwise we need to worry about all present CPUs.
552 	 */
553 	if (r4k_op_needs_ipi(type))
554 		mask = &cpu_sibling_map[smp_processor_id()];
555 #endif
556 	for_each_cpu(i, mask)
557 		if (cpu_context(i, mm))
558 			return 1;
559 	return 0;
560 }
561 
562 static void r4k__flush_cache_vmap(void)
563 {
564 	r4k_blast_dcache();
565 }
566 
567 static void r4k__flush_cache_vunmap(void)
568 {
569 	r4k_blast_dcache();
570 }
571 
572 /*
573  * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
574  * whole caches when vma is executable.
575  */
576 static inline void local_r4k_flush_cache_range(void * args)
577 {
578 	struct vm_area_struct *vma = args;
579 	int exec = vma->vm_flags & VM_EXEC;
580 
581 	if (!has_valid_asid(vma->vm_mm, R4K_INDEX))
582 		return;
583 
584 	/*
585 	 * If dcache can alias, we must blast it since mapping is changing.
586 	 * If executable, we must ensure any dirty lines are written back far
587 	 * enough to be visible to icache.
588 	 */
589 	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
590 		r4k_blast_dcache();
591 	/* If executable, blast stale lines from icache */
592 	if (exec)
593 		r4k_blast_icache();
594 }
595 
596 static void r4k_flush_cache_range(struct vm_area_struct *vma,
597 	unsigned long start, unsigned long end)
598 {
599 	int exec = vma->vm_flags & VM_EXEC;
600 
601 	if (cpu_has_dc_aliases || exec)
602 		r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
603 }
604 
605 static inline void local_r4k_flush_cache_mm(void * args)
606 {
607 	struct mm_struct *mm = args;
608 
609 	if (!has_valid_asid(mm, R4K_INDEX))
610 		return;
611 
612 	/*
613 	 * Kludge alert.  For obscure reasons R4000SC and R4400SC go nuts if we
614 	 * only flush the primary caches but R1x000 behave sane ...
615 	 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
616 	 * caches, so we can bail out early.
617 	 */
618 	if (current_cpu_type() == CPU_R4000SC ||
619 	    current_cpu_type() == CPU_R4000MC ||
620 	    current_cpu_type() == CPU_R4400SC ||
621 	    current_cpu_type() == CPU_R4400MC) {
622 		r4k_blast_scache();
623 		return;
624 	}
625 
626 	r4k_blast_dcache();
627 }
628 
629 static void r4k_flush_cache_mm(struct mm_struct *mm)
630 {
631 	if (!cpu_has_dc_aliases)
632 		return;
633 
634 	r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
635 }
636 
637 struct flush_cache_page_args {
638 	struct vm_area_struct *vma;
639 	unsigned long addr;
640 	unsigned long pfn;
641 };
642 
643 static inline void local_r4k_flush_cache_page(void *args)
644 {
645 	struct flush_cache_page_args *fcp_args = args;
646 	struct vm_area_struct *vma = fcp_args->vma;
647 	unsigned long addr = fcp_args->addr;
648 	struct page *page = pfn_to_page(fcp_args->pfn);
649 	int exec = vma->vm_flags & VM_EXEC;
650 	struct mm_struct *mm = vma->vm_mm;
651 	int map_coherent = 0;
652 	pgd_t *pgdp;
653 	pud_t *pudp;
654 	pmd_t *pmdp;
655 	pte_t *ptep;
656 	void *vaddr;
657 
658 	/*
659 	 * If owns no valid ASID yet, cannot possibly have gotten
660 	 * this page into the cache.
661 	 */
662 	if (!has_valid_asid(mm, R4K_HIT))
663 		return;
664 
665 	addr &= PAGE_MASK;
666 	pgdp = pgd_offset(mm, addr);
667 	pudp = pud_offset(pgdp, addr);
668 	pmdp = pmd_offset(pudp, addr);
669 	ptep = pte_offset(pmdp, addr);
670 
671 	/*
672 	 * If the page isn't marked valid, the page cannot possibly be
673 	 * in the cache.
674 	 */
675 	if (!(pte_present(*ptep)))
676 		return;
677 
678 	if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
679 		vaddr = NULL;
680 	else {
681 		/*
682 		 * Use kmap_coherent or kmap_atomic to do flushes for
683 		 * another ASID than the current one.
684 		 */
685 		map_coherent = (cpu_has_dc_aliases &&
686 				page_mapcount(page) &&
687 				!Page_dcache_dirty(page));
688 		if (map_coherent)
689 			vaddr = kmap_coherent(page, addr);
690 		else
691 			vaddr = kmap_atomic(page);
692 		addr = (unsigned long)vaddr;
693 	}
694 
695 	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
696 		vaddr ? r4k_blast_dcache_page(addr) :
697 			r4k_blast_dcache_user_page(addr);
698 		if (exec && !cpu_icache_snoops_remote_store)
699 			r4k_blast_scache_page(addr);
700 	}
701 	if (exec) {
702 		if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
703 			drop_mmu_context(mm);
704 		} else
705 			vaddr ? r4k_blast_icache_page(addr) :
706 				r4k_blast_icache_user_page(addr);
707 	}
708 
709 	if (vaddr) {
710 		if (map_coherent)
711 			kunmap_coherent();
712 		else
713 			kunmap_atomic(vaddr);
714 	}
715 }
716 
717 static void r4k_flush_cache_page(struct vm_area_struct *vma,
718 	unsigned long addr, unsigned long pfn)
719 {
720 	struct flush_cache_page_args args;
721 
722 	args.vma = vma;
723 	args.addr = addr;
724 	args.pfn = pfn;
725 
726 	r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args);
727 }
728 
729 static inline void local_r4k_flush_data_cache_page(void * addr)
730 {
731 	r4k_blast_dcache_page((unsigned long) addr);
732 }
733 
734 static void r4k_flush_data_cache_page(unsigned long addr)
735 {
736 	if (in_atomic())
737 		local_r4k_flush_data_cache_page((void *)addr);
738 	else
739 		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page,
740 				(void *) addr);
741 }
742 
743 struct flush_icache_range_args {
744 	unsigned long start;
745 	unsigned long end;
746 	unsigned int type;
747 	bool user;
748 };
749 
750 static inline void __local_r4k_flush_icache_range(unsigned long start,
751 						  unsigned long end,
752 						  unsigned int type,
753 						  bool user)
754 {
755 	if (!cpu_has_ic_fills_f_dc) {
756 		if (type == R4K_INDEX ||
757 		    (type & R4K_INDEX && end - start >= dcache_size)) {
758 			r4k_blast_dcache();
759 		} else {
760 			R4600_HIT_CACHEOP_WAR_IMPL;
761 			if (user)
762 				protected_blast_dcache_range(start, end);
763 			else
764 				blast_dcache_range(start, end);
765 		}
766 	}
767 
768 	if (type == R4K_INDEX ||
769 	    (type & R4K_INDEX && end - start > icache_size))
770 		r4k_blast_icache();
771 	else {
772 		switch (boot_cpu_type()) {
773 		case CPU_LOONGSON2:
774 			protected_loongson2_blast_icache_range(start, end);
775 			break;
776 
777 		default:
778 			if (user)
779 				protected_blast_icache_range(start, end);
780 			else
781 				blast_icache_range(start, end);
782 			break;
783 		}
784 	}
785 }
786 
787 static inline void local_r4k_flush_icache_range(unsigned long start,
788 						unsigned long end)
789 {
790 	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false);
791 }
792 
793 static inline void local_r4k_flush_icache_user_range(unsigned long start,
794 						     unsigned long end)
795 {
796 	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true);
797 }
798 
799 static inline void local_r4k_flush_icache_range_ipi(void *args)
800 {
801 	struct flush_icache_range_args *fir_args = args;
802 	unsigned long start = fir_args->start;
803 	unsigned long end = fir_args->end;
804 	unsigned int type = fir_args->type;
805 	bool user = fir_args->user;
806 
807 	__local_r4k_flush_icache_range(start, end, type, user);
808 }
809 
810 static void __r4k_flush_icache_range(unsigned long start, unsigned long end,
811 				     bool user)
812 {
813 	struct flush_icache_range_args args;
814 	unsigned long size, cache_size;
815 
816 	args.start = start;
817 	args.end = end;
818 	args.type = R4K_HIT | R4K_INDEX;
819 	args.user = user;
820 
821 	/*
822 	 * Indexed cache ops require an SMP call.
823 	 * Consider if that can or should be avoided.
824 	 */
825 	preempt_disable();
826 	if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) {
827 		/*
828 		 * If address-based cache ops don't require an SMP call, then
829 		 * use them exclusively for small flushes.
830 		 */
831 		size = end - start;
832 		cache_size = icache_size;
833 		if (!cpu_has_ic_fills_f_dc) {
834 			size *= 2;
835 			cache_size += dcache_size;
836 		}
837 		if (size <= cache_size)
838 			args.type &= ~R4K_INDEX;
839 	}
840 	r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
841 	preempt_enable();
842 	instruction_hazard();
843 }
844 
845 static void r4k_flush_icache_range(unsigned long start, unsigned long end)
846 {
847 	return __r4k_flush_icache_range(start, end, false);
848 }
849 
850 static void r4k_flush_icache_user_range(unsigned long start, unsigned long end)
851 {
852 	return __r4k_flush_icache_range(start, end, true);
853 }
854 
855 #ifdef CONFIG_DMA_NONCOHERENT
856 
857 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
858 {
859 	/* Catch bad driver code */
860 	if (WARN_ON(size == 0))
861 		return;
862 
863 	preempt_disable();
864 	if (cpu_has_inclusive_pcaches) {
865 		if (size >= scache_size) {
866 			if (current_cpu_type() != CPU_LOONGSON3)
867 				r4k_blast_scache();
868 			else
869 				r4k_blast_scache_node(pa_to_nid(addr));
870 		} else {
871 			blast_scache_range(addr, addr + size);
872 		}
873 		preempt_enable();
874 		__sync();
875 		return;
876 	}
877 
878 	/*
879 	 * Either no secondary cache or the available caches don't have the
880 	 * subset property so we have to flush the primary caches
881 	 * explicitly.
882 	 * If we would need IPI to perform an INDEX-type operation, then
883 	 * we have to use the HIT-type alternative as IPI cannot be used
884 	 * here due to interrupts possibly being disabled.
885 	 */
886 	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
887 		r4k_blast_dcache();
888 	} else {
889 		R4600_HIT_CACHEOP_WAR_IMPL;
890 		blast_dcache_range(addr, addr + size);
891 	}
892 	preempt_enable();
893 
894 	bc_wback_inv(addr, size);
895 	__sync();
896 }
897 
898 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
899 {
900 	/* Catch bad driver code */
901 	if (WARN_ON(size == 0))
902 		return;
903 
904 	preempt_disable();
905 	if (cpu_has_inclusive_pcaches) {
906 		if (size >= scache_size) {
907 			if (current_cpu_type() != CPU_LOONGSON3)
908 				r4k_blast_scache();
909 			else
910 				r4k_blast_scache_node(pa_to_nid(addr));
911 		} else {
912 			/*
913 			 * There is no clearly documented alignment requirement
914 			 * for the cache instruction on MIPS processors and
915 			 * some processors, among them the RM5200 and RM7000
916 			 * QED processors will throw an address error for cache
917 			 * hit ops with insufficient alignment.	 Solved by
918 			 * aligning the address to cache line size.
919 			 */
920 			blast_inv_scache_range(addr, addr + size);
921 		}
922 		preempt_enable();
923 		__sync();
924 		return;
925 	}
926 
927 	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
928 		r4k_blast_dcache();
929 	} else {
930 		R4600_HIT_CACHEOP_WAR_IMPL;
931 		blast_inv_dcache_range(addr, addr + size);
932 	}
933 	preempt_enable();
934 
935 	bc_inv(addr, size);
936 	__sync();
937 }
938 #endif /* CONFIG_DMA_NONCOHERENT */
939 
940 static void r4k_flush_icache_all(void)
941 {
942 	if (cpu_has_vtag_icache)
943 		r4k_blast_icache();
944 }
945 
946 struct flush_kernel_vmap_range_args {
947 	unsigned long	vaddr;
948 	int		size;
949 };
950 
951 static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
952 {
953 	/*
954 	 * Aliases only affect the primary caches so don't bother with
955 	 * S-caches or T-caches.
956 	 */
957 	r4k_blast_dcache();
958 }
959 
960 static inline void local_r4k_flush_kernel_vmap_range(void *args)
961 {
962 	struct flush_kernel_vmap_range_args *vmra = args;
963 	unsigned long vaddr = vmra->vaddr;
964 	int size = vmra->size;
965 
966 	/*
967 	 * Aliases only affect the primary caches so don't bother with
968 	 * S-caches or T-caches.
969 	 */
970 	R4600_HIT_CACHEOP_WAR_IMPL;
971 	blast_dcache_range(vaddr, vaddr + size);
972 }
973 
974 static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
975 {
976 	struct flush_kernel_vmap_range_args args;
977 
978 	args.vaddr = (unsigned long) vaddr;
979 	args.size = size;
980 
981 	if (size >= dcache_size)
982 		r4k_on_each_cpu(R4K_INDEX,
983 				local_r4k_flush_kernel_vmap_range_index, NULL);
984 	else
985 		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range,
986 				&args);
987 }
988 
989 static inline void rm7k_erratum31(void)
990 {
991 	const unsigned long ic_lsize = 32;
992 	unsigned long addr;
993 
994 	/* RM7000 erratum #31. The icache is screwed at startup. */
995 	write_c0_taglo(0);
996 	write_c0_taghi(0);
997 
998 	for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
999 		__asm__ __volatile__ (
1000 			".set push\n\t"
1001 			".set noreorder\n\t"
1002 			".set mips3\n\t"
1003 			"cache\t%1, 0(%0)\n\t"
1004 			"cache\t%1, 0x1000(%0)\n\t"
1005 			"cache\t%1, 0x2000(%0)\n\t"
1006 			"cache\t%1, 0x3000(%0)\n\t"
1007 			"cache\t%2, 0(%0)\n\t"
1008 			"cache\t%2, 0x1000(%0)\n\t"
1009 			"cache\t%2, 0x2000(%0)\n\t"
1010 			"cache\t%2, 0x3000(%0)\n\t"
1011 			"cache\t%1, 0(%0)\n\t"
1012 			"cache\t%1, 0x1000(%0)\n\t"
1013 			"cache\t%1, 0x2000(%0)\n\t"
1014 			"cache\t%1, 0x3000(%0)\n\t"
1015 			".set pop\n"
1016 			:
1017 			: "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill));
1018 	}
1019 }
1020 
1021 static inline int alias_74k_erratum(struct cpuinfo_mips *c)
1022 {
1023 	unsigned int imp = c->processor_id & PRID_IMP_MASK;
1024 	unsigned int rev = c->processor_id & PRID_REV_MASK;
1025 	int present = 0;
1026 
1027 	/*
1028 	 * Early versions of the 74K do not update the cache tags on a
1029 	 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
1030 	 * aliases.  In this case it is better to treat the cache as always
1031 	 * having aliases.  Also disable the synonym tag update feature
1032 	 * where available.  In this case no opportunistic tag update will
1033 	 * happen where a load causes a virtual address miss but a physical
1034 	 * address hit during a D-cache look-up.
1035 	 */
1036 	switch (imp) {
1037 	case PRID_IMP_74K:
1038 		if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
1039 			present = 1;
1040 		if (rev == PRID_REV_ENCODE_332(2, 4, 0))
1041 			write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
1042 		break;
1043 	case PRID_IMP_1074K:
1044 		if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
1045 			present = 1;
1046 			write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
1047 		}
1048 		break;
1049 	default:
1050 		BUG();
1051 	}
1052 
1053 	return present;
1054 }
1055 
1056 static void b5k_instruction_hazard(void)
1057 {
1058 	__sync();
1059 	__sync();
1060 	__asm__ __volatile__(
1061 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1062 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1063 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1064 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1065 	: : : "memory");
1066 }
1067 
1068 static char *way_string[] = { NULL, "direct mapped", "2-way",
1069 	"3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
1070 	"9-way", "10-way", "11-way", "12-way",
1071 	"13-way", "14-way", "15-way", "16-way",
1072 };
1073 
1074 static void probe_pcache(void)
1075 {
1076 	struct cpuinfo_mips *c = &current_cpu_data;
1077 	unsigned int config = read_c0_config();
1078 	unsigned int prid = read_c0_prid();
1079 	int has_74k_erratum = 0;
1080 	unsigned long config1;
1081 	unsigned int lsize;
1082 
1083 	switch (current_cpu_type()) {
1084 	case CPU_R4600:			/* QED style two way caches? */
1085 	case CPU_R4700:
1086 	case CPU_R5000:
1087 	case CPU_NEVADA:
1088 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1089 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1090 		c->icache.ways = 2;
1091 		c->icache.waybit = __ffs(icache_size/2);
1092 
1093 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1094 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1095 		c->dcache.ways = 2;
1096 		c->dcache.waybit= __ffs(dcache_size/2);
1097 
1098 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1099 		break;
1100 
1101 	case CPU_R5500:
1102 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1103 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1104 		c->icache.ways = 2;
1105 		c->icache.waybit= 0;
1106 
1107 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1108 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1109 		c->dcache.ways = 2;
1110 		c->dcache.waybit = 0;
1111 
1112 		c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
1113 		break;
1114 
1115 	case CPU_TX49XX:
1116 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1117 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1118 		c->icache.ways = 4;
1119 		c->icache.waybit= 0;
1120 
1121 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1122 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1123 		c->dcache.ways = 4;
1124 		c->dcache.waybit = 0;
1125 
1126 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1127 		c->options |= MIPS_CPU_PREFETCH;
1128 		break;
1129 
1130 	case CPU_R4000PC:
1131 	case CPU_R4000SC:
1132 	case CPU_R4000MC:
1133 	case CPU_R4400PC:
1134 	case CPU_R4400SC:
1135 	case CPU_R4400MC:
1136 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1137 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1138 		c->icache.ways = 1;
1139 		c->icache.waybit = 0;	/* doesn't matter */
1140 
1141 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1142 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1143 		c->dcache.ways = 1;
1144 		c->dcache.waybit = 0;	/* does not matter */
1145 
1146 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1147 		break;
1148 
1149 	case CPU_R10000:
1150 	case CPU_R12000:
1151 	case CPU_R14000:
1152 	case CPU_R16000:
1153 		icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
1154 		c->icache.linesz = 64;
1155 		c->icache.ways = 2;
1156 		c->icache.waybit = 0;
1157 
1158 		dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
1159 		c->dcache.linesz = 32;
1160 		c->dcache.ways = 2;
1161 		c->dcache.waybit = 0;
1162 
1163 		c->options |= MIPS_CPU_PREFETCH;
1164 		break;
1165 
1166 	case CPU_VR4133:
1167 		write_c0_config(config & ~VR41_CONF_P4K);
1168 		/* fall through */
1169 	case CPU_VR4131:
1170 		/* Workaround for cache instruction bug of VR4131 */
1171 		if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
1172 		    c->processor_id == 0x0c82U) {
1173 			config |= 0x00400000U;
1174 			if (c->processor_id == 0x0c80U)
1175 				config |= VR41_CONF_BP;
1176 			write_c0_config(config);
1177 		} else
1178 			c->options |= MIPS_CPU_CACHE_CDEX_P;
1179 
1180 		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1181 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1182 		c->icache.ways = 2;
1183 		c->icache.waybit = __ffs(icache_size/2);
1184 
1185 		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1186 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1187 		c->dcache.ways = 2;
1188 		c->dcache.waybit = __ffs(dcache_size/2);
1189 		break;
1190 
1191 	case CPU_VR41XX:
1192 	case CPU_VR4111:
1193 	case CPU_VR4121:
1194 	case CPU_VR4122:
1195 	case CPU_VR4181:
1196 	case CPU_VR4181A:
1197 		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1198 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1199 		c->icache.ways = 1;
1200 		c->icache.waybit = 0;	/* doesn't matter */
1201 
1202 		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1203 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1204 		c->dcache.ways = 1;
1205 		c->dcache.waybit = 0;	/* does not matter */
1206 
1207 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1208 		break;
1209 
1210 	case CPU_RM7000:
1211 		rm7k_erratum31();
1212 
1213 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1214 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1215 		c->icache.ways = 4;
1216 		c->icache.waybit = __ffs(icache_size / c->icache.ways);
1217 
1218 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1219 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1220 		c->dcache.ways = 4;
1221 		c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1222 
1223 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1224 		c->options |= MIPS_CPU_PREFETCH;
1225 		break;
1226 
1227 	case CPU_LOONGSON2:
1228 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1229 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1230 		if (prid & 0x3)
1231 			c->icache.ways = 4;
1232 		else
1233 			c->icache.ways = 2;
1234 		c->icache.waybit = 0;
1235 
1236 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1237 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1238 		if (prid & 0x3)
1239 			c->dcache.ways = 4;
1240 		else
1241 			c->dcache.ways = 2;
1242 		c->dcache.waybit = 0;
1243 		break;
1244 
1245 	case CPU_LOONGSON3:
1246 		config1 = read_c0_config1();
1247 		lsize = (config1 >> 19) & 7;
1248 		if (lsize)
1249 			c->icache.linesz = 2 << lsize;
1250 		else
1251 			c->icache.linesz = 0;
1252 		c->icache.sets = 64 << ((config1 >> 22) & 7);
1253 		c->icache.ways = 1 + ((config1 >> 16) & 7);
1254 		icache_size = c->icache.sets *
1255 					  c->icache.ways *
1256 					  c->icache.linesz;
1257 		c->icache.waybit = 0;
1258 
1259 		lsize = (config1 >> 10) & 7;
1260 		if (lsize)
1261 			c->dcache.linesz = 2 << lsize;
1262 		else
1263 			c->dcache.linesz = 0;
1264 		c->dcache.sets = 64 << ((config1 >> 13) & 7);
1265 		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1266 		dcache_size = c->dcache.sets *
1267 					  c->dcache.ways *
1268 					  c->dcache.linesz;
1269 		c->dcache.waybit = 0;
1270 		if ((prid & PRID_REV_MASK) >= PRID_REV_LOONGSON3A_R2_0)
1271 			c->options |= MIPS_CPU_PREFETCH;
1272 		break;
1273 
1274 	case CPU_CAVIUM_OCTEON3:
1275 		/* For now lie about the number of ways. */
1276 		c->icache.linesz = 128;
1277 		c->icache.sets = 16;
1278 		c->icache.ways = 8;
1279 		c->icache.flags |= MIPS_CACHE_VTAG;
1280 		icache_size = c->icache.sets * c->icache.ways * c->icache.linesz;
1281 
1282 		c->dcache.linesz = 128;
1283 		c->dcache.ways = 8;
1284 		c->dcache.sets = 8;
1285 		dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz;
1286 		c->options |= MIPS_CPU_PREFETCH;
1287 		break;
1288 
1289 	default:
1290 		if (!(config & MIPS_CONF_M))
1291 			panic("Don't know how to probe P-caches on this cpu.");
1292 
1293 		/*
1294 		 * So we seem to be a MIPS32 or MIPS64 CPU
1295 		 * So let's probe the I-cache ...
1296 		 */
1297 		config1 = read_c0_config1();
1298 
1299 		lsize = (config1 >> 19) & 7;
1300 
1301 		/* IL == 7 is reserved */
1302 		if (lsize == 7)
1303 			panic("Invalid icache line size");
1304 
1305 		c->icache.linesz = lsize ? 2 << lsize : 0;
1306 
1307 		c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1308 		c->icache.ways = 1 + ((config1 >> 16) & 7);
1309 
1310 		icache_size = c->icache.sets *
1311 			      c->icache.ways *
1312 			      c->icache.linesz;
1313 		c->icache.waybit = __ffs(icache_size/c->icache.ways);
1314 
1315 		if (config & MIPS_CONF_VI)
1316 			c->icache.flags |= MIPS_CACHE_VTAG;
1317 
1318 		/*
1319 		 * Now probe the MIPS32 / MIPS64 data cache.
1320 		 */
1321 		c->dcache.flags = 0;
1322 
1323 		lsize = (config1 >> 10) & 7;
1324 
1325 		/* DL == 7 is reserved */
1326 		if (lsize == 7)
1327 			panic("Invalid dcache line size");
1328 
1329 		c->dcache.linesz = lsize ? 2 << lsize : 0;
1330 
1331 		c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1332 		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1333 
1334 		dcache_size = c->dcache.sets *
1335 			      c->dcache.ways *
1336 			      c->dcache.linesz;
1337 		c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1338 
1339 		c->options |= MIPS_CPU_PREFETCH;
1340 		break;
1341 	}
1342 
1343 	/*
1344 	 * Processor configuration sanity check for the R4000SC erratum
1345 	 * #5.	With page sizes larger than 32kB there is no possibility
1346 	 * to get a VCE exception anymore so we don't care about this
1347 	 * misconfiguration.  The case is rather theoretical anyway;
1348 	 * presumably no vendor is shipping his hardware in the "bad"
1349 	 * configuration.
1350 	 */
1351 	if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1352 	    (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1353 	    !(config & CONF_SC) && c->icache.linesz != 16 &&
1354 	    PAGE_SIZE <= 0x8000)
1355 		panic("Improper R4000SC processor configuration detected");
1356 
1357 	/* compute a couple of other cache variables */
1358 	c->icache.waysize = icache_size / c->icache.ways;
1359 	c->dcache.waysize = dcache_size / c->dcache.ways;
1360 
1361 	c->icache.sets = c->icache.linesz ?
1362 		icache_size / (c->icache.linesz * c->icache.ways) : 0;
1363 	c->dcache.sets = c->dcache.linesz ?
1364 		dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1365 
1366 	/*
1367 	 * R1x000 P-caches are odd in a positive way.  They're 32kB 2-way
1368 	 * virtually indexed so normally would suffer from aliases.  So
1369 	 * normally they'd suffer from aliases but magic in the hardware deals
1370 	 * with that for us so we don't need to take care ourselves.
1371 	 */
1372 	switch (current_cpu_type()) {
1373 	case CPU_20KC:
1374 	case CPU_25KF:
1375 	case CPU_I6400:
1376 	case CPU_I6500:
1377 	case CPU_SB1:
1378 	case CPU_SB1A:
1379 	case CPU_XLR:
1380 		c->dcache.flags |= MIPS_CACHE_PINDEX;
1381 		break;
1382 
1383 	case CPU_R10000:
1384 	case CPU_R12000:
1385 	case CPU_R14000:
1386 	case CPU_R16000:
1387 		break;
1388 
1389 	case CPU_74K:
1390 	case CPU_1074K:
1391 		has_74k_erratum = alias_74k_erratum(c);
1392 		/* Fall through. */
1393 	case CPU_M14KC:
1394 	case CPU_M14KEC:
1395 	case CPU_24K:
1396 	case CPU_34K:
1397 	case CPU_1004K:
1398 	case CPU_INTERAPTIV:
1399 	case CPU_P5600:
1400 	case CPU_PROAPTIV:
1401 	case CPU_M5150:
1402 	case CPU_QEMU_GENERIC:
1403 	case CPU_P6600:
1404 	case CPU_M6250:
1405 		if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1406 		    (c->icache.waysize > PAGE_SIZE))
1407 			c->icache.flags |= MIPS_CACHE_ALIASES;
1408 		if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) {
1409 			/*
1410 			 * Effectively physically indexed dcache,
1411 			 * thus no virtual aliases.
1412 			*/
1413 			c->dcache.flags |= MIPS_CACHE_PINDEX;
1414 			break;
1415 		}
1416 		/* fall through */
1417 	default:
1418 		if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE)
1419 			c->dcache.flags |= MIPS_CACHE_ALIASES;
1420 	}
1421 
1422 	/* Physically indexed caches don't suffer from virtual aliasing */
1423 	if (c->dcache.flags & MIPS_CACHE_PINDEX)
1424 		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1425 
1426 	/*
1427 	 * In systems with CM the icache fills from L2 or closer caches, and
1428 	 * thus sees remote stores without needing to write them back any
1429 	 * further than that.
1430 	 */
1431 	if (mips_cm_present())
1432 		c->icache.flags |= MIPS_IC_SNOOPS_REMOTE;
1433 
1434 	switch (current_cpu_type()) {
1435 	case CPU_20KC:
1436 		/*
1437 		 * Some older 20Kc chips doesn't have the 'VI' bit in
1438 		 * the config register.
1439 		 */
1440 		c->icache.flags |= MIPS_CACHE_VTAG;
1441 		break;
1442 
1443 	case CPU_ALCHEMY:
1444 	case CPU_I6400:
1445 	case CPU_I6500:
1446 		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1447 		break;
1448 
1449 	case CPU_BMIPS5000:
1450 		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1451 		/* Cache aliases are handled in hardware; allow HIGHMEM */
1452 		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1453 		break;
1454 
1455 	case CPU_LOONGSON2:
1456 		/*
1457 		 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1458 		 * one op will act on all 4 ways
1459 		 */
1460 		c->icache.ways = 1;
1461 	}
1462 
1463 	printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1464 	       icache_size >> 10,
1465 	       c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1466 	       way_string[c->icache.ways], c->icache.linesz);
1467 
1468 	printk("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1469 	       dcache_size >> 10, way_string[c->dcache.ways],
1470 	       (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1471 	       (c->dcache.flags & MIPS_CACHE_ALIASES) ?
1472 			"cache aliases" : "no aliases",
1473 	       c->dcache.linesz);
1474 }
1475 
1476 static void probe_vcache(void)
1477 {
1478 	struct cpuinfo_mips *c = &current_cpu_data;
1479 	unsigned int config2, lsize;
1480 
1481 	if (current_cpu_type() != CPU_LOONGSON3)
1482 		return;
1483 
1484 	config2 = read_c0_config2();
1485 	if ((lsize = ((config2 >> 20) & 15)))
1486 		c->vcache.linesz = 2 << lsize;
1487 	else
1488 		c->vcache.linesz = lsize;
1489 
1490 	c->vcache.sets = 64 << ((config2 >> 24) & 15);
1491 	c->vcache.ways = 1 + ((config2 >> 16) & 15);
1492 
1493 	vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz;
1494 
1495 	c->vcache.waybit = 0;
1496 	c->vcache.waysize = vcache_size / c->vcache.ways;
1497 
1498 	pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1499 		vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz);
1500 }
1501 
1502 /*
1503  * If you even _breathe_ on this function, look at the gcc output and make sure
1504  * it does not pop things on and off the stack for the cache sizing loop that
1505  * executes in KSEG1 space or else you will crash and burn badly.  You have
1506  * been warned.
1507  */
1508 static int probe_scache(void)
1509 {
1510 	unsigned long flags, addr, begin, end, pow2;
1511 	unsigned int config = read_c0_config();
1512 	struct cpuinfo_mips *c = &current_cpu_data;
1513 
1514 	if (config & CONF_SC)
1515 		return 0;
1516 
1517 	begin = (unsigned long) &_stext;
1518 	begin &= ~((4 * 1024 * 1024) - 1);
1519 	end = begin + (4 * 1024 * 1024);
1520 
1521 	/*
1522 	 * This is such a bitch, you'd think they would make it easy to do
1523 	 * this.  Away you daemons of stupidity!
1524 	 */
1525 	local_irq_save(flags);
1526 
1527 	/* Fill each size-multiple cache line with a valid tag. */
1528 	pow2 = (64 * 1024);
1529 	for (addr = begin; addr < end; addr = (begin + pow2)) {
1530 		unsigned long *p = (unsigned long *) addr;
1531 		__asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1532 		pow2 <<= 1;
1533 	}
1534 
1535 	/* Load first line with zero (therefore invalid) tag. */
1536 	write_c0_taglo(0);
1537 	write_c0_taghi(0);
1538 	__asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1539 	cache_op(Index_Store_Tag_I, begin);
1540 	cache_op(Index_Store_Tag_D, begin);
1541 	cache_op(Index_Store_Tag_SD, begin);
1542 
1543 	/* Now search for the wrap around point. */
1544 	pow2 = (128 * 1024);
1545 	for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1546 		cache_op(Index_Load_Tag_SD, addr);
1547 		__asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1548 		if (!read_c0_taglo())
1549 			break;
1550 		pow2 <<= 1;
1551 	}
1552 	local_irq_restore(flags);
1553 	addr -= begin;
1554 
1555 	scache_size = addr;
1556 	c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1557 	c->scache.ways = 1;
1558 	c->scache.waybit = 0;		/* does not matter */
1559 
1560 	return 1;
1561 }
1562 
1563 static void __init loongson2_sc_init(void)
1564 {
1565 	struct cpuinfo_mips *c = &current_cpu_data;
1566 
1567 	scache_size = 512*1024;
1568 	c->scache.linesz = 32;
1569 	c->scache.ways = 4;
1570 	c->scache.waybit = 0;
1571 	c->scache.waysize = scache_size / (c->scache.ways);
1572 	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1573 	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1574 	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1575 
1576 	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1577 }
1578 
1579 static void __init loongson3_sc_init(void)
1580 {
1581 	struct cpuinfo_mips *c = &current_cpu_data;
1582 	unsigned int config2, lsize;
1583 
1584 	config2 = read_c0_config2();
1585 	lsize = (config2 >> 4) & 15;
1586 	if (lsize)
1587 		c->scache.linesz = 2 << lsize;
1588 	else
1589 		c->scache.linesz = 0;
1590 	c->scache.sets = 64 << ((config2 >> 8) & 15);
1591 	c->scache.ways = 1 + (config2 & 15);
1592 
1593 	scache_size = c->scache.sets *
1594 				  c->scache.ways *
1595 				  c->scache.linesz;
1596 	/* Loongson-3 has 4 cores, 1MB scache for each. scaches are shared */
1597 	scache_size *= 4;
1598 	c->scache.waybit = 0;
1599 	c->scache.waysize = scache_size / c->scache.ways;
1600 	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1601 	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1602 	if (scache_size)
1603 		c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1604 	return;
1605 }
1606 
1607 extern int r5k_sc_init(void);
1608 extern int rm7k_sc_init(void);
1609 extern int mips_sc_init(void);
1610 
1611 static void setup_scache(void)
1612 {
1613 	struct cpuinfo_mips *c = &current_cpu_data;
1614 	unsigned int config = read_c0_config();
1615 	int sc_present = 0;
1616 
1617 	/*
1618 	 * Do the probing thing on R4000SC and R4400SC processors.  Other
1619 	 * processors don't have a S-cache that would be relevant to the
1620 	 * Linux memory management.
1621 	 */
1622 	switch (current_cpu_type()) {
1623 	case CPU_R4000SC:
1624 	case CPU_R4000MC:
1625 	case CPU_R4400SC:
1626 	case CPU_R4400MC:
1627 		sc_present = run_uncached(probe_scache);
1628 		if (sc_present)
1629 			c->options |= MIPS_CPU_CACHE_CDEX_S;
1630 		break;
1631 
1632 	case CPU_R10000:
1633 	case CPU_R12000:
1634 	case CPU_R14000:
1635 	case CPU_R16000:
1636 		scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1637 		c->scache.linesz = 64 << ((config >> 13) & 1);
1638 		c->scache.ways = 2;
1639 		c->scache.waybit= 0;
1640 		sc_present = 1;
1641 		break;
1642 
1643 	case CPU_R5000:
1644 	case CPU_NEVADA:
1645 #ifdef CONFIG_R5000_CPU_SCACHE
1646 		r5k_sc_init();
1647 #endif
1648 		return;
1649 
1650 	case CPU_RM7000:
1651 #ifdef CONFIG_RM7000_CPU_SCACHE
1652 		rm7k_sc_init();
1653 #endif
1654 		return;
1655 
1656 	case CPU_LOONGSON2:
1657 		loongson2_sc_init();
1658 		return;
1659 
1660 	case CPU_LOONGSON3:
1661 		loongson3_sc_init();
1662 		return;
1663 
1664 	case CPU_CAVIUM_OCTEON3:
1665 	case CPU_XLP:
1666 		/* don't need to worry about L2, fully coherent */
1667 		return;
1668 
1669 	default:
1670 		if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M32R2 |
1671 				    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R1 |
1672 				    MIPS_CPU_ISA_M64R2 | MIPS_CPU_ISA_M64R6)) {
1673 #ifdef CONFIG_MIPS_CPU_SCACHE
1674 			if (mips_sc_init ()) {
1675 				scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1676 				printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1677 				       scache_size >> 10,
1678 				       way_string[c->scache.ways], c->scache.linesz);
1679 			}
1680 #else
1681 			if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1682 				panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1683 #endif
1684 			return;
1685 		}
1686 		sc_present = 0;
1687 	}
1688 
1689 	if (!sc_present)
1690 		return;
1691 
1692 	/* compute a couple of other cache variables */
1693 	c->scache.waysize = scache_size / c->scache.ways;
1694 
1695 	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1696 
1697 	printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1698 	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1699 
1700 	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1701 }
1702 
1703 void au1x00_fixup_config_od(void)
1704 {
1705 	/*
1706 	 * c0_config.od (bit 19) was write only (and read as 0)
1707 	 * on the early revisions of Alchemy SOCs.  It disables the bus
1708 	 * transaction overlapping and needs to be set to fix various errata.
1709 	 */
1710 	switch (read_c0_prid()) {
1711 	case 0x00030100: /* Au1000 DA */
1712 	case 0x00030201: /* Au1000 HA */
1713 	case 0x00030202: /* Au1000 HB */
1714 	case 0x01030200: /* Au1500 AB */
1715 	/*
1716 	 * Au1100 errata actually keeps silence about this bit, so we set it
1717 	 * just in case for those revisions that require it to be set according
1718 	 * to the (now gone) cpu table.
1719 	 */
1720 	case 0x02030200: /* Au1100 AB */
1721 	case 0x02030201: /* Au1100 BA */
1722 	case 0x02030202: /* Au1100 BC */
1723 		set_c0_config(1 << 19);
1724 		break;
1725 	}
1726 }
1727 
1728 /* CP0 hazard avoidance. */
1729 #define NXP_BARRIER()							\
1730 	 __asm__ __volatile__(						\
1731 	".set noreorder\n\t"						\
1732 	"nop; nop; nop; nop; nop; nop;\n\t"				\
1733 	".set reorder\n\t")
1734 
1735 static void nxp_pr4450_fixup_config(void)
1736 {
1737 	unsigned long config0;
1738 
1739 	config0 = read_c0_config();
1740 
1741 	/* clear all three cache coherency fields */
1742 	config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1743 	config0 |= (((_page_cachable_default >> _CACHE_SHIFT) <<  0) |
1744 		    ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1745 		    ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1746 	write_c0_config(config0);
1747 	NXP_BARRIER();
1748 }
1749 
1750 static int cca = -1;
1751 
1752 static int __init cca_setup(char *str)
1753 {
1754 	get_option(&str, &cca);
1755 
1756 	return 0;
1757 }
1758 
1759 early_param("cca", cca_setup);
1760 
1761 static void coherency_setup(void)
1762 {
1763 	if (cca < 0 || cca > 7)
1764 		cca = read_c0_config() & CONF_CM_CMASK;
1765 	_page_cachable_default = cca << _CACHE_SHIFT;
1766 
1767 	pr_debug("Using cache attribute %d\n", cca);
1768 	change_c0_config(CONF_CM_CMASK, cca);
1769 
1770 	/*
1771 	 * c0_status.cu=0 specifies that updates by the sc instruction use
1772 	 * the coherency mode specified by the TLB; 1 means cachable
1773 	 * coherent update on write will be used.  Not all processors have
1774 	 * this bit and; some wire it to zero, others like Toshiba had the
1775 	 * silly idea of putting something else there ...
1776 	 */
1777 	switch (current_cpu_type()) {
1778 	case CPU_R4000PC:
1779 	case CPU_R4000SC:
1780 	case CPU_R4000MC:
1781 	case CPU_R4400PC:
1782 	case CPU_R4400SC:
1783 	case CPU_R4400MC:
1784 		clear_c0_config(CONF_CU);
1785 		break;
1786 	/*
1787 	 * We need to catch the early Alchemy SOCs with
1788 	 * the write-only co_config.od bit and set it back to one on:
1789 	 * Au1000 rev DA, HA, HB;  Au1100 AB, BA, BC, Au1500 AB
1790 	 */
1791 	case CPU_ALCHEMY:
1792 		au1x00_fixup_config_od();
1793 		break;
1794 
1795 	case PRID_IMP_PR4450:
1796 		nxp_pr4450_fixup_config();
1797 		break;
1798 	}
1799 }
1800 
1801 static void r4k_cache_error_setup(void)
1802 {
1803 	extern char __weak except_vec2_generic;
1804 	extern char __weak except_vec2_sb1;
1805 
1806 	switch (current_cpu_type()) {
1807 	case CPU_SB1:
1808 	case CPU_SB1A:
1809 		set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1810 		break;
1811 
1812 	default:
1813 		set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1814 		break;
1815 	}
1816 }
1817 
1818 void r4k_cache_init(void)
1819 {
1820 	extern void build_clear_page(void);
1821 	extern void build_copy_page(void);
1822 	struct cpuinfo_mips *c = &current_cpu_data;
1823 
1824 	probe_pcache();
1825 	probe_vcache();
1826 	setup_scache();
1827 
1828 	r4k_blast_dcache_page_setup();
1829 	r4k_blast_dcache_page_indexed_setup();
1830 	r4k_blast_dcache_setup();
1831 	r4k_blast_icache_page_setup();
1832 	r4k_blast_icache_page_indexed_setup();
1833 	r4k_blast_icache_setup();
1834 	r4k_blast_scache_page_setup();
1835 	r4k_blast_scache_page_indexed_setup();
1836 	r4k_blast_scache_setup();
1837 	r4k_blast_scache_node_setup();
1838 #ifdef CONFIG_EVA
1839 	r4k_blast_dcache_user_page_setup();
1840 	r4k_blast_icache_user_page_setup();
1841 #endif
1842 
1843 	/*
1844 	 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1845 	 * This code supports virtually indexed processors and will be
1846 	 * unnecessarily inefficient on physically indexed processors.
1847 	 */
1848 	if (c->dcache.linesz && cpu_has_dc_aliases)
1849 		shm_align_mask = max_t( unsigned long,
1850 					c->dcache.sets * c->dcache.linesz - 1,
1851 					PAGE_SIZE - 1);
1852 	else
1853 		shm_align_mask = PAGE_SIZE-1;
1854 
1855 	__flush_cache_vmap	= r4k__flush_cache_vmap;
1856 	__flush_cache_vunmap	= r4k__flush_cache_vunmap;
1857 
1858 	flush_cache_all		= cache_noop;
1859 	__flush_cache_all	= r4k___flush_cache_all;
1860 	flush_cache_mm		= r4k_flush_cache_mm;
1861 	flush_cache_page	= r4k_flush_cache_page;
1862 	flush_cache_range	= r4k_flush_cache_range;
1863 
1864 	__flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1865 
1866 	flush_icache_all	= r4k_flush_icache_all;
1867 	local_flush_data_cache_page	= local_r4k_flush_data_cache_page;
1868 	flush_data_cache_page	= r4k_flush_data_cache_page;
1869 	flush_icache_range	= r4k_flush_icache_range;
1870 	local_flush_icache_range	= local_r4k_flush_icache_range;
1871 	__flush_icache_user_range	= r4k_flush_icache_user_range;
1872 	__local_flush_icache_user_range	= local_r4k_flush_icache_user_range;
1873 
1874 #ifdef CONFIG_DMA_NONCOHERENT
1875 #ifdef CONFIG_DMA_MAYBE_COHERENT
1876 	if (coherentio == IO_COHERENCE_ENABLED ||
1877 	    (coherentio == IO_COHERENCE_DEFAULT && hw_coherentio)) {
1878 		_dma_cache_wback_inv	= (void *)cache_noop;
1879 		_dma_cache_wback	= (void *)cache_noop;
1880 		_dma_cache_inv		= (void *)cache_noop;
1881 	} else
1882 #endif /* CONFIG_DMA_MAYBE_COHERENT */
1883 	{
1884 		_dma_cache_wback_inv	= r4k_dma_cache_wback_inv;
1885 		_dma_cache_wback	= r4k_dma_cache_wback_inv;
1886 		_dma_cache_inv		= r4k_dma_cache_inv;
1887 	}
1888 #endif /* CONFIG_DMA_NONCOHERENT */
1889 
1890 	build_clear_page();
1891 	build_copy_page();
1892 
1893 	/*
1894 	 * We want to run CMP kernels on core with and without coherent
1895 	 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1896 	 * or not to flush caches.
1897 	 */
1898 	local_r4k___flush_cache_all(NULL);
1899 
1900 	coherency_setup();
1901 	board_cache_error_setup = r4k_cache_error_setup;
1902 
1903 	/*
1904 	 * Per-CPU overrides
1905 	 */
1906 	switch (current_cpu_type()) {
1907 	case CPU_BMIPS4350:
1908 	case CPU_BMIPS4380:
1909 		/* No IPI is needed because all CPUs share the same D$ */
1910 		flush_data_cache_page = r4k_blast_dcache_page;
1911 		break;
1912 	case CPU_BMIPS5000:
1913 		/* We lose our superpowers if L2 is disabled */
1914 		if (c->scache.flags & MIPS_CACHE_NOT_PRESENT)
1915 			break;
1916 
1917 		/* I$ fills from D$ just by emptying the write buffers */
1918 		flush_cache_page = (void *)b5k_instruction_hazard;
1919 		flush_cache_range = (void *)b5k_instruction_hazard;
1920 		local_flush_data_cache_page = (void *)b5k_instruction_hazard;
1921 		flush_data_cache_page = (void *)b5k_instruction_hazard;
1922 		flush_icache_range = (void *)b5k_instruction_hazard;
1923 		local_flush_icache_range = (void *)b5k_instruction_hazard;
1924 
1925 
1926 		/* Optimization: an L2 flush implicitly flushes the L1 */
1927 		current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES;
1928 		break;
1929 	case CPU_LOONGSON3:
1930 		/* Loongson-3 maintains cache coherency by hardware */
1931 		__flush_cache_all	= cache_noop;
1932 		__flush_cache_vmap	= cache_noop;
1933 		__flush_cache_vunmap	= cache_noop;
1934 		__flush_kernel_vmap_range = (void *)cache_noop;
1935 		flush_cache_mm		= (void *)cache_noop;
1936 		flush_cache_page	= (void *)cache_noop;
1937 		flush_cache_range	= (void *)cache_noop;
1938 		flush_icache_all	= (void *)cache_noop;
1939 		flush_data_cache_page	= (void *)cache_noop;
1940 		local_flush_data_cache_page	= (void *)cache_noop;
1941 		break;
1942 	}
1943 }
1944 
1945 static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd,
1946 			       void *v)
1947 {
1948 	switch (cmd) {
1949 	case CPU_PM_ENTER_FAILED:
1950 	case CPU_PM_EXIT:
1951 		coherency_setup();
1952 		break;
1953 	}
1954 
1955 	return NOTIFY_OK;
1956 }
1957 
1958 static struct notifier_block r4k_cache_pm_notifier_block = {
1959 	.notifier_call = r4k_cache_pm_notifier,
1960 };
1961 
1962 int __init r4k_cache_init_pm(void)
1963 {
1964 	return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block);
1965 }
1966 arch_initcall(r4k_cache_init_pm);
1967