xref: /linux/arch/mips/mm/tlbex.c (revision 9a6b55ac)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Synthesize TLB refill handlers at runtime.
7  *
8  * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
9  * Copyright (C) 2005, 2007, 2008, 2009	 Maciej W. Rozycki
10  * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
11  * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12  * Copyright (C) 2011  MIPS Technologies, Inc.
13  *
14  * ... and the days got worse and worse and now you see
15  * I've gone completely out of my mind.
16  *
17  * They're coming to take me a away haha
18  * they're coming to take me a away hoho hihi haha
19  * to the funny farm where code is beautiful all the time ...
20  *
21  * (Condolences to Napoleon XIV)
22  */
23 
24 #include <linux/bug.h>
25 #include <linux/export.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/smp.h>
29 #include <linux/string.h>
30 #include <linux/cache.h>
31 
32 #include <asm/cacheflush.h>
33 #include <asm/cpu-type.h>
34 #include <asm/mmu_context.h>
35 #include <asm/pgtable.h>
36 #include <asm/war.h>
37 #include <asm/uasm.h>
38 #include <asm/setup.h>
39 #include <asm/tlbex.h>
40 
41 static int mips_xpa_disabled;
42 
43 static int __init xpa_disable(char *s)
44 {
45 	mips_xpa_disabled = 1;
46 
47 	return 1;
48 }
49 
50 __setup("noxpa", xpa_disable);
51 
52 /*
53  * TLB load/store/modify handlers.
54  *
55  * Only the fastpath gets synthesized at runtime, the slowpath for
56  * do_page_fault remains normal asm.
57  */
58 extern void tlb_do_page_fault_0(void);
59 extern void tlb_do_page_fault_1(void);
60 
61 struct work_registers {
62 	int r1;
63 	int r2;
64 	int r3;
65 };
66 
67 struct tlb_reg_save {
68 	unsigned long a;
69 	unsigned long b;
70 } ____cacheline_aligned_in_smp;
71 
72 static struct tlb_reg_save handler_reg_save[NR_CPUS];
73 
74 static inline int r45k_bvahwbug(void)
75 {
76 	/* XXX: We should probe for the presence of this bug, but we don't. */
77 	return 0;
78 }
79 
80 static inline int r4k_250MHZhwbug(void)
81 {
82 	/* XXX: We should probe for the presence of this bug, but we don't. */
83 	return 0;
84 }
85 
86 static inline int __maybe_unused bcm1250_m3_war(void)
87 {
88 	return BCM1250_M3_WAR;
89 }
90 
91 static inline int __maybe_unused r10000_llsc_war(void)
92 {
93 	return R10000_LLSC_WAR;
94 }
95 
96 static int use_bbit_insns(void)
97 {
98 	switch (current_cpu_type()) {
99 	case CPU_CAVIUM_OCTEON:
100 	case CPU_CAVIUM_OCTEON_PLUS:
101 	case CPU_CAVIUM_OCTEON2:
102 	case CPU_CAVIUM_OCTEON3:
103 		return 1;
104 	default:
105 		return 0;
106 	}
107 }
108 
109 static int use_lwx_insns(void)
110 {
111 	switch (current_cpu_type()) {
112 	case CPU_CAVIUM_OCTEON2:
113 	case CPU_CAVIUM_OCTEON3:
114 		return 1;
115 	default:
116 		return 0;
117 	}
118 }
119 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
120     CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
121 static bool scratchpad_available(void)
122 {
123 	return true;
124 }
125 static int scratchpad_offset(int i)
126 {
127 	/*
128 	 * CVMSEG starts at address -32768 and extends for
129 	 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
130 	 */
131 	i += 1; /* Kernel use starts at the top and works down. */
132 	return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
133 }
134 #else
135 static bool scratchpad_available(void)
136 {
137 	return false;
138 }
139 static int scratchpad_offset(int i)
140 {
141 	BUG();
142 	/* Really unreachable, but evidently some GCC want this. */
143 	return 0;
144 }
145 #endif
146 /*
147  * Found by experiment: At least some revisions of the 4kc throw under
148  * some circumstances a machine check exception, triggered by invalid
149  * values in the index register.  Delaying the tlbp instruction until
150  * after the next branch,  plus adding an additional nop in front of
151  * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
152  * why; it's not an issue caused by the core RTL.
153  *
154  */
155 static int m4kc_tlbp_war(void)
156 {
157 	return current_cpu_type() == CPU_4KC;
158 }
159 
160 /* Handle labels (which must be positive integers). */
161 enum label_id {
162 	label_second_part = 1,
163 	label_leave,
164 	label_vmalloc,
165 	label_vmalloc_done,
166 	label_tlbw_hazard_0,
167 	label_split = label_tlbw_hazard_0 + 8,
168 	label_tlbl_goaround1,
169 	label_tlbl_goaround2,
170 	label_nopage_tlbl,
171 	label_nopage_tlbs,
172 	label_nopage_tlbm,
173 	label_smp_pgtable_change,
174 	label_r3000_write_probe_fail,
175 	label_large_segbits_fault,
176 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
177 	label_tlb_huge_update,
178 #endif
179 };
180 
181 UASM_L_LA(_second_part)
182 UASM_L_LA(_leave)
183 UASM_L_LA(_vmalloc)
184 UASM_L_LA(_vmalloc_done)
185 /* _tlbw_hazard_x is handled differently.  */
186 UASM_L_LA(_split)
187 UASM_L_LA(_tlbl_goaround1)
188 UASM_L_LA(_tlbl_goaround2)
189 UASM_L_LA(_nopage_tlbl)
190 UASM_L_LA(_nopage_tlbs)
191 UASM_L_LA(_nopage_tlbm)
192 UASM_L_LA(_smp_pgtable_change)
193 UASM_L_LA(_r3000_write_probe_fail)
194 UASM_L_LA(_large_segbits_fault)
195 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
196 UASM_L_LA(_tlb_huge_update)
197 #endif
198 
199 static int hazard_instance;
200 
201 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
202 {
203 	switch (instance) {
204 	case 0 ... 7:
205 		uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
206 		return;
207 	default:
208 		BUG();
209 	}
210 }
211 
212 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
213 {
214 	switch (instance) {
215 	case 0 ... 7:
216 		uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
217 		break;
218 	default:
219 		BUG();
220 	}
221 }
222 
223 /*
224  * pgtable bits are assigned dynamically depending on processor feature
225  * and statically based on kernel configuration.  This spits out the actual
226  * values the kernel is using.	Required to make sense from disassembled
227  * TLB exception handlers.
228  */
229 static void output_pgtable_bits_defines(void)
230 {
231 #define pr_define(fmt, ...)					\
232 	pr_debug("#define " fmt, ##__VA_ARGS__)
233 
234 	pr_debug("#include <asm/asm.h>\n");
235 	pr_debug("#include <asm/regdef.h>\n");
236 	pr_debug("\n");
237 
238 	pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
239 	pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
240 	pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
241 	pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
242 	pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
243 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
244 	pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
245 #endif
246 #ifdef _PAGE_NO_EXEC_SHIFT
247 	if (cpu_has_rixi)
248 		pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
249 #endif
250 	pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
251 	pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
252 	pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
253 	pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
254 	pr_debug("\n");
255 }
256 
257 static inline void dump_handler(const char *symbol, const void *start, const void *end)
258 {
259 	unsigned int count = (end - start) / sizeof(u32);
260 	const u32 *handler = start;
261 	int i;
262 
263 	pr_debug("LEAF(%s)\n", symbol);
264 
265 	pr_debug("\t.set push\n");
266 	pr_debug("\t.set noreorder\n");
267 
268 	for (i = 0; i < count; i++)
269 		pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
270 
271 	pr_debug("\t.set\tpop\n");
272 
273 	pr_debug("\tEND(%s)\n", symbol);
274 }
275 
276 /* The only general purpose registers allowed in TLB handlers. */
277 #define K0		26
278 #define K1		27
279 
280 /* Some CP0 registers */
281 #define C0_INDEX	0, 0
282 #define C0_ENTRYLO0	2, 0
283 #define C0_TCBIND	2, 2
284 #define C0_ENTRYLO1	3, 0
285 #define C0_CONTEXT	4, 0
286 #define C0_PAGEMASK	5, 0
287 #define C0_PWBASE	5, 5
288 #define C0_PWFIELD	5, 6
289 #define C0_PWSIZE	5, 7
290 #define C0_PWCTL	6, 6
291 #define C0_BADVADDR	8, 0
292 #define C0_PGD		9, 7
293 #define C0_ENTRYHI	10, 0
294 #define C0_EPC		14, 0
295 #define C0_XCONTEXT	20, 0
296 
297 #ifdef CONFIG_64BIT
298 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
299 #else
300 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
301 #endif
302 
303 /* The worst case length of the handler is around 18 instructions for
304  * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
305  * Maximum space available is 32 instructions for R3000 and 64
306  * instructions for R4000.
307  *
308  * We deliberately chose a buffer size of 128, so we won't scribble
309  * over anything important on overflow before we panic.
310  */
311 static u32 tlb_handler[128];
312 
313 /* simply assume worst case size for labels and relocs */
314 static struct uasm_label labels[128];
315 static struct uasm_reloc relocs[128];
316 
317 static int check_for_high_segbits;
318 static bool fill_includes_sw_bits;
319 
320 static unsigned int kscratch_used_mask;
321 
322 static inline int __maybe_unused c0_kscratch(void)
323 {
324 	switch (current_cpu_type()) {
325 	case CPU_XLP:
326 	case CPU_XLR:
327 		return 22;
328 	default:
329 		return 31;
330 	}
331 }
332 
333 static int allocate_kscratch(void)
334 {
335 	int r;
336 	unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
337 
338 	r = ffs(a);
339 
340 	if (r == 0)
341 		return -1;
342 
343 	r--; /* make it zero based */
344 
345 	kscratch_used_mask |= (1 << r);
346 
347 	return r;
348 }
349 
350 static int scratch_reg;
351 int pgd_reg;
352 EXPORT_SYMBOL_GPL(pgd_reg);
353 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
354 
355 static struct work_registers build_get_work_registers(u32 **p)
356 {
357 	struct work_registers r;
358 
359 	if (scratch_reg >= 0) {
360 		/* Save in CPU local C0_KScratch? */
361 		UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
362 		r.r1 = K0;
363 		r.r2 = K1;
364 		r.r3 = 1;
365 		return r;
366 	}
367 
368 	if (num_possible_cpus() > 1) {
369 		/* Get smp_processor_id */
370 		UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
371 		UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
372 
373 		/* handler_reg_save index in K0 */
374 		UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
375 
376 		UASM_i_LA(p, K1, (long)&handler_reg_save);
377 		UASM_i_ADDU(p, K0, K0, K1);
378 	} else {
379 		UASM_i_LA(p, K0, (long)&handler_reg_save);
380 	}
381 	/* K0 now points to save area, save $1 and $2  */
382 	UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
383 	UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
384 
385 	r.r1 = K1;
386 	r.r2 = 1;
387 	r.r3 = 2;
388 	return r;
389 }
390 
391 static void build_restore_work_registers(u32 **p)
392 {
393 	if (scratch_reg >= 0) {
394 		uasm_i_ehb(p);
395 		UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
396 		return;
397 	}
398 	/* K0 already points to save area, restore $1 and $2  */
399 	UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
400 	UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
401 }
402 
403 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
404 
405 /*
406  * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
407  * we cannot do r3000 under these circumstances.
408  *
409  * The R3000 TLB handler is simple.
410  */
411 static void build_r3000_tlb_refill_handler(void)
412 {
413 	long pgdc = (long)pgd_current;
414 	u32 *p;
415 
416 	memset(tlb_handler, 0, sizeof(tlb_handler));
417 	p = tlb_handler;
418 
419 	uasm_i_mfc0(&p, K0, C0_BADVADDR);
420 	uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
421 	uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
422 	uasm_i_srl(&p, K0, K0, 22); /* load delay */
423 	uasm_i_sll(&p, K0, K0, 2);
424 	uasm_i_addu(&p, K1, K1, K0);
425 	uasm_i_mfc0(&p, K0, C0_CONTEXT);
426 	uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
427 	uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
428 	uasm_i_addu(&p, K1, K1, K0);
429 	uasm_i_lw(&p, K0, 0, K1);
430 	uasm_i_nop(&p); /* load delay */
431 	uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
432 	uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
433 	uasm_i_tlbwr(&p); /* cp0 delay */
434 	uasm_i_jr(&p, K1);
435 	uasm_i_rfe(&p); /* branch delay */
436 
437 	if (p > tlb_handler + 32)
438 		panic("TLB refill handler space exceeded");
439 
440 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
441 		 (unsigned int)(p - tlb_handler));
442 
443 	memcpy((void *)ebase, tlb_handler, 0x80);
444 	local_flush_icache_range(ebase, ebase + 0x80);
445 	dump_handler("r3000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x80));
446 }
447 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
448 
449 /*
450  * The R4000 TLB handler is much more complicated. We have two
451  * consecutive handler areas with 32 instructions space each.
452  * Since they aren't used at the same time, we can overflow in the
453  * other one.To keep things simple, we first assume linear space,
454  * then we relocate it to the final handler layout as needed.
455  */
456 static u32 final_handler[64];
457 
458 /*
459  * Hazards
460  *
461  * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
462  * 2. A timing hazard exists for the TLBP instruction.
463  *
464  *	stalling_instruction
465  *	TLBP
466  *
467  * The JTLB is being read for the TLBP throughout the stall generated by the
468  * previous instruction. This is not really correct as the stalling instruction
469  * can modify the address used to access the JTLB.  The failure symptom is that
470  * the TLBP instruction will use an address created for the stalling instruction
471  * and not the address held in C0_ENHI and thus report the wrong results.
472  *
473  * The software work-around is to not allow the instruction preceding the TLBP
474  * to stall - make it an NOP or some other instruction guaranteed not to stall.
475  *
476  * Errata 2 will not be fixed.	This errata is also on the R5000.
477  *
478  * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
479  */
480 static void __maybe_unused build_tlb_probe_entry(u32 **p)
481 {
482 	switch (current_cpu_type()) {
483 	/* Found by experiment: R4600 v2.0/R4700 needs this, too.  */
484 	case CPU_R4600:
485 	case CPU_R4700:
486 	case CPU_R5000:
487 	case CPU_NEVADA:
488 		uasm_i_nop(p);
489 		uasm_i_tlbp(p);
490 		break;
491 
492 	default:
493 		uasm_i_tlbp(p);
494 		break;
495 	}
496 }
497 
498 void build_tlb_write_entry(u32 **p, struct uasm_label **l,
499 			   struct uasm_reloc **r,
500 			   enum tlb_write_entry wmode)
501 {
502 	void(*tlbw)(u32 **) = NULL;
503 
504 	switch (wmode) {
505 	case tlb_random: tlbw = uasm_i_tlbwr; break;
506 	case tlb_indexed: tlbw = uasm_i_tlbwi; break;
507 	}
508 
509 	if (cpu_has_mips_r2_r6) {
510 		if (cpu_has_mips_r2_exec_hazard)
511 			uasm_i_ehb(p);
512 		tlbw(p);
513 		return;
514 	}
515 
516 	switch (current_cpu_type()) {
517 	case CPU_R4000PC:
518 	case CPU_R4000SC:
519 	case CPU_R4000MC:
520 	case CPU_R4400PC:
521 	case CPU_R4400SC:
522 	case CPU_R4400MC:
523 		/*
524 		 * This branch uses up a mtc0 hazard nop slot and saves
525 		 * two nops after the tlbw instruction.
526 		 */
527 		uasm_bgezl_hazard(p, r, hazard_instance);
528 		tlbw(p);
529 		uasm_bgezl_label(l, p, hazard_instance);
530 		hazard_instance++;
531 		uasm_i_nop(p);
532 		break;
533 
534 	case CPU_R4600:
535 	case CPU_R4700:
536 		uasm_i_nop(p);
537 		tlbw(p);
538 		uasm_i_nop(p);
539 		break;
540 
541 	case CPU_R5000:
542 	case CPU_NEVADA:
543 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
544 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
545 		tlbw(p);
546 		break;
547 
548 	case CPU_5KC:
549 	case CPU_TX49XX:
550 	case CPU_PR4450:
551 	case CPU_XLR:
552 		uasm_i_nop(p);
553 		tlbw(p);
554 		break;
555 
556 	case CPU_R10000:
557 	case CPU_R12000:
558 	case CPU_R14000:
559 	case CPU_R16000:
560 	case CPU_4KC:
561 	case CPU_4KEC:
562 	case CPU_M14KC:
563 	case CPU_M14KEC:
564 	case CPU_SB1:
565 	case CPU_SB1A:
566 	case CPU_4KSC:
567 	case CPU_20KC:
568 	case CPU_25KF:
569 	case CPU_BMIPS32:
570 	case CPU_BMIPS3300:
571 	case CPU_BMIPS4350:
572 	case CPU_BMIPS4380:
573 	case CPU_BMIPS5000:
574 	case CPU_LOONGSON2EF:
575 	case CPU_LOONGSON64:
576 	case CPU_R5500:
577 		if (m4kc_tlbp_war())
578 			uasm_i_nop(p);
579 		/* fall through */
580 	case CPU_ALCHEMY:
581 		tlbw(p);
582 		break;
583 
584 	case CPU_RM7000:
585 		uasm_i_nop(p);
586 		uasm_i_nop(p);
587 		uasm_i_nop(p);
588 		uasm_i_nop(p);
589 		tlbw(p);
590 		break;
591 
592 	case CPU_VR4111:
593 	case CPU_VR4121:
594 	case CPU_VR4122:
595 	case CPU_VR4181:
596 	case CPU_VR4181A:
597 		uasm_i_nop(p);
598 		uasm_i_nop(p);
599 		tlbw(p);
600 		uasm_i_nop(p);
601 		uasm_i_nop(p);
602 		break;
603 
604 	case CPU_VR4131:
605 	case CPU_VR4133:
606 		uasm_i_nop(p);
607 		uasm_i_nop(p);
608 		tlbw(p);
609 		break;
610 
611 	case CPU_XBURST:
612 		tlbw(p);
613 		uasm_i_nop(p);
614 		break;
615 
616 	default:
617 		panic("No TLB refill handler yet (CPU type: %d)",
618 		      current_cpu_type());
619 		break;
620 	}
621 }
622 EXPORT_SYMBOL_GPL(build_tlb_write_entry);
623 
624 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
625 							unsigned int reg)
626 {
627 	if (_PAGE_GLOBAL_SHIFT == 0) {
628 		/* pte_t is already in EntryLo format */
629 		return;
630 	}
631 
632 	if (cpu_has_rixi && !!_PAGE_NO_EXEC) {
633 		if (fill_includes_sw_bits) {
634 			UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
635 		} else {
636 			UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
637 			UASM_i_ROTR(p, reg, reg,
638 				    ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
639 		}
640 	} else {
641 #ifdef CONFIG_PHYS_ADDR_T_64BIT
642 		uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
643 #else
644 		UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
645 #endif
646 	}
647 }
648 
649 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
650 
651 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
652 				   unsigned int tmp, enum label_id lid,
653 				   int restore_scratch)
654 {
655 	if (restore_scratch) {
656 		/*
657 		 * Ensure the MFC0 below observes the value written to the
658 		 * KScratch register by the prior MTC0.
659 		 */
660 		if (scratch_reg >= 0)
661 			uasm_i_ehb(p);
662 
663 		/* Reset default page size */
664 		if (PM_DEFAULT_MASK >> 16) {
665 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
666 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
667 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
668 			uasm_il_b(p, r, lid);
669 		} else if (PM_DEFAULT_MASK) {
670 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
671 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
672 			uasm_il_b(p, r, lid);
673 		} else {
674 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
675 			uasm_il_b(p, r, lid);
676 		}
677 		if (scratch_reg >= 0)
678 			UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
679 		else
680 			UASM_i_LW(p, 1, scratchpad_offset(0), 0);
681 	} else {
682 		/* Reset default page size */
683 		if (PM_DEFAULT_MASK >> 16) {
684 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
685 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
686 			uasm_il_b(p, r, lid);
687 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
688 		} else if (PM_DEFAULT_MASK) {
689 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
690 			uasm_il_b(p, r, lid);
691 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
692 		} else {
693 			uasm_il_b(p, r, lid);
694 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
695 		}
696 	}
697 }
698 
699 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
700 				       struct uasm_reloc **r,
701 				       unsigned int tmp,
702 				       enum tlb_write_entry wmode,
703 				       int restore_scratch)
704 {
705 	/* Set huge page tlb entry size */
706 	uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
707 	uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
708 	uasm_i_mtc0(p, tmp, C0_PAGEMASK);
709 
710 	build_tlb_write_entry(p, l, r, wmode);
711 
712 	build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
713 }
714 
715 /*
716  * Check if Huge PTE is present, if so then jump to LABEL.
717  */
718 static void
719 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
720 		  unsigned int pmd, int lid)
721 {
722 	UASM_i_LW(p, tmp, 0, pmd);
723 	if (use_bbit_insns()) {
724 		uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
725 	} else {
726 		uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
727 		uasm_il_bnez(p, r, tmp, lid);
728 	}
729 }
730 
731 static void build_huge_update_entries(u32 **p, unsigned int pte,
732 				      unsigned int tmp)
733 {
734 	int small_sequence;
735 
736 	/*
737 	 * A huge PTE describes an area the size of the
738 	 * configured huge page size. This is twice the
739 	 * of the large TLB entry size we intend to use.
740 	 * A TLB entry half the size of the configured
741 	 * huge page size is configured into entrylo0
742 	 * and entrylo1 to cover the contiguous huge PTE
743 	 * address space.
744 	 */
745 	small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
746 
747 	/* We can clobber tmp.	It isn't used after this.*/
748 	if (!small_sequence)
749 		uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
750 
751 	build_convert_pte_to_entrylo(p, pte);
752 	UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
753 	/* convert to entrylo1 */
754 	if (small_sequence)
755 		UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
756 	else
757 		UASM_i_ADDU(p, pte, pte, tmp);
758 
759 	UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
760 }
761 
762 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
763 				    struct uasm_label **l,
764 				    unsigned int pte,
765 				    unsigned int ptr,
766 				    unsigned int flush)
767 {
768 #ifdef CONFIG_SMP
769 	UASM_i_SC(p, pte, 0, ptr);
770 	uasm_il_beqz(p, r, pte, label_tlb_huge_update);
771 	UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
772 #else
773 	UASM_i_SW(p, pte, 0, ptr);
774 #endif
775 	if (cpu_has_ftlb && flush) {
776 		BUG_ON(!cpu_has_tlbinv);
777 
778 		UASM_i_MFC0(p, ptr, C0_ENTRYHI);
779 		uasm_i_ori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
780 		UASM_i_MTC0(p, ptr, C0_ENTRYHI);
781 		build_tlb_write_entry(p, l, r, tlb_indexed);
782 
783 		uasm_i_xori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
784 		UASM_i_MTC0(p, ptr, C0_ENTRYHI);
785 		build_huge_update_entries(p, pte, ptr);
786 		build_huge_tlb_write_entry(p, l, r, pte, tlb_random, 0);
787 
788 		return;
789 	}
790 
791 	build_huge_update_entries(p, pte, ptr);
792 	build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
793 }
794 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
795 
796 #ifdef CONFIG_64BIT
797 /*
798  * TMP and PTR are scratch.
799  * TMP will be clobbered, PTR will hold the pmd entry.
800  */
801 void build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
802 		      unsigned int tmp, unsigned int ptr)
803 {
804 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
805 	long pgdc = (long)pgd_current;
806 #endif
807 	/*
808 	 * The vmalloc handling is not in the hotpath.
809 	 */
810 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
811 
812 	if (check_for_high_segbits) {
813 		/*
814 		 * The kernel currently implicitely assumes that the
815 		 * MIPS SEGBITS parameter for the processor is
816 		 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
817 		 * allocate virtual addresses outside the maximum
818 		 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
819 		 * that doesn't prevent user code from accessing the
820 		 * higher xuseg addresses.  Here, we make sure that
821 		 * everything but the lower xuseg addresses goes down
822 		 * the module_alloc/vmalloc path.
823 		 */
824 		uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
825 		uasm_il_bnez(p, r, ptr, label_vmalloc);
826 	} else {
827 		uasm_il_bltz(p, r, tmp, label_vmalloc);
828 	}
829 	/* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
830 
831 	if (pgd_reg != -1) {
832 		/* pgd is in pgd_reg */
833 		if (cpu_has_ldpte)
834 			UASM_i_MFC0(p, ptr, C0_PWBASE);
835 		else
836 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
837 	} else {
838 #if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
839 		/*
840 		 * &pgd << 11 stored in CONTEXT [23..63].
841 		 */
842 		UASM_i_MFC0(p, ptr, C0_CONTEXT);
843 
844 		/* Clear lower 23 bits of context. */
845 		uasm_i_dins(p, ptr, 0, 0, 23);
846 
847 		/* 1 0	1 0 1  << 6  xkphys cached */
848 		uasm_i_ori(p, ptr, ptr, 0x540);
849 		uasm_i_drotr(p, ptr, ptr, 11);
850 #elif defined(CONFIG_SMP)
851 		UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
852 		uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
853 		UASM_i_LA_mostly(p, tmp, pgdc);
854 		uasm_i_daddu(p, ptr, ptr, tmp);
855 		uasm_i_dmfc0(p, tmp, C0_BADVADDR);
856 		uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
857 #else
858 		UASM_i_LA_mostly(p, ptr, pgdc);
859 		uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
860 #endif
861 	}
862 
863 	uasm_l_vmalloc_done(l, *p);
864 
865 	/* get pgd offset in bytes */
866 	uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
867 
868 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
869 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
870 #ifndef __PAGETABLE_PUD_FOLDED
871 	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
872 	uasm_i_ld(p, ptr, 0, ptr); /* get pud pointer */
873 	uasm_i_dsrl_safe(p, tmp, tmp, PUD_SHIFT - 3); /* get pud offset in bytes */
874 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PUD - 1) << 3);
875 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pud offset */
876 #endif
877 #ifndef __PAGETABLE_PMD_FOLDED
878 	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
879 	uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
880 	uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
881 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
882 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
883 #endif
884 }
885 EXPORT_SYMBOL_GPL(build_get_pmde64);
886 
887 /*
888  * BVADDR is the faulting address, PTR is scratch.
889  * PTR will hold the pgd for vmalloc.
890  */
891 static void
892 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
893 			unsigned int bvaddr, unsigned int ptr,
894 			enum vmalloc64_mode mode)
895 {
896 	long swpd = (long)swapper_pg_dir;
897 	int single_insn_swpd;
898 	int did_vmalloc_branch = 0;
899 
900 	single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
901 
902 	uasm_l_vmalloc(l, *p);
903 
904 	if (mode != not_refill && check_for_high_segbits) {
905 		if (single_insn_swpd) {
906 			uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
907 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
908 			did_vmalloc_branch = 1;
909 			/* fall through */
910 		} else {
911 			uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
912 		}
913 	}
914 	if (!did_vmalloc_branch) {
915 		if (single_insn_swpd) {
916 			uasm_il_b(p, r, label_vmalloc_done);
917 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
918 		} else {
919 			UASM_i_LA_mostly(p, ptr, swpd);
920 			uasm_il_b(p, r, label_vmalloc_done);
921 			if (uasm_in_compat_space_p(swpd))
922 				uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
923 			else
924 				uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
925 		}
926 	}
927 	if (mode != not_refill && check_for_high_segbits) {
928 		uasm_l_large_segbits_fault(l, *p);
929 
930 		if (mode == refill_scratch && scratch_reg >= 0)
931 			uasm_i_ehb(p);
932 
933 		/*
934 		 * We get here if we are an xsseg address, or if we are
935 		 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
936 		 *
937 		 * Ignoring xsseg (assume disabled so would generate
938 		 * (address errors?), the only remaining possibility
939 		 * is the upper xuseg addresses.  On processors with
940 		 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
941 		 * addresses would have taken an address error. We try
942 		 * to mimic that here by taking a load/istream page
943 		 * fault.
944 		 */
945 		if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
946 			uasm_i_sync(p, 0);
947 		UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
948 		uasm_i_jr(p, ptr);
949 
950 		if (mode == refill_scratch) {
951 			if (scratch_reg >= 0)
952 				UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
953 			else
954 				UASM_i_LW(p, 1, scratchpad_offset(0), 0);
955 		} else {
956 			uasm_i_nop(p);
957 		}
958 	}
959 }
960 
961 #else /* !CONFIG_64BIT */
962 
963 /*
964  * TMP and PTR are scratch.
965  * TMP will be clobbered, PTR will hold the pgd entry.
966  */
967 void build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
968 {
969 	if (pgd_reg != -1) {
970 		/* pgd is in pgd_reg */
971 		uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
972 		uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
973 	} else {
974 		long pgdc = (long)pgd_current;
975 
976 		/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
977 #ifdef CONFIG_SMP
978 		uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
979 		UASM_i_LA_mostly(p, tmp, pgdc);
980 		uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
981 		uasm_i_addu(p, ptr, tmp, ptr);
982 #else
983 		UASM_i_LA_mostly(p, ptr, pgdc);
984 #endif
985 		uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
986 		uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
987 	}
988 	uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
989 	uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
990 	uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
991 }
992 EXPORT_SYMBOL_GPL(build_get_pgde32);
993 
994 #endif /* !CONFIG_64BIT */
995 
996 static void build_adjust_context(u32 **p, unsigned int ctx)
997 {
998 	unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
999 	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
1000 
1001 	switch (current_cpu_type()) {
1002 	case CPU_VR41XX:
1003 	case CPU_VR4111:
1004 	case CPU_VR4121:
1005 	case CPU_VR4122:
1006 	case CPU_VR4131:
1007 	case CPU_VR4181:
1008 	case CPU_VR4181A:
1009 	case CPU_VR4133:
1010 		shift += 2;
1011 		break;
1012 
1013 	default:
1014 		break;
1015 	}
1016 
1017 	if (shift)
1018 		UASM_i_SRL(p, ctx, ctx, shift);
1019 	uasm_i_andi(p, ctx, ctx, mask);
1020 }
1021 
1022 void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1023 {
1024 	/*
1025 	 * Bug workaround for the Nevada. It seems as if under certain
1026 	 * circumstances the move from cp0_context might produce a
1027 	 * bogus result when the mfc0 instruction and its consumer are
1028 	 * in a different cacheline or a load instruction, probably any
1029 	 * memory reference, is between them.
1030 	 */
1031 	switch (current_cpu_type()) {
1032 	case CPU_NEVADA:
1033 		UASM_i_LW(p, ptr, 0, ptr);
1034 		GET_CONTEXT(p, tmp); /* get context reg */
1035 		break;
1036 
1037 	default:
1038 		GET_CONTEXT(p, tmp); /* get context reg */
1039 		UASM_i_LW(p, ptr, 0, ptr);
1040 		break;
1041 	}
1042 
1043 	build_adjust_context(p, tmp);
1044 	UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1045 }
1046 EXPORT_SYMBOL_GPL(build_get_ptep);
1047 
1048 void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1049 {
1050 	int pte_off_even = 0;
1051 	int pte_off_odd = sizeof(pte_t);
1052 
1053 #if defined(CONFIG_CPU_MIPS32) && defined(CONFIG_PHYS_ADDR_T_64BIT)
1054 	/* The low 32 bits of EntryLo is stored in pte_high */
1055 	pte_off_even += offsetof(pte_t, pte_high);
1056 	pte_off_odd += offsetof(pte_t, pte_high);
1057 #endif
1058 
1059 	if (IS_ENABLED(CONFIG_XPA)) {
1060 		uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */
1061 		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1062 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0);
1063 
1064 		if (cpu_has_xpa && !mips_xpa_disabled) {
1065 			uasm_i_lw(p, tmp, 0, ptep);
1066 			uasm_i_ext(p, tmp, tmp, 0, 24);
1067 			uasm_i_mthc0(p, tmp, C0_ENTRYLO0);
1068 		}
1069 
1070 		uasm_i_lw(p, tmp, pte_off_odd, ptep); /* odd pte */
1071 		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1072 		UASM_i_MTC0(p, tmp, C0_ENTRYLO1);
1073 
1074 		if (cpu_has_xpa && !mips_xpa_disabled) {
1075 			uasm_i_lw(p, tmp, sizeof(pte_t), ptep);
1076 			uasm_i_ext(p, tmp, tmp, 0, 24);
1077 			uasm_i_mthc0(p, tmp, C0_ENTRYLO1);
1078 		}
1079 		return;
1080 	}
1081 
1082 	UASM_i_LW(p, tmp, pte_off_even, ptep); /* get even pte */
1083 	UASM_i_LW(p, ptep, pte_off_odd, ptep); /* get odd pte */
1084 	if (r45k_bvahwbug())
1085 		build_tlb_probe_entry(p);
1086 	build_convert_pte_to_entrylo(p, tmp);
1087 	if (r4k_250MHZhwbug())
1088 		UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1089 	UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1090 	build_convert_pte_to_entrylo(p, ptep);
1091 	if (r45k_bvahwbug())
1092 		uasm_i_mfc0(p, tmp, C0_INDEX);
1093 	if (r4k_250MHZhwbug())
1094 		UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1095 	UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1096 }
1097 EXPORT_SYMBOL_GPL(build_update_entries);
1098 
1099 struct mips_huge_tlb_info {
1100 	int huge_pte;
1101 	int restore_scratch;
1102 	bool need_reload_pte;
1103 };
1104 
1105 static struct mips_huge_tlb_info
1106 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1107 			       struct uasm_reloc **r, unsigned int tmp,
1108 			       unsigned int ptr, int c0_scratch_reg)
1109 {
1110 	struct mips_huge_tlb_info rv;
1111 	unsigned int even, odd;
1112 	int vmalloc_branch_delay_filled = 0;
1113 	const int scratch = 1; /* Our extra working register */
1114 
1115 	rv.huge_pte = scratch;
1116 	rv.restore_scratch = 0;
1117 	rv.need_reload_pte = false;
1118 
1119 	if (check_for_high_segbits) {
1120 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1121 
1122 		if (pgd_reg != -1)
1123 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1124 		else
1125 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1126 
1127 		if (c0_scratch_reg >= 0)
1128 			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1129 		else
1130 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1131 
1132 		uasm_i_dsrl_safe(p, scratch, tmp,
1133 				 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1134 		uasm_il_bnez(p, r, scratch, label_vmalloc);
1135 
1136 		if (pgd_reg == -1) {
1137 			vmalloc_branch_delay_filled = 1;
1138 			/* Clear lower 23 bits of context. */
1139 			uasm_i_dins(p, ptr, 0, 0, 23);
1140 		}
1141 	} else {
1142 		if (pgd_reg != -1)
1143 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1144 		else
1145 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1146 
1147 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1148 
1149 		if (c0_scratch_reg >= 0)
1150 			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1151 		else
1152 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1153 
1154 		if (pgd_reg == -1)
1155 			/* Clear lower 23 bits of context. */
1156 			uasm_i_dins(p, ptr, 0, 0, 23);
1157 
1158 		uasm_il_bltz(p, r, tmp, label_vmalloc);
1159 	}
1160 
1161 	if (pgd_reg == -1) {
1162 		vmalloc_branch_delay_filled = 1;
1163 		/* 1 0	1 0 1  << 6  xkphys cached */
1164 		uasm_i_ori(p, ptr, ptr, 0x540);
1165 		uasm_i_drotr(p, ptr, ptr, 11);
1166 	}
1167 
1168 #ifdef __PAGETABLE_PMD_FOLDED
1169 #define LOC_PTEP scratch
1170 #else
1171 #define LOC_PTEP ptr
1172 #endif
1173 
1174 	if (!vmalloc_branch_delay_filled)
1175 		/* get pgd offset in bytes */
1176 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1177 
1178 	uasm_l_vmalloc_done(l, *p);
1179 
1180 	/*
1181 	 *			   tmp		ptr
1182 	 * fall-through case =	 badvaddr  *pgd_current
1183 	 * vmalloc case	     =	 badvaddr  swapper_pg_dir
1184 	 */
1185 
1186 	if (vmalloc_branch_delay_filled)
1187 		/* get pgd offset in bytes */
1188 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1189 
1190 #ifdef __PAGETABLE_PMD_FOLDED
1191 	GET_CONTEXT(p, tmp); /* get context reg */
1192 #endif
1193 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1194 
1195 	if (use_lwx_insns()) {
1196 		UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1197 	} else {
1198 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1199 		uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1200 	}
1201 
1202 #ifndef __PAGETABLE_PUD_FOLDED
1203 	/* get pud offset in bytes */
1204 	uasm_i_dsrl_safe(p, scratch, tmp, PUD_SHIFT - 3);
1205 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PUD - 1) << 3);
1206 
1207 	if (use_lwx_insns()) {
1208 		UASM_i_LWX(p, ptr, scratch, ptr);
1209 	} else {
1210 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1211 		UASM_i_LW(p, ptr, 0, ptr);
1212 	}
1213 	/* ptr contains a pointer to PMD entry */
1214 	/* tmp contains the address */
1215 #endif
1216 
1217 #ifndef __PAGETABLE_PMD_FOLDED
1218 	/* get pmd offset in bytes */
1219 	uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1220 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1221 	GET_CONTEXT(p, tmp); /* get context reg */
1222 
1223 	if (use_lwx_insns()) {
1224 		UASM_i_LWX(p, scratch, scratch, ptr);
1225 	} else {
1226 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1227 		UASM_i_LW(p, scratch, 0, ptr);
1228 	}
1229 #endif
1230 	/* Adjust the context during the load latency. */
1231 	build_adjust_context(p, tmp);
1232 
1233 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1234 	uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1235 	/*
1236 	 * The in the LWX case we don't want to do the load in the
1237 	 * delay slot.	It cannot issue in the same cycle and may be
1238 	 * speculative and unneeded.
1239 	 */
1240 	if (use_lwx_insns())
1241 		uasm_i_nop(p);
1242 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1243 
1244 
1245 	/* build_update_entries */
1246 	if (use_lwx_insns()) {
1247 		even = ptr;
1248 		odd = tmp;
1249 		UASM_i_LWX(p, even, scratch, tmp);
1250 		UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1251 		UASM_i_LWX(p, odd, scratch, tmp);
1252 	} else {
1253 		UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1254 		even = tmp;
1255 		odd = ptr;
1256 		UASM_i_LW(p, even, 0, ptr); /* get even pte */
1257 		UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1258 	}
1259 	if (cpu_has_rixi) {
1260 		uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1261 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1262 		uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1263 	} else {
1264 		uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1265 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1266 		uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1267 	}
1268 	UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1269 
1270 	if (c0_scratch_reg >= 0) {
1271 		uasm_i_ehb(p);
1272 		UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1273 		build_tlb_write_entry(p, l, r, tlb_random);
1274 		uasm_l_leave(l, *p);
1275 		rv.restore_scratch = 1;
1276 	} else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13)  {
1277 		build_tlb_write_entry(p, l, r, tlb_random);
1278 		uasm_l_leave(l, *p);
1279 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1280 	} else {
1281 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1282 		build_tlb_write_entry(p, l, r, tlb_random);
1283 		uasm_l_leave(l, *p);
1284 		rv.restore_scratch = 1;
1285 	}
1286 
1287 	uasm_i_eret(p); /* return from trap */
1288 
1289 	return rv;
1290 }
1291 
1292 /*
1293  * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1294  * because EXL == 0.  If we wrap, we can also use the 32 instruction
1295  * slots before the XTLB refill exception handler which belong to the
1296  * unused TLB refill exception.
1297  */
1298 #define MIPS64_REFILL_INSNS 32
1299 
1300 static void build_r4000_tlb_refill_handler(void)
1301 {
1302 	u32 *p = tlb_handler;
1303 	struct uasm_label *l = labels;
1304 	struct uasm_reloc *r = relocs;
1305 	u32 *f;
1306 	unsigned int final_len;
1307 	struct mips_huge_tlb_info htlb_info __maybe_unused;
1308 	enum vmalloc64_mode vmalloc_mode __maybe_unused;
1309 
1310 	memset(tlb_handler, 0, sizeof(tlb_handler));
1311 	memset(labels, 0, sizeof(labels));
1312 	memset(relocs, 0, sizeof(relocs));
1313 	memset(final_handler, 0, sizeof(final_handler));
1314 
1315 	if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1316 		htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1317 							  scratch_reg);
1318 		vmalloc_mode = refill_scratch;
1319 	} else {
1320 		htlb_info.huge_pte = K0;
1321 		htlb_info.restore_scratch = 0;
1322 		htlb_info.need_reload_pte = true;
1323 		vmalloc_mode = refill_noscratch;
1324 		/*
1325 		 * create the plain linear handler
1326 		 */
1327 		if (bcm1250_m3_war()) {
1328 			unsigned int segbits = 44;
1329 
1330 			uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1331 			uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1332 			uasm_i_xor(&p, K0, K0, K1);
1333 			uasm_i_dsrl_safe(&p, K1, K0, 62);
1334 			uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1335 			uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1336 			uasm_i_or(&p, K0, K0, K1);
1337 			uasm_il_bnez(&p, &r, K0, label_leave);
1338 			/* No need for uasm_i_nop */
1339 		}
1340 
1341 #ifdef CONFIG_64BIT
1342 		build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1343 #else
1344 		build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1345 #endif
1346 
1347 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1348 		build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1349 #endif
1350 
1351 		build_get_ptep(&p, K0, K1);
1352 		build_update_entries(&p, K0, K1);
1353 		build_tlb_write_entry(&p, &l, &r, tlb_random);
1354 		uasm_l_leave(&l, p);
1355 		uasm_i_eret(&p); /* return from trap */
1356 	}
1357 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1358 	uasm_l_tlb_huge_update(&l, p);
1359 	if (htlb_info.need_reload_pte)
1360 		UASM_i_LW(&p, htlb_info.huge_pte, 0, K1);
1361 	build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1362 	build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1363 				   htlb_info.restore_scratch);
1364 #endif
1365 
1366 #ifdef CONFIG_64BIT
1367 	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1368 #endif
1369 
1370 	/*
1371 	 * Overflow check: For the 64bit handler, we need at least one
1372 	 * free instruction slot for the wrap-around branch. In worst
1373 	 * case, if the intended insertion point is a delay slot, we
1374 	 * need three, with the second nop'ed and the third being
1375 	 * unused.
1376 	 */
1377 	switch (boot_cpu_type()) {
1378 	default:
1379 		if (sizeof(long) == 4) {
1380 	case CPU_LOONGSON2EF:
1381 		/* Loongson2 ebase is different than r4k, we have more space */
1382 			if ((p - tlb_handler) > 64)
1383 				panic("TLB refill handler space exceeded");
1384 			/*
1385 			 * Now fold the handler in the TLB refill handler space.
1386 			 */
1387 			f = final_handler;
1388 			/* Simplest case, just copy the handler. */
1389 			uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1390 			final_len = p - tlb_handler;
1391 			break;
1392 		} else {
1393 			if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1394 			    || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1395 				&& uasm_insn_has_bdelay(relocs,
1396 							tlb_handler + MIPS64_REFILL_INSNS - 3)))
1397 				panic("TLB refill handler space exceeded");
1398 			/*
1399 			 * Now fold the handler in the TLB refill handler space.
1400 			 */
1401 			f = final_handler + MIPS64_REFILL_INSNS;
1402 			if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1403 				/* Just copy the handler. */
1404 				uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1405 				final_len = p - tlb_handler;
1406 			} else {
1407 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1408 				const enum label_id ls = label_tlb_huge_update;
1409 #else
1410 				const enum label_id ls = label_vmalloc;
1411 #endif
1412 				u32 *split;
1413 				int ov = 0;
1414 				int i;
1415 
1416 				for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1417 					;
1418 				BUG_ON(i == ARRAY_SIZE(labels));
1419 				split = labels[i].addr;
1420 
1421 				/*
1422 				 * See if we have overflown one way or the other.
1423 				 */
1424 				if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1425 				    split < p - MIPS64_REFILL_INSNS)
1426 					ov = 1;
1427 
1428 				if (ov) {
1429 					/*
1430 					 * Split two instructions before the end.  One
1431 					 * for the branch and one for the instruction
1432 					 * in the delay slot.
1433 					 */
1434 					split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1435 
1436 					/*
1437 					 * If the branch would fall in a delay slot,
1438 					 * we must back up an additional instruction
1439 					 * so that it is no longer in a delay slot.
1440 					 */
1441 					if (uasm_insn_has_bdelay(relocs, split - 1))
1442 						split--;
1443 				}
1444 				/* Copy first part of the handler. */
1445 				uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1446 				f += split - tlb_handler;
1447 
1448 				if (ov) {
1449 					/* Insert branch. */
1450 					uasm_l_split(&l, final_handler);
1451 					uasm_il_b(&f, &r, label_split);
1452 					if (uasm_insn_has_bdelay(relocs, split))
1453 						uasm_i_nop(&f);
1454 					else {
1455 						uasm_copy_handler(relocs, labels,
1456 								  split, split + 1, f);
1457 						uasm_move_labels(labels, f, f + 1, -1);
1458 						f++;
1459 						split++;
1460 					}
1461 				}
1462 
1463 				/* Copy the rest of the handler. */
1464 				uasm_copy_handler(relocs, labels, split, p, final_handler);
1465 				final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1466 					    (p - split);
1467 			}
1468 		}
1469 		break;
1470 	}
1471 
1472 	uasm_resolve_relocs(relocs, labels);
1473 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
1474 		 final_len);
1475 
1476 	memcpy((void *)ebase, final_handler, 0x100);
1477 	local_flush_icache_range(ebase, ebase + 0x100);
1478 	dump_handler("r4000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x100));
1479 }
1480 
1481 static void setup_pw(void)
1482 {
1483 	unsigned long pgd_i, pgd_w;
1484 #ifndef __PAGETABLE_PMD_FOLDED
1485 	unsigned long pmd_i, pmd_w;
1486 #endif
1487 	unsigned long pt_i, pt_w;
1488 	unsigned long pte_i, pte_w;
1489 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1490 	unsigned long psn;
1491 
1492 	psn = ilog2(_PAGE_HUGE);     /* bit used to indicate huge page */
1493 #endif
1494 	pgd_i = PGDIR_SHIFT;  /* 1st level PGD */
1495 #ifndef __PAGETABLE_PMD_FOLDED
1496 	pgd_w = PGDIR_SHIFT - PMD_SHIFT + PGD_ORDER;
1497 
1498 	pmd_i = PMD_SHIFT;    /* 2nd level PMD */
1499 	pmd_w = PMD_SHIFT - PAGE_SHIFT;
1500 #else
1501 	pgd_w = PGDIR_SHIFT - PAGE_SHIFT + PGD_ORDER;
1502 #endif
1503 
1504 	pt_i  = PAGE_SHIFT;    /* 3rd level PTE */
1505 	pt_w  = PAGE_SHIFT - 3;
1506 
1507 	pte_i = ilog2(_PAGE_GLOBAL);
1508 	pte_w = 0;
1509 
1510 #ifndef __PAGETABLE_PMD_FOLDED
1511 	write_c0_pwfield(pgd_i << 24 | pmd_i << 12 | pt_i << 6 | pte_i);
1512 	write_c0_pwsize(1 << 30 | pgd_w << 24 | pmd_w << 12 | pt_w << 6 | pte_w);
1513 #else
1514 	write_c0_pwfield(pgd_i << 24 | pt_i << 6 | pte_i);
1515 	write_c0_pwsize(1 << 30 | pgd_w << 24 | pt_w << 6 | pte_w);
1516 #endif
1517 
1518 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1519 	write_c0_pwctl(1 << 6 | psn);
1520 #endif
1521 	write_c0_kpgd((long)swapper_pg_dir);
1522 	kscratch_used_mask |= (1 << 7); /* KScratch6 is used for KPGD */
1523 }
1524 
1525 static void build_loongson3_tlb_refill_handler(void)
1526 {
1527 	u32 *p = tlb_handler;
1528 	struct uasm_label *l = labels;
1529 	struct uasm_reloc *r = relocs;
1530 
1531 	memset(labels, 0, sizeof(labels));
1532 	memset(relocs, 0, sizeof(relocs));
1533 	memset(tlb_handler, 0, sizeof(tlb_handler));
1534 
1535 	if (check_for_high_segbits) {
1536 		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1537 		uasm_i_dsrl_safe(&p, K1, K0, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1538 		uasm_il_beqz(&p, &r, K1, label_vmalloc);
1539 		uasm_i_nop(&p);
1540 
1541 		uasm_il_bgez(&p, &r, K0, label_large_segbits_fault);
1542 		uasm_i_nop(&p);
1543 		uasm_l_vmalloc(&l, p);
1544 	}
1545 
1546 	uasm_i_dmfc0(&p, K1, C0_PGD);
1547 
1548 	uasm_i_lddir(&p, K0, K1, 3);  /* global page dir */
1549 #ifndef __PAGETABLE_PMD_FOLDED
1550 	uasm_i_lddir(&p, K1, K0, 1);  /* middle page dir */
1551 #endif
1552 	uasm_i_ldpte(&p, K1, 0);      /* even */
1553 	uasm_i_ldpte(&p, K1, 1);      /* odd */
1554 	uasm_i_tlbwr(&p);
1555 
1556 	/* restore page mask */
1557 	if (PM_DEFAULT_MASK >> 16) {
1558 		uasm_i_lui(&p, K0, PM_DEFAULT_MASK >> 16);
1559 		uasm_i_ori(&p, K0, K0, PM_DEFAULT_MASK & 0xffff);
1560 		uasm_i_mtc0(&p, K0, C0_PAGEMASK);
1561 	} else if (PM_DEFAULT_MASK) {
1562 		uasm_i_ori(&p, K0, 0, PM_DEFAULT_MASK);
1563 		uasm_i_mtc0(&p, K0, C0_PAGEMASK);
1564 	} else {
1565 		uasm_i_mtc0(&p, 0, C0_PAGEMASK);
1566 	}
1567 
1568 	uasm_i_eret(&p);
1569 
1570 	if (check_for_high_segbits) {
1571 		uasm_l_large_segbits_fault(&l, p);
1572 		UASM_i_LA(&p, K1, (unsigned long)tlb_do_page_fault_0);
1573 		uasm_i_jr(&p, K1);
1574 		uasm_i_nop(&p);
1575 	}
1576 
1577 	uasm_resolve_relocs(relocs, labels);
1578 	memcpy((void *)(ebase + 0x80), tlb_handler, 0x80);
1579 	local_flush_icache_range(ebase + 0x80, ebase + 0x100);
1580 	dump_handler("loongson3_tlb_refill",
1581 		     (u32 *)(ebase + 0x80), (u32 *)(ebase + 0x100));
1582 }
1583 
1584 static void build_setup_pgd(void)
1585 {
1586 	const int a0 = 4;
1587 	const int __maybe_unused a1 = 5;
1588 	const int __maybe_unused a2 = 6;
1589 	u32 *p = (u32 *)msk_isa16_mode((ulong)tlbmiss_handler_setup_pgd);
1590 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1591 	long pgdc = (long)pgd_current;
1592 #endif
1593 
1594 	memset(p, 0, tlbmiss_handler_setup_pgd_end - (char *)p);
1595 	memset(labels, 0, sizeof(labels));
1596 	memset(relocs, 0, sizeof(relocs));
1597 	pgd_reg = allocate_kscratch();
1598 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1599 	if (pgd_reg == -1) {
1600 		struct uasm_label *l = labels;
1601 		struct uasm_reloc *r = relocs;
1602 
1603 		/* PGD << 11 in c0_Context */
1604 		/*
1605 		 * If it is a ckseg0 address, convert to a physical
1606 		 * address.  Shifting right by 29 and adding 4 will
1607 		 * result in zero for these addresses.
1608 		 *
1609 		 */
1610 		UASM_i_SRA(&p, a1, a0, 29);
1611 		UASM_i_ADDIU(&p, a1, a1, 4);
1612 		uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1613 		uasm_i_nop(&p);
1614 		uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1615 		uasm_l_tlbl_goaround1(&l, p);
1616 		UASM_i_SLL(&p, a0, a0, 11);
1617 		UASM_i_MTC0(&p, a0, C0_CONTEXT);
1618 		uasm_i_jr(&p, 31);
1619 		uasm_i_ehb(&p);
1620 	} else {
1621 		/* PGD in c0_KScratch */
1622 		if (cpu_has_ldpte)
1623 			UASM_i_MTC0(&p, a0, C0_PWBASE);
1624 		else
1625 			UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1626 		uasm_i_jr(&p, 31);
1627 		uasm_i_ehb(&p);
1628 	}
1629 #else
1630 #ifdef CONFIG_SMP
1631 	/* Save PGD to pgd_current[smp_processor_id()] */
1632 	UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1633 	UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1634 	UASM_i_LA_mostly(&p, a2, pgdc);
1635 	UASM_i_ADDU(&p, a2, a2, a1);
1636 	UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1637 #else
1638 	UASM_i_LA_mostly(&p, a2, pgdc);
1639 	UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1640 #endif /* SMP */
1641 
1642 	/* if pgd_reg is allocated, save PGD also to scratch register */
1643 	if (pgd_reg != -1) {
1644 		UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1645 		uasm_i_jr(&p, 31);
1646 		uasm_i_ehb(&p);
1647 	} else {
1648 		uasm_i_jr(&p, 31);
1649 		uasm_i_nop(&p);
1650 	}
1651 #endif
1652 	if (p >= (u32 *)tlbmiss_handler_setup_pgd_end)
1653 		panic("tlbmiss_handler_setup_pgd space exceeded");
1654 
1655 	uasm_resolve_relocs(relocs, labels);
1656 	pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1657 		 (unsigned int)(p - (u32 *)tlbmiss_handler_setup_pgd));
1658 
1659 	dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1660 					tlbmiss_handler_setup_pgd_end);
1661 }
1662 
1663 static void
1664 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1665 {
1666 #ifdef CONFIG_SMP
1667 	if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
1668 		uasm_i_sync(p, 0);
1669 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1670 	if (cpu_has_64bits)
1671 		uasm_i_lld(p, pte, 0, ptr);
1672 	else
1673 # endif
1674 		UASM_i_LL(p, pte, 0, ptr);
1675 #else
1676 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1677 	if (cpu_has_64bits)
1678 		uasm_i_ld(p, pte, 0, ptr);
1679 	else
1680 # endif
1681 		UASM_i_LW(p, pte, 0, ptr);
1682 #endif
1683 }
1684 
1685 static void
1686 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1687 	unsigned int mode, unsigned int scratch)
1688 {
1689 	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1690 	unsigned int swmode = mode & ~hwmode;
1691 
1692 	if (IS_ENABLED(CONFIG_XPA) && !cpu_has_64bits) {
1693 		uasm_i_lui(p, scratch, swmode >> 16);
1694 		uasm_i_or(p, pte, pte, scratch);
1695 		BUG_ON(swmode & 0xffff);
1696 	} else {
1697 		uasm_i_ori(p, pte, pte, mode);
1698 	}
1699 
1700 #ifdef CONFIG_SMP
1701 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1702 	if (cpu_has_64bits)
1703 		uasm_i_scd(p, pte, 0, ptr);
1704 	else
1705 # endif
1706 		UASM_i_SC(p, pte, 0, ptr);
1707 
1708 	if (r10000_llsc_war())
1709 		uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1710 	else
1711 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1712 
1713 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1714 	if (!cpu_has_64bits) {
1715 		/* no uasm_i_nop needed */
1716 		uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1717 		uasm_i_ori(p, pte, pte, hwmode);
1718 		BUG_ON(hwmode & ~0xffff);
1719 		uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1720 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1721 		/* no uasm_i_nop needed */
1722 		uasm_i_lw(p, pte, 0, ptr);
1723 	} else
1724 		uasm_i_nop(p);
1725 # else
1726 	uasm_i_nop(p);
1727 # endif
1728 #else
1729 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1730 	if (cpu_has_64bits)
1731 		uasm_i_sd(p, pte, 0, ptr);
1732 	else
1733 # endif
1734 		UASM_i_SW(p, pte, 0, ptr);
1735 
1736 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1737 	if (!cpu_has_64bits) {
1738 		uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1739 		uasm_i_ori(p, pte, pte, hwmode);
1740 		BUG_ON(hwmode & ~0xffff);
1741 		uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1742 		uasm_i_lw(p, pte, 0, ptr);
1743 	}
1744 # endif
1745 #endif
1746 }
1747 
1748 /*
1749  * Check if PTE is present, if not then jump to LABEL. PTR points to
1750  * the page table where this PTE is located, PTE will be re-loaded
1751  * with it's original value.
1752  */
1753 static void
1754 build_pte_present(u32 **p, struct uasm_reloc **r,
1755 		  int pte, int ptr, int scratch, enum label_id lid)
1756 {
1757 	int t = scratch >= 0 ? scratch : pte;
1758 	int cur = pte;
1759 
1760 	if (cpu_has_rixi) {
1761 		if (use_bbit_insns()) {
1762 			uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1763 			uasm_i_nop(p);
1764 		} else {
1765 			if (_PAGE_PRESENT_SHIFT) {
1766 				uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1767 				cur = t;
1768 			}
1769 			uasm_i_andi(p, t, cur, 1);
1770 			uasm_il_beqz(p, r, t, lid);
1771 			if (pte == t)
1772 				/* You lose the SMP race :-(*/
1773 				iPTE_LW(p, pte, ptr);
1774 		}
1775 	} else {
1776 		if (_PAGE_PRESENT_SHIFT) {
1777 			uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1778 			cur = t;
1779 		}
1780 		uasm_i_andi(p, t, cur,
1781 			(_PAGE_PRESENT | _PAGE_NO_READ) >> _PAGE_PRESENT_SHIFT);
1782 		uasm_i_xori(p, t, t, _PAGE_PRESENT >> _PAGE_PRESENT_SHIFT);
1783 		uasm_il_bnez(p, r, t, lid);
1784 		if (pte == t)
1785 			/* You lose the SMP race :-(*/
1786 			iPTE_LW(p, pte, ptr);
1787 	}
1788 }
1789 
1790 /* Make PTE valid, store result in PTR. */
1791 static void
1792 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1793 		 unsigned int ptr, unsigned int scratch)
1794 {
1795 	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1796 
1797 	iPTE_SW(p, r, pte, ptr, mode, scratch);
1798 }
1799 
1800 /*
1801  * Check if PTE can be written to, if not branch to LABEL. Regardless
1802  * restore PTE with value from PTR when done.
1803  */
1804 static void
1805 build_pte_writable(u32 **p, struct uasm_reloc **r,
1806 		   unsigned int pte, unsigned int ptr, int scratch,
1807 		   enum label_id lid)
1808 {
1809 	int t = scratch >= 0 ? scratch : pte;
1810 	int cur = pte;
1811 
1812 	if (_PAGE_PRESENT_SHIFT) {
1813 		uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1814 		cur = t;
1815 	}
1816 	uasm_i_andi(p, t, cur,
1817 		    (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1818 	uasm_i_xori(p, t, t,
1819 		    (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1820 	uasm_il_bnez(p, r, t, lid);
1821 	if (pte == t)
1822 		/* You lose the SMP race :-(*/
1823 		iPTE_LW(p, pte, ptr);
1824 	else
1825 		uasm_i_nop(p);
1826 }
1827 
1828 /* Make PTE writable, update software status bits as well, then store
1829  * at PTR.
1830  */
1831 static void
1832 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1833 		 unsigned int ptr, unsigned int scratch)
1834 {
1835 	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1836 			     | _PAGE_DIRTY);
1837 
1838 	iPTE_SW(p, r, pte, ptr, mode, scratch);
1839 }
1840 
1841 /*
1842  * Check if PTE can be modified, if not branch to LABEL. Regardless
1843  * restore PTE with value from PTR when done.
1844  */
1845 static void
1846 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1847 		     unsigned int pte, unsigned int ptr, int scratch,
1848 		     enum label_id lid)
1849 {
1850 	if (use_bbit_insns()) {
1851 		uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1852 		uasm_i_nop(p);
1853 	} else {
1854 		int t = scratch >= 0 ? scratch : pte;
1855 		uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT);
1856 		uasm_i_andi(p, t, t, 1);
1857 		uasm_il_beqz(p, r, t, lid);
1858 		if (pte == t)
1859 			/* You lose the SMP race :-(*/
1860 			iPTE_LW(p, pte, ptr);
1861 	}
1862 }
1863 
1864 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1865 
1866 
1867 /*
1868  * R3000 style TLB load/store/modify handlers.
1869  */
1870 
1871 /*
1872  * This places the pte into ENTRYLO0 and writes it with tlbwi.
1873  * Then it returns.
1874  */
1875 static void
1876 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1877 {
1878 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1879 	uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1880 	uasm_i_tlbwi(p);
1881 	uasm_i_jr(p, tmp);
1882 	uasm_i_rfe(p); /* branch delay */
1883 }
1884 
1885 /*
1886  * This places the pte into ENTRYLO0 and writes it with tlbwi
1887  * or tlbwr as appropriate.  This is because the index register
1888  * may have the probe fail bit set as a result of a trap on a
1889  * kseg2 access, i.e. without refill.  Then it returns.
1890  */
1891 static void
1892 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1893 			     struct uasm_reloc **r, unsigned int pte,
1894 			     unsigned int tmp)
1895 {
1896 	uasm_i_mfc0(p, tmp, C0_INDEX);
1897 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1898 	uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1899 	uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1900 	uasm_i_tlbwi(p); /* cp0 delay */
1901 	uasm_i_jr(p, tmp);
1902 	uasm_i_rfe(p); /* branch delay */
1903 	uasm_l_r3000_write_probe_fail(l, *p);
1904 	uasm_i_tlbwr(p); /* cp0 delay */
1905 	uasm_i_jr(p, tmp);
1906 	uasm_i_rfe(p); /* branch delay */
1907 }
1908 
1909 static void
1910 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1911 				   unsigned int ptr)
1912 {
1913 	long pgdc = (long)pgd_current;
1914 
1915 	uasm_i_mfc0(p, pte, C0_BADVADDR);
1916 	uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1917 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1918 	uasm_i_srl(p, pte, pte, 22); /* load delay */
1919 	uasm_i_sll(p, pte, pte, 2);
1920 	uasm_i_addu(p, ptr, ptr, pte);
1921 	uasm_i_mfc0(p, pte, C0_CONTEXT);
1922 	uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1923 	uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1924 	uasm_i_addu(p, ptr, ptr, pte);
1925 	uasm_i_lw(p, pte, 0, ptr);
1926 	uasm_i_tlbp(p); /* load delay */
1927 }
1928 
1929 static void build_r3000_tlb_load_handler(void)
1930 {
1931 	u32 *p = (u32 *)handle_tlbl;
1932 	struct uasm_label *l = labels;
1933 	struct uasm_reloc *r = relocs;
1934 
1935 	memset(p, 0, handle_tlbl_end - (char *)p);
1936 	memset(labels, 0, sizeof(labels));
1937 	memset(relocs, 0, sizeof(relocs));
1938 
1939 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1940 	build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1941 	uasm_i_nop(&p); /* load delay */
1942 	build_make_valid(&p, &r, K0, K1, -1);
1943 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1944 
1945 	uasm_l_nopage_tlbl(&l, p);
1946 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1947 	uasm_i_nop(&p);
1948 
1949 	if (p >= (u32 *)handle_tlbl_end)
1950 		panic("TLB load handler fastpath space exceeded");
1951 
1952 	uasm_resolve_relocs(relocs, labels);
1953 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1954 		 (unsigned int)(p - (u32 *)handle_tlbl));
1955 
1956 	dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_end);
1957 }
1958 
1959 static void build_r3000_tlb_store_handler(void)
1960 {
1961 	u32 *p = (u32 *)handle_tlbs;
1962 	struct uasm_label *l = labels;
1963 	struct uasm_reloc *r = relocs;
1964 
1965 	memset(p, 0, handle_tlbs_end - (char *)p);
1966 	memset(labels, 0, sizeof(labels));
1967 	memset(relocs, 0, sizeof(relocs));
1968 
1969 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1970 	build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1971 	uasm_i_nop(&p); /* load delay */
1972 	build_make_write(&p, &r, K0, K1, -1);
1973 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1974 
1975 	uasm_l_nopage_tlbs(&l, p);
1976 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1977 	uasm_i_nop(&p);
1978 
1979 	if (p >= (u32 *)handle_tlbs_end)
1980 		panic("TLB store handler fastpath space exceeded");
1981 
1982 	uasm_resolve_relocs(relocs, labels);
1983 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1984 		 (unsigned int)(p - (u32 *)handle_tlbs));
1985 
1986 	dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_end);
1987 }
1988 
1989 static void build_r3000_tlb_modify_handler(void)
1990 {
1991 	u32 *p = (u32 *)handle_tlbm;
1992 	struct uasm_label *l = labels;
1993 	struct uasm_reloc *r = relocs;
1994 
1995 	memset(p, 0, handle_tlbm_end - (char *)p);
1996 	memset(labels, 0, sizeof(labels));
1997 	memset(relocs, 0, sizeof(relocs));
1998 
1999 	build_r3000_tlbchange_handler_head(&p, K0, K1);
2000 	build_pte_modifiable(&p, &r, K0, K1,  -1, label_nopage_tlbm);
2001 	uasm_i_nop(&p); /* load delay */
2002 	build_make_write(&p, &r, K0, K1, -1);
2003 	build_r3000_pte_reload_tlbwi(&p, K0, K1);
2004 
2005 	uasm_l_nopage_tlbm(&l, p);
2006 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2007 	uasm_i_nop(&p);
2008 
2009 	if (p >= (u32 *)handle_tlbm_end)
2010 		panic("TLB modify handler fastpath space exceeded");
2011 
2012 	uasm_resolve_relocs(relocs, labels);
2013 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2014 		 (unsigned int)(p - (u32 *)handle_tlbm));
2015 
2016 	dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_end);
2017 }
2018 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
2019 
2020 static bool cpu_has_tlbex_tlbp_race(void)
2021 {
2022 	/*
2023 	 * When a Hardware Table Walker is running it can replace TLB entries
2024 	 * at any time, leading to a race between it & the CPU.
2025 	 */
2026 	if (cpu_has_htw)
2027 		return true;
2028 
2029 	/*
2030 	 * If the CPU shares FTLB RAM with its siblings then our entry may be
2031 	 * replaced at any time by a sibling performing a write to the FTLB.
2032 	 */
2033 	if (cpu_has_shared_ftlb_ram)
2034 		return true;
2035 
2036 	/* In all other cases there ought to be no race condition to handle */
2037 	return false;
2038 }
2039 
2040 /*
2041  * R4000 style TLB load/store/modify handlers.
2042  */
2043 static struct work_registers
2044 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
2045 				   struct uasm_reloc **r)
2046 {
2047 	struct work_registers wr = build_get_work_registers(p);
2048 
2049 #ifdef CONFIG_64BIT
2050 	build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
2051 #else
2052 	build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
2053 #endif
2054 
2055 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2056 	/*
2057 	 * For huge tlb entries, pmd doesn't contain an address but
2058 	 * instead contains the tlb pte. Check the PAGE_HUGE bit and
2059 	 * see if we need to jump to huge tlb processing.
2060 	 */
2061 	build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
2062 #endif
2063 
2064 	UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
2065 	UASM_i_LW(p, wr.r2, 0, wr.r2);
2066 	UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
2067 	uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
2068 	UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
2069 
2070 #ifdef CONFIG_SMP
2071 	uasm_l_smp_pgtable_change(l, *p);
2072 #endif
2073 	iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
2074 	if (!m4kc_tlbp_war()) {
2075 		build_tlb_probe_entry(p);
2076 		if (cpu_has_tlbex_tlbp_race()) {
2077 			/* race condition happens, leaving */
2078 			uasm_i_ehb(p);
2079 			uasm_i_mfc0(p, wr.r3, C0_INDEX);
2080 			uasm_il_bltz(p, r, wr.r3, label_leave);
2081 			uasm_i_nop(p);
2082 		}
2083 	}
2084 	return wr;
2085 }
2086 
2087 static void
2088 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
2089 				   struct uasm_reloc **r, unsigned int tmp,
2090 				   unsigned int ptr)
2091 {
2092 	uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
2093 	uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
2094 	build_update_entries(p, tmp, ptr);
2095 	build_tlb_write_entry(p, l, r, tlb_indexed);
2096 	uasm_l_leave(l, *p);
2097 	build_restore_work_registers(p);
2098 	uasm_i_eret(p); /* return from trap */
2099 
2100 #ifdef CONFIG_64BIT
2101 	build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
2102 #endif
2103 }
2104 
2105 static void build_r4000_tlb_load_handler(void)
2106 {
2107 	u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbl);
2108 	struct uasm_label *l = labels;
2109 	struct uasm_reloc *r = relocs;
2110 	struct work_registers wr;
2111 
2112 	memset(p, 0, handle_tlbl_end - (char *)p);
2113 	memset(labels, 0, sizeof(labels));
2114 	memset(relocs, 0, sizeof(relocs));
2115 
2116 	if (bcm1250_m3_war()) {
2117 		unsigned int segbits = 44;
2118 
2119 		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
2120 		uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
2121 		uasm_i_xor(&p, K0, K0, K1);
2122 		uasm_i_dsrl_safe(&p, K1, K0, 62);
2123 		uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
2124 		uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
2125 		uasm_i_or(&p, K0, K0, K1);
2126 		uasm_il_bnez(&p, &r, K0, label_leave);
2127 		/* No need for uasm_i_nop */
2128 	}
2129 
2130 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2131 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2132 	if (m4kc_tlbp_war())
2133 		build_tlb_probe_entry(&p);
2134 
2135 	if (cpu_has_rixi && !cpu_has_rixiex) {
2136 		/*
2137 		 * If the page is not _PAGE_VALID, RI or XI could not
2138 		 * have triggered it.  Skip the expensive test..
2139 		 */
2140 		if (use_bbit_insns()) {
2141 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2142 				      label_tlbl_goaround1);
2143 		} else {
2144 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2145 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
2146 		}
2147 		uasm_i_nop(&p);
2148 
2149 		/*
2150 		 * Warn if something may race with us & replace the TLB entry
2151 		 * before we read it here. Everything with such races should
2152 		 * also have dedicated RiXi exception handlers, so this
2153 		 * shouldn't be hit.
2154 		 */
2155 		WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2156 
2157 		uasm_i_tlbr(&p);
2158 
2159 		switch (current_cpu_type()) {
2160 		default:
2161 			if (cpu_has_mips_r2_exec_hazard) {
2162 				uasm_i_ehb(&p);
2163 
2164 		case CPU_CAVIUM_OCTEON:
2165 		case CPU_CAVIUM_OCTEON_PLUS:
2166 		case CPU_CAVIUM_OCTEON2:
2167 				break;
2168 			}
2169 		}
2170 
2171 		/* Examine  entrylo 0 or 1 based on ptr. */
2172 		if (use_bbit_insns()) {
2173 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2174 		} else {
2175 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2176 			uasm_i_beqz(&p, wr.r3, 8);
2177 		}
2178 		/* load it in the delay slot*/
2179 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2180 		/* load it if ptr is odd */
2181 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2182 		/*
2183 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2184 		 * XI must have triggered it.
2185 		 */
2186 		if (use_bbit_insns()) {
2187 			uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
2188 			uasm_i_nop(&p);
2189 			uasm_l_tlbl_goaround1(&l, p);
2190 		} else {
2191 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2192 			uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
2193 			uasm_i_nop(&p);
2194 		}
2195 		uasm_l_tlbl_goaround1(&l, p);
2196 	}
2197 	build_make_valid(&p, &r, wr.r1, wr.r2, wr.r3);
2198 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2199 
2200 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2201 	/*
2202 	 * This is the entry point when build_r4000_tlbchange_handler_head
2203 	 * spots a huge page.
2204 	 */
2205 	uasm_l_tlb_huge_update(&l, p);
2206 	iPTE_LW(&p, wr.r1, wr.r2);
2207 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2208 	build_tlb_probe_entry(&p);
2209 
2210 	if (cpu_has_rixi && !cpu_has_rixiex) {
2211 		/*
2212 		 * If the page is not _PAGE_VALID, RI or XI could not
2213 		 * have triggered it.  Skip the expensive test..
2214 		 */
2215 		if (use_bbit_insns()) {
2216 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2217 				      label_tlbl_goaround2);
2218 		} else {
2219 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2220 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2221 		}
2222 		uasm_i_nop(&p);
2223 
2224 		/*
2225 		 * Warn if something may race with us & replace the TLB entry
2226 		 * before we read it here. Everything with such races should
2227 		 * also have dedicated RiXi exception handlers, so this
2228 		 * shouldn't be hit.
2229 		 */
2230 		WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2231 
2232 		uasm_i_tlbr(&p);
2233 
2234 		switch (current_cpu_type()) {
2235 		default:
2236 			if (cpu_has_mips_r2_exec_hazard) {
2237 				uasm_i_ehb(&p);
2238 
2239 		case CPU_CAVIUM_OCTEON:
2240 		case CPU_CAVIUM_OCTEON_PLUS:
2241 		case CPU_CAVIUM_OCTEON2:
2242 				break;
2243 			}
2244 		}
2245 
2246 		/* Examine  entrylo 0 or 1 based on ptr. */
2247 		if (use_bbit_insns()) {
2248 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2249 		} else {
2250 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2251 			uasm_i_beqz(&p, wr.r3, 8);
2252 		}
2253 		/* load it in the delay slot*/
2254 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2255 		/* load it if ptr is odd */
2256 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2257 		/*
2258 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2259 		 * XI must have triggered it.
2260 		 */
2261 		if (use_bbit_insns()) {
2262 			uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2263 		} else {
2264 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2265 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2266 		}
2267 		if (PM_DEFAULT_MASK == 0)
2268 			uasm_i_nop(&p);
2269 		/*
2270 		 * We clobbered C0_PAGEMASK, restore it.  On the other branch
2271 		 * it is restored in build_huge_tlb_write_entry.
2272 		 */
2273 		build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2274 
2275 		uasm_l_tlbl_goaround2(&l, p);
2276 	}
2277 	uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2278 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2279 #endif
2280 
2281 	uasm_l_nopage_tlbl(&l, p);
2282 	if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2283 		uasm_i_sync(&p, 0);
2284 	build_restore_work_registers(&p);
2285 #ifdef CONFIG_CPU_MICROMIPS
2286 	if ((unsigned long)tlb_do_page_fault_0 & 1) {
2287 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2288 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2289 		uasm_i_jr(&p, K0);
2290 	} else
2291 #endif
2292 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2293 	uasm_i_nop(&p);
2294 
2295 	if (p >= (u32 *)handle_tlbl_end)
2296 		panic("TLB load handler fastpath space exceeded");
2297 
2298 	uasm_resolve_relocs(relocs, labels);
2299 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2300 		 (unsigned int)(p - (u32 *)handle_tlbl));
2301 
2302 	dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_end);
2303 }
2304 
2305 static void build_r4000_tlb_store_handler(void)
2306 {
2307 	u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbs);
2308 	struct uasm_label *l = labels;
2309 	struct uasm_reloc *r = relocs;
2310 	struct work_registers wr;
2311 
2312 	memset(p, 0, handle_tlbs_end - (char *)p);
2313 	memset(labels, 0, sizeof(labels));
2314 	memset(relocs, 0, sizeof(relocs));
2315 
2316 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2317 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2318 	if (m4kc_tlbp_war())
2319 		build_tlb_probe_entry(&p);
2320 	build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2321 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2322 
2323 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2324 	/*
2325 	 * This is the entry point when
2326 	 * build_r4000_tlbchange_handler_head spots a huge page.
2327 	 */
2328 	uasm_l_tlb_huge_update(&l, p);
2329 	iPTE_LW(&p, wr.r1, wr.r2);
2330 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2331 	build_tlb_probe_entry(&p);
2332 	uasm_i_ori(&p, wr.r1, wr.r1,
2333 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2334 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2335 #endif
2336 
2337 	uasm_l_nopage_tlbs(&l, p);
2338 	if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2339 		uasm_i_sync(&p, 0);
2340 	build_restore_work_registers(&p);
2341 #ifdef CONFIG_CPU_MICROMIPS
2342 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2343 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2344 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2345 		uasm_i_jr(&p, K0);
2346 	} else
2347 #endif
2348 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2349 	uasm_i_nop(&p);
2350 
2351 	if (p >= (u32 *)handle_tlbs_end)
2352 		panic("TLB store handler fastpath space exceeded");
2353 
2354 	uasm_resolve_relocs(relocs, labels);
2355 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2356 		 (unsigned int)(p - (u32 *)handle_tlbs));
2357 
2358 	dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_end);
2359 }
2360 
2361 static void build_r4000_tlb_modify_handler(void)
2362 {
2363 	u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbm);
2364 	struct uasm_label *l = labels;
2365 	struct uasm_reloc *r = relocs;
2366 	struct work_registers wr;
2367 
2368 	memset(p, 0, handle_tlbm_end - (char *)p);
2369 	memset(labels, 0, sizeof(labels));
2370 	memset(relocs, 0, sizeof(relocs));
2371 
2372 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2373 	build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2374 	if (m4kc_tlbp_war())
2375 		build_tlb_probe_entry(&p);
2376 	/* Present and writable bits set, set accessed and dirty bits. */
2377 	build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2378 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2379 
2380 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2381 	/*
2382 	 * This is the entry point when
2383 	 * build_r4000_tlbchange_handler_head spots a huge page.
2384 	 */
2385 	uasm_l_tlb_huge_update(&l, p);
2386 	iPTE_LW(&p, wr.r1, wr.r2);
2387 	build_pte_modifiable(&p, &r, wr.r1, wr.r2,  wr.r3, label_nopage_tlbm);
2388 	build_tlb_probe_entry(&p);
2389 	uasm_i_ori(&p, wr.r1, wr.r1,
2390 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2391 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 0);
2392 #endif
2393 
2394 	uasm_l_nopage_tlbm(&l, p);
2395 	if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2396 		uasm_i_sync(&p, 0);
2397 	build_restore_work_registers(&p);
2398 #ifdef CONFIG_CPU_MICROMIPS
2399 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2400 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2401 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2402 		uasm_i_jr(&p, K0);
2403 	} else
2404 #endif
2405 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2406 	uasm_i_nop(&p);
2407 
2408 	if (p >= (u32 *)handle_tlbm_end)
2409 		panic("TLB modify handler fastpath space exceeded");
2410 
2411 	uasm_resolve_relocs(relocs, labels);
2412 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2413 		 (unsigned int)(p - (u32 *)handle_tlbm));
2414 
2415 	dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_end);
2416 }
2417 
2418 static void flush_tlb_handlers(void)
2419 {
2420 	local_flush_icache_range((unsigned long)handle_tlbl,
2421 			   (unsigned long)handle_tlbl_end);
2422 	local_flush_icache_range((unsigned long)handle_tlbs,
2423 			   (unsigned long)handle_tlbs_end);
2424 	local_flush_icache_range((unsigned long)handle_tlbm,
2425 			   (unsigned long)handle_tlbm_end);
2426 	local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2427 			   (unsigned long)tlbmiss_handler_setup_pgd_end);
2428 }
2429 
2430 static void print_htw_config(void)
2431 {
2432 	unsigned long config;
2433 	unsigned int pwctl;
2434 	const int field = 2 * sizeof(unsigned long);
2435 
2436 	config = read_c0_pwfield();
2437 	pr_debug("PWField (0x%0*lx): GDI: 0x%02lx  UDI: 0x%02lx  MDI: 0x%02lx  PTI: 0x%02lx  PTEI: 0x%02lx\n",
2438 		field, config,
2439 		(config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
2440 		(config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
2441 		(config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
2442 		(config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
2443 		(config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
2444 
2445 	config = read_c0_pwsize();
2446 	pr_debug("PWSize  (0x%0*lx): PS: 0x%lx  GDW: 0x%02lx  UDW: 0x%02lx  MDW: 0x%02lx  PTW: 0x%02lx  PTEW: 0x%02lx\n",
2447 		field, config,
2448 		(config & MIPS_PWSIZE_PS_MASK) >> MIPS_PWSIZE_PS_SHIFT,
2449 		(config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
2450 		(config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
2451 		(config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
2452 		(config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
2453 		(config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
2454 
2455 	pwctl = read_c0_pwctl();
2456 	pr_debug("PWCtl   (0x%x): PWEn: 0x%x  XK: 0x%x  XS: 0x%x  XU: 0x%x  DPH: 0x%x  HugePg: 0x%x  Psn: 0x%x\n",
2457 		pwctl,
2458 		(pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
2459 		(pwctl & MIPS_PWCTL_XK_MASK) >> MIPS_PWCTL_XK_SHIFT,
2460 		(pwctl & MIPS_PWCTL_XS_MASK) >> MIPS_PWCTL_XS_SHIFT,
2461 		(pwctl & MIPS_PWCTL_XU_MASK) >> MIPS_PWCTL_XU_SHIFT,
2462 		(pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
2463 		(pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
2464 		(pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
2465 }
2466 
2467 static void config_htw_params(void)
2468 {
2469 	unsigned long pwfield, pwsize, ptei;
2470 	unsigned int config;
2471 
2472 	/*
2473 	 * We are using 2-level page tables, so we only need to
2474 	 * setup GDW and PTW appropriately. UDW and MDW will remain 0.
2475 	 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
2476 	 * write values less than 0xc in these fields because the entire
2477 	 * write will be dropped. As a result of which, we must preserve
2478 	 * the original reset values and overwrite only what we really want.
2479 	 */
2480 
2481 	pwfield = read_c0_pwfield();
2482 	/* re-initialize the GDI field */
2483 	pwfield &= ~MIPS_PWFIELD_GDI_MASK;
2484 	pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
2485 	/* re-initialize the PTI field including the even/odd bit */
2486 	pwfield &= ~MIPS_PWFIELD_PTI_MASK;
2487 	pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
2488 	if (CONFIG_PGTABLE_LEVELS >= 3) {
2489 		pwfield &= ~MIPS_PWFIELD_MDI_MASK;
2490 		pwfield |= PMD_SHIFT << MIPS_PWFIELD_MDI_SHIFT;
2491 	}
2492 	/* Set the PTEI right shift */
2493 	ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
2494 	pwfield |= ptei;
2495 	write_c0_pwfield(pwfield);
2496 	/* Check whether the PTEI value is supported */
2497 	back_to_back_c0_hazard();
2498 	pwfield = read_c0_pwfield();
2499 	if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
2500 		!= ptei) {
2501 		pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
2502 			ptei);
2503 		/*
2504 		 * Drop option to avoid HTW being enabled via another path
2505 		 * (eg htw_reset())
2506 		 */
2507 		current_cpu_data.options &= ~MIPS_CPU_HTW;
2508 		return;
2509 	}
2510 
2511 	pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
2512 	pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
2513 	if (CONFIG_PGTABLE_LEVELS >= 3)
2514 		pwsize |= ilog2(PTRS_PER_PMD) << MIPS_PWSIZE_MDW_SHIFT;
2515 
2516 	/* Set pointer size to size of directory pointers */
2517 	if (IS_ENABLED(CONFIG_64BIT))
2518 		pwsize |= MIPS_PWSIZE_PS_MASK;
2519 	/* PTEs may be multiple pointers long (e.g. with XPA) */
2520 	pwsize |= ((PTE_T_LOG2 - PGD_T_LOG2) << MIPS_PWSIZE_PTEW_SHIFT)
2521 			& MIPS_PWSIZE_PTEW_MASK;
2522 
2523 	write_c0_pwsize(pwsize);
2524 
2525 	/* Make sure everything is set before we enable the HTW */
2526 	back_to_back_c0_hazard();
2527 
2528 	/*
2529 	 * Enable HTW (and only for XUSeg on 64-bit), and disable the rest of
2530 	 * the pwctl fields.
2531 	 */
2532 	config = 1 << MIPS_PWCTL_PWEN_SHIFT;
2533 	if (IS_ENABLED(CONFIG_64BIT))
2534 		config |= MIPS_PWCTL_XU_MASK;
2535 	write_c0_pwctl(config);
2536 	pr_info("Hardware Page Table Walker enabled\n");
2537 
2538 	print_htw_config();
2539 }
2540 
2541 static void config_xpa_params(void)
2542 {
2543 #ifdef CONFIG_XPA
2544 	unsigned int pagegrain;
2545 
2546 	if (mips_xpa_disabled) {
2547 		pr_info("Extended Physical Addressing (XPA) disabled\n");
2548 		return;
2549 	}
2550 
2551 	pagegrain = read_c0_pagegrain();
2552 	write_c0_pagegrain(pagegrain | PG_ELPA);
2553 	back_to_back_c0_hazard();
2554 	pagegrain = read_c0_pagegrain();
2555 
2556 	if (pagegrain & PG_ELPA)
2557 		pr_info("Extended Physical Addressing (XPA) enabled\n");
2558 	else
2559 		panic("Extended Physical Addressing (XPA) disabled");
2560 #endif
2561 }
2562 
2563 static void check_pabits(void)
2564 {
2565 	unsigned long entry;
2566 	unsigned pabits, fillbits;
2567 
2568 	if (!cpu_has_rixi || !_PAGE_NO_EXEC) {
2569 		/*
2570 		 * We'll only be making use of the fact that we can rotate bits
2571 		 * into the fill if the CPU supports RIXI, so don't bother
2572 		 * probing this for CPUs which don't.
2573 		 */
2574 		return;
2575 	}
2576 
2577 	write_c0_entrylo0(~0ul);
2578 	back_to_back_c0_hazard();
2579 	entry = read_c0_entrylo0();
2580 
2581 	/* clear all non-PFN bits */
2582 	entry &= ~((1 << MIPS_ENTRYLO_PFN_SHIFT) - 1);
2583 	entry &= ~(MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI);
2584 
2585 	/* find a lower bound on PABITS, and upper bound on fill bits */
2586 	pabits = fls_long(entry) + 6;
2587 	fillbits = max_t(int, (int)BITS_PER_LONG - pabits, 0);
2588 
2589 	/* minus the RI & XI bits */
2590 	fillbits -= min_t(unsigned, fillbits, 2);
2591 
2592 	if (fillbits >= ilog2(_PAGE_NO_EXEC))
2593 		fill_includes_sw_bits = true;
2594 
2595 	pr_debug("Entry* registers contain %u fill bits\n", fillbits);
2596 }
2597 
2598 void build_tlb_refill_handler(void)
2599 {
2600 	/*
2601 	 * The refill handler is generated per-CPU, multi-node systems
2602 	 * may have local storage for it. The other handlers are only
2603 	 * needed once.
2604 	 */
2605 	static int run_once = 0;
2606 
2607 	if (IS_ENABLED(CONFIG_XPA) && !cpu_has_rixi)
2608 		panic("Kernels supporting XPA currently require CPUs with RIXI");
2609 
2610 	output_pgtable_bits_defines();
2611 	check_pabits();
2612 
2613 #ifdef CONFIG_64BIT
2614 	check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2615 #endif
2616 
2617 	if (cpu_has_3kex) {
2618 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2619 		if (!run_once) {
2620 			build_setup_pgd();
2621 			build_r3000_tlb_refill_handler();
2622 			build_r3000_tlb_load_handler();
2623 			build_r3000_tlb_store_handler();
2624 			build_r3000_tlb_modify_handler();
2625 			flush_tlb_handlers();
2626 			run_once++;
2627 		}
2628 #else
2629 		panic("No R3000 TLB refill handler");
2630 #endif
2631 		return;
2632 	}
2633 
2634 	if (cpu_has_ldpte)
2635 		setup_pw();
2636 
2637 	if (!run_once) {
2638 		scratch_reg = allocate_kscratch();
2639 		build_setup_pgd();
2640 		build_r4000_tlb_load_handler();
2641 		build_r4000_tlb_store_handler();
2642 		build_r4000_tlb_modify_handler();
2643 		if (cpu_has_ldpte)
2644 			build_loongson3_tlb_refill_handler();
2645 		else
2646 			build_r4000_tlb_refill_handler();
2647 		flush_tlb_handlers();
2648 		run_once++;
2649 	}
2650 	if (cpu_has_xpa)
2651 		config_xpa_params();
2652 	if (cpu_has_htw)
2653 		config_htw_params();
2654 }
2655