xref: /linux/arch/parisc/kernel/irq.c (revision 2da68a77)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Code to handle x86 style IRQs plus some generic interrupt stuff.
4  *
5  * Copyright (C) 1992 Linus Torvalds
6  * Copyright (C) 1994, 1995, 1996, 1997, 1998 Ralf Baechle
7  * Copyright (C) 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
8  * Copyright (C) 1999-2000 Grant Grundler
9  * Copyright (c) 2005 Matthew Wilcox
10  */
11 #include <linux/bitops.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/seq_file.h>
17 #include <linux/types.h>
18 #include <linux/sched/task_stack.h>
19 #include <asm/io.h>
20 
21 #include <asm/softirq_stack.h>
22 #include <asm/smp.h>
23 #include <asm/ldcw.h>
24 
25 #undef PARISC_IRQ_CR16_COUNTS
26 
27 extern irqreturn_t timer_interrupt(int, void *);
28 extern irqreturn_t ipi_interrupt(int, void *);
29 
30 #define EIEM_MASK(irq)       (1UL<<(CPU_IRQ_MAX - irq))
31 
32 /* Bits in EIEM correlate with cpu_irq_action[].
33 ** Numbered *Big Endian*! (ie bit 0 is MSB)
34 */
35 static volatile unsigned long cpu_eiem = 0;
36 
37 /*
38 ** local ACK bitmap ... habitually set to 1, but reset to zero
39 ** between ->ack() and ->end() of the interrupt to prevent
40 ** re-interruption of a processing interrupt.
41 */
42 static DEFINE_PER_CPU(unsigned long, local_ack_eiem) = ~0UL;
43 
44 static void cpu_mask_irq(struct irq_data *d)
45 {
46 	unsigned long eirr_bit = EIEM_MASK(d->irq);
47 
48 	cpu_eiem &= ~eirr_bit;
49 	/* Do nothing on the other CPUs.  If they get this interrupt,
50 	 * The & cpu_eiem in the do_cpu_irq_mask() ensures they won't
51 	 * handle it, and the set_eiem() at the bottom will ensure it
52 	 * then gets disabled */
53 }
54 
55 static void __cpu_unmask_irq(unsigned int irq)
56 {
57 	unsigned long eirr_bit = EIEM_MASK(irq);
58 
59 	cpu_eiem |= eirr_bit;
60 
61 	/* This is just a simple NOP IPI.  But what it does is cause
62 	 * all the other CPUs to do a set_eiem(cpu_eiem) at the end
63 	 * of the interrupt handler */
64 	smp_send_all_nop();
65 }
66 
67 static void cpu_unmask_irq(struct irq_data *d)
68 {
69 	__cpu_unmask_irq(d->irq);
70 }
71 
72 void cpu_ack_irq(struct irq_data *d)
73 {
74 	unsigned long mask = EIEM_MASK(d->irq);
75 	int cpu = smp_processor_id();
76 
77 	/* Clear in EIEM so we can no longer process */
78 	per_cpu(local_ack_eiem, cpu) &= ~mask;
79 
80 	/* disable the interrupt */
81 	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
82 
83 	/* and now ack it */
84 	mtctl(mask, 23);
85 }
86 
87 void cpu_eoi_irq(struct irq_data *d)
88 {
89 	unsigned long mask = EIEM_MASK(d->irq);
90 	int cpu = smp_processor_id();
91 
92 	/* set it in the eiems---it's no longer in process */
93 	per_cpu(local_ack_eiem, cpu) |= mask;
94 
95 	/* enable the interrupt */
96 	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
97 }
98 
99 #ifdef CONFIG_SMP
100 int cpu_check_affinity(struct irq_data *d, const struct cpumask *dest)
101 {
102 	int cpu_dest;
103 
104 	/* timer and ipi have to always be received on all CPUs */
105 	if (irqd_is_per_cpu(d))
106 		return -EINVAL;
107 
108 	cpu_dest = cpumask_first_and(dest, cpu_online_mask);
109 	if (cpu_dest >= nr_cpu_ids)
110 		cpu_dest = cpumask_first(cpu_online_mask);
111 
112 	return cpu_dest;
113 }
114 #endif
115 
116 static struct irq_chip cpu_interrupt_type = {
117 	.name			= "CPU",
118 	.irq_mask		= cpu_mask_irq,
119 	.irq_unmask		= cpu_unmask_irq,
120 	.irq_ack		= cpu_ack_irq,
121 	.irq_eoi		= cpu_eoi_irq,
122 	/* XXX: Needs to be written.  We managed without it so far, but
123 	 * we really ought to write it.
124 	 */
125 	.irq_retrigger	= NULL,
126 };
127 
128 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
129 #define irq_stats(x)		(&per_cpu(irq_stat, x))
130 
131 /*
132  * /proc/interrupts printing for arch specific interrupts
133  */
134 int arch_show_interrupts(struct seq_file *p, int prec)
135 {
136 	int j;
137 
138 #ifdef CONFIG_DEBUG_STACKOVERFLOW
139 	seq_printf(p, "%*s: ", prec, "STK");
140 	for_each_online_cpu(j)
141 		seq_printf(p, "%10u ", irq_stats(j)->kernel_stack_usage);
142 	seq_puts(p, "  Kernel stack usage\n");
143 # ifdef CONFIG_IRQSTACKS
144 	seq_printf(p, "%*s: ", prec, "IST");
145 	for_each_online_cpu(j)
146 		seq_printf(p, "%10u ", irq_stats(j)->irq_stack_usage);
147 	seq_puts(p, "  Interrupt stack usage\n");
148 # endif
149 #endif
150 #ifdef CONFIG_SMP
151 	if (num_online_cpus() > 1) {
152 		seq_printf(p, "%*s: ", prec, "RES");
153 		for_each_online_cpu(j)
154 			seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
155 		seq_puts(p, "  Rescheduling interrupts\n");
156 		seq_printf(p, "%*s: ", prec, "CAL");
157 		for_each_online_cpu(j)
158 			seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
159 		seq_puts(p, "  Function call interrupts\n");
160 	}
161 #endif
162 	seq_printf(p, "%*s: ", prec, "UAH");
163 	for_each_online_cpu(j)
164 		seq_printf(p, "%10u ", irq_stats(j)->irq_unaligned_count);
165 	seq_puts(p, "  Unaligned access handler traps\n");
166 	seq_printf(p, "%*s: ", prec, "FPA");
167 	for_each_online_cpu(j)
168 		seq_printf(p, "%10u ", irq_stats(j)->irq_fpassist_count);
169 	seq_puts(p, "  Floating point assist traps\n");
170 	seq_printf(p, "%*s: ", prec, "TLB");
171 	for_each_online_cpu(j)
172 		seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
173 	seq_puts(p, "  TLB shootdowns\n");
174 	return 0;
175 }
176 
177 int show_interrupts(struct seq_file *p, void *v)
178 {
179 	int i = *(loff_t *) v, j;
180 	unsigned long flags;
181 
182 	if (i == 0) {
183 		seq_puts(p, "    ");
184 		for_each_online_cpu(j)
185 			seq_printf(p, "       CPU%d", j);
186 
187 #ifdef PARISC_IRQ_CR16_COUNTS
188 		seq_printf(p, " [min/avg/max] (CPU cycle counts)");
189 #endif
190 		seq_putc(p, '\n');
191 	}
192 
193 	if (i < NR_IRQS) {
194 		struct irq_desc *desc = irq_to_desc(i);
195 		struct irqaction *action;
196 
197 		raw_spin_lock_irqsave(&desc->lock, flags);
198 		action = desc->action;
199 		if (!action)
200 			goto skip;
201 		seq_printf(p, "%3d: ", i);
202 
203 		for_each_online_cpu(j)
204 			seq_printf(p, "%10u ", irq_desc_kstat_cpu(desc, j));
205 
206 		seq_printf(p, " %14s", irq_desc_get_chip(desc)->name);
207 #ifndef PARISC_IRQ_CR16_COUNTS
208 		seq_printf(p, "  %s", action->name);
209 
210 		while ((action = action->next))
211 			seq_printf(p, ", %s", action->name);
212 #else
213 		for ( ;action; action = action->next) {
214 			unsigned int k, avg, min, max;
215 
216 			min = max = action->cr16_hist[0];
217 
218 			for (avg = k = 0; k < PARISC_CR16_HIST_SIZE; k++) {
219 				int hist = action->cr16_hist[k];
220 
221 				if (hist) {
222 					avg += hist;
223 				} else
224 					break;
225 
226 				if (hist > max) max = hist;
227 				if (hist < min) min = hist;
228 			}
229 
230 			avg /= k;
231 			seq_printf(p, " %s[%d/%d/%d]", action->name,
232 					min,avg,max);
233 		}
234 #endif
235 
236 		seq_putc(p, '\n');
237  skip:
238 		raw_spin_unlock_irqrestore(&desc->lock, flags);
239 	}
240 
241 	if (i == NR_IRQS)
242 		arch_show_interrupts(p, 3);
243 
244 	return 0;
245 }
246 
247 
248 
249 /*
250 ** The following form a "set": Virtual IRQ, Transaction Address, Trans Data.
251 ** Respectively, these map to IRQ region+EIRR, Processor HPA, EIRR bit.
252 **
253 ** To use txn_XXX() interfaces, get a Virtual IRQ first.
254 ** Then use that to get the Transaction address and data.
255 */
256 
257 int cpu_claim_irq(unsigned int irq, struct irq_chip *type, void *data)
258 {
259 	if (irq_has_action(irq))
260 		return -EBUSY;
261 	if (irq_get_chip(irq) != &cpu_interrupt_type)
262 		return -EBUSY;
263 
264 	/* for iosapic interrupts */
265 	if (type) {
266 		irq_set_chip_and_handler(irq, type, handle_percpu_irq);
267 		irq_set_chip_data(irq, data);
268 		__cpu_unmask_irq(irq);
269 	}
270 	return 0;
271 }
272 
273 int txn_claim_irq(int irq)
274 {
275 	return cpu_claim_irq(irq, NULL, NULL) ? -1 : irq;
276 }
277 
278 /*
279  * The bits_wide parameter accommodates the limitations of the HW/SW which
280  * use these bits:
281  * Legacy PA I/O (GSC/NIO): 5 bits (architected EIM register)
282  * V-class (EPIC):          6 bits
283  * N/L/A-class (iosapic):   8 bits
284  * PCI 2.2 MSI:            16 bits
285  * Some PCI devices:       32 bits (Symbios SCSI/ATM/HyperFabric)
286  *
287  * On the service provider side:
288  * o PA 1.1 (and PA2.0 narrow mode)     5-bits (width of EIR register)
289  * o PA 2.0 wide mode                   6-bits (per processor)
290  * o IA64                               8-bits (0-256 total)
291  *
292  * So a Legacy PA I/O device on a PA 2.0 box can't use all the bits supported
293  * by the processor...and the N/L-class I/O subsystem supports more bits than
294  * PA2.0 has. The first case is the problem.
295  */
296 int txn_alloc_irq(unsigned int bits_wide)
297 {
298 	int irq;
299 
300 	/* never return irq 0 cause that's the interval timer */
301 	for (irq = CPU_IRQ_BASE + 1; irq <= CPU_IRQ_MAX; irq++) {
302 		if (cpu_claim_irq(irq, NULL, NULL) < 0)
303 			continue;
304 		if ((irq - CPU_IRQ_BASE) >= (1 << bits_wide))
305 			continue;
306 		return irq;
307 	}
308 
309 	/* unlikely, but be prepared */
310 	return -1;
311 }
312 
313 
314 unsigned long txn_affinity_addr(unsigned int irq, int cpu)
315 {
316 #ifdef CONFIG_SMP
317 	struct irq_data *d = irq_get_irq_data(irq);
318 	irq_data_update_affinity(d, cpumask_of(cpu));
319 #endif
320 
321 	return per_cpu(cpu_data, cpu).txn_addr;
322 }
323 
324 
325 unsigned long txn_alloc_addr(unsigned int virt_irq)
326 {
327 	static int next_cpu = -1;
328 
329 	next_cpu++; /* assign to "next" CPU we want this bugger on */
330 
331 	/* validate entry */
332 	while ((next_cpu < nr_cpu_ids) &&
333 		(!per_cpu(cpu_data, next_cpu).txn_addr ||
334 		 !cpu_online(next_cpu)))
335 		next_cpu++;
336 
337 	if (next_cpu >= nr_cpu_ids)
338 		next_cpu = 0;	/* nothing else, assign monarch */
339 
340 	return txn_affinity_addr(virt_irq, next_cpu);
341 }
342 
343 
344 unsigned int txn_alloc_data(unsigned int virt_irq)
345 {
346 	return virt_irq - CPU_IRQ_BASE;
347 }
348 
349 static inline int eirr_to_irq(unsigned long eirr)
350 {
351 	int bit = fls_long(eirr);
352 	return (BITS_PER_LONG - bit) + TIMER_IRQ;
353 }
354 
355 #ifdef CONFIG_IRQSTACKS
356 /*
357  * IRQ STACK - used for irq handler
358  */
359 #ifdef CONFIG_64BIT
360 #define IRQ_STACK_SIZE      (4096 << 4) /* 64k irq stack size */
361 #else
362 #define IRQ_STACK_SIZE      (4096 << 3) /* 32k irq stack size */
363 #endif
364 
365 union irq_stack_union {
366 	unsigned long stack[IRQ_STACK_SIZE/sizeof(unsigned long)];
367 	volatile unsigned int slock[4];
368 	volatile unsigned int lock[1];
369 };
370 
371 DEFINE_PER_CPU(union irq_stack_union, irq_stack_union) = {
372 		.slock = { 1,1,1,1 },
373 	};
374 #endif
375 
376 
377 int sysctl_panic_on_stackoverflow = 1;
378 
379 static inline void stack_overflow_check(struct pt_regs *regs)
380 {
381 #ifdef CONFIG_DEBUG_STACKOVERFLOW
382 	#define STACK_MARGIN	(256*6)
383 
384 	unsigned long stack_start = (unsigned long) task_stack_page(current);
385 	unsigned long sp = regs->gr[30];
386 	unsigned long stack_usage;
387 	unsigned int *last_usage;
388 	int cpu = smp_processor_id();
389 
390 	/* if sr7 != 0, we interrupted a userspace process which we do not want
391 	 * to check for stack overflow. We will only check the kernel stack. */
392 	if (regs->sr[7])
393 		return;
394 
395 	/* exit if already in panic */
396 	if (sysctl_panic_on_stackoverflow < 0)
397 		return;
398 
399 	/* calculate kernel stack usage */
400 	stack_usage = sp - stack_start;
401 #ifdef CONFIG_IRQSTACKS
402 	if (likely(stack_usage <= THREAD_SIZE))
403 		goto check_kernel_stack; /* found kernel stack */
404 
405 	/* check irq stack usage */
406 	stack_start = (unsigned long) &per_cpu(irq_stack_union, cpu).stack;
407 	stack_usage = sp - stack_start;
408 
409 	last_usage = &per_cpu(irq_stat.irq_stack_usage, cpu);
410 	if (unlikely(stack_usage > *last_usage))
411 		*last_usage = stack_usage;
412 
413 	if (likely(stack_usage < (IRQ_STACK_SIZE - STACK_MARGIN)))
414 		return;
415 
416 	pr_emerg("stackcheck: %s will most likely overflow irq stack "
417 		 "(sp:%lx, stk bottom-top:%lx-%lx)\n",
418 		current->comm, sp, stack_start, stack_start + IRQ_STACK_SIZE);
419 	goto panic_check;
420 
421 check_kernel_stack:
422 #endif
423 
424 	/* check kernel stack usage */
425 	last_usage = &per_cpu(irq_stat.kernel_stack_usage, cpu);
426 
427 	if (unlikely(stack_usage > *last_usage))
428 		*last_usage = stack_usage;
429 
430 	if (likely(stack_usage < (THREAD_SIZE - STACK_MARGIN)))
431 		return;
432 
433 	pr_emerg("stackcheck: %s will most likely overflow kernel stack "
434 		 "(sp:%lx, stk bottom-top:%lx-%lx)\n",
435 		current->comm, sp, stack_start, stack_start + THREAD_SIZE);
436 
437 #ifdef CONFIG_IRQSTACKS
438 panic_check:
439 #endif
440 	if (sysctl_panic_on_stackoverflow) {
441 		sysctl_panic_on_stackoverflow = -1; /* disable further checks */
442 		panic("low stack detected by irq handler - check messages\n");
443 	}
444 #endif
445 }
446 
447 #ifdef CONFIG_IRQSTACKS
448 /* in entry.S: */
449 void call_on_stack(unsigned long p1, void *func, unsigned long new_stack);
450 
451 static void execute_on_irq_stack(void *func, unsigned long param1)
452 {
453 	union irq_stack_union *union_ptr;
454 	unsigned long irq_stack;
455 	volatile unsigned int *irq_stack_in_use;
456 
457 	union_ptr = &per_cpu(irq_stack_union, smp_processor_id());
458 	irq_stack = (unsigned long) &union_ptr->stack;
459 	irq_stack = ALIGN(irq_stack + sizeof(irq_stack_union.slock),
460 			FRAME_ALIGN); /* align for stack frame usage */
461 
462 	/* We may be called recursive. If we are already using the irq stack,
463 	 * just continue to use it. Use spinlocks to serialize
464 	 * the irq stack usage.
465 	 */
466 	irq_stack_in_use = (volatile unsigned int *)__ldcw_align(union_ptr);
467 	if (!__ldcw(irq_stack_in_use)) {
468 		void (*direct_call)(unsigned long p1) = func;
469 
470 		/* We are using the IRQ stack already.
471 		 * Do direct call on current stack. */
472 		direct_call(param1);
473 		return;
474 	}
475 
476 	/* This is where we switch to the IRQ stack. */
477 	call_on_stack(param1, func, irq_stack);
478 
479 	/* free up irq stack usage. */
480 	*irq_stack_in_use = 1;
481 }
482 
483 #ifdef CONFIG_SOFTIRQ_ON_OWN_STACK
484 void do_softirq_own_stack(void)
485 {
486 	execute_on_irq_stack(__do_softirq, 0);
487 }
488 #endif
489 #endif /* CONFIG_IRQSTACKS */
490 
491 /* ONLY called from entry.S:intr_extint() */
492 void do_cpu_irq_mask(struct pt_regs *regs)
493 {
494 	struct pt_regs *old_regs;
495 	unsigned long eirr_val;
496 	int irq, cpu = smp_processor_id();
497 	struct irq_data *irq_data;
498 #ifdef CONFIG_SMP
499 	cpumask_t dest;
500 #endif
501 
502 	old_regs = set_irq_regs(regs);
503 	local_irq_disable();
504 	irq_enter();
505 
506 	eirr_val = mfctl(23) & cpu_eiem & per_cpu(local_ack_eiem, cpu);
507 	if (!eirr_val)
508 		goto set_out;
509 	irq = eirr_to_irq(eirr_val);
510 
511 	irq_data = irq_get_irq_data(irq);
512 
513 	/* Filter out spurious interrupts, mostly from serial port at bootup */
514 	if (unlikely(!irq_desc_has_action(irq_data_to_desc(irq_data))))
515 		goto set_out;
516 
517 #ifdef CONFIG_SMP
518 	cpumask_copy(&dest, irq_data_get_affinity_mask(irq_data));
519 	if (irqd_is_per_cpu(irq_data) &&
520 	    !cpumask_test_cpu(smp_processor_id(), &dest)) {
521 		int cpu = cpumask_first(&dest);
522 
523 		printk(KERN_DEBUG "redirecting irq %d from CPU %d to %d\n",
524 		       irq, smp_processor_id(), cpu);
525 		gsc_writel(irq + CPU_IRQ_BASE,
526 			   per_cpu(cpu_data, cpu).hpa);
527 		goto set_out;
528 	}
529 #endif
530 	stack_overflow_check(regs);
531 
532 #ifdef CONFIG_IRQSTACKS
533 	execute_on_irq_stack(&generic_handle_irq, irq);
534 #else
535 	generic_handle_irq(irq);
536 #endif /* CONFIG_IRQSTACKS */
537 
538  out:
539 	irq_exit();
540 	set_irq_regs(old_regs);
541 	return;
542 
543  set_out:
544 	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
545 	goto out;
546 }
547 
548 static void claim_cpu_irqs(void)
549 {
550 	unsigned long flags = IRQF_TIMER | IRQF_PERCPU | IRQF_IRQPOLL;
551 	int i;
552 
553 	for (i = CPU_IRQ_BASE; i <= CPU_IRQ_MAX; i++) {
554 		irq_set_chip_and_handler(i, &cpu_interrupt_type,
555 					 handle_percpu_irq);
556 	}
557 
558 	irq_set_handler(TIMER_IRQ, handle_percpu_irq);
559 	if (request_irq(TIMER_IRQ, timer_interrupt, flags, "timer", NULL))
560 		pr_err("Failed to register timer interrupt\n");
561 #ifdef CONFIG_SMP
562 	irq_set_handler(IPI_IRQ, handle_percpu_irq);
563 	if (request_irq(IPI_IRQ, ipi_interrupt, IRQF_PERCPU, "IPI", NULL))
564 		pr_err("Failed to register IPI interrupt\n");
565 #endif
566 }
567 
568 void init_IRQ(void)
569 {
570 	local_irq_disable();	/* PARANOID - should already be disabled */
571 	mtctl(~0UL, 23);	/* EIRR : clear all pending external intr */
572 #ifdef CONFIG_SMP
573 	if (!cpu_eiem) {
574 		claim_cpu_irqs();
575 		cpu_eiem = EIEM_MASK(IPI_IRQ) | EIEM_MASK(TIMER_IRQ);
576 	}
577 #else
578 	claim_cpu_irqs();
579 	cpu_eiem = EIEM_MASK(TIMER_IRQ);
580 #endif
581         set_eiem(cpu_eiem);	/* EIEM : enable all external intr */
582 }
583