xref: /linux/arch/powerpc/include/asm/book3s/64/pgtable.h (revision f86fd32d)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4 
5 #include <asm-generic/5level-fixup.h>
6 
7 #ifndef __ASSEMBLY__
8 #include <linux/mmdebug.h>
9 #include <linux/bug.h>
10 #endif
11 
12 /*
13  * Common bits between hash and Radix page table
14  */
15 #define _PAGE_BIT_SWAP_TYPE	0
16 
17 #define _PAGE_EXEC		0x00001 /* execute permission */
18 #define _PAGE_WRITE		0x00002 /* write access allowed */
19 #define _PAGE_READ		0x00004	/* read access allowed */
20 #define _PAGE_RW		(_PAGE_READ | _PAGE_WRITE)
21 #define _PAGE_RWX		(_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
22 #define _PAGE_PRIVILEGED	0x00008 /* kernel access only */
23 #define _PAGE_SAO		0x00010 /* Strong access order */
24 #define _PAGE_NON_IDEMPOTENT	0x00020 /* non idempotent memory */
25 #define _PAGE_TOLERANT		0x00030 /* tolerant memory, cache inhibited */
26 #define _PAGE_DIRTY		0x00080 /* C: page changed */
27 #define _PAGE_ACCESSED		0x00100 /* R: page referenced */
28 /*
29  * Software bits
30  */
31 #define _RPAGE_SW0		0x2000000000000000UL
32 #define _RPAGE_SW1		0x00800
33 #define _RPAGE_SW2		0x00400
34 #define _RPAGE_SW3		0x00200
35 #define _RPAGE_RSV1		0x1000000000000000UL
36 #define _RPAGE_RSV2		0x0800000000000000UL
37 #define _RPAGE_RSV3		0x0400000000000000UL
38 #define _RPAGE_RSV4		0x0200000000000000UL
39 #define _RPAGE_RSV5		0x00040UL
40 
41 #define _PAGE_PTE		0x4000000000000000UL	/* distinguishes PTEs from pointers */
42 #define _PAGE_PRESENT		0x8000000000000000UL	/* pte contains a translation */
43 /*
44  * We need to mark a pmd pte invalid while splitting. We can do that by clearing
45  * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
46  * differentiate between two use a SW field when invalidating.
47  *
48  * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
49  *
50  * This is used only when _PAGE_PRESENT is cleared.
51  */
52 #define _PAGE_INVALID		_RPAGE_SW0
53 
54 /*
55  * Top and bottom bits of RPN which can be used by hash
56  * translation mode, because we expect them to be zero
57  * otherwise.
58  */
59 #define _RPAGE_RPN0		0x01000
60 #define _RPAGE_RPN1		0x02000
61 #define _RPAGE_RPN44		0x0100000000000000UL
62 #define _RPAGE_RPN43		0x0080000000000000UL
63 #define _RPAGE_RPN42		0x0040000000000000UL
64 #define _RPAGE_RPN41		0x0020000000000000UL
65 
66 /* Max physical address bit as per radix table */
67 #define _RPAGE_PA_MAX		57
68 
69 /*
70  * Max physical address bit we will use for now.
71  *
72  * This is mostly a hardware limitation and for now Power9 has
73  * a 51 bit limit.
74  *
75  * This is different from the number of physical bit required to address
76  * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
77  * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
78  * number of sections we can support (SECTIONS_SHIFT).
79  *
80  * This is different from Radix page table limitation above and
81  * should always be less than that. The limit is done such that
82  * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
83  * for hash linux page table specific bits.
84  *
85  * In order to be compatible with future hardware generations we keep
86  * some offsets and limit this for now to 53
87  */
88 #define _PAGE_PA_MAX		53
89 
90 #define _PAGE_SOFT_DIRTY	_RPAGE_SW3 /* software: software dirty tracking */
91 #define _PAGE_SPECIAL		_RPAGE_SW2 /* software: special page */
92 #define _PAGE_DEVMAP		_RPAGE_SW1 /* software: ZONE_DEVICE page */
93 
94 /*
95  * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
96  * Instead of fixing all of them, add an alternate define which
97  * maps CI pte mapping.
98  */
99 #define _PAGE_NO_CACHE		_PAGE_TOLERANT
100 /*
101  * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
102  * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
103  * and every thing below PAGE_SHIFT;
104  */
105 #define PTE_RPN_MASK	(((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
106 /*
107  * set of bits not changed in pmd_modify. Even though we have hash specific bits
108  * in here, on radix we expect them to be zero.
109  */
110 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
111 			 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
112 			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
113 /*
114  * user access blocked by key
115  */
116 #define _PAGE_KERNEL_RW		(_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
117 #define _PAGE_KERNEL_RO		 (_PAGE_PRIVILEGED | _PAGE_READ)
118 #define _PAGE_KERNEL_RWX	(_PAGE_PRIVILEGED | _PAGE_DIRTY |	\
119 				 _PAGE_RW | _PAGE_EXEC)
120 /*
121  * _PAGE_CHG_MASK masks of bits that are to be preserved across
122  * pgprot changes
123  */
124 #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
125 			 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |	\
126 			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
127 
128 #define H_PTE_PKEY  (H_PTE_PKEY_BIT0 | H_PTE_PKEY_BIT1 | H_PTE_PKEY_BIT2 | \
129 		     H_PTE_PKEY_BIT3 | H_PTE_PKEY_BIT4)
130 /*
131  * We define 2 sets of base prot bits, one for basic pages (ie,
132  * cacheable kernel and user pages) and one for non cacheable
133  * pages. We always set _PAGE_COHERENT when SMP is enabled or
134  * the processor might need it for DMA coherency.
135  */
136 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED)
137 #define _PAGE_BASE	(_PAGE_BASE_NC)
138 
139 /* Permission masks used to generate the __P and __S table,
140  *
141  * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
142  *
143  * Write permissions imply read permissions for now (we could make write-only
144  * pages on BookE but we don't bother for now). Execute permission control is
145  * possible on platforms that define _PAGE_EXEC
146  */
147 #define PAGE_NONE	__pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
148 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_RW)
149 #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
150 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_READ)
151 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
152 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_READ)
153 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
154 
155 /* Permission masks used for kernel mappings */
156 #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
157 #define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
158 				 _PAGE_TOLERANT)
159 #define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
160 				 _PAGE_NON_IDEMPOTENT)
161 #define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
162 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
163 #define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
164 
165 /*
166  * Protection used for kernel text. We want the debuggers to be able to
167  * set breakpoints anywhere, so don't write protect the kernel text
168  * on platforms where such control is possible.
169  */
170 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
171 	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
172 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
173 #else
174 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
175 #endif
176 
177 /* Make modules code happy. We don't set RO yet */
178 #define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
179 #define PAGE_AGP		(PAGE_KERNEL_NC)
180 
181 #ifndef __ASSEMBLY__
182 /*
183  * page table defines
184  */
185 extern unsigned long __pte_index_size;
186 extern unsigned long __pmd_index_size;
187 extern unsigned long __pud_index_size;
188 extern unsigned long __pgd_index_size;
189 extern unsigned long __pud_cache_index;
190 #define PTE_INDEX_SIZE  __pte_index_size
191 #define PMD_INDEX_SIZE  __pmd_index_size
192 #define PUD_INDEX_SIZE  __pud_index_size
193 #define PGD_INDEX_SIZE  __pgd_index_size
194 /* pmd table use page table fragments */
195 #define PMD_CACHE_INDEX  0
196 #define PUD_CACHE_INDEX __pud_cache_index
197 /*
198  * Because of use of pte fragments and THP, size of page table
199  * are not always derived out of index size above.
200  */
201 extern unsigned long __pte_table_size;
202 extern unsigned long __pmd_table_size;
203 extern unsigned long __pud_table_size;
204 extern unsigned long __pgd_table_size;
205 #define PTE_TABLE_SIZE	__pte_table_size
206 #define PMD_TABLE_SIZE	__pmd_table_size
207 #define PUD_TABLE_SIZE	__pud_table_size
208 #define PGD_TABLE_SIZE	__pgd_table_size
209 
210 extern unsigned long __pmd_val_bits;
211 extern unsigned long __pud_val_bits;
212 extern unsigned long __pgd_val_bits;
213 #define PMD_VAL_BITS	__pmd_val_bits
214 #define PUD_VAL_BITS	__pud_val_bits
215 #define PGD_VAL_BITS	__pgd_val_bits
216 
217 extern unsigned long __pte_frag_nr;
218 #define PTE_FRAG_NR __pte_frag_nr
219 extern unsigned long __pte_frag_size_shift;
220 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
221 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
222 
223 extern unsigned long __pmd_frag_nr;
224 #define PMD_FRAG_NR __pmd_frag_nr
225 extern unsigned long __pmd_frag_size_shift;
226 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
227 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
228 
229 #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
230 #define PTRS_PER_PMD	(1 << PMD_INDEX_SIZE)
231 #define PTRS_PER_PUD	(1 << PUD_INDEX_SIZE)
232 #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
233 
234 /* PMD_SHIFT determines what a second-level page table entry can map */
235 #define PMD_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
236 #define PMD_SIZE	(1UL << PMD_SHIFT)
237 #define PMD_MASK	(~(PMD_SIZE-1))
238 
239 /* PUD_SHIFT determines what a third-level page table entry can map */
240 #define PUD_SHIFT	(PMD_SHIFT + PMD_INDEX_SIZE)
241 #define PUD_SIZE	(1UL << PUD_SHIFT)
242 #define PUD_MASK	(~(PUD_SIZE-1))
243 
244 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
245 #define PGDIR_SHIFT	(PUD_SHIFT + PUD_INDEX_SIZE)
246 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
247 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
248 
249 /* Bits to mask out from a PMD to get to the PTE page */
250 #define PMD_MASKED_BITS		0xc0000000000000ffUL
251 /* Bits to mask out from a PUD to get to the PMD page */
252 #define PUD_MASKED_BITS		0xc0000000000000ffUL
253 /* Bits to mask out from a PGD to get to the PUD page */
254 #define PGD_MASKED_BITS		0xc0000000000000ffUL
255 
256 /*
257  * Used as an indicator for rcu callback functions
258  */
259 enum pgtable_index {
260 	PTE_INDEX = 0,
261 	PMD_INDEX,
262 	PUD_INDEX,
263 	PGD_INDEX,
264 	/*
265 	 * Below are used with 4k page size and hugetlb
266 	 */
267 	HTLB_16M_INDEX,
268 	HTLB_16G_INDEX,
269 };
270 
271 extern unsigned long __vmalloc_start;
272 extern unsigned long __vmalloc_end;
273 #define VMALLOC_START	__vmalloc_start
274 #define VMALLOC_END	__vmalloc_end
275 
276 static inline unsigned int ioremap_max_order(void)
277 {
278 	if (radix_enabled())
279 		return PUD_SHIFT;
280 	return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */
281 }
282 #define IOREMAP_MAX_ORDER ioremap_max_order()
283 
284 extern unsigned long __kernel_virt_start;
285 extern unsigned long __kernel_io_start;
286 extern unsigned long __kernel_io_end;
287 #define KERN_VIRT_START __kernel_virt_start
288 #define KERN_IO_START  __kernel_io_start
289 #define KERN_IO_END __kernel_io_end
290 
291 extern struct page *vmemmap;
292 extern unsigned long pci_io_base;
293 #endif /* __ASSEMBLY__ */
294 
295 #include <asm/book3s/64/hash.h>
296 #include <asm/book3s/64/radix.h>
297 
298 #ifdef CONFIG_PPC_64K_PAGES
299 #include <asm/book3s/64/pgtable-64k.h>
300 #else
301 #include <asm/book3s/64/pgtable-4k.h>
302 #endif
303 
304 #include <asm/barrier.h>
305 /*
306  * IO space itself carved into the PIO region (ISA and PHB IO space) and
307  * the ioremap space
308  *
309  *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
310  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
311  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
312  */
313 #define FULL_IO_SIZE	0x80000000ul
314 #define  ISA_IO_BASE	(KERN_IO_START)
315 #define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
316 #define  PHB_IO_BASE	(ISA_IO_END)
317 #define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
318 #define IOREMAP_BASE	(PHB_IO_END)
319 #define IOREMAP_START	(ioremap_bot)
320 #define IOREMAP_END	(KERN_IO_END)
321 
322 /* Advertise special mapping type for AGP */
323 #define HAVE_PAGE_AGP
324 
325 #ifndef __ASSEMBLY__
326 
327 /*
328  * This is the default implementation of various PTE accessors, it's
329  * used in all cases except Book3S with 64K pages where we have a
330  * concept of sub-pages
331  */
332 #ifndef __real_pte
333 
334 #define __real_pte(e, p, o)		((real_pte_t){(e)})
335 #define __rpte_to_pte(r)	((r).pte)
336 #define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
337 
338 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
339 	do {							         \
340 		index = 0;					         \
341 		shift = mmu_psize_defs[psize].shift;		         \
342 
343 #define pte_iterate_hashed_end() } while(0)
344 
345 /*
346  * We expect this to be called only for user addresses or kernel virtual
347  * addresses other than the linear mapping.
348  */
349 #define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
350 
351 #endif /* __real_pte */
352 
353 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
354 				       pte_t *ptep, unsigned long clr,
355 				       unsigned long set, int huge)
356 {
357 	if (radix_enabled())
358 		return radix__pte_update(mm, addr, ptep, clr, set, huge);
359 	return hash__pte_update(mm, addr, ptep, clr, set, huge);
360 }
361 /*
362  * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
363  * We currently remove entries from the hashtable regardless of whether
364  * the entry was young or dirty.
365  *
366  * We should be more intelligent about this but for the moment we override
367  * these functions and force a tlb flush unconditionally
368  * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
369  * function for both hash and radix.
370  */
371 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
372 					      unsigned long addr, pte_t *ptep)
373 {
374 	unsigned long old;
375 
376 	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
377 		return 0;
378 	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
379 	return (old & _PAGE_ACCESSED) != 0;
380 }
381 
382 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
383 #define ptep_test_and_clear_young(__vma, __addr, __ptep)	\
384 ({								\
385 	int __r;						\
386 	__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
387 	__r;							\
388 })
389 
390 static inline int __pte_write(pte_t pte)
391 {
392 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
393 }
394 
395 #ifdef CONFIG_NUMA_BALANCING
396 #define pte_savedwrite pte_savedwrite
397 static inline bool pte_savedwrite(pte_t pte)
398 {
399 	/*
400 	 * Saved write ptes are prot none ptes that doesn't have
401 	 * privileged bit sit. We mark prot none as one which has
402 	 * present and pviliged bit set and RWX cleared. To mark
403 	 * protnone which used to have _PAGE_WRITE set we clear
404 	 * the privileged bit.
405 	 */
406 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
407 }
408 #else
409 #define pte_savedwrite pte_savedwrite
410 static inline bool pte_savedwrite(pte_t pte)
411 {
412 	return false;
413 }
414 #endif
415 
416 static inline int pte_write(pte_t pte)
417 {
418 	return __pte_write(pte) || pte_savedwrite(pte);
419 }
420 
421 static inline int pte_read(pte_t pte)
422 {
423 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
424 }
425 
426 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
427 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
428 				      pte_t *ptep)
429 {
430 	if (__pte_write(*ptep))
431 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
432 	else if (unlikely(pte_savedwrite(*ptep)))
433 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
434 }
435 
436 #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
437 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
438 					   unsigned long addr, pte_t *ptep)
439 {
440 	/*
441 	 * We should not find protnone for hugetlb, but this complete the
442 	 * interface.
443 	 */
444 	if (__pte_write(*ptep))
445 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
446 	else if (unlikely(pte_savedwrite(*ptep)))
447 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
448 }
449 
450 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
451 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
452 				       unsigned long addr, pte_t *ptep)
453 {
454 	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
455 	return __pte(old);
456 }
457 
458 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
459 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
460 					    unsigned long addr,
461 					    pte_t *ptep, int full)
462 {
463 	if (full && radix_enabled()) {
464 		/*
465 		 * We know that this is a full mm pte clear and
466 		 * hence can be sure there is no parallel set_pte.
467 		 */
468 		return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
469 	}
470 	return ptep_get_and_clear(mm, addr, ptep);
471 }
472 
473 
474 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
475 			     pte_t * ptep)
476 {
477 	pte_update(mm, addr, ptep, ~0UL, 0, 0);
478 }
479 
480 static inline int pte_dirty(pte_t pte)
481 {
482 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
483 }
484 
485 static inline int pte_young(pte_t pte)
486 {
487 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
488 }
489 
490 static inline int pte_special(pte_t pte)
491 {
492 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
493 }
494 
495 static inline bool pte_exec(pte_t pte)
496 {
497 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
498 }
499 
500 
501 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
502 static inline bool pte_soft_dirty(pte_t pte)
503 {
504 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
505 }
506 
507 static inline pte_t pte_mksoft_dirty(pte_t pte)
508 {
509 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
510 }
511 
512 static inline pte_t pte_clear_soft_dirty(pte_t pte)
513 {
514 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
515 }
516 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
517 
518 #ifdef CONFIG_NUMA_BALANCING
519 static inline int pte_protnone(pte_t pte)
520 {
521 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
522 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
523 }
524 
525 #define pte_mk_savedwrite pte_mk_savedwrite
526 static inline pte_t pte_mk_savedwrite(pte_t pte)
527 {
528 	/*
529 	 * Used by Autonuma subsystem to preserve the write bit
530 	 * while marking the pte PROT_NONE. Only allow this
531 	 * on PROT_NONE pte
532 	 */
533 	VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
534 		  cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
535 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
536 }
537 
538 #define pte_clear_savedwrite pte_clear_savedwrite
539 static inline pte_t pte_clear_savedwrite(pte_t pte)
540 {
541 	/*
542 	 * Used by KSM subsystem to make a protnone pte readonly.
543 	 */
544 	VM_BUG_ON(!pte_protnone(pte));
545 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
546 }
547 #else
548 #define pte_clear_savedwrite pte_clear_savedwrite
549 static inline pte_t pte_clear_savedwrite(pte_t pte)
550 {
551 	VM_WARN_ON(1);
552 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
553 }
554 #endif /* CONFIG_NUMA_BALANCING */
555 
556 static inline int pte_present(pte_t pte)
557 {
558 	/*
559 	 * A pte is considerent present if _PAGE_PRESENT is set.
560 	 * We also need to consider the pte present which is marked
561 	 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
562 	 * if we find _PAGE_PRESENT cleared.
563 	 */
564 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID));
565 }
566 
567 static inline bool pte_hw_valid(pte_t pte)
568 {
569 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT));
570 }
571 
572 #ifdef CONFIG_PPC_MEM_KEYS
573 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
574 #else
575 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
576 {
577 	return true;
578 }
579 #endif /* CONFIG_PPC_MEM_KEYS */
580 
581 static inline bool pte_user(pte_t pte)
582 {
583 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
584 }
585 
586 #define pte_access_permitted pte_access_permitted
587 static inline bool pte_access_permitted(pte_t pte, bool write)
588 {
589 	/*
590 	 * _PAGE_READ is needed for any access and will be
591 	 * cleared for PROT_NONE
592 	 */
593 	if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
594 		return false;
595 
596 	if (write && !pte_write(pte))
597 		return false;
598 
599 	return arch_pte_access_permitted(pte_val(pte), write, 0);
600 }
601 
602 /*
603  * Conversion functions: convert a page and protection to a page entry,
604  * and a page entry and page directory to the page they refer to.
605  *
606  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
607  * long for now.
608  */
609 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
610 {
611 	VM_BUG_ON(pfn >> (64 - PAGE_SHIFT));
612 	VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK);
613 
614 	return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot));
615 }
616 
617 static inline unsigned long pte_pfn(pte_t pte)
618 {
619 	return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
620 }
621 
622 /* Generic modifiers for PTE bits */
623 static inline pte_t pte_wrprotect(pte_t pte)
624 {
625 	if (unlikely(pte_savedwrite(pte)))
626 		return pte_clear_savedwrite(pte);
627 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
628 }
629 
630 static inline pte_t pte_exprotect(pte_t pte)
631 {
632 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
633 }
634 
635 static inline pte_t pte_mkclean(pte_t pte)
636 {
637 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
638 }
639 
640 static inline pte_t pte_mkold(pte_t pte)
641 {
642 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
643 }
644 
645 static inline pte_t pte_mkexec(pte_t pte)
646 {
647 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
648 }
649 
650 static inline pte_t pte_mkpte(pte_t pte)
651 {
652 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
653 }
654 
655 static inline pte_t pte_mkwrite(pte_t pte)
656 {
657 	/*
658 	 * write implies read, hence set both
659 	 */
660 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
661 }
662 
663 static inline pte_t pte_mkdirty(pte_t pte)
664 {
665 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
666 }
667 
668 static inline pte_t pte_mkyoung(pte_t pte)
669 {
670 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
671 }
672 
673 static inline pte_t pte_mkspecial(pte_t pte)
674 {
675 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
676 }
677 
678 static inline pte_t pte_mkhuge(pte_t pte)
679 {
680 	return pte;
681 }
682 
683 static inline pte_t pte_mkdevmap(pte_t pte)
684 {
685 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP));
686 }
687 
688 static inline pte_t pte_mkprivileged(pte_t pte)
689 {
690 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
691 }
692 
693 static inline pte_t pte_mkuser(pte_t pte)
694 {
695 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
696 }
697 
698 /*
699  * This is potentially called with a pmd as the argument, in which case it's not
700  * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
701  * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
702  * use in page directory entries (ie. non-ptes).
703  */
704 static inline int pte_devmap(pte_t pte)
705 {
706 	u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
707 
708 	return (pte_raw(pte) & mask) == mask;
709 }
710 
711 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
712 {
713 	/* FIXME!! check whether this need to be a conditional */
714 	return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
715 			 cpu_to_be64(pgprot_val(newprot)));
716 }
717 
718 /* Encode and de-code a swap entry */
719 #define MAX_SWAPFILES_CHECK() do { \
720 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
721 	/*							\
722 	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
723 	 * We filter HPTEFLAGS on set_pte.			\
724 	 */							\
725 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
726 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);	\
727 	} while (0)
728 
729 #define SWP_TYPE_BITS 5
730 #define __swp_type(x)		(((x).val >> _PAGE_BIT_SWAP_TYPE) \
731 				& ((1UL << SWP_TYPE_BITS) - 1))
732 #define __swp_offset(x)		(((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
733 #define __swp_entry(type, offset)	((swp_entry_t) { \
734 				((type) << _PAGE_BIT_SWAP_TYPE) \
735 				| (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
736 /*
737  * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
738  * swap type and offset we get from swap and convert that to pte to find a
739  * matching pte in linux page table.
740  * Clear bits not found in swap entries here.
741  */
742 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
743 #define __swp_entry_to_pte(x)	__pte((x).val | _PAGE_PTE)
744 #define __pmd_to_swp_entry(pmd)	(__pte_to_swp_entry(pmd_pte(pmd)))
745 #define __swp_entry_to_pmd(x)	(pte_pmd(__swp_entry_to_pte(x)))
746 
747 #ifdef CONFIG_MEM_SOFT_DIRTY
748 #define _PAGE_SWP_SOFT_DIRTY   (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
749 #else
750 #define _PAGE_SWP_SOFT_DIRTY	0UL
751 #endif /* CONFIG_MEM_SOFT_DIRTY */
752 
753 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
754 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
755 {
756 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
757 }
758 
759 static inline bool pte_swp_soft_dirty(pte_t pte)
760 {
761 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
762 }
763 
764 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
765 {
766 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
767 }
768 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
769 
770 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
771 {
772 	/*
773 	 * This check for _PAGE_RWX and _PAGE_PRESENT bits
774 	 */
775 	if (access & ~ptev)
776 		return false;
777 	/*
778 	 * This check for access to privilege space
779 	 */
780 	if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
781 		return false;
782 
783 	return true;
784 }
785 /*
786  * Generic functions with hash/radix callbacks
787  */
788 
789 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
790 					   pte_t *ptep, pte_t entry,
791 					   unsigned long address,
792 					   int psize)
793 {
794 	if (radix_enabled())
795 		return radix__ptep_set_access_flags(vma, ptep, entry,
796 						    address, psize);
797 	return hash__ptep_set_access_flags(ptep, entry);
798 }
799 
800 #define __HAVE_ARCH_PTE_SAME
801 static inline int pte_same(pte_t pte_a, pte_t pte_b)
802 {
803 	if (radix_enabled())
804 		return radix__pte_same(pte_a, pte_b);
805 	return hash__pte_same(pte_a, pte_b);
806 }
807 
808 static inline int pte_none(pte_t pte)
809 {
810 	if (radix_enabled())
811 		return radix__pte_none(pte);
812 	return hash__pte_none(pte);
813 }
814 
815 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
816 				pte_t *ptep, pte_t pte, int percpu)
817 {
818 	if (radix_enabled())
819 		return radix__set_pte_at(mm, addr, ptep, pte, percpu);
820 	return hash__set_pte_at(mm, addr, ptep, pte, percpu);
821 }
822 
823 #define _PAGE_CACHE_CTL	(_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
824 
825 #define pgprot_noncached pgprot_noncached
826 static inline pgprot_t pgprot_noncached(pgprot_t prot)
827 {
828 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
829 			_PAGE_NON_IDEMPOTENT);
830 }
831 
832 #define pgprot_noncached_wc pgprot_noncached_wc
833 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
834 {
835 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
836 			_PAGE_TOLERANT);
837 }
838 
839 #define pgprot_cached pgprot_cached
840 static inline pgprot_t pgprot_cached(pgprot_t prot)
841 {
842 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
843 }
844 
845 #define pgprot_writecombine pgprot_writecombine
846 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
847 {
848 	return pgprot_noncached_wc(prot);
849 }
850 /*
851  * check a pte mapping have cache inhibited property
852  */
853 static inline bool pte_ci(pte_t pte)
854 {
855 	__be64 pte_v = pte_raw(pte);
856 
857 	if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
858 	    ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
859 		return true;
860 	return false;
861 }
862 
863 static inline void pmd_clear(pmd_t *pmdp)
864 {
865 	*pmdp = __pmd(0);
866 }
867 
868 static inline int pmd_none(pmd_t pmd)
869 {
870 	return !pmd_raw(pmd);
871 }
872 
873 static inline int pmd_present(pmd_t pmd)
874 {
875 	/*
876 	 * A pmd is considerent present if _PAGE_PRESENT is set.
877 	 * We also need to consider the pmd present which is marked
878 	 * invalid during a split. Hence we look for _PAGE_INVALID
879 	 * if we find _PAGE_PRESENT cleared.
880 	 */
881 	if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
882 		return true;
883 
884 	return false;
885 }
886 
887 static inline int pmd_is_serializing(pmd_t pmd)
888 {
889 	/*
890 	 * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear
891 	 * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate).
892 	 *
893 	 * This condition may also occur when flushing a pmd while flushing
894 	 * it (see ptep_modify_prot_start), so callers must ensure this
895 	 * case is fine as well.
896 	 */
897 	if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) ==
898 						cpu_to_be64(_PAGE_INVALID))
899 		return true;
900 
901 	return false;
902 }
903 
904 static inline int pmd_bad(pmd_t pmd)
905 {
906 	if (radix_enabled())
907 		return radix__pmd_bad(pmd);
908 	return hash__pmd_bad(pmd);
909 }
910 
911 static inline void pud_clear(pud_t *pudp)
912 {
913 	*pudp = __pud(0);
914 }
915 
916 static inline int pud_none(pud_t pud)
917 {
918 	return !pud_raw(pud);
919 }
920 
921 static inline int pud_present(pud_t pud)
922 {
923 	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
924 }
925 
926 extern struct page *pud_page(pud_t pud);
927 extern struct page *pmd_page(pmd_t pmd);
928 static inline pte_t pud_pte(pud_t pud)
929 {
930 	return __pte_raw(pud_raw(pud));
931 }
932 
933 static inline pud_t pte_pud(pte_t pte)
934 {
935 	return __pud_raw(pte_raw(pte));
936 }
937 #define pud_write(pud)		pte_write(pud_pte(pud))
938 
939 static inline int pud_bad(pud_t pud)
940 {
941 	if (radix_enabled())
942 		return radix__pud_bad(pud);
943 	return hash__pud_bad(pud);
944 }
945 
946 #define pud_access_permitted pud_access_permitted
947 static inline bool pud_access_permitted(pud_t pud, bool write)
948 {
949 	return pte_access_permitted(pud_pte(pud), write);
950 }
951 
952 #define pgd_write(pgd)		pte_write(pgd_pte(pgd))
953 
954 static inline void pgd_clear(pgd_t *pgdp)
955 {
956 	*pgdp = __pgd(0);
957 }
958 
959 static inline int pgd_none(pgd_t pgd)
960 {
961 	return !pgd_raw(pgd);
962 }
963 
964 static inline int pgd_present(pgd_t pgd)
965 {
966 	return !!(pgd_raw(pgd) & cpu_to_be64(_PAGE_PRESENT));
967 }
968 
969 static inline pte_t pgd_pte(pgd_t pgd)
970 {
971 	return __pte_raw(pgd_raw(pgd));
972 }
973 
974 static inline pgd_t pte_pgd(pte_t pte)
975 {
976 	return __pgd_raw(pte_raw(pte));
977 }
978 
979 static inline int pgd_bad(pgd_t pgd)
980 {
981 	if (radix_enabled())
982 		return radix__pgd_bad(pgd);
983 	return hash__pgd_bad(pgd);
984 }
985 
986 #define pgd_access_permitted pgd_access_permitted
987 static inline bool pgd_access_permitted(pgd_t pgd, bool write)
988 {
989 	return pte_access_permitted(pgd_pte(pgd), write);
990 }
991 
992 extern struct page *pgd_page(pgd_t pgd);
993 
994 /* Pointers in the page table tree are physical addresses */
995 #define __pgtable_ptr_val(ptr)	__pa(ptr)
996 
997 #define pmd_page_vaddr(pmd)	__va(pmd_val(pmd) & ~PMD_MASKED_BITS)
998 #define pud_page_vaddr(pud)	__va(pud_val(pud) & ~PUD_MASKED_BITS)
999 #define pgd_page_vaddr(pgd)	__va(pgd_val(pgd) & ~PGD_MASKED_BITS)
1000 
1001 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
1002 #define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
1003 #define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
1004 #define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
1005 
1006 /*
1007  * Find an entry in a page-table-directory.  We combine the address region
1008  * (the high order N bits) and the pgd portion of the address.
1009  */
1010 
1011 #define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))
1012 
1013 #define pud_offset(pgdp, addr)	\
1014 	(((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
1015 #define pmd_offset(pudp,addr) \
1016 	(((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
1017 #define pte_offset_kernel(dir,addr) \
1018 	(((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
1019 
1020 #define pte_offset_map(dir,addr)	pte_offset_kernel((dir), (addr))
1021 
1022 static inline void pte_unmap(pte_t *pte) { }
1023 
1024 /* to find an entry in a kernel page-table-directory */
1025 /* This now only contains the vmalloc pages */
1026 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1027 
1028 #define pte_ERROR(e) \
1029 	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1030 #define pmd_ERROR(e) \
1031 	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1032 #define pud_ERROR(e) \
1033 	pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1034 #define pgd_ERROR(e) \
1035 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1036 
1037 static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
1038 {
1039 	if (radix_enabled()) {
1040 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1041 		unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1042 		WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1043 #endif
1044 		return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1045 	}
1046 	return hash__map_kernel_page(ea, pa, prot);
1047 }
1048 
1049 static inline int __meminit vmemmap_create_mapping(unsigned long start,
1050 						   unsigned long page_size,
1051 						   unsigned long phys)
1052 {
1053 	if (radix_enabled())
1054 		return radix__vmemmap_create_mapping(start, page_size, phys);
1055 	return hash__vmemmap_create_mapping(start, page_size, phys);
1056 }
1057 
1058 #ifdef CONFIG_MEMORY_HOTPLUG
1059 static inline void vmemmap_remove_mapping(unsigned long start,
1060 					  unsigned long page_size)
1061 {
1062 	if (radix_enabled())
1063 		return radix__vmemmap_remove_mapping(start, page_size);
1064 	return hash__vmemmap_remove_mapping(start, page_size);
1065 }
1066 #endif
1067 
1068 static inline pte_t pmd_pte(pmd_t pmd)
1069 {
1070 	return __pte_raw(pmd_raw(pmd));
1071 }
1072 
1073 static inline pmd_t pte_pmd(pte_t pte)
1074 {
1075 	return __pmd_raw(pte_raw(pte));
1076 }
1077 
1078 static inline pte_t *pmdp_ptep(pmd_t *pmd)
1079 {
1080 	return (pte_t *)pmd;
1081 }
1082 #define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
1083 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
1084 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
1085 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
1086 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1087 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1088 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
1089 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1090 #define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1091 #define pmd_mk_savedwrite(pmd)	pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1092 #define pmd_clear_savedwrite(pmd)	pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1093 
1094 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1095 #define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
1096 #define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1097 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1098 
1099 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1100 #define pmd_swp_mksoft_dirty(pmd)	pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1101 #define pmd_swp_soft_dirty(pmd)		pte_swp_soft_dirty(pmd_pte(pmd))
1102 #define pmd_swp_clear_soft_dirty(pmd)	pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1103 #endif
1104 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1105 
1106 #ifdef CONFIG_NUMA_BALANCING
1107 static inline int pmd_protnone(pmd_t pmd)
1108 {
1109 	return pte_protnone(pmd_pte(pmd));
1110 }
1111 #endif /* CONFIG_NUMA_BALANCING */
1112 
1113 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
1114 #define __pmd_write(pmd)	__pte_write(pmd_pte(pmd))
1115 #define pmd_savedwrite(pmd)	pte_savedwrite(pmd_pte(pmd))
1116 
1117 #define pmd_access_permitted pmd_access_permitted
1118 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1119 {
1120 	/*
1121 	 * pmdp_invalidate sets this combination (which is not caught by
1122 	 * !pte_present() check in pte_access_permitted), to prevent
1123 	 * lock-free lookups, as part of the serialize_against_pte_lookup()
1124 	 * synchronisation.
1125 	 *
1126 	 * This also catches the case where the PTE's hardware PRESENT bit is
1127 	 * cleared while TLB is flushed, which is suboptimal but should not
1128 	 * be frequent.
1129 	 */
1130 	if (pmd_is_serializing(pmd))
1131 		return false;
1132 
1133 	return pte_access_permitted(pmd_pte(pmd), write);
1134 }
1135 
1136 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1137 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1138 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1139 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1140 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1141 		       pmd_t *pmdp, pmd_t pmd);
1142 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
1143 				 pmd_t *pmd);
1144 extern int hash__has_transparent_hugepage(void);
1145 static inline int has_transparent_hugepage(void)
1146 {
1147 	if (radix_enabled())
1148 		return radix__has_transparent_hugepage();
1149 	return hash__has_transparent_hugepage();
1150 }
1151 #define has_transparent_hugepage has_transparent_hugepage
1152 
1153 static inline unsigned long
1154 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1155 		    unsigned long clr, unsigned long set)
1156 {
1157 	if (radix_enabled())
1158 		return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1159 	return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1160 }
1161 
1162 /*
1163  * returns true for pmd migration entries, THP, devmap, hugetlb
1164  * But compile time dependent on THP config
1165  */
1166 static inline int pmd_large(pmd_t pmd)
1167 {
1168 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1169 }
1170 
1171 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
1172 {
1173 	return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
1174 }
1175 /*
1176  * For radix we should always find H_PAGE_HASHPTE zero. Hence
1177  * the below will work for radix too
1178  */
1179 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1180 					      unsigned long addr, pmd_t *pmdp)
1181 {
1182 	unsigned long old;
1183 
1184 	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1185 		return 0;
1186 	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1187 	return ((old & _PAGE_ACCESSED) != 0);
1188 }
1189 
1190 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1191 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1192 				      pmd_t *pmdp)
1193 {
1194 	if (__pmd_write((*pmdp)))
1195 		pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1196 	else if (unlikely(pmd_savedwrite(*pmdp)))
1197 		pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1198 }
1199 
1200 /*
1201  * Only returns true for a THP. False for pmd migration entry.
1202  * We also need to return true when we come across a pte that
1203  * in between a thp split. While splitting THP, we mark the pmd
1204  * invalid (pmdp_invalidate()) before we set it with pte page
1205  * address. A pmd_trans_huge() check against a pmd entry during that time
1206  * should return true.
1207  * We should not call this on a hugetlb entry. We should check for HugeTLB
1208  * entry using vma->vm_flags
1209  * The page table walk rule is explained in Documentation/vm/transhuge.rst
1210  */
1211 static inline int pmd_trans_huge(pmd_t pmd)
1212 {
1213 	if (!pmd_present(pmd))
1214 		return false;
1215 
1216 	if (radix_enabled())
1217 		return radix__pmd_trans_huge(pmd);
1218 	return hash__pmd_trans_huge(pmd);
1219 }
1220 
1221 #define __HAVE_ARCH_PMD_SAME
1222 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1223 {
1224 	if (radix_enabled())
1225 		return radix__pmd_same(pmd_a, pmd_b);
1226 	return hash__pmd_same(pmd_a, pmd_b);
1227 }
1228 
1229 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1230 {
1231 	if (radix_enabled())
1232 		return radix__pmd_mkhuge(pmd);
1233 	return hash__pmd_mkhuge(pmd);
1234 }
1235 
1236 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1237 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1238 				 unsigned long address, pmd_t *pmdp,
1239 				 pmd_t entry, int dirty);
1240 
1241 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1242 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1243 				     unsigned long address, pmd_t *pmdp);
1244 
1245 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1246 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1247 					    unsigned long addr, pmd_t *pmdp)
1248 {
1249 	if (radix_enabled())
1250 		return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1251 	return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1252 }
1253 
1254 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1255 					unsigned long address, pmd_t *pmdp)
1256 {
1257 	if (radix_enabled())
1258 		return radix__pmdp_collapse_flush(vma, address, pmdp);
1259 	return hash__pmdp_collapse_flush(vma, address, pmdp);
1260 }
1261 #define pmdp_collapse_flush pmdp_collapse_flush
1262 
1263 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1264 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1265 					      pmd_t *pmdp, pgtable_t pgtable)
1266 {
1267 	if (radix_enabled())
1268 		return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1269 	return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1270 }
1271 
1272 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1273 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1274 						    pmd_t *pmdp)
1275 {
1276 	if (radix_enabled())
1277 		return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1278 	return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1279 }
1280 
1281 #define __HAVE_ARCH_PMDP_INVALIDATE
1282 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1283 			     pmd_t *pmdp);
1284 
1285 #define pmd_move_must_withdraw pmd_move_must_withdraw
1286 struct spinlock;
1287 extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1288 				  struct spinlock *old_pmd_ptl,
1289 				  struct vm_area_struct *vma);
1290 /*
1291  * Hash translation mode use the deposited table to store hash pte
1292  * slot information.
1293  */
1294 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1295 static inline bool arch_needs_pgtable_deposit(void)
1296 {
1297 	if (radix_enabled())
1298 		return false;
1299 	return true;
1300 }
1301 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1302 
1303 
1304 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1305 {
1306 	return __pmd(pmd_val(pmd) | (_PAGE_PTE | _PAGE_DEVMAP));
1307 }
1308 
1309 static inline int pmd_devmap(pmd_t pmd)
1310 {
1311 	return pte_devmap(pmd_pte(pmd));
1312 }
1313 
1314 static inline int pud_devmap(pud_t pud)
1315 {
1316 	return 0;
1317 }
1318 
1319 static inline int pgd_devmap(pgd_t pgd)
1320 {
1321 	return 0;
1322 }
1323 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1324 
1325 static inline int pud_pfn(pud_t pud)
1326 {
1327 	/*
1328 	 * Currently all calls to pud_pfn() are gated around a pud_devmap()
1329 	 * check so this should never be used. If it grows another user we
1330 	 * want to know about it.
1331 	 */
1332 	BUILD_BUG();
1333 	return 0;
1334 }
1335 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1336 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1337 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1338 			     pte_t *, pte_t, pte_t);
1339 
1340 /*
1341  * Returns true for a R -> RW upgrade of pte
1342  */
1343 static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
1344 {
1345 	if (!(old_val & _PAGE_READ))
1346 		return false;
1347 
1348 	if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
1349 		return true;
1350 
1351 	return false;
1352 }
1353 
1354 /*
1355  * Like pmd_huge() and pmd_large(), but works regardless of config options
1356  */
1357 #define pmd_is_leaf pmd_is_leaf
1358 #define pmd_leaf pmd_is_leaf
1359 static inline bool pmd_is_leaf(pmd_t pmd)
1360 {
1361 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1362 }
1363 
1364 #define pud_is_leaf pud_is_leaf
1365 #define pud_leaf pud_is_leaf
1366 static inline bool pud_is_leaf(pud_t pud)
1367 {
1368 	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE));
1369 }
1370 
1371 #define pgd_is_leaf pgd_is_leaf
1372 #define pgd_leaf pgd_is_leaf
1373 static inline bool pgd_is_leaf(pgd_t pgd)
1374 {
1375 	return !!(pgd_raw(pgd) & cpu_to_be64(_PAGE_PTE));
1376 }
1377 
1378 #endif /* __ASSEMBLY__ */
1379 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1380