xref: /linux/arch/powerpc/kernel/process.c (revision d642ef71)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Derived from "arch/i386/kernel/process.c"
4  *    Copyright (C) 1995  Linus Torvalds
5  *
6  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7  *  Paul Mackerras (paulus@cs.anu.edu.au)
8  *
9  *  PowerPC version
10  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11  */
12 
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/hw_breakpoint.h>
38 #include <linux/uaccess.h>
39 #include <linux/pkeys.h>
40 #include <linux/seq_buf.h>
41 
42 #include <asm/interrupt.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/machdep.h>
47 #include <asm/time.h>
48 #include <asm/runlatch.h>
49 #include <asm/syscalls.h>
50 #include <asm/switch_to.h>
51 #include <asm/tm.h>
52 #include <asm/debug.h>
53 #ifdef CONFIG_PPC64
54 #include <asm/firmware.h>
55 #include <asm/hw_irq.h>
56 #endif
57 #include <asm/code-patching.h>
58 #include <asm/exec.h>
59 #include <asm/livepatch.h>
60 #include <asm/cpu_has_feature.h>
61 #include <asm/asm-prototypes.h>
62 #include <asm/stacktrace.h>
63 #include <asm/hw_breakpoint.h>
64 
65 #include <linux/kprobes.h>
66 #include <linux/kdebug.h>
67 
68 /* Transactional Memory debug */
69 #ifdef TM_DEBUG_SW
70 #define TM_DEBUG(x...) printk(KERN_INFO x)
71 #else
72 #define TM_DEBUG(x...) do { } while(0)
73 #endif
74 
75 extern unsigned long _get_SP(void);
76 
77 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
78 /*
79  * Are we running in "Suspend disabled" mode? If so we have to block any
80  * sigreturn that would get us into suspended state, and we also warn in some
81  * other paths that we should never reach with suspend disabled.
82  */
83 bool tm_suspend_disabled __ro_after_init = false;
84 
85 static void check_if_tm_restore_required(struct task_struct *tsk)
86 {
87 	/*
88 	 * If we are saving the current thread's registers, and the
89 	 * thread is in a transactional state, set the TIF_RESTORE_TM
90 	 * bit so that we know to restore the registers before
91 	 * returning to userspace.
92 	 */
93 	if (tsk == current && tsk->thread.regs &&
94 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
95 	    !test_thread_flag(TIF_RESTORE_TM)) {
96 		regs_set_return_msr(&tsk->thread.ckpt_regs,
97 						tsk->thread.regs->msr);
98 		set_thread_flag(TIF_RESTORE_TM);
99 	}
100 }
101 
102 #else
103 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
104 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
105 
106 bool strict_msr_control;
107 EXPORT_SYMBOL(strict_msr_control);
108 
109 static int __init enable_strict_msr_control(char *str)
110 {
111 	strict_msr_control = true;
112 	pr_info("Enabling strict facility control\n");
113 
114 	return 0;
115 }
116 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
117 
118 /* notrace because it's called by restore_math */
119 unsigned long notrace msr_check_and_set(unsigned long bits)
120 {
121 	unsigned long oldmsr = mfmsr();
122 	unsigned long newmsr;
123 
124 	newmsr = oldmsr | bits;
125 
126 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
127 		newmsr |= MSR_VSX;
128 
129 	if (oldmsr != newmsr)
130 		newmsr = mtmsr_isync_irqsafe(newmsr);
131 
132 	return newmsr;
133 }
134 EXPORT_SYMBOL_GPL(msr_check_and_set);
135 
136 /* notrace because it's called by restore_math */
137 void notrace __msr_check_and_clear(unsigned long bits)
138 {
139 	unsigned long oldmsr = mfmsr();
140 	unsigned long newmsr;
141 
142 	newmsr = oldmsr & ~bits;
143 
144 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
145 		newmsr &= ~MSR_VSX;
146 
147 	if (oldmsr != newmsr)
148 		mtmsr_isync_irqsafe(newmsr);
149 }
150 EXPORT_SYMBOL(__msr_check_and_clear);
151 
152 #ifdef CONFIG_PPC_FPU
153 static void __giveup_fpu(struct task_struct *tsk)
154 {
155 	unsigned long msr;
156 
157 	save_fpu(tsk);
158 	msr = tsk->thread.regs->msr;
159 	msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
160 	if (cpu_has_feature(CPU_FTR_VSX))
161 		msr &= ~MSR_VSX;
162 	regs_set_return_msr(tsk->thread.regs, msr);
163 }
164 
165 void giveup_fpu(struct task_struct *tsk)
166 {
167 	check_if_tm_restore_required(tsk);
168 
169 	msr_check_and_set(MSR_FP);
170 	__giveup_fpu(tsk);
171 	msr_check_and_clear(MSR_FP);
172 }
173 EXPORT_SYMBOL(giveup_fpu);
174 
175 /*
176  * Make sure the floating-point register state in the
177  * the thread_struct is up to date for task tsk.
178  */
179 void flush_fp_to_thread(struct task_struct *tsk)
180 {
181 	if (tsk->thread.regs) {
182 		/*
183 		 * We need to disable preemption here because if we didn't,
184 		 * another process could get scheduled after the regs->msr
185 		 * test but before we have finished saving the FP registers
186 		 * to the thread_struct.  That process could take over the
187 		 * FPU, and then when we get scheduled again we would store
188 		 * bogus values for the remaining FP registers.
189 		 */
190 		preempt_disable();
191 		if (tsk->thread.regs->msr & MSR_FP) {
192 			/*
193 			 * This should only ever be called for current or
194 			 * for a stopped child process.  Since we save away
195 			 * the FP register state on context switch,
196 			 * there is something wrong if a stopped child appears
197 			 * to still have its FP state in the CPU registers.
198 			 */
199 			BUG_ON(tsk != current);
200 			giveup_fpu(tsk);
201 		}
202 		preempt_enable();
203 	}
204 }
205 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
206 
207 void enable_kernel_fp(void)
208 {
209 	unsigned long cpumsr;
210 
211 	WARN_ON(preemptible());
212 
213 	cpumsr = msr_check_and_set(MSR_FP);
214 
215 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
216 		check_if_tm_restore_required(current);
217 		/*
218 		 * If a thread has already been reclaimed then the
219 		 * checkpointed registers are on the CPU but have definitely
220 		 * been saved by the reclaim code. Don't need to and *cannot*
221 		 * giveup as this would save  to the 'live' structure not the
222 		 * checkpointed structure.
223 		 */
224 		if (!MSR_TM_ACTIVE(cpumsr) &&
225 		     MSR_TM_ACTIVE(current->thread.regs->msr))
226 			return;
227 		__giveup_fpu(current);
228 	}
229 }
230 EXPORT_SYMBOL(enable_kernel_fp);
231 #else
232 static inline void __giveup_fpu(struct task_struct *tsk) { }
233 #endif /* CONFIG_PPC_FPU */
234 
235 #ifdef CONFIG_ALTIVEC
236 static void __giveup_altivec(struct task_struct *tsk)
237 {
238 	unsigned long msr;
239 
240 	save_altivec(tsk);
241 	msr = tsk->thread.regs->msr;
242 	msr &= ~MSR_VEC;
243 	if (cpu_has_feature(CPU_FTR_VSX))
244 		msr &= ~MSR_VSX;
245 	regs_set_return_msr(tsk->thread.regs, msr);
246 }
247 
248 void giveup_altivec(struct task_struct *tsk)
249 {
250 	check_if_tm_restore_required(tsk);
251 
252 	msr_check_and_set(MSR_VEC);
253 	__giveup_altivec(tsk);
254 	msr_check_and_clear(MSR_VEC);
255 }
256 EXPORT_SYMBOL(giveup_altivec);
257 
258 void enable_kernel_altivec(void)
259 {
260 	unsigned long cpumsr;
261 
262 	WARN_ON(preemptible());
263 
264 	cpumsr = msr_check_and_set(MSR_VEC);
265 
266 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
267 		check_if_tm_restore_required(current);
268 		/*
269 		 * If a thread has already been reclaimed then the
270 		 * checkpointed registers are on the CPU but have definitely
271 		 * been saved by the reclaim code. Don't need to and *cannot*
272 		 * giveup as this would save  to the 'live' structure not the
273 		 * checkpointed structure.
274 		 */
275 		if (!MSR_TM_ACTIVE(cpumsr) &&
276 		     MSR_TM_ACTIVE(current->thread.regs->msr))
277 			return;
278 		__giveup_altivec(current);
279 	}
280 }
281 EXPORT_SYMBOL(enable_kernel_altivec);
282 
283 /*
284  * Make sure the VMX/Altivec register state in the
285  * the thread_struct is up to date for task tsk.
286  */
287 void flush_altivec_to_thread(struct task_struct *tsk)
288 {
289 	if (tsk->thread.regs) {
290 		preempt_disable();
291 		if (tsk->thread.regs->msr & MSR_VEC) {
292 			BUG_ON(tsk != current);
293 			giveup_altivec(tsk);
294 		}
295 		preempt_enable();
296 	}
297 }
298 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
299 #endif /* CONFIG_ALTIVEC */
300 
301 #ifdef CONFIG_VSX
302 static void __giveup_vsx(struct task_struct *tsk)
303 {
304 	unsigned long msr = tsk->thread.regs->msr;
305 
306 	/*
307 	 * We should never be setting MSR_VSX without also setting
308 	 * MSR_FP and MSR_VEC
309 	 */
310 	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
311 
312 	/* __giveup_fpu will clear MSR_VSX */
313 	if (msr & MSR_FP)
314 		__giveup_fpu(tsk);
315 	if (msr & MSR_VEC)
316 		__giveup_altivec(tsk);
317 }
318 
319 static void giveup_vsx(struct task_struct *tsk)
320 {
321 	check_if_tm_restore_required(tsk);
322 
323 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
324 	__giveup_vsx(tsk);
325 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
326 }
327 
328 void enable_kernel_vsx(void)
329 {
330 	unsigned long cpumsr;
331 
332 	WARN_ON(preemptible());
333 
334 	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
335 
336 	if (current->thread.regs &&
337 	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
338 		check_if_tm_restore_required(current);
339 		/*
340 		 * If a thread has already been reclaimed then the
341 		 * checkpointed registers are on the CPU but have definitely
342 		 * been saved by the reclaim code. Don't need to and *cannot*
343 		 * giveup as this would save  to the 'live' structure not the
344 		 * checkpointed structure.
345 		 */
346 		if (!MSR_TM_ACTIVE(cpumsr) &&
347 		     MSR_TM_ACTIVE(current->thread.regs->msr))
348 			return;
349 		__giveup_vsx(current);
350 	}
351 }
352 EXPORT_SYMBOL(enable_kernel_vsx);
353 
354 void flush_vsx_to_thread(struct task_struct *tsk)
355 {
356 	if (tsk->thread.regs) {
357 		preempt_disable();
358 		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
359 			BUG_ON(tsk != current);
360 			giveup_vsx(tsk);
361 		}
362 		preempt_enable();
363 	}
364 }
365 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
366 #endif /* CONFIG_VSX */
367 
368 #ifdef CONFIG_SPE
369 void giveup_spe(struct task_struct *tsk)
370 {
371 	check_if_tm_restore_required(tsk);
372 
373 	msr_check_and_set(MSR_SPE);
374 	__giveup_spe(tsk);
375 	msr_check_and_clear(MSR_SPE);
376 }
377 EXPORT_SYMBOL(giveup_spe);
378 
379 void enable_kernel_spe(void)
380 {
381 	WARN_ON(preemptible());
382 
383 	msr_check_and_set(MSR_SPE);
384 
385 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
386 		check_if_tm_restore_required(current);
387 		__giveup_spe(current);
388 	}
389 }
390 EXPORT_SYMBOL(enable_kernel_spe);
391 
392 void flush_spe_to_thread(struct task_struct *tsk)
393 {
394 	if (tsk->thread.regs) {
395 		preempt_disable();
396 		if (tsk->thread.regs->msr & MSR_SPE) {
397 			BUG_ON(tsk != current);
398 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
399 			giveup_spe(tsk);
400 		}
401 		preempt_enable();
402 	}
403 }
404 #endif /* CONFIG_SPE */
405 
406 static unsigned long msr_all_available;
407 
408 static int __init init_msr_all_available(void)
409 {
410 	if (IS_ENABLED(CONFIG_PPC_FPU))
411 		msr_all_available |= MSR_FP;
412 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
413 		msr_all_available |= MSR_VEC;
414 	if (cpu_has_feature(CPU_FTR_VSX))
415 		msr_all_available |= MSR_VSX;
416 	if (cpu_has_feature(CPU_FTR_SPE))
417 		msr_all_available |= MSR_SPE;
418 
419 	return 0;
420 }
421 early_initcall(init_msr_all_available);
422 
423 void giveup_all(struct task_struct *tsk)
424 {
425 	unsigned long usermsr;
426 
427 	if (!tsk->thread.regs)
428 		return;
429 
430 	check_if_tm_restore_required(tsk);
431 
432 	usermsr = tsk->thread.regs->msr;
433 
434 	if ((usermsr & msr_all_available) == 0)
435 		return;
436 
437 	msr_check_and_set(msr_all_available);
438 
439 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
440 
441 	if (usermsr & MSR_FP)
442 		__giveup_fpu(tsk);
443 	if (usermsr & MSR_VEC)
444 		__giveup_altivec(tsk);
445 	if (usermsr & MSR_SPE)
446 		__giveup_spe(tsk);
447 
448 	msr_check_and_clear(msr_all_available);
449 }
450 EXPORT_SYMBOL(giveup_all);
451 
452 #ifdef CONFIG_PPC_BOOK3S_64
453 #ifdef CONFIG_PPC_FPU
454 static bool should_restore_fp(void)
455 {
456 	if (current->thread.load_fp) {
457 		current->thread.load_fp++;
458 		return true;
459 	}
460 	return false;
461 }
462 
463 static void do_restore_fp(void)
464 {
465 	load_fp_state(&current->thread.fp_state);
466 }
467 #else
468 static bool should_restore_fp(void) { return false; }
469 static void do_restore_fp(void) { }
470 #endif /* CONFIG_PPC_FPU */
471 
472 #ifdef CONFIG_ALTIVEC
473 static bool should_restore_altivec(void)
474 {
475 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
476 		current->thread.load_vec++;
477 		return true;
478 	}
479 	return false;
480 }
481 
482 static void do_restore_altivec(void)
483 {
484 	load_vr_state(&current->thread.vr_state);
485 	current->thread.used_vr = 1;
486 }
487 #else
488 static bool should_restore_altivec(void) { return false; }
489 static void do_restore_altivec(void) { }
490 #endif /* CONFIG_ALTIVEC */
491 
492 static bool should_restore_vsx(void)
493 {
494 	if (cpu_has_feature(CPU_FTR_VSX))
495 		return true;
496 	return false;
497 }
498 #ifdef CONFIG_VSX
499 static void do_restore_vsx(void)
500 {
501 	current->thread.used_vsr = 1;
502 }
503 #else
504 static void do_restore_vsx(void) { }
505 #endif /* CONFIG_VSX */
506 
507 /*
508  * The exception exit path calls restore_math() with interrupts hard disabled
509  * but the soft irq state not "reconciled". ftrace code that calls
510  * local_irq_save/restore causes warnings.
511  *
512  * Rather than complicate the exit path, just don't trace restore_math. This
513  * could be done by having ftrace entry code check for this un-reconciled
514  * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
515  * temporarily fix it up for the duration of the ftrace call.
516  */
517 void notrace restore_math(struct pt_regs *regs)
518 {
519 	unsigned long msr;
520 	unsigned long new_msr = 0;
521 
522 	msr = regs->msr;
523 
524 	/*
525 	 * new_msr tracks the facilities that are to be restored. Only reload
526 	 * if the bit is not set in the user MSR (if it is set, the registers
527 	 * are live for the user thread).
528 	 */
529 	if ((!(msr & MSR_FP)) && should_restore_fp())
530 		new_msr |= MSR_FP;
531 
532 	if ((!(msr & MSR_VEC)) && should_restore_altivec())
533 		new_msr |= MSR_VEC;
534 
535 	if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
536 		if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
537 			new_msr |= MSR_VSX;
538 	}
539 
540 	if (new_msr) {
541 		unsigned long fpexc_mode = 0;
542 
543 		msr_check_and_set(new_msr);
544 
545 		if (new_msr & MSR_FP) {
546 			do_restore_fp();
547 
548 			// This also covers VSX, because VSX implies FP
549 			fpexc_mode = current->thread.fpexc_mode;
550 		}
551 
552 		if (new_msr & MSR_VEC)
553 			do_restore_altivec();
554 
555 		if (new_msr & MSR_VSX)
556 			do_restore_vsx();
557 
558 		msr_check_and_clear(new_msr);
559 
560 		regs_set_return_msr(regs, regs->msr | new_msr | fpexc_mode);
561 	}
562 }
563 #endif /* CONFIG_PPC_BOOK3S_64 */
564 
565 static void save_all(struct task_struct *tsk)
566 {
567 	unsigned long usermsr;
568 
569 	if (!tsk->thread.regs)
570 		return;
571 
572 	usermsr = tsk->thread.regs->msr;
573 
574 	if ((usermsr & msr_all_available) == 0)
575 		return;
576 
577 	msr_check_and_set(msr_all_available);
578 
579 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
580 
581 	if (usermsr & MSR_FP)
582 		save_fpu(tsk);
583 
584 	if (usermsr & MSR_VEC)
585 		save_altivec(tsk);
586 
587 	if (usermsr & MSR_SPE)
588 		__giveup_spe(tsk);
589 
590 	msr_check_and_clear(msr_all_available);
591 }
592 
593 void flush_all_to_thread(struct task_struct *tsk)
594 {
595 	if (tsk->thread.regs) {
596 		preempt_disable();
597 		BUG_ON(tsk != current);
598 #ifdef CONFIG_SPE
599 		if (tsk->thread.regs->msr & MSR_SPE)
600 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
601 #endif
602 		save_all(tsk);
603 
604 		preempt_enable();
605 	}
606 }
607 EXPORT_SYMBOL(flush_all_to_thread);
608 
609 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
610 void do_send_trap(struct pt_regs *regs, unsigned long address,
611 		  unsigned long error_code, int breakpt)
612 {
613 	current->thread.trap_nr = TRAP_HWBKPT;
614 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
615 			11, SIGSEGV) == NOTIFY_STOP)
616 		return;
617 
618 	/* Deliver the signal to userspace */
619 	force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
620 				    (void __user *)address);
621 }
622 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
623 
624 static void do_break_handler(struct pt_regs *regs)
625 {
626 	struct arch_hw_breakpoint null_brk = {0};
627 	struct arch_hw_breakpoint *info;
628 	ppc_inst_t instr = ppc_inst(0);
629 	int type = 0;
630 	int size = 0;
631 	unsigned long ea;
632 	int i;
633 
634 	/*
635 	 * If underneath hw supports only one watchpoint, we know it
636 	 * caused exception. 8xx also falls into this category.
637 	 */
638 	if (nr_wp_slots() == 1) {
639 		__set_breakpoint(0, &null_brk);
640 		current->thread.hw_brk[0] = null_brk;
641 		current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED;
642 		return;
643 	}
644 
645 	/* Otherwise find out which DAWR caused exception and disable it. */
646 	wp_get_instr_detail(regs, &instr, &type, &size, &ea);
647 
648 	for (i = 0; i < nr_wp_slots(); i++) {
649 		info = &current->thread.hw_brk[i];
650 		if (!info->address)
651 			continue;
652 
653 		if (wp_check_constraints(regs, instr, ea, type, size, info)) {
654 			__set_breakpoint(i, &null_brk);
655 			current->thread.hw_brk[i] = null_brk;
656 			current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED;
657 		}
658 	}
659 }
660 
661 DEFINE_INTERRUPT_HANDLER(do_break)
662 {
663 	current->thread.trap_nr = TRAP_HWBKPT;
664 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr,
665 			11, SIGSEGV) == NOTIFY_STOP)
666 		return;
667 
668 	if (debugger_break_match(regs))
669 		return;
670 
671 	/*
672 	 * We reach here only when watchpoint exception is generated by ptrace
673 	 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
674 	 * watchpoint is already handled by hw_breakpoint_handler() so we don't
675 	 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
676 	 * we need to manually handle the watchpoint here.
677 	 */
678 	if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT))
679 		do_break_handler(regs);
680 
681 	/* Deliver the signal to userspace */
682 	force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar);
683 }
684 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
685 
686 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
687 
688 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
689 /*
690  * Set the debug registers back to their default "safe" values.
691  */
692 static void set_debug_reg_defaults(struct thread_struct *thread)
693 {
694 	thread->debug.iac1 = thread->debug.iac2 = 0;
695 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
696 	thread->debug.iac3 = thread->debug.iac4 = 0;
697 #endif
698 	thread->debug.dac1 = thread->debug.dac2 = 0;
699 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
700 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
701 #endif
702 	thread->debug.dbcr0 = 0;
703 #ifdef CONFIG_BOOKE
704 	/*
705 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
706 	 */
707 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
708 			DBCR1_IAC3US | DBCR1_IAC4US;
709 	/*
710 	 * Force Data Address Compare User/Supervisor bits to be User-only
711 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
712 	 */
713 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
714 #else
715 	thread->debug.dbcr1 = 0;
716 #endif
717 }
718 
719 static void prime_debug_regs(struct debug_reg *debug)
720 {
721 	/*
722 	 * We could have inherited MSR_DE from userspace, since
723 	 * it doesn't get cleared on exception entry.  Make sure
724 	 * MSR_DE is clear before we enable any debug events.
725 	 */
726 	mtmsr(mfmsr() & ~MSR_DE);
727 
728 	mtspr(SPRN_IAC1, debug->iac1);
729 	mtspr(SPRN_IAC2, debug->iac2);
730 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
731 	mtspr(SPRN_IAC3, debug->iac3);
732 	mtspr(SPRN_IAC4, debug->iac4);
733 #endif
734 	mtspr(SPRN_DAC1, debug->dac1);
735 	mtspr(SPRN_DAC2, debug->dac2);
736 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
737 	mtspr(SPRN_DVC1, debug->dvc1);
738 	mtspr(SPRN_DVC2, debug->dvc2);
739 #endif
740 	mtspr(SPRN_DBCR0, debug->dbcr0);
741 	mtspr(SPRN_DBCR1, debug->dbcr1);
742 #ifdef CONFIG_BOOKE
743 	mtspr(SPRN_DBCR2, debug->dbcr2);
744 #endif
745 }
746 /*
747  * Unless neither the old or new thread are making use of the
748  * debug registers, set the debug registers from the values
749  * stored in the new thread.
750  */
751 void switch_booke_debug_regs(struct debug_reg *new_debug)
752 {
753 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
754 		|| (new_debug->dbcr0 & DBCR0_IDM))
755 			prime_debug_regs(new_debug);
756 }
757 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
758 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
759 #ifndef CONFIG_HAVE_HW_BREAKPOINT
760 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
761 {
762 	preempt_disable();
763 	__set_breakpoint(i, brk);
764 	preempt_enable();
765 }
766 
767 static void set_debug_reg_defaults(struct thread_struct *thread)
768 {
769 	int i;
770 	struct arch_hw_breakpoint null_brk = {0};
771 
772 	for (i = 0; i < nr_wp_slots(); i++) {
773 		thread->hw_brk[i] = null_brk;
774 		if (ppc_breakpoint_available())
775 			set_breakpoint(i, &thread->hw_brk[i]);
776 	}
777 }
778 
779 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
780 				struct arch_hw_breakpoint *b)
781 {
782 	if (a->address != b->address)
783 		return false;
784 	if (a->type != b->type)
785 		return false;
786 	if (a->len != b->len)
787 		return false;
788 	/* no need to check hw_len. it's calculated from address and len */
789 	return true;
790 }
791 
792 static void switch_hw_breakpoint(struct task_struct *new)
793 {
794 	int i;
795 
796 	for (i = 0; i < nr_wp_slots(); i++) {
797 		if (likely(hw_brk_match(this_cpu_ptr(&current_brk[i]),
798 					&new->thread.hw_brk[i])))
799 			continue;
800 
801 		__set_breakpoint(i, &new->thread.hw_brk[i]);
802 	}
803 }
804 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
805 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
806 
807 static inline int set_dabr(struct arch_hw_breakpoint *brk)
808 {
809 	unsigned long dabr, dabrx;
810 
811 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
812 	dabrx = ((brk->type >> 3) & 0x7);
813 
814 	if (ppc_md.set_dabr)
815 		return ppc_md.set_dabr(dabr, dabrx);
816 
817 	if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
818 		mtspr(SPRN_DAC1, dabr);
819 		if (IS_ENABLED(CONFIG_PPC_47x))
820 			isync();
821 		return 0;
822 	} else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
823 		mtspr(SPRN_DABR, dabr);
824 		if (cpu_has_feature(CPU_FTR_DABRX))
825 			mtspr(SPRN_DABRX, dabrx);
826 		return 0;
827 	} else {
828 		return -EINVAL;
829 	}
830 }
831 
832 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
833 {
834 	unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
835 			       LCTRL1_CRWF_RW;
836 	unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
837 	unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
838 	unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
839 
840 	if (start_addr == 0)
841 		lctrl2 |= LCTRL2_LW0LA_F;
842 	else if (end_addr == 0)
843 		lctrl2 |= LCTRL2_LW0LA_E;
844 	else
845 		lctrl2 |= LCTRL2_LW0LA_EandF;
846 
847 	mtspr(SPRN_LCTRL2, 0);
848 
849 	if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
850 		return 0;
851 
852 	if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
853 		lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
854 	if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
855 		lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
856 
857 	mtspr(SPRN_CMPE, start_addr - 1);
858 	mtspr(SPRN_CMPF, end_addr);
859 	mtspr(SPRN_LCTRL1, lctrl1);
860 	mtspr(SPRN_LCTRL2, lctrl2);
861 
862 	return 0;
863 }
864 
865 static void set_hw_breakpoint(int nr, struct arch_hw_breakpoint *brk)
866 {
867 	if (dawr_enabled())
868 		// Power8 or later
869 		set_dawr(nr, brk);
870 	else if (IS_ENABLED(CONFIG_PPC_8xx))
871 		set_breakpoint_8xx(brk);
872 	else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
873 		// Power7 or earlier
874 		set_dabr(brk);
875 	else
876 		// Shouldn't happen due to higher level checks
877 		WARN_ON_ONCE(1);
878 }
879 
880 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
881 {
882 	memcpy(this_cpu_ptr(&current_brk[nr]), brk, sizeof(*brk));
883 	set_hw_breakpoint(nr, brk);
884 }
885 
886 /* Check if we have DAWR or DABR hardware */
887 bool ppc_breakpoint_available(void)
888 {
889 	if (dawr_enabled())
890 		return true; /* POWER8 DAWR or POWER9 forced DAWR */
891 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
892 		return false; /* POWER9 with DAWR disabled */
893 	/* DABR: Everything but POWER8 and POWER9 */
894 	return true;
895 }
896 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
897 
898 /* Disable the breakpoint in hardware without touching current_brk[] */
899 void suspend_breakpoints(void)
900 {
901 	struct arch_hw_breakpoint brk = {0};
902 	int i;
903 
904 	if (!ppc_breakpoint_available())
905 		return;
906 
907 	for (i = 0; i < nr_wp_slots(); i++)
908 		set_hw_breakpoint(i, &brk);
909 }
910 
911 /*
912  * Re-enable breakpoints suspended by suspend_breakpoints() in hardware
913  * from current_brk[]
914  */
915 void restore_breakpoints(void)
916 {
917 	int i;
918 
919 	if (!ppc_breakpoint_available())
920 		return;
921 
922 	for (i = 0; i < nr_wp_slots(); i++)
923 		set_hw_breakpoint(i, this_cpu_ptr(&current_brk[i]));
924 }
925 
926 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
927 
928 static inline bool tm_enabled(struct task_struct *tsk)
929 {
930 	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
931 }
932 
933 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
934 {
935 	/*
936 	 * Use the current MSR TM suspended bit to track if we have
937 	 * checkpointed state outstanding.
938 	 * On signal delivery, we'd normally reclaim the checkpointed
939 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
940 	 * This will then directly return to userspace without going
941 	 * through __switch_to(). However, if the stack frame is bad,
942 	 * we need to exit this thread which calls __switch_to() which
943 	 * will again attempt to reclaim the already saved tm state.
944 	 * Hence we need to check that we've not already reclaimed
945 	 * this state.
946 	 * We do this using the current MSR, rather tracking it in
947 	 * some specific thread_struct bit, as it has the additional
948 	 * benefit of checking for a potential TM bad thing exception.
949 	 */
950 	if (!MSR_TM_SUSPENDED(mfmsr()))
951 		return;
952 
953 	giveup_all(container_of(thr, struct task_struct, thread));
954 
955 	tm_reclaim(thr, cause);
956 
957 	/*
958 	 * If we are in a transaction and FP is off then we can't have
959 	 * used FP inside that transaction. Hence the checkpointed
960 	 * state is the same as the live state. We need to copy the
961 	 * live state to the checkpointed state so that when the
962 	 * transaction is restored, the checkpointed state is correct
963 	 * and the aborted transaction sees the correct state. We use
964 	 * ckpt_regs.msr here as that's what tm_reclaim will use to
965 	 * determine if it's going to write the checkpointed state or
966 	 * not. So either this will write the checkpointed registers,
967 	 * or reclaim will. Similarly for VMX.
968 	 */
969 	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
970 		memcpy(&thr->ckfp_state, &thr->fp_state,
971 		       sizeof(struct thread_fp_state));
972 	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
973 		memcpy(&thr->ckvr_state, &thr->vr_state,
974 		       sizeof(struct thread_vr_state));
975 }
976 
977 void tm_reclaim_current(uint8_t cause)
978 {
979 	tm_enable();
980 	tm_reclaim_thread(&current->thread, cause);
981 }
982 
983 static inline void tm_reclaim_task(struct task_struct *tsk)
984 {
985 	/* We have to work out if we're switching from/to a task that's in the
986 	 * middle of a transaction.
987 	 *
988 	 * In switching we need to maintain a 2nd register state as
989 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
990 	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
991 	 * ckvr_state
992 	 *
993 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
994 	 */
995 	struct thread_struct *thr = &tsk->thread;
996 
997 	if (!thr->regs)
998 		return;
999 
1000 	if (!MSR_TM_ACTIVE(thr->regs->msr))
1001 		goto out_and_saveregs;
1002 
1003 	WARN_ON(tm_suspend_disabled);
1004 
1005 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
1006 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
1007 		 tsk->pid, thr->regs->nip,
1008 		 thr->regs->ccr, thr->regs->msr,
1009 		 thr->regs->trap);
1010 
1011 	tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
1012 
1013 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
1014 		 tsk->pid);
1015 
1016 out_and_saveregs:
1017 	/* Always save the regs here, even if a transaction's not active.
1018 	 * This context-switches a thread's TM info SPRs.  We do it here to
1019 	 * be consistent with the restore path (in recheckpoint) which
1020 	 * cannot happen later in _switch().
1021 	 */
1022 	tm_save_sprs(thr);
1023 }
1024 
1025 extern void __tm_recheckpoint(struct thread_struct *thread);
1026 
1027 void tm_recheckpoint(struct thread_struct *thread)
1028 {
1029 	unsigned long flags;
1030 
1031 	if (!(thread->regs->msr & MSR_TM))
1032 		return;
1033 
1034 	/* We really can't be interrupted here as the TEXASR registers can't
1035 	 * change and later in the trecheckpoint code, we have a userspace R1.
1036 	 * So let's hard disable over this region.
1037 	 */
1038 	local_irq_save(flags);
1039 	hard_irq_disable();
1040 
1041 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
1042 	 * before the trecheckpoint and no explosion occurs.
1043 	 */
1044 	tm_restore_sprs(thread);
1045 
1046 	__tm_recheckpoint(thread);
1047 
1048 	local_irq_restore(flags);
1049 }
1050 
1051 static inline void tm_recheckpoint_new_task(struct task_struct *new)
1052 {
1053 	if (!cpu_has_feature(CPU_FTR_TM))
1054 		return;
1055 
1056 	/* Recheckpoint the registers of the thread we're about to switch to.
1057 	 *
1058 	 * If the task was using FP, we non-lazily reload both the original and
1059 	 * the speculative FP register states.  This is because the kernel
1060 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
1061 	 * unavailable later, we are unable to determine which set of FP regs
1062 	 * need to be restored.
1063 	 */
1064 	if (!tm_enabled(new))
1065 		return;
1066 
1067 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1068 		tm_restore_sprs(&new->thread);
1069 		return;
1070 	}
1071 	/* Recheckpoint to restore original checkpointed register state. */
1072 	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1073 		 new->pid, new->thread.regs->msr);
1074 
1075 	tm_recheckpoint(&new->thread);
1076 
1077 	/*
1078 	 * The checkpointed state has been restored but the live state has
1079 	 * not, ensure all the math functionality is turned off to trigger
1080 	 * restore_math() to reload.
1081 	 */
1082 	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1083 
1084 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1085 		 "(kernel msr 0x%lx)\n",
1086 		 new->pid, mfmsr());
1087 }
1088 
1089 static inline void __switch_to_tm(struct task_struct *prev,
1090 		struct task_struct *new)
1091 {
1092 	if (cpu_has_feature(CPU_FTR_TM)) {
1093 		if (tm_enabled(prev) || tm_enabled(new))
1094 			tm_enable();
1095 
1096 		if (tm_enabled(prev)) {
1097 			prev->thread.load_tm++;
1098 			tm_reclaim_task(prev);
1099 			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1100 				prev->thread.regs->msr &= ~MSR_TM;
1101 		}
1102 
1103 		tm_recheckpoint_new_task(new);
1104 	}
1105 }
1106 
1107 /*
1108  * This is called if we are on the way out to userspace and the
1109  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1110  * FP and/or vector state and does so if necessary.
1111  * If userspace is inside a transaction (whether active or
1112  * suspended) and FP/VMX/VSX instructions have ever been enabled
1113  * inside that transaction, then we have to keep them enabled
1114  * and keep the FP/VMX/VSX state loaded while ever the transaction
1115  * continues.  The reason is that if we didn't, and subsequently
1116  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1117  * we don't know whether it's the same transaction, and thus we
1118  * don't know which of the checkpointed state and the transactional
1119  * state to use.
1120  */
1121 void restore_tm_state(struct pt_regs *regs)
1122 {
1123 	unsigned long msr_diff;
1124 
1125 	/*
1126 	 * This is the only moment we should clear TIF_RESTORE_TM as
1127 	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1128 	 * again, anything else could lead to an incorrect ckpt_msr being
1129 	 * saved and therefore incorrect signal contexts.
1130 	 */
1131 	clear_thread_flag(TIF_RESTORE_TM);
1132 	if (!MSR_TM_ACTIVE(regs->msr))
1133 		return;
1134 
1135 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1136 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1137 
1138 	/* Ensure that restore_math() will restore */
1139 	if (msr_diff & MSR_FP)
1140 		current->thread.load_fp = 1;
1141 #ifdef CONFIG_ALTIVEC
1142 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1143 		current->thread.load_vec = 1;
1144 #endif
1145 	restore_math(regs);
1146 
1147 	regs_set_return_msr(regs, regs->msr | msr_diff);
1148 }
1149 
1150 #else /* !CONFIG_PPC_TRANSACTIONAL_MEM */
1151 #define tm_recheckpoint_new_task(new)
1152 #define __switch_to_tm(prev, new)
1153 void tm_reclaim_current(uint8_t cause) {}
1154 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1155 
1156 static inline void save_sprs(struct thread_struct *t)
1157 {
1158 #ifdef CONFIG_ALTIVEC
1159 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1160 		t->vrsave = mfspr(SPRN_VRSAVE);
1161 #endif
1162 #ifdef CONFIG_SPE
1163 	if (cpu_has_feature(CPU_FTR_SPE))
1164 		t->spefscr = mfspr(SPRN_SPEFSCR);
1165 #endif
1166 #ifdef CONFIG_PPC_BOOK3S_64
1167 	if (cpu_has_feature(CPU_FTR_DSCR))
1168 		t->dscr = mfspr(SPRN_DSCR);
1169 
1170 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1171 		t->bescr = mfspr(SPRN_BESCR);
1172 		t->ebbhr = mfspr(SPRN_EBBHR);
1173 		t->ebbrr = mfspr(SPRN_EBBRR);
1174 
1175 		t->fscr = mfspr(SPRN_FSCR);
1176 
1177 		/*
1178 		 * Note that the TAR is not available for use in the kernel.
1179 		 * (To provide this, the TAR should be backed up/restored on
1180 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1181 		 * this should be in pt_regs anyway (for debug).)
1182 		 */
1183 		t->tar = mfspr(SPRN_TAR);
1184 	}
1185 
1186 	if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE))
1187 		t->hashkeyr = mfspr(SPRN_HASHKEYR);
1188 #endif
1189 }
1190 
1191 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1192 void kvmppc_save_user_regs(void)
1193 {
1194 	unsigned long usermsr;
1195 
1196 	if (!current->thread.regs)
1197 		return;
1198 
1199 	usermsr = current->thread.regs->msr;
1200 
1201 	/* Caller has enabled FP/VEC/VSX/TM in MSR */
1202 	if (usermsr & MSR_FP)
1203 		__giveup_fpu(current);
1204 	if (usermsr & MSR_VEC)
1205 		__giveup_altivec(current);
1206 
1207 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1208 	if (usermsr & MSR_TM) {
1209 		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
1210 		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
1211 		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
1212 		current->thread.regs->msr &= ~MSR_TM;
1213 	}
1214 #endif
1215 }
1216 EXPORT_SYMBOL_GPL(kvmppc_save_user_regs);
1217 
1218 void kvmppc_save_current_sprs(void)
1219 {
1220 	save_sprs(&current->thread);
1221 }
1222 EXPORT_SYMBOL_GPL(kvmppc_save_current_sprs);
1223 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1224 
1225 static inline void restore_sprs(struct thread_struct *old_thread,
1226 				struct thread_struct *new_thread)
1227 {
1228 #ifdef CONFIG_ALTIVEC
1229 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1230 	    old_thread->vrsave != new_thread->vrsave)
1231 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1232 #endif
1233 #ifdef CONFIG_SPE
1234 	if (cpu_has_feature(CPU_FTR_SPE) &&
1235 	    old_thread->spefscr != new_thread->spefscr)
1236 		mtspr(SPRN_SPEFSCR, new_thread->spefscr);
1237 #endif
1238 #ifdef CONFIG_PPC_BOOK3S_64
1239 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1240 		u64 dscr = get_paca()->dscr_default;
1241 		if (new_thread->dscr_inherit)
1242 			dscr = new_thread->dscr;
1243 
1244 		if (old_thread->dscr != dscr)
1245 			mtspr(SPRN_DSCR, dscr);
1246 	}
1247 
1248 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1249 		if (old_thread->bescr != new_thread->bescr)
1250 			mtspr(SPRN_BESCR, new_thread->bescr);
1251 		if (old_thread->ebbhr != new_thread->ebbhr)
1252 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1253 		if (old_thread->ebbrr != new_thread->ebbrr)
1254 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1255 
1256 		if (old_thread->fscr != new_thread->fscr)
1257 			mtspr(SPRN_FSCR, new_thread->fscr);
1258 
1259 		if (old_thread->tar != new_thread->tar)
1260 			mtspr(SPRN_TAR, new_thread->tar);
1261 	}
1262 
1263 	if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1264 	    old_thread->tidr != new_thread->tidr)
1265 		mtspr(SPRN_TIDR, new_thread->tidr);
1266 
1267 	if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE) &&
1268 	    old_thread->hashkeyr != new_thread->hashkeyr)
1269 		mtspr(SPRN_HASHKEYR, new_thread->hashkeyr);
1270 #endif
1271 
1272 }
1273 
1274 struct task_struct *__switch_to(struct task_struct *prev,
1275 	struct task_struct *new)
1276 {
1277 	struct thread_struct *new_thread, *old_thread;
1278 	struct task_struct *last;
1279 #ifdef CONFIG_PPC_64S_HASH_MMU
1280 	struct ppc64_tlb_batch *batch;
1281 #endif
1282 
1283 	new_thread = &new->thread;
1284 	old_thread = &current->thread;
1285 
1286 	WARN_ON(!irqs_disabled());
1287 
1288 #ifdef CONFIG_PPC_64S_HASH_MMU
1289 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1290 	if (batch->active) {
1291 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1292 		if (batch->index)
1293 			__flush_tlb_pending(batch);
1294 		batch->active = 0;
1295 	}
1296 
1297 	/*
1298 	 * On POWER9 the copy-paste buffer can only paste into
1299 	 * foreign real addresses, so unprivileged processes can not
1300 	 * see the data or use it in any way unless they have
1301 	 * foreign real mappings. If the new process has the foreign
1302 	 * real address mappings, we must issue a cp_abort to clear
1303 	 * any state and prevent snooping, corruption or a covert
1304 	 * channel. ISA v3.1 supports paste into local memory.
1305 	 */
1306 	if (new->mm && (cpu_has_feature(CPU_FTR_ARCH_31) ||
1307 			atomic_read(&new->mm->context.vas_windows)))
1308 		asm volatile(PPC_CP_ABORT);
1309 #endif /* CONFIG_PPC_BOOK3S_64 */
1310 
1311 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1312 	switch_booke_debug_regs(&new->thread.debug);
1313 #else
1314 /*
1315  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1316  * schedule DABR
1317  */
1318 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1319 	switch_hw_breakpoint(new);
1320 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1321 #endif
1322 
1323 	/*
1324 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1325 	 * change a number of them.
1326 	 */
1327 	save_sprs(&prev->thread);
1328 
1329 	/* Save FPU, Altivec, VSX and SPE state */
1330 	giveup_all(prev);
1331 
1332 	__switch_to_tm(prev, new);
1333 
1334 	if (!radix_enabled()) {
1335 		/*
1336 		 * We can't take a PMU exception inside _switch() since there
1337 		 * is a window where the kernel stack SLB and the kernel stack
1338 		 * are out of sync. Hard disable here.
1339 		 */
1340 		hard_irq_disable();
1341 	}
1342 
1343 	/*
1344 	 * Call restore_sprs() and set_return_regs_changed() before calling
1345 	 * _switch(). If we move it after _switch() then we miss out on calling
1346 	 * it for new tasks. The reason for this is we manually create a stack
1347 	 * frame for new tasks that directly returns through ret_from_fork() or
1348 	 * ret_from_kernel_thread(). See copy_thread() for details.
1349 	 */
1350 	restore_sprs(old_thread, new_thread);
1351 
1352 	set_return_regs_changed(); /* _switch changes stack (and regs) */
1353 
1354 	if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1355 		kuap_assert_locked();
1356 
1357 	last = _switch(old_thread, new_thread);
1358 
1359 	/*
1360 	 * Nothing after _switch will be run for newly created tasks,
1361 	 * because they switch directly to ret_from_fork/ret_from_kernel_thread
1362 	 * etc. Code added here should have a comment explaining why that is
1363 	 * okay.
1364 	 */
1365 
1366 #ifdef CONFIG_PPC_BOOK3S_64
1367 #ifdef CONFIG_PPC_64S_HASH_MMU
1368 	/*
1369 	 * This applies to a process that was context switched while inside
1370 	 * arch_enter_lazy_mmu_mode(), to re-activate the batch that was
1371 	 * deactivated above, before _switch(). This will never be the case
1372 	 * for new tasks.
1373 	 */
1374 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1375 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1376 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1377 		batch->active = 1;
1378 	}
1379 #endif
1380 
1381 	/*
1382 	 * Math facilities are masked out of the child MSR in copy_thread.
1383 	 * A new task does not need to restore_math because it will
1384 	 * demand fault them.
1385 	 */
1386 	if (current->thread.regs)
1387 		restore_math(current->thread.regs);
1388 #endif /* CONFIG_PPC_BOOK3S_64 */
1389 
1390 	return last;
1391 }
1392 
1393 #define NR_INSN_TO_PRINT	16
1394 
1395 static void show_instructions(struct pt_regs *regs)
1396 {
1397 	int i;
1398 	unsigned long nip = regs->nip;
1399 	unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1400 
1401 	printk("Code: ");
1402 
1403 	/*
1404 	 * If we were executing with the MMU off for instructions, adjust pc
1405 	 * rather than printing XXXXXXXX.
1406 	 */
1407 	if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1408 		pc = (unsigned long)phys_to_virt(pc);
1409 		nip = (unsigned long)phys_to_virt(regs->nip);
1410 	}
1411 
1412 	for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1413 		int instr;
1414 
1415 		if (get_kernel_nofault(instr, (const void *)pc)) {
1416 			pr_cont("XXXXXXXX ");
1417 		} else {
1418 			if (nip == pc)
1419 				pr_cont("<%08x> ", instr);
1420 			else
1421 				pr_cont("%08x ", instr);
1422 		}
1423 
1424 		pc += sizeof(int);
1425 	}
1426 
1427 	pr_cont("\n");
1428 }
1429 
1430 void show_user_instructions(struct pt_regs *regs)
1431 {
1432 	unsigned long pc;
1433 	int n = NR_INSN_TO_PRINT;
1434 	struct seq_buf s;
1435 	char buf[96]; /* enough for 8 times 9 + 2 chars */
1436 
1437 	pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1438 
1439 	seq_buf_init(&s, buf, sizeof(buf));
1440 
1441 	while (n) {
1442 		int i;
1443 
1444 		seq_buf_clear(&s);
1445 
1446 		for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1447 			int instr;
1448 
1449 			if (copy_from_user_nofault(&instr, (void __user *)pc,
1450 					sizeof(instr))) {
1451 				seq_buf_printf(&s, "XXXXXXXX ");
1452 				continue;
1453 			}
1454 			seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1455 		}
1456 
1457 		if (!seq_buf_has_overflowed(&s))
1458 			pr_info("%s[%d]: code: %s\n", current->comm,
1459 				current->pid, s.buffer);
1460 	}
1461 }
1462 
1463 struct regbit {
1464 	unsigned long bit;
1465 	const char *name;
1466 };
1467 
1468 static struct regbit msr_bits[] = {
1469 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1470 	{MSR_SF,	"SF"},
1471 	{MSR_HV,	"HV"},
1472 #endif
1473 	{MSR_VEC,	"VEC"},
1474 	{MSR_VSX,	"VSX"},
1475 #ifdef CONFIG_BOOKE
1476 	{MSR_CE,	"CE"},
1477 #endif
1478 	{MSR_EE,	"EE"},
1479 	{MSR_PR,	"PR"},
1480 	{MSR_FP,	"FP"},
1481 	{MSR_ME,	"ME"},
1482 #ifdef CONFIG_BOOKE
1483 	{MSR_DE,	"DE"},
1484 #else
1485 	{MSR_SE,	"SE"},
1486 	{MSR_BE,	"BE"},
1487 #endif
1488 	{MSR_IR,	"IR"},
1489 	{MSR_DR,	"DR"},
1490 	{MSR_PMM,	"PMM"},
1491 #ifndef CONFIG_BOOKE
1492 	{MSR_RI,	"RI"},
1493 	{MSR_LE,	"LE"},
1494 #endif
1495 	{0,		NULL}
1496 };
1497 
1498 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1499 {
1500 	const char *s = "";
1501 
1502 	for (; bits->bit; ++bits)
1503 		if (val & bits->bit) {
1504 			pr_cont("%s%s", s, bits->name);
1505 			s = sep;
1506 		}
1507 }
1508 
1509 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1510 static struct regbit msr_tm_bits[] = {
1511 	{MSR_TS_T,	"T"},
1512 	{MSR_TS_S,	"S"},
1513 	{MSR_TM,	"E"},
1514 	{0,		NULL}
1515 };
1516 
1517 static void print_tm_bits(unsigned long val)
1518 {
1519 /*
1520  * This only prints something if at least one of the TM bit is set.
1521  * Inside the TM[], the output means:
1522  *   E: Enabled		(bit 32)
1523  *   S: Suspended	(bit 33)
1524  *   T: Transactional	(bit 34)
1525  */
1526 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1527 		pr_cont(",TM[");
1528 		print_bits(val, msr_tm_bits, "");
1529 		pr_cont("]");
1530 	}
1531 }
1532 #else
1533 static void print_tm_bits(unsigned long val) {}
1534 #endif
1535 
1536 static void print_msr_bits(unsigned long val)
1537 {
1538 	pr_cont("<");
1539 	print_bits(val, msr_bits, ",");
1540 	print_tm_bits(val);
1541 	pr_cont(">");
1542 }
1543 
1544 #ifdef CONFIG_PPC64
1545 #define REG		"%016lx"
1546 #define REGS_PER_LINE	4
1547 #else
1548 #define REG		"%08lx"
1549 #define REGS_PER_LINE	8
1550 #endif
1551 
1552 static void __show_regs(struct pt_regs *regs)
1553 {
1554 	int i, trap;
1555 
1556 	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1557 	       regs->nip, regs->link, regs->ctr);
1558 	printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1559 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1560 	printk("MSR:  "REG" ", regs->msr);
1561 	print_msr_bits(regs->msr);
1562 	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1563 	trap = TRAP(regs);
1564 	if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1565 		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1566 	if (trap == INTERRUPT_MACHINE_CHECK ||
1567 	    trap == INTERRUPT_DATA_STORAGE ||
1568 	    trap == INTERRUPT_ALIGNMENT) {
1569 		if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE))
1570 			pr_cont("DEAR: "REG" ESR: "REG" ", regs->dear, regs->esr);
1571 		else
1572 			pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1573 	}
1574 
1575 #ifdef CONFIG_PPC64
1576 	pr_cont("IRQMASK: %lx ", regs->softe);
1577 #endif
1578 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1579 	if (MSR_TM_ACTIVE(regs->msr))
1580 		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1581 #endif
1582 
1583 	for (i = 0;  i < 32;  i++) {
1584 		if ((i % REGS_PER_LINE) == 0)
1585 			pr_cont("\nGPR%02d: ", i);
1586 		pr_cont(REG " ", regs->gpr[i]);
1587 	}
1588 	pr_cont("\n");
1589 	/*
1590 	 * Lookup NIP late so we have the best change of getting the
1591 	 * above info out without failing
1592 	 */
1593 	if (IS_ENABLED(CONFIG_KALLSYMS)) {
1594 		printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1595 		printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1596 	}
1597 }
1598 
1599 void show_regs(struct pt_regs *regs)
1600 {
1601 	show_regs_print_info(KERN_DEFAULT);
1602 	__show_regs(regs);
1603 	show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1604 	if (!user_mode(regs))
1605 		show_instructions(regs);
1606 }
1607 
1608 void flush_thread(void)
1609 {
1610 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1611 	flush_ptrace_hw_breakpoint(current);
1612 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1613 	set_debug_reg_defaults(&current->thread);
1614 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1615 }
1616 
1617 void arch_setup_new_exec(void)
1618 {
1619 
1620 #ifdef CONFIG_PPC_BOOK3S_64
1621 	if (!radix_enabled())
1622 		hash__setup_new_exec();
1623 #endif
1624 	/*
1625 	 * If we exec out of a kernel thread then thread.regs will not be
1626 	 * set.  Do it now.
1627 	 */
1628 	if (!current->thread.regs) {
1629 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1630 		current->thread.regs = regs - 1;
1631 	}
1632 
1633 #ifdef CONFIG_PPC_MEM_KEYS
1634 	current->thread.regs->amr  = default_amr;
1635 	current->thread.regs->iamr  = default_iamr;
1636 #endif
1637 }
1638 
1639 #ifdef CONFIG_PPC64
1640 /*
1641  * Assign a TIDR (thread ID) for task @t and set it in the thread
1642  * structure. For now, we only support setting TIDR for 'current' task.
1643  *
1644  * Since the TID value is a truncated form of it PID, it is possible
1645  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1646  * that 2 threads share the same TID and are waiting, one of the following
1647  * cases will happen:
1648  *
1649  * 1. The correct thread is running, the wrong thread is not
1650  * In this situation, the correct thread is woken and proceeds to pass it's
1651  * condition check.
1652  *
1653  * 2. Neither threads are running
1654  * In this situation, neither thread will be woken. When scheduled, the waiting
1655  * threads will execute either a wait, which will return immediately, followed
1656  * by a condition check, which will pass for the correct thread and fail
1657  * for the wrong thread, or they will execute the condition check immediately.
1658  *
1659  * 3. The wrong thread is running, the correct thread is not
1660  * The wrong thread will be woken, but will fail it's condition check and
1661  * re-execute wait. The correct thread, when scheduled, will execute either
1662  * it's condition check (which will pass), or wait, which returns immediately
1663  * when called the first time after the thread is scheduled, followed by it's
1664  * condition check (which will pass).
1665  *
1666  * 4. Both threads are running
1667  * Both threads will be woken. The wrong thread will fail it's condition check
1668  * and execute another wait, while the correct thread will pass it's condition
1669  * check.
1670  *
1671  * @t: the task to set the thread ID for
1672  */
1673 int set_thread_tidr(struct task_struct *t)
1674 {
1675 	if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1676 		return -EINVAL;
1677 
1678 	if (t != current)
1679 		return -EINVAL;
1680 
1681 	if (t->thread.tidr)
1682 		return 0;
1683 
1684 	t->thread.tidr = (u16)task_pid_nr(t);
1685 	mtspr(SPRN_TIDR, t->thread.tidr);
1686 
1687 	return 0;
1688 }
1689 EXPORT_SYMBOL_GPL(set_thread_tidr);
1690 
1691 #endif /* CONFIG_PPC64 */
1692 
1693 /*
1694  * this gets called so that we can store coprocessor state into memory and
1695  * copy the current task into the new thread.
1696  */
1697 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1698 {
1699 	flush_all_to_thread(src);
1700 	/*
1701 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1702 	 * flush but it removes the checkpointed state from the current CPU and
1703 	 * transitions the CPU out of TM mode.  Hence we need to call
1704 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1705 	 * checkpointed state back and the TM mode.
1706 	 *
1707 	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1708 	 * dst is only important for __switch_to()
1709 	 */
1710 	__switch_to_tm(src, src);
1711 
1712 	*dst = *src;
1713 
1714 	clear_task_ebb(dst);
1715 
1716 	return 0;
1717 }
1718 
1719 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1720 {
1721 #ifdef CONFIG_PPC_64S_HASH_MMU
1722 	unsigned long sp_vsid;
1723 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1724 
1725 	if (radix_enabled())
1726 		return;
1727 
1728 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1729 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1730 			<< SLB_VSID_SHIFT_1T;
1731 	else
1732 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1733 			<< SLB_VSID_SHIFT;
1734 	sp_vsid |= SLB_VSID_KERNEL | llp;
1735 	p->thread.ksp_vsid = sp_vsid;
1736 #endif
1737 }
1738 
1739 /*
1740  * Copy a thread..
1741  */
1742 
1743 /*
1744  * Copy architecture-specific thread state
1745  */
1746 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
1747 {
1748 	struct pt_regs *kregs; /* Switch frame regs */
1749 	extern void ret_from_fork(void);
1750 	extern void ret_from_fork_scv(void);
1751 	extern void ret_from_kernel_user_thread(void);
1752 	extern void start_kernel_thread(void);
1753 	void (*f)(void);
1754 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1755 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1756 	int i;
1757 #endif
1758 
1759 	klp_init_thread_info(p);
1760 
1761 	if (unlikely(p->flags & PF_KTHREAD)) {
1762 		/* kernel thread */
1763 
1764 		/* Create initial minimum stack frame. */
1765 		sp -= STACK_FRAME_MIN_SIZE;
1766 		((unsigned long *)sp)[0] = 0;
1767 
1768 		f = start_kernel_thread;
1769 		p->thread.regs = NULL;	/* no user register state */
1770 		clear_tsk_compat_task(p);
1771 	} else {
1772 		/* user thread */
1773 		struct pt_regs *childregs;
1774 
1775 		/* Create initial user return stack frame. */
1776 		sp -= STACK_USER_INT_FRAME_SIZE;
1777 		*(unsigned long *)(sp + STACK_INT_FRAME_MARKER) = STACK_FRAME_REGS_MARKER;
1778 
1779 		childregs = (struct pt_regs *)(sp + STACK_INT_FRAME_REGS);
1780 
1781 		if (unlikely(args->fn)) {
1782 			/*
1783 			 * A user space thread, but it first runs a kernel
1784 			 * thread, and then returns as though it had called
1785 			 * execve rather than fork, so user regs will be
1786 			 * filled in (e.g., by kernel_execve()).
1787 			 */
1788 			((unsigned long *)sp)[0] = 0;
1789 			memset(childregs, 0, sizeof(struct pt_regs));
1790 #ifdef CONFIG_PPC64
1791 			childregs->softe = IRQS_ENABLED;
1792 #endif
1793 			f = ret_from_kernel_user_thread;
1794 		} else {
1795 			struct pt_regs *regs = current_pt_regs();
1796 			unsigned long clone_flags = args->flags;
1797 			unsigned long usp = args->stack;
1798 
1799 			/* Copy registers */
1800 			*childregs = *regs;
1801 			if (usp)
1802 				childregs->gpr[1] = usp;
1803 			((unsigned long *)sp)[0] = childregs->gpr[1];
1804 #ifdef CONFIG_PPC_IRQ_SOFT_MASK_DEBUG
1805 			WARN_ON_ONCE(childregs->softe != IRQS_ENABLED);
1806 #endif
1807 			if (clone_flags & CLONE_SETTLS) {
1808 				unsigned long tls = args->tls;
1809 
1810 				if (!is_32bit_task())
1811 					childregs->gpr[13] = tls;
1812 				else
1813 					childregs->gpr[2] = tls;
1814 			}
1815 
1816 			if (trap_is_scv(regs))
1817 				f = ret_from_fork_scv;
1818 			else
1819 				f = ret_from_fork;
1820 		}
1821 
1822 		childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1823 		p->thread.regs = childregs;
1824 	}
1825 
1826 	/*
1827 	 * The way this works is that at some point in the future
1828 	 * some task will call _switch to switch to the new task.
1829 	 * That will pop off the stack frame created below and start
1830 	 * the new task running at ret_from_fork.  The new task will
1831 	 * do some house keeping and then return from the fork or clone
1832 	 * system call, using the stack frame created above.
1833 	 */
1834 	((unsigned long *)sp)[STACK_FRAME_LR_SAVE] = (unsigned long)f;
1835 	sp -= STACK_SWITCH_FRAME_SIZE;
1836 	((unsigned long *)sp)[0] = sp + STACK_SWITCH_FRAME_SIZE;
1837 	kregs = (struct pt_regs *)(sp + STACK_SWITCH_FRAME_REGS);
1838 	kregs->nip = ppc_function_entry(f);
1839 	if (unlikely(args->fn)) {
1840 		/*
1841 		 * Put kthread fn, arg parameters in non-volatile GPRs in the
1842 		 * switch frame so they are loaded by _switch before it returns
1843 		 * to ret_from_kernel_thread.
1844 		 */
1845 		kregs->gpr[14] = ppc_function_entry((void *)args->fn);
1846 		kregs->gpr[15] = (unsigned long)args->fn_arg;
1847 	}
1848 	p->thread.ksp = sp;
1849 
1850 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1851 	for (i = 0; i < nr_wp_slots(); i++)
1852 		p->thread.ptrace_bps[i] = NULL;
1853 #endif
1854 
1855 #ifdef CONFIG_PPC_FPU_REGS
1856 	p->thread.fp_save_area = NULL;
1857 #endif
1858 #ifdef CONFIG_ALTIVEC
1859 	p->thread.vr_save_area = NULL;
1860 #endif
1861 #if defined(CONFIG_PPC_BOOK3S_32) && defined(CONFIG_PPC_KUAP)
1862 	p->thread.kuap = KUAP_NONE;
1863 #endif
1864 #if defined(CONFIG_BOOKE_OR_40x) && defined(CONFIG_PPC_KUAP)
1865 	p->thread.pid = MMU_NO_CONTEXT;
1866 #endif
1867 
1868 	setup_ksp_vsid(p, sp);
1869 
1870 #ifdef CONFIG_PPC64
1871 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1872 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1873 		p->thread.dscr = mfspr(SPRN_DSCR);
1874 	}
1875 
1876 	p->thread.tidr = 0;
1877 #endif
1878 #ifdef CONFIG_PPC_BOOK3S_64
1879 	if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE))
1880 		p->thread.hashkeyr = current->thread.hashkeyr;
1881 #endif
1882 	return 0;
1883 }
1884 
1885 void preload_new_slb_context(unsigned long start, unsigned long sp);
1886 
1887 /*
1888  * Set up a thread for executing a new program
1889  */
1890 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1891 {
1892 #ifdef CONFIG_PPC64
1893 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1894 
1895 	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
1896 		preload_new_slb_context(start, sp);
1897 #endif
1898 
1899 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1900 	/*
1901 	 * Clear any transactional state, we're exec()ing. The cause is
1902 	 * not important as there will never be a recheckpoint so it's not
1903 	 * user visible.
1904 	 */
1905 	if (MSR_TM_SUSPENDED(mfmsr()))
1906 		tm_reclaim_current(0);
1907 #endif
1908 
1909 	memset(&regs->gpr[1], 0, sizeof(regs->gpr) - sizeof(regs->gpr[0]));
1910 	regs->ctr = 0;
1911 	regs->link = 0;
1912 	regs->xer = 0;
1913 	regs->ccr = 0;
1914 	regs->gpr[1] = sp;
1915 
1916 #ifdef CONFIG_PPC32
1917 	regs->mq = 0;
1918 	regs->nip = start;
1919 	regs->msr = MSR_USER;
1920 #else
1921 	if (!is_32bit_task()) {
1922 		unsigned long entry;
1923 
1924 		if (is_elf2_task()) {
1925 			/* Look ma, no function descriptors! */
1926 			entry = start;
1927 
1928 			/*
1929 			 * Ulrich says:
1930 			 *   The latest iteration of the ABI requires that when
1931 			 *   calling a function (at its global entry point),
1932 			 *   the caller must ensure r12 holds the entry point
1933 			 *   address (so that the function can quickly
1934 			 *   establish addressability).
1935 			 */
1936 			regs->gpr[12] = start;
1937 			/* Make sure that's restored on entry to userspace. */
1938 			set_thread_flag(TIF_RESTOREALL);
1939 		} else {
1940 			unsigned long toc;
1941 
1942 			/* start is a relocated pointer to the function
1943 			 * descriptor for the elf _start routine.  The first
1944 			 * entry in the function descriptor is the entry
1945 			 * address of _start and the second entry is the TOC
1946 			 * value we need to use.
1947 			 */
1948 			__get_user(entry, (unsigned long __user *)start);
1949 			__get_user(toc, (unsigned long __user *)start+1);
1950 
1951 			/* Check whether the e_entry function descriptor entries
1952 			 * need to be relocated before we can use them.
1953 			 */
1954 			if (load_addr != 0) {
1955 				entry += load_addr;
1956 				toc   += load_addr;
1957 			}
1958 			regs->gpr[2] = toc;
1959 		}
1960 		regs_set_return_ip(regs, entry);
1961 		regs_set_return_msr(regs, MSR_USER64);
1962 	} else {
1963 		regs->gpr[2] = 0;
1964 		regs_set_return_ip(regs, start);
1965 		regs_set_return_msr(regs, MSR_USER32);
1966 	}
1967 
1968 #endif
1969 #ifdef CONFIG_VSX
1970 	current->thread.used_vsr = 0;
1971 #endif
1972 	current->thread.load_slb = 0;
1973 	current->thread.load_fp = 0;
1974 #ifdef CONFIG_PPC_FPU_REGS
1975 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1976 	current->thread.fp_save_area = NULL;
1977 #endif
1978 #ifdef CONFIG_ALTIVEC
1979 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1980 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1981 	current->thread.vr_save_area = NULL;
1982 	current->thread.vrsave = 0;
1983 	current->thread.used_vr = 0;
1984 	current->thread.load_vec = 0;
1985 #endif /* CONFIG_ALTIVEC */
1986 #ifdef CONFIG_SPE
1987 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1988 	current->thread.acc = 0;
1989 	current->thread.spefscr = 0;
1990 	current->thread.used_spe = 0;
1991 #endif /* CONFIG_SPE */
1992 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1993 	current->thread.tm_tfhar = 0;
1994 	current->thread.tm_texasr = 0;
1995 	current->thread.tm_tfiar = 0;
1996 	current->thread.load_tm = 0;
1997 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1998 #ifdef CONFIG_PPC_BOOK3S_64
1999 	if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE)) {
2000 		current->thread.hashkeyr = get_random_long();
2001 		mtspr(SPRN_HASHKEYR, current->thread.hashkeyr);
2002 	}
2003 #endif /* CONFIG_PPC_BOOK3S_64 */
2004 }
2005 EXPORT_SYMBOL(start_thread);
2006 
2007 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
2008 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
2009 
2010 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
2011 {
2012 	struct pt_regs *regs = tsk->thread.regs;
2013 
2014 	/* This is a bit hairy.  If we are an SPE enabled  processor
2015 	 * (have embedded fp) we store the IEEE exception enable flags in
2016 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
2017 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
2018 	if (val & PR_FP_EXC_SW_ENABLE) {
2019 		if (cpu_has_feature(CPU_FTR_SPE)) {
2020 			/*
2021 			 * When the sticky exception bits are set
2022 			 * directly by userspace, it must call prctl
2023 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
2024 			 * in the existing prctl settings) or
2025 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
2026 			 * the bits being set).  <fenv.h> functions
2027 			 * saving and restoring the whole
2028 			 * floating-point environment need to do so
2029 			 * anyway to restore the prctl settings from
2030 			 * the saved environment.
2031 			 */
2032 #ifdef CONFIG_SPE
2033 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
2034 			tsk->thread.fpexc_mode = val &
2035 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
2036 #endif
2037 			return 0;
2038 		} else {
2039 			return -EINVAL;
2040 		}
2041 	}
2042 
2043 	/* on a CONFIG_SPE this does not hurt us.  The bits that
2044 	 * __pack_fe01 use do not overlap with bits used for
2045 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
2046 	 * on CONFIG_SPE implementations are reserved so writing to
2047 	 * them does not change anything */
2048 	if (val > PR_FP_EXC_PRECISE)
2049 		return -EINVAL;
2050 	tsk->thread.fpexc_mode = __pack_fe01(val);
2051 	if (regs != NULL && (regs->msr & MSR_FP) != 0) {
2052 		regs_set_return_msr(regs, (regs->msr & ~(MSR_FE0|MSR_FE1))
2053 						| tsk->thread.fpexc_mode);
2054 	}
2055 	return 0;
2056 }
2057 
2058 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
2059 {
2060 	unsigned int val = 0;
2061 
2062 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
2063 		if (cpu_has_feature(CPU_FTR_SPE)) {
2064 			/*
2065 			 * When the sticky exception bits are set
2066 			 * directly by userspace, it must call prctl
2067 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
2068 			 * in the existing prctl settings) or
2069 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
2070 			 * the bits being set).  <fenv.h> functions
2071 			 * saving and restoring the whole
2072 			 * floating-point environment need to do so
2073 			 * anyway to restore the prctl settings from
2074 			 * the saved environment.
2075 			 */
2076 #ifdef CONFIG_SPE
2077 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
2078 			val = tsk->thread.fpexc_mode;
2079 #endif
2080 		} else
2081 			return -EINVAL;
2082 	} else {
2083 		val = __unpack_fe01(tsk->thread.fpexc_mode);
2084 	}
2085 	return put_user(val, (unsigned int __user *) adr);
2086 }
2087 
2088 int set_endian(struct task_struct *tsk, unsigned int val)
2089 {
2090 	struct pt_regs *regs = tsk->thread.regs;
2091 
2092 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
2093 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
2094 		return -EINVAL;
2095 
2096 	if (regs == NULL)
2097 		return -EINVAL;
2098 
2099 	if (val == PR_ENDIAN_BIG)
2100 		regs_set_return_msr(regs, regs->msr & ~MSR_LE);
2101 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
2102 		regs_set_return_msr(regs, regs->msr | MSR_LE);
2103 	else
2104 		return -EINVAL;
2105 
2106 	return 0;
2107 }
2108 
2109 int get_endian(struct task_struct *tsk, unsigned long adr)
2110 {
2111 	struct pt_regs *regs = tsk->thread.regs;
2112 	unsigned int val;
2113 
2114 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
2115 	    !cpu_has_feature(CPU_FTR_REAL_LE))
2116 		return -EINVAL;
2117 
2118 	if (regs == NULL)
2119 		return -EINVAL;
2120 
2121 	if (regs->msr & MSR_LE) {
2122 		if (cpu_has_feature(CPU_FTR_REAL_LE))
2123 			val = PR_ENDIAN_LITTLE;
2124 		else
2125 			val = PR_ENDIAN_PPC_LITTLE;
2126 	} else
2127 		val = PR_ENDIAN_BIG;
2128 
2129 	return put_user(val, (unsigned int __user *)adr);
2130 }
2131 
2132 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2133 {
2134 	tsk->thread.align_ctl = val;
2135 	return 0;
2136 }
2137 
2138 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2139 {
2140 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2141 }
2142 
2143 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2144 				  unsigned long nbytes)
2145 {
2146 	unsigned long stack_page;
2147 	unsigned long cpu = task_cpu(p);
2148 
2149 	if (!hardirq_ctx[cpu] || !softirq_ctx[cpu])
2150 		return 0;
2151 
2152 	stack_page = (unsigned long)hardirq_ctx[cpu];
2153 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2154 		return 1;
2155 
2156 	stack_page = (unsigned long)softirq_ctx[cpu];
2157 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2158 		return 1;
2159 
2160 	return 0;
2161 }
2162 
2163 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2164 					unsigned long nbytes)
2165 {
2166 #ifdef CONFIG_PPC64
2167 	unsigned long stack_page;
2168 	unsigned long cpu = task_cpu(p);
2169 
2170 	if (!paca_ptrs)
2171 		return 0;
2172 
2173 	if (!paca_ptrs[cpu]->emergency_sp)
2174 		return 0;
2175 
2176 # ifdef CONFIG_PPC_BOOK3S_64
2177 	if (!paca_ptrs[cpu]->nmi_emergency_sp || !paca_ptrs[cpu]->mc_emergency_sp)
2178 		return 0;
2179 #endif
2180 
2181 	stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2182 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2183 		return 1;
2184 
2185 # ifdef CONFIG_PPC_BOOK3S_64
2186 	stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2187 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2188 		return 1;
2189 
2190 	stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2191 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2192 		return 1;
2193 # endif
2194 #endif
2195 
2196 	return 0;
2197 }
2198 
2199 /*
2200  * validate the stack frame of a particular minimum size, used for when we are
2201  * looking at a certain object in the stack beyond the minimum.
2202  */
2203 int validate_sp_size(unsigned long sp, struct task_struct *p,
2204 		     unsigned long nbytes)
2205 {
2206 	unsigned long stack_page = (unsigned long)task_stack_page(p);
2207 
2208 	if (sp < THREAD_SIZE)
2209 		return 0;
2210 
2211 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2212 		return 1;
2213 
2214 	if (valid_irq_stack(sp, p, nbytes))
2215 		return 1;
2216 
2217 	return valid_emergency_stack(sp, p, nbytes);
2218 }
2219 
2220 int validate_sp(unsigned long sp, struct task_struct *p)
2221 {
2222 	return validate_sp_size(sp, p, STACK_FRAME_MIN_SIZE);
2223 }
2224 
2225 static unsigned long ___get_wchan(struct task_struct *p)
2226 {
2227 	unsigned long ip, sp;
2228 	int count = 0;
2229 
2230 	sp = p->thread.ksp;
2231 	if (!validate_sp(sp, p))
2232 		return 0;
2233 
2234 	do {
2235 		sp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
2236 		if (!validate_sp(sp, p) || task_is_running(p))
2237 			return 0;
2238 		if (count > 0) {
2239 			ip = READ_ONCE_NOCHECK(((unsigned long *)sp)[STACK_FRAME_LR_SAVE]);
2240 			if (!in_sched_functions(ip))
2241 				return ip;
2242 		}
2243 	} while (count++ < 16);
2244 	return 0;
2245 }
2246 
2247 unsigned long __get_wchan(struct task_struct *p)
2248 {
2249 	unsigned long ret;
2250 
2251 	if (!try_get_task_stack(p))
2252 		return 0;
2253 
2254 	ret = ___get_wchan(p);
2255 
2256 	put_task_stack(p);
2257 
2258 	return ret;
2259 }
2260 
2261 static bool empty_user_regs(struct pt_regs *regs, struct task_struct *tsk)
2262 {
2263 	unsigned long stack_page;
2264 
2265 	// A non-empty pt_regs should never have a zero MSR or TRAP value.
2266 	if (regs->msr || regs->trap)
2267 		return false;
2268 
2269 	// Check it sits at the very base of the stack
2270 	stack_page = (unsigned long)task_stack_page(tsk);
2271 	if ((unsigned long)(regs + 1) != stack_page + THREAD_SIZE)
2272 		return false;
2273 
2274 	return true;
2275 }
2276 
2277 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2278 
2279 void __no_sanitize_address show_stack(struct task_struct *tsk,
2280 				      unsigned long *stack,
2281 				      const char *loglvl)
2282 {
2283 	unsigned long sp, ip, lr, newsp;
2284 	int count = 0;
2285 	int firstframe = 1;
2286 	unsigned long ret_addr;
2287 	int ftrace_idx = 0;
2288 
2289 	if (tsk == NULL)
2290 		tsk = current;
2291 
2292 	if (!try_get_task_stack(tsk))
2293 		return;
2294 
2295 	sp = (unsigned long) stack;
2296 	if (sp == 0) {
2297 		if (tsk == current)
2298 			sp = current_stack_frame();
2299 		else
2300 			sp = tsk->thread.ksp;
2301 	}
2302 
2303 	lr = 0;
2304 	printk("%sCall Trace:\n", loglvl);
2305 	do {
2306 		if (!validate_sp(sp, tsk))
2307 			break;
2308 
2309 		stack = (unsigned long *) sp;
2310 		newsp = stack[0];
2311 		ip = stack[STACK_FRAME_LR_SAVE];
2312 		if (!firstframe || ip != lr) {
2313 			printk("%s["REG"] ["REG"] %pS",
2314 				loglvl, sp, ip, (void *)ip);
2315 			ret_addr = ftrace_graph_ret_addr(current,
2316 						&ftrace_idx, ip, stack);
2317 			if (ret_addr != ip)
2318 				pr_cont(" (%pS)", (void *)ret_addr);
2319 			if (firstframe)
2320 				pr_cont(" (unreliable)");
2321 			pr_cont("\n");
2322 		}
2323 		firstframe = 0;
2324 
2325 		/*
2326 		 * See if this is an exception frame.
2327 		 * We look for the "regs" marker in the current frame.
2328 		 *
2329 		 * STACK_SWITCH_FRAME_SIZE being the smallest frame that
2330 		 * could hold a pt_regs, if that does not fit then it can't
2331 		 * have regs.
2332 		 */
2333 		if (validate_sp_size(sp, tsk, STACK_SWITCH_FRAME_SIZE)
2334 		    && stack[STACK_INT_FRAME_MARKER_LONGS] == STACK_FRAME_REGS_MARKER) {
2335 			struct pt_regs *regs = (struct pt_regs *)
2336 				(sp + STACK_INT_FRAME_REGS);
2337 
2338 			lr = regs->link;
2339 			printk("%s--- interrupt: %lx at %pS\n",
2340 			       loglvl, regs->trap, (void *)regs->nip);
2341 
2342 			// Detect the case of an empty pt_regs at the very base
2343 			// of the stack and suppress showing it in full.
2344 			if (!empty_user_regs(regs, tsk)) {
2345 				__show_regs(regs);
2346 				printk("%s--- interrupt: %lx\n", loglvl, regs->trap);
2347 			}
2348 
2349 			firstframe = 1;
2350 		}
2351 
2352 		sp = newsp;
2353 	} while (count++ < kstack_depth_to_print);
2354 
2355 	put_task_stack(tsk);
2356 }
2357 
2358 #ifdef CONFIG_PPC64
2359 /* Called with hard IRQs off */
2360 void notrace __ppc64_runlatch_on(void)
2361 {
2362 	struct thread_info *ti = current_thread_info();
2363 
2364 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2365 		/*
2366 		 * Least significant bit (RUN) is the only writable bit of
2367 		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2368 		 * earliest ISA where this is the case, but it's convenient.
2369 		 */
2370 		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2371 	} else {
2372 		unsigned long ctrl;
2373 
2374 		/*
2375 		 * Some architectures (e.g., Cell) have writable fields other
2376 		 * than RUN, so do the read-modify-write.
2377 		 */
2378 		ctrl = mfspr(SPRN_CTRLF);
2379 		ctrl |= CTRL_RUNLATCH;
2380 		mtspr(SPRN_CTRLT, ctrl);
2381 	}
2382 
2383 	ti->local_flags |= _TLF_RUNLATCH;
2384 }
2385 
2386 /* Called with hard IRQs off */
2387 void notrace __ppc64_runlatch_off(void)
2388 {
2389 	struct thread_info *ti = current_thread_info();
2390 
2391 	ti->local_flags &= ~_TLF_RUNLATCH;
2392 
2393 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2394 		mtspr(SPRN_CTRLT, 0);
2395 	} else {
2396 		unsigned long ctrl;
2397 
2398 		ctrl = mfspr(SPRN_CTRLF);
2399 		ctrl &= ~CTRL_RUNLATCH;
2400 		mtspr(SPRN_CTRLT, ctrl);
2401 	}
2402 }
2403 #endif /* CONFIG_PPC64 */
2404 
2405 unsigned long arch_align_stack(unsigned long sp)
2406 {
2407 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2408 		sp -= get_random_u32_below(PAGE_SIZE);
2409 	return sp & ~0xf;
2410 }
2411