xref: /linux/arch/powerpc/kernel/watchdog.c (revision 0be3ff0c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Watchdog support on powerpc systems.
4  *
5  * Copyright 2017, IBM Corporation.
6  *
7  * This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c
8  */
9 
10 #define pr_fmt(fmt) "watchdog: " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/param.h>
14 #include <linux/init.h>
15 #include <linux/percpu.h>
16 #include <linux/cpu.h>
17 #include <linux/nmi.h>
18 #include <linux/module.h>
19 #include <linux/export.h>
20 #include <linux/kprobes.h>
21 #include <linux/hardirq.h>
22 #include <linux/reboot.h>
23 #include <linux/slab.h>
24 #include <linux/kdebug.h>
25 #include <linux/sched/debug.h>
26 #include <linux/delay.h>
27 #include <linux/processor.h>
28 #include <linux/smp.h>
29 
30 #include <asm/interrupt.h>
31 #include <asm/paca.h>
32 #include <asm/nmi.h>
33 
34 /*
35  * The powerpc watchdog ensures that each CPU is able to service timers.
36  * The watchdog sets up a simple timer on each CPU to run once per timer
37  * period, and updates a per-cpu timestamp and a "pending" cpumask. This is
38  * the heartbeat.
39  *
40  * Then there are two systems to check that the heartbeat is still running.
41  * The local soft-NMI, and the SMP checker.
42  *
43  * The soft-NMI checker can detect lockups on the local CPU. When interrupts
44  * are disabled with local_irq_disable(), platforms that use soft-masking
45  * can leave hardware interrupts enabled and handle them with a masked
46  * interrupt handler. The masked handler can send the timer interrupt to the
47  * watchdog's soft_nmi_interrupt(), which appears to Linux as an NMI
48  * interrupt, and can be used to detect CPUs stuck with IRQs disabled.
49  *
50  * The soft-NMI checker will compare the heartbeat timestamp for this CPU
51  * with the current time, and take action if the difference exceeds the
52  * watchdog threshold.
53  *
54  * The limitation of the soft-NMI watchdog is that it does not work when
55  * interrupts are hard disabled or otherwise not being serviced. This is
56  * solved by also having a SMP watchdog where all CPUs check all other
57  * CPUs heartbeat.
58  *
59  * The SMP checker can detect lockups on other CPUs. A gobal "pending"
60  * cpumask is kept, containing all CPUs which enable the watchdog. Each
61  * CPU clears their pending bit in their heartbeat timer. When the bitmask
62  * becomes empty, the last CPU to clear its pending bit updates a global
63  * timestamp and refills the pending bitmask.
64  *
65  * In the heartbeat timer, if any CPU notices that the global timestamp has
66  * not been updated for a period exceeding the watchdog threshold, then it
67  * means the CPU(s) with their bit still set in the pending mask have had
68  * their heartbeat stop, and action is taken.
69  *
70  * Some platforms implement true NMI IPIs, which can be used by the SMP
71  * watchdog to detect an unresponsive CPU and pull it out of its stuck
72  * state with the NMI IPI, to get crash/debug data from it. This way the
73  * SMP watchdog can detect hardware interrupts off lockups.
74  */
75 
76 static cpumask_t wd_cpus_enabled __read_mostly;
77 
78 static u64 wd_panic_timeout_tb __read_mostly; /* timebase ticks until panic */
79 static u64 wd_smp_panic_timeout_tb __read_mostly; /* panic other CPUs */
80 
81 static u64 wd_timer_period_ms __read_mostly;  /* interval between heartbeat */
82 
83 static DEFINE_PER_CPU(struct hrtimer, wd_hrtimer);
84 static DEFINE_PER_CPU(u64, wd_timer_tb);
85 
86 /* SMP checker bits */
87 static unsigned long __wd_smp_lock;
88 static unsigned long __wd_reporting;
89 static unsigned long __wd_nmi_output;
90 static cpumask_t wd_smp_cpus_pending;
91 static cpumask_t wd_smp_cpus_stuck;
92 static u64 wd_smp_last_reset_tb;
93 
94 /*
95  * Try to take the exclusive watchdog action / NMI IPI / printing lock.
96  * wd_smp_lock must be held. If this fails, we should return and wait
97  * for the watchdog to kick in again (or another CPU to trigger it).
98  *
99  * Importantly, if hardlockup_panic is set, wd_try_report failure should
100  * not delay the panic, because whichever other CPU is reporting will
101  * call panic.
102  */
103 static bool wd_try_report(void)
104 {
105 	if (__wd_reporting)
106 		return false;
107 	__wd_reporting = 1;
108 	return true;
109 }
110 
111 /* End printing after successful wd_try_report. wd_smp_lock not required. */
112 static void wd_end_reporting(void)
113 {
114 	smp_mb(); /* End printing "critical section" */
115 	WARN_ON_ONCE(__wd_reporting == 0);
116 	WRITE_ONCE(__wd_reporting, 0);
117 }
118 
119 static inline void wd_smp_lock(unsigned long *flags)
120 {
121 	/*
122 	 * Avoid locking layers if possible.
123 	 * This may be called from low level interrupt handlers at some
124 	 * point in future.
125 	 */
126 	raw_local_irq_save(*flags);
127 	hard_irq_disable(); /* Make it soft-NMI safe */
128 	while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock))) {
129 		raw_local_irq_restore(*flags);
130 		spin_until_cond(!test_bit(0, &__wd_smp_lock));
131 		raw_local_irq_save(*flags);
132 		hard_irq_disable();
133 	}
134 }
135 
136 static inline void wd_smp_unlock(unsigned long *flags)
137 {
138 	clear_bit_unlock(0, &__wd_smp_lock);
139 	raw_local_irq_restore(*flags);
140 }
141 
142 static void wd_lockup_ipi(struct pt_regs *regs)
143 {
144 	int cpu = raw_smp_processor_id();
145 	u64 tb = get_tb();
146 
147 	pr_emerg("CPU %d Hard LOCKUP\n", cpu);
148 	pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
149 		 cpu, tb, per_cpu(wd_timer_tb, cpu),
150 		 tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
151 	print_modules();
152 	print_irqtrace_events(current);
153 	if (regs)
154 		show_regs(regs);
155 	else
156 		dump_stack();
157 
158 	/*
159 	 * __wd_nmi_output must be set after we printk from NMI context.
160 	 *
161 	 * printk from NMI context defers printing to the console to irq_work.
162 	 * If that NMI was taken in some code that is hard-locked, then irqs
163 	 * are disabled so irq_work will never fire. That can result in the
164 	 * hard lockup messages being delayed (indefinitely, until something
165 	 * else kicks the console drivers).
166 	 *
167 	 * Setting __wd_nmi_output will cause another CPU to notice and kick
168 	 * the console drivers for us.
169 	 *
170 	 * xchg is not needed here (it could be a smp_mb and store), but xchg
171 	 * gives the memory ordering and atomicity required.
172 	 */
173 	xchg(&__wd_nmi_output, 1);
174 
175 	/* Do not panic from here because that can recurse into NMI IPI layer */
176 }
177 
178 static bool set_cpu_stuck(int cpu)
179 {
180 	cpumask_set_cpu(cpu, &wd_smp_cpus_stuck);
181 	cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
182 	/*
183 	 * See wd_smp_clear_cpu_pending()
184 	 */
185 	smp_mb();
186 	if (cpumask_empty(&wd_smp_cpus_pending)) {
187 		wd_smp_last_reset_tb = get_tb();
188 		cpumask_andnot(&wd_smp_cpus_pending,
189 				&wd_cpus_enabled,
190 				&wd_smp_cpus_stuck);
191 		return true;
192 	}
193 	return false;
194 }
195 
196 static void watchdog_smp_panic(int cpu)
197 {
198 	static cpumask_t wd_smp_cpus_ipi; // protected by reporting
199 	unsigned long flags;
200 	u64 tb, last_reset;
201 	int c;
202 
203 	wd_smp_lock(&flags);
204 	/* Double check some things under lock */
205 	tb = get_tb();
206 	last_reset = wd_smp_last_reset_tb;
207 	if ((s64)(tb - last_reset) < (s64)wd_smp_panic_timeout_tb)
208 		goto out;
209 	if (cpumask_test_cpu(cpu, &wd_smp_cpus_pending))
210 		goto out;
211 	if (!wd_try_report())
212 		goto out;
213 	for_each_online_cpu(c) {
214 		if (!cpumask_test_cpu(c, &wd_smp_cpus_pending))
215 			continue;
216 		if (c == cpu)
217 			continue; // should not happen
218 
219 		__cpumask_set_cpu(c, &wd_smp_cpus_ipi);
220 		if (set_cpu_stuck(c))
221 			break;
222 	}
223 	if (cpumask_empty(&wd_smp_cpus_ipi)) {
224 		wd_end_reporting();
225 		goto out;
226 	}
227 	wd_smp_unlock(&flags);
228 
229 	pr_emerg("CPU %d detected hard LOCKUP on other CPUs %*pbl\n",
230 		 cpu, cpumask_pr_args(&wd_smp_cpus_ipi));
231 	pr_emerg("CPU %d TB:%lld, last SMP heartbeat TB:%lld (%lldms ago)\n",
232 		 cpu, tb, last_reset, tb_to_ns(tb - last_reset) / 1000000);
233 
234 	if (!sysctl_hardlockup_all_cpu_backtrace) {
235 		/*
236 		 * Try to trigger the stuck CPUs, unless we are going to
237 		 * get a backtrace on all of them anyway.
238 		 */
239 		for_each_cpu(c, &wd_smp_cpus_ipi) {
240 			smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000);
241 			__cpumask_clear_cpu(c, &wd_smp_cpus_ipi);
242 		}
243 	} else {
244 		trigger_allbutself_cpu_backtrace();
245 		cpumask_clear(&wd_smp_cpus_ipi);
246 	}
247 
248 	if (hardlockup_panic)
249 		nmi_panic(NULL, "Hard LOCKUP");
250 
251 	wd_end_reporting();
252 
253 	return;
254 
255 out:
256 	wd_smp_unlock(&flags);
257 }
258 
259 static void wd_smp_clear_cpu_pending(int cpu)
260 {
261 	if (!cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) {
262 		if (unlikely(cpumask_test_cpu(cpu, &wd_smp_cpus_stuck))) {
263 			struct pt_regs *regs = get_irq_regs();
264 			unsigned long flags;
265 
266 			pr_emerg("CPU %d became unstuck TB:%lld\n",
267 				 cpu, get_tb());
268 			print_irqtrace_events(current);
269 			if (regs)
270 				show_regs(regs);
271 			else
272 				dump_stack();
273 
274 			wd_smp_lock(&flags);
275 			cpumask_clear_cpu(cpu, &wd_smp_cpus_stuck);
276 			wd_smp_unlock(&flags);
277 		} else {
278 			/*
279 			 * The last CPU to clear pending should have reset the
280 			 * watchdog so we generally should not find it empty
281 			 * here if our CPU was clear. However it could happen
282 			 * due to a rare race with another CPU taking the
283 			 * last CPU out of the mask concurrently.
284 			 *
285 			 * We can't add a warning for it. But just in case
286 			 * there is a problem with the watchdog that is causing
287 			 * the mask to not be reset, try to kick it along here.
288 			 */
289 			if (unlikely(cpumask_empty(&wd_smp_cpus_pending)))
290 				goto none_pending;
291 		}
292 		return;
293 	}
294 
295 	/*
296 	 * All other updates to wd_smp_cpus_pending are performed under
297 	 * wd_smp_lock. All of them are atomic except the case where the
298 	 * mask becomes empty and is reset. This will not happen here because
299 	 * cpu was tested to be in the bitmap (above), and a CPU only clears
300 	 * its own bit. _Except_ in the case where another CPU has detected a
301 	 * hard lockup on our CPU and takes us out of the pending mask. So in
302 	 * normal operation there will be no race here, no problem.
303 	 *
304 	 * In the lockup case, this atomic clear-bit vs a store that refills
305 	 * other bits in the accessed word wll not be a problem. The bit clear
306 	 * is atomic so it will not cause the store to get lost, and the store
307 	 * will never set this bit so it will not overwrite the bit clear. The
308 	 * only way for a stuck CPU to return to the pending bitmap is to
309 	 * become unstuck itself.
310 	 */
311 	cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
312 
313 	/*
314 	 * Order the store to clear pending with the load(s) to check all
315 	 * words in the pending mask to check they are all empty. This orders
316 	 * with the same barrier on another CPU. This prevents two CPUs
317 	 * clearing the last 2 pending bits, but neither seeing the other's
318 	 * store when checking if the mask is empty, and missing an empty
319 	 * mask, which ends with a false positive.
320 	 */
321 	smp_mb();
322 	if (cpumask_empty(&wd_smp_cpus_pending)) {
323 		unsigned long flags;
324 
325 none_pending:
326 		/*
327 		 * Double check under lock because more than one CPU could see
328 		 * a clear mask with the lockless check after clearing their
329 		 * pending bits.
330 		 */
331 		wd_smp_lock(&flags);
332 		if (cpumask_empty(&wd_smp_cpus_pending)) {
333 			wd_smp_last_reset_tb = get_tb();
334 			cpumask_andnot(&wd_smp_cpus_pending,
335 					&wd_cpus_enabled,
336 					&wd_smp_cpus_stuck);
337 		}
338 		wd_smp_unlock(&flags);
339 	}
340 }
341 
342 static void watchdog_timer_interrupt(int cpu)
343 {
344 	u64 tb = get_tb();
345 
346 	per_cpu(wd_timer_tb, cpu) = tb;
347 
348 	wd_smp_clear_cpu_pending(cpu);
349 
350 	if ((s64)(tb - wd_smp_last_reset_tb) >= (s64)wd_smp_panic_timeout_tb)
351 		watchdog_smp_panic(cpu);
352 
353 	if (__wd_nmi_output && xchg(&__wd_nmi_output, 0)) {
354 		/*
355 		 * Something has called printk from NMI context. It might be
356 		 * stuck, so this this triggers a flush that will get that
357 		 * printk output to the console.
358 		 *
359 		 * See wd_lockup_ipi.
360 		 */
361 		printk_trigger_flush();
362 	}
363 }
364 
365 DEFINE_INTERRUPT_HANDLER_NMI(soft_nmi_interrupt)
366 {
367 	unsigned long flags;
368 	int cpu = raw_smp_processor_id();
369 	u64 tb;
370 
371 	/* should only arrive from kernel, with irqs disabled */
372 	WARN_ON_ONCE(!arch_irq_disabled_regs(regs));
373 
374 	if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
375 		return 0;
376 
377 	__this_cpu_inc(irq_stat.soft_nmi_irqs);
378 
379 	tb = get_tb();
380 	if (tb - per_cpu(wd_timer_tb, cpu) >= wd_panic_timeout_tb) {
381 		/*
382 		 * Taking wd_smp_lock here means it is a soft-NMI lock, which
383 		 * means we can't take any regular or irqsafe spin locks while
384 		 * holding this lock. This is why timers can't printk while
385 		 * holding the lock.
386 		 */
387 		wd_smp_lock(&flags);
388 		if (cpumask_test_cpu(cpu, &wd_smp_cpus_stuck)) {
389 			wd_smp_unlock(&flags);
390 			return 0;
391 		}
392 		if (!wd_try_report()) {
393 			wd_smp_unlock(&flags);
394 			/* Couldn't report, try again in 100ms */
395 			mtspr(SPRN_DEC, 100 * tb_ticks_per_usec * 1000);
396 			return 0;
397 		}
398 
399 		set_cpu_stuck(cpu);
400 
401 		wd_smp_unlock(&flags);
402 
403 		pr_emerg("CPU %d self-detected hard LOCKUP @ %pS\n",
404 			 cpu, (void *)regs->nip);
405 		pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
406 			 cpu, tb, per_cpu(wd_timer_tb, cpu),
407 			 tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
408 		print_modules();
409 		print_irqtrace_events(current);
410 		show_regs(regs);
411 
412 		xchg(&__wd_nmi_output, 1); // see wd_lockup_ipi
413 
414 		if (sysctl_hardlockup_all_cpu_backtrace)
415 			trigger_allbutself_cpu_backtrace();
416 
417 		if (hardlockup_panic)
418 			nmi_panic(regs, "Hard LOCKUP");
419 
420 		wd_end_reporting();
421 	}
422 	/*
423 	 * We are okay to change DEC in soft_nmi_interrupt because the masked
424 	 * handler has marked a DEC as pending, so the timer interrupt will be
425 	 * replayed as soon as local irqs are enabled again.
426 	 */
427 	if (wd_panic_timeout_tb < 0x7fffffff)
428 		mtspr(SPRN_DEC, wd_panic_timeout_tb);
429 
430 	return 0;
431 }
432 
433 static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
434 {
435 	int cpu = smp_processor_id();
436 
437 	if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
438 		return HRTIMER_NORESTART;
439 
440 	if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
441 		return HRTIMER_NORESTART;
442 
443 	watchdog_timer_interrupt(cpu);
444 
445 	hrtimer_forward_now(hrtimer, ms_to_ktime(wd_timer_period_ms));
446 
447 	return HRTIMER_RESTART;
448 }
449 
450 void arch_touch_nmi_watchdog(void)
451 {
452 	unsigned long ticks = tb_ticks_per_usec * wd_timer_period_ms * 1000;
453 	int cpu = smp_processor_id();
454 	u64 tb;
455 
456 	if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
457 		return;
458 
459 	tb = get_tb();
460 	if (tb - per_cpu(wd_timer_tb, cpu) >= ticks) {
461 		per_cpu(wd_timer_tb, cpu) = tb;
462 		wd_smp_clear_cpu_pending(cpu);
463 	}
464 }
465 EXPORT_SYMBOL(arch_touch_nmi_watchdog);
466 
467 static void start_watchdog(void *arg)
468 {
469 	struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
470 	int cpu = smp_processor_id();
471 	unsigned long flags;
472 
473 	if (cpumask_test_cpu(cpu, &wd_cpus_enabled)) {
474 		WARN_ON(1);
475 		return;
476 	}
477 
478 	if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
479 		return;
480 
481 	if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
482 		return;
483 
484 	wd_smp_lock(&flags);
485 	cpumask_set_cpu(cpu, &wd_cpus_enabled);
486 	if (cpumask_weight(&wd_cpus_enabled) == 1) {
487 		cpumask_set_cpu(cpu, &wd_smp_cpus_pending);
488 		wd_smp_last_reset_tb = get_tb();
489 	}
490 	wd_smp_unlock(&flags);
491 
492 	*this_cpu_ptr(&wd_timer_tb) = get_tb();
493 
494 	hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
495 	hrtimer->function = watchdog_timer_fn;
496 	hrtimer_start(hrtimer, ms_to_ktime(wd_timer_period_ms),
497 		      HRTIMER_MODE_REL_PINNED);
498 }
499 
500 static int start_watchdog_on_cpu(unsigned int cpu)
501 {
502 	return smp_call_function_single(cpu, start_watchdog, NULL, true);
503 }
504 
505 static void stop_watchdog(void *arg)
506 {
507 	struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
508 	int cpu = smp_processor_id();
509 	unsigned long flags;
510 
511 	if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
512 		return; /* Can happen in CPU unplug case */
513 
514 	hrtimer_cancel(hrtimer);
515 
516 	wd_smp_lock(&flags);
517 	cpumask_clear_cpu(cpu, &wd_cpus_enabled);
518 	wd_smp_unlock(&flags);
519 
520 	wd_smp_clear_cpu_pending(cpu);
521 }
522 
523 static int stop_watchdog_on_cpu(unsigned int cpu)
524 {
525 	return smp_call_function_single(cpu, stop_watchdog, NULL, true);
526 }
527 
528 static void watchdog_calc_timeouts(void)
529 {
530 	wd_panic_timeout_tb = watchdog_thresh * ppc_tb_freq;
531 
532 	/* Have the SMP detector trigger a bit later */
533 	wd_smp_panic_timeout_tb = wd_panic_timeout_tb * 3 / 2;
534 
535 	/* 2/5 is the factor that the perf based detector uses */
536 	wd_timer_period_ms = watchdog_thresh * 1000 * 2 / 5;
537 }
538 
539 void watchdog_nmi_stop(void)
540 {
541 	int cpu;
542 
543 	for_each_cpu(cpu, &wd_cpus_enabled)
544 		stop_watchdog_on_cpu(cpu);
545 }
546 
547 void watchdog_nmi_start(void)
548 {
549 	int cpu;
550 
551 	watchdog_calc_timeouts();
552 	for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask)
553 		start_watchdog_on_cpu(cpu);
554 }
555 
556 /*
557  * Invoked from core watchdog init.
558  */
559 int __init watchdog_nmi_probe(void)
560 {
561 	int err;
562 
563 	err = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
564 					"powerpc/watchdog:online",
565 					start_watchdog_on_cpu,
566 					stop_watchdog_on_cpu);
567 	if (err < 0) {
568 		pr_warn("could not be initialized");
569 		return err;
570 	}
571 	return 0;
572 }
573