xref: /linux/arch/powerpc/mm/book3s64/pgtable.c (revision 2da68a77)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/mm_types.h>
8 #include <linux/memblock.h>
9 #include <linux/memremap.h>
10 #include <linux/pkeys.h>
11 #include <linux/debugfs.h>
12 #include <misc/cxl-base.h>
13 
14 #include <asm/pgalloc.h>
15 #include <asm/tlb.h>
16 #include <asm/trace.h>
17 #include <asm/powernv.h>
18 #include <asm/firmware.h>
19 #include <asm/ultravisor.h>
20 #include <asm/kexec.h>
21 
22 #include <mm/mmu_decl.h>
23 #include <trace/events/thp.h>
24 
25 #include "internal.h"
26 
27 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
28 EXPORT_SYMBOL_GPL(mmu_psize_defs);
29 
30 #ifdef CONFIG_SPARSEMEM_VMEMMAP
31 int mmu_vmemmap_psize = MMU_PAGE_4K;
32 #endif
33 
34 unsigned long __pmd_frag_nr;
35 EXPORT_SYMBOL(__pmd_frag_nr);
36 unsigned long __pmd_frag_size_shift;
37 EXPORT_SYMBOL(__pmd_frag_size_shift);
38 
39 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
40 /*
41  * This is called when relaxing access to a hugepage. It's also called in the page
42  * fault path when we don't hit any of the major fault cases, ie, a minor
43  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
44  * handled those two for us, we additionally deal with missing execute
45  * permission here on some processors
46  */
47 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
48 			  pmd_t *pmdp, pmd_t entry, int dirty)
49 {
50 	int changed;
51 #ifdef CONFIG_DEBUG_VM
52 	WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
53 	assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
54 #endif
55 	changed = !pmd_same(*(pmdp), entry);
56 	if (changed) {
57 		/*
58 		 * We can use MMU_PAGE_2M here, because only radix
59 		 * path look at the psize.
60 		 */
61 		__ptep_set_access_flags(vma, pmdp_ptep(pmdp),
62 					pmd_pte(entry), address, MMU_PAGE_2M);
63 	}
64 	return changed;
65 }
66 
67 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
68 			      unsigned long address, pmd_t *pmdp)
69 {
70 	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
71 }
72 /*
73  * set a new huge pmd. We should not be called for updating
74  * an existing pmd entry. That should go via pmd_hugepage_update.
75  */
76 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
77 		pmd_t *pmdp, pmd_t pmd)
78 {
79 #ifdef CONFIG_DEBUG_VM
80 	/*
81 	 * Make sure hardware valid bit is not set. We don't do
82 	 * tlb flush for this update.
83 	 */
84 
85 	WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
86 	assert_spin_locked(pmd_lockptr(mm, pmdp));
87 	WARN_ON(!(pmd_large(pmd)));
88 #endif
89 	trace_hugepage_set_pmd(addr, pmd_val(pmd));
90 	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
91 }
92 
93 static void do_serialize(void *arg)
94 {
95 	/* We've taken the IPI, so try to trim the mask while here */
96 	if (radix_enabled()) {
97 		struct mm_struct *mm = arg;
98 		exit_lazy_flush_tlb(mm, false);
99 	}
100 }
101 
102 /*
103  * Serialize against find_current_mm_pte which does lock-less
104  * lookup in page tables with local interrupts disabled. For huge pages
105  * it casts pmd_t to pte_t. Since format of pte_t is different from
106  * pmd_t we want to prevent transit from pmd pointing to page table
107  * to pmd pointing to huge page (and back) while interrupts are disabled.
108  * We clear pmd to possibly replace it with page table pointer in
109  * different code paths. So make sure we wait for the parallel
110  * find_current_mm_pte to finish.
111  */
112 void serialize_against_pte_lookup(struct mm_struct *mm)
113 {
114 	smp_mb();
115 	smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1);
116 }
117 
118 /*
119  * We use this to invalidate a pmdp entry before switching from a
120  * hugepte to regular pmd entry.
121  */
122 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
123 		     pmd_t *pmdp)
124 {
125 	unsigned long old_pmd;
126 
127 	old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
128 	flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
129 	return __pmd(old_pmd);
130 }
131 
132 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
133 				   unsigned long addr, pmd_t *pmdp, int full)
134 {
135 	pmd_t pmd;
136 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
137 	VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) &&
138 		   !pmd_devmap(*pmdp)) || !pmd_present(*pmdp));
139 	pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
140 	/*
141 	 * if it not a fullmm flush, then we can possibly end up converting
142 	 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
143 	 * Make sure we flush the tlb in this case.
144 	 */
145 	if (!full)
146 		flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
147 	return pmd;
148 }
149 
150 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
151 {
152 	return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
153 }
154 
155 /*
156  * At some point we should be able to get rid of
157  * pmd_mkhuge() and mk_huge_pmd() when we update all the
158  * other archs to mark the pmd huge in pfn_pmd()
159  */
160 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
161 {
162 	unsigned long pmdv;
163 
164 	pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
165 
166 	return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot));
167 }
168 
169 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
170 {
171 	return pfn_pmd(page_to_pfn(page), pgprot);
172 }
173 
174 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
175 {
176 	unsigned long pmdv;
177 
178 	pmdv = pmd_val(pmd);
179 	pmdv &= _HPAGE_CHG_MASK;
180 	return pmd_set_protbits(__pmd(pmdv), newprot);
181 }
182 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
183 
184 /* For use by kexec, called with MMU off */
185 notrace void mmu_cleanup_all(void)
186 {
187 	if (radix_enabled())
188 		radix__mmu_cleanup_all();
189 	else if (mmu_hash_ops.hpte_clear_all)
190 		mmu_hash_ops.hpte_clear_all();
191 
192 	reset_sprs();
193 }
194 
195 #ifdef CONFIG_MEMORY_HOTPLUG
196 int __meminit create_section_mapping(unsigned long start, unsigned long end,
197 				     int nid, pgprot_t prot)
198 {
199 	if (radix_enabled())
200 		return radix__create_section_mapping(start, end, nid, prot);
201 
202 	return hash__create_section_mapping(start, end, nid, prot);
203 }
204 
205 int __meminit remove_section_mapping(unsigned long start, unsigned long end)
206 {
207 	if (radix_enabled())
208 		return radix__remove_section_mapping(start, end);
209 
210 	return hash__remove_section_mapping(start, end);
211 }
212 #endif /* CONFIG_MEMORY_HOTPLUG */
213 
214 void __init mmu_partition_table_init(void)
215 {
216 	unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
217 	unsigned long ptcr;
218 
219 	/* Initialize the Partition Table with no entries */
220 	partition_tb = memblock_alloc(patb_size, patb_size);
221 	if (!partition_tb)
222 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
223 		      __func__, patb_size, patb_size);
224 
225 	ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
226 	set_ptcr_when_no_uv(ptcr);
227 	powernv_set_nmmu_ptcr(ptcr);
228 }
229 
230 static void flush_partition(unsigned int lpid, bool radix)
231 {
232 	if (radix) {
233 		radix__flush_all_lpid(lpid);
234 		radix__flush_all_lpid_guest(lpid);
235 	} else {
236 		asm volatile("ptesync" : : : "memory");
237 		asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
238 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
239 		/* do we need fixup here ?*/
240 		asm volatile("eieio; tlbsync; ptesync" : : : "memory");
241 		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
242 	}
243 }
244 
245 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
246 				  unsigned long dw1, bool flush)
247 {
248 	unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
249 
250 	/*
251 	 * When ultravisor is enabled, the partition table is stored in secure
252 	 * memory and can only be accessed doing an ultravisor call. However, we
253 	 * maintain a copy of the partition table in normal memory to allow Nest
254 	 * MMU translations to occur (for normal VMs).
255 	 *
256 	 * Therefore, here we always update partition_tb, regardless of whether
257 	 * we are running under an ultravisor or not.
258 	 */
259 	partition_tb[lpid].patb0 = cpu_to_be64(dw0);
260 	partition_tb[lpid].patb1 = cpu_to_be64(dw1);
261 
262 	/*
263 	 * If ultravisor is enabled, we do an ultravisor call to register the
264 	 * partition table entry (PATE), which also do a global flush of TLBs
265 	 * and partition table caches for the lpid. Otherwise, just do the
266 	 * flush. The type of flush (hash or radix) depends on what the previous
267 	 * use of the partition ID was, not the new use.
268 	 */
269 	if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
270 		uv_register_pate(lpid, dw0, dw1);
271 		pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
272 			dw0, dw1);
273 	} else if (flush) {
274 		/*
275 		 * Boot does not need to flush, because MMU is off and each
276 		 * CPU does a tlbiel_all() before switching them on, which
277 		 * flushes everything.
278 		 */
279 		flush_partition(lpid, (old & PATB_HR));
280 	}
281 }
282 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
283 
284 static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
285 {
286 	void *pmd_frag, *ret;
287 
288 	if (PMD_FRAG_NR == 1)
289 		return NULL;
290 
291 	spin_lock(&mm->page_table_lock);
292 	ret = mm->context.pmd_frag;
293 	if (ret) {
294 		pmd_frag = ret + PMD_FRAG_SIZE;
295 		/*
296 		 * If we have taken up all the fragments mark PTE page NULL
297 		 */
298 		if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
299 			pmd_frag = NULL;
300 		mm->context.pmd_frag = pmd_frag;
301 	}
302 	spin_unlock(&mm->page_table_lock);
303 	return (pmd_t *)ret;
304 }
305 
306 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
307 {
308 	void *ret = NULL;
309 	struct page *page;
310 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
311 
312 	if (mm == &init_mm)
313 		gfp &= ~__GFP_ACCOUNT;
314 	page = alloc_page(gfp);
315 	if (!page)
316 		return NULL;
317 	if (!pgtable_pmd_page_ctor(page)) {
318 		__free_pages(page, 0);
319 		return NULL;
320 	}
321 
322 	atomic_set(&page->pt_frag_refcount, 1);
323 
324 	ret = page_address(page);
325 	/*
326 	 * if we support only one fragment just return the
327 	 * allocated page.
328 	 */
329 	if (PMD_FRAG_NR == 1)
330 		return ret;
331 
332 	spin_lock(&mm->page_table_lock);
333 	/*
334 	 * If we find pgtable_page set, we return
335 	 * the allocated page with single fragment
336 	 * count.
337 	 */
338 	if (likely(!mm->context.pmd_frag)) {
339 		atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR);
340 		mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
341 	}
342 	spin_unlock(&mm->page_table_lock);
343 
344 	return (pmd_t *)ret;
345 }
346 
347 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
348 {
349 	pmd_t *pmd;
350 
351 	pmd = get_pmd_from_cache(mm);
352 	if (pmd)
353 		return pmd;
354 
355 	return __alloc_for_pmdcache(mm);
356 }
357 
358 void pmd_fragment_free(unsigned long *pmd)
359 {
360 	struct page *page = virt_to_page(pmd);
361 
362 	if (PageReserved(page))
363 		return free_reserved_page(page);
364 
365 	BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0);
366 	if (atomic_dec_and_test(&page->pt_frag_refcount)) {
367 		pgtable_pmd_page_dtor(page);
368 		__free_page(page);
369 	}
370 }
371 
372 static inline void pgtable_free(void *table, int index)
373 {
374 	switch (index) {
375 	case PTE_INDEX:
376 		pte_fragment_free(table, 0);
377 		break;
378 	case PMD_INDEX:
379 		pmd_fragment_free(table);
380 		break;
381 	case PUD_INDEX:
382 		__pud_free(table);
383 		break;
384 #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE)
385 		/* 16M hugepd directory at pud level */
386 	case HTLB_16M_INDEX:
387 		BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0);
388 		kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table);
389 		break;
390 		/* 16G hugepd directory at the pgd level */
391 	case HTLB_16G_INDEX:
392 		BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0);
393 		kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table);
394 		break;
395 #endif
396 		/* We don't free pgd table via RCU callback */
397 	default:
398 		BUG();
399 	}
400 }
401 
402 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
403 {
404 	unsigned long pgf = (unsigned long)table;
405 
406 	BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
407 	pgf |= index;
408 	tlb_remove_table(tlb, (void *)pgf);
409 }
410 
411 void __tlb_remove_table(void *_table)
412 {
413 	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
414 	unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
415 
416 	return pgtable_free(table, index);
417 }
418 
419 #ifdef CONFIG_PROC_FS
420 atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
421 
422 void arch_report_meminfo(struct seq_file *m)
423 {
424 	/*
425 	 * Hash maps the memory with one size mmu_linear_psize.
426 	 * So don't bother to print these on hash
427 	 */
428 	if (!radix_enabled())
429 		return;
430 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
431 		   atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
432 	seq_printf(m, "DirectMap64k:    %8lu kB\n",
433 		   atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
434 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
435 		   atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
436 	seq_printf(m, "DirectMap1G:    %8lu kB\n",
437 		   atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
438 }
439 #endif /* CONFIG_PROC_FS */
440 
441 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
442 			     pte_t *ptep)
443 {
444 	unsigned long pte_val;
445 
446 	/*
447 	 * Clear the _PAGE_PRESENT so that no hardware parallel update is
448 	 * possible. Also keep the pte_present true so that we don't take
449 	 * wrong fault.
450 	 */
451 	pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
452 
453 	return __pte(pte_val);
454 
455 }
456 
457 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
458 			     pte_t *ptep, pte_t old_pte, pte_t pte)
459 {
460 	if (radix_enabled())
461 		return radix__ptep_modify_prot_commit(vma, addr,
462 						      ptep, old_pte, pte);
463 	set_pte_at(vma->vm_mm, addr, ptep, pte);
464 }
465 
466 /*
467  * For hash translation mode, we use the deposited table to store hash slot
468  * information and they are stored at PTRS_PER_PMD offset from related pmd
469  * location. Hence a pmd move requires deposit and withdraw.
470  *
471  * For radix translation with split pmd ptl, we store the deposited table in the
472  * pmd page. Hence if we have different pmd page we need to withdraw during pmd
473  * move.
474  *
475  * With hash we use deposited table always irrespective of anon or not.
476  * With radix we use deposited table only for anonymous mapping.
477  */
478 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
479 			   struct spinlock *old_pmd_ptl,
480 			   struct vm_area_struct *vma)
481 {
482 	if (radix_enabled())
483 		return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
484 
485 	return true;
486 }
487 
488 /*
489  * Does the CPU support tlbie?
490  */
491 bool tlbie_capable __read_mostly = true;
492 EXPORT_SYMBOL(tlbie_capable);
493 
494 /*
495  * Should tlbie be used for management of CPU TLBs, for kernel and process
496  * address spaces? tlbie may still be used for nMMU accelerators, and for KVM
497  * guest address spaces.
498  */
499 bool tlbie_enabled __read_mostly = true;
500 
501 static int __init setup_disable_tlbie(char *str)
502 {
503 	if (!radix_enabled()) {
504 		pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
505 		return 1;
506 	}
507 
508 	tlbie_capable = false;
509 	tlbie_enabled = false;
510 
511         return 1;
512 }
513 __setup("disable_tlbie", setup_disable_tlbie);
514 
515 static int __init pgtable_debugfs_setup(void)
516 {
517 	if (!tlbie_capable)
518 		return 0;
519 
520 	/*
521 	 * There is no locking vs tlb flushing when changing this value.
522 	 * The tlb flushers will see one value or another, and use either
523 	 * tlbie or tlbiel with IPIs. In both cases the TLBs will be
524 	 * invalidated as expected.
525 	 */
526 	debugfs_create_bool("tlbie_enabled", 0600,
527 			arch_debugfs_dir,
528 			&tlbie_enabled);
529 
530 	return 0;
531 }
532 arch_initcall(pgtable_debugfs_setup);
533 
534 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN)
535 /*
536  * Override the generic version in mm/memremap.c.
537  *
538  * With hash translation, the direct-map range is mapped with just one
539  * page size selected by htab_init_page_sizes(). Consult
540  * mmu_psize_defs[] to determine the minimum page size alignment.
541 */
542 unsigned long memremap_compat_align(void)
543 {
544 	if (!radix_enabled()) {
545 		unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift;
546 		return max(SUBSECTION_SIZE, 1UL << shift);
547 	}
548 
549 	return SUBSECTION_SIZE;
550 }
551 EXPORT_SYMBOL_GPL(memremap_compat_align);
552 #endif
553 
554 pgprot_t vm_get_page_prot(unsigned long vm_flags)
555 {
556 	unsigned long prot;
557 
558 	/* Radix supports execute-only, but protection_map maps X -> RX */
559 	if (radix_enabled() && ((vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)) {
560 		prot = pgprot_val(PAGE_EXECONLY);
561 	} else {
562 		prot = pgprot_val(protection_map[vm_flags &
563 						 (VM_ACCESS_FLAGS | VM_SHARED)]);
564 	}
565 
566 	if (vm_flags & VM_SAO)
567 		prot |= _PAGE_SAO;
568 
569 #ifdef CONFIG_PPC_MEM_KEYS
570 	prot |= vmflag_to_pte_pkey_bits(vm_flags);
571 #endif
572 
573 	return __pgprot(prot);
574 }
575 EXPORT_SYMBOL(vm_get_page_prot);
576