xref: /linux/arch/powerpc/mm/book3s64/pgtable.c (revision f86fd32d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/mm_types.h>
8 #include <linux/memblock.h>
9 #include <misc/cxl-base.h>
10 
11 #include <asm/debugfs.h>
12 #include <asm/pgalloc.h>
13 #include <asm/tlb.h>
14 #include <asm/trace.h>
15 #include <asm/powernv.h>
16 #include <asm/firmware.h>
17 #include <asm/ultravisor.h>
18 
19 #include <mm/mmu_decl.h>
20 #include <trace/events/thp.h>
21 
22 unsigned long __pmd_frag_nr;
23 EXPORT_SYMBOL(__pmd_frag_nr);
24 unsigned long __pmd_frag_size_shift;
25 EXPORT_SYMBOL(__pmd_frag_size_shift);
26 
27 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
28 /*
29  * This is called when relaxing access to a hugepage. It's also called in the page
30  * fault path when we don't hit any of the major fault cases, ie, a minor
31  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
32  * handled those two for us, we additionally deal with missing execute
33  * permission here on some processors
34  */
35 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
36 			  pmd_t *pmdp, pmd_t entry, int dirty)
37 {
38 	int changed;
39 #ifdef CONFIG_DEBUG_VM
40 	WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
41 	assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
42 #endif
43 	changed = !pmd_same(*(pmdp), entry);
44 	if (changed) {
45 		/*
46 		 * We can use MMU_PAGE_2M here, because only radix
47 		 * path look at the psize.
48 		 */
49 		__ptep_set_access_flags(vma, pmdp_ptep(pmdp),
50 					pmd_pte(entry), address, MMU_PAGE_2M);
51 	}
52 	return changed;
53 }
54 
55 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
56 			      unsigned long address, pmd_t *pmdp)
57 {
58 	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
59 }
60 /*
61  * set a new huge pmd. We should not be called for updating
62  * an existing pmd entry. That should go via pmd_hugepage_update.
63  */
64 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
65 		pmd_t *pmdp, pmd_t pmd)
66 {
67 #ifdef CONFIG_DEBUG_VM
68 	/*
69 	 * Make sure hardware valid bit is not set. We don't do
70 	 * tlb flush for this update.
71 	 */
72 
73 	WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
74 	assert_spin_locked(pmd_lockptr(mm, pmdp));
75 	WARN_ON(!(pmd_large(pmd)));
76 #endif
77 	trace_hugepage_set_pmd(addr, pmd_val(pmd));
78 	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
79 }
80 
81 static void do_nothing(void *unused)
82 {
83 
84 }
85 /*
86  * Serialize against find_current_mm_pte which does lock-less
87  * lookup in page tables with local interrupts disabled. For huge pages
88  * it casts pmd_t to pte_t. Since format of pte_t is different from
89  * pmd_t we want to prevent transit from pmd pointing to page table
90  * to pmd pointing to huge page (and back) while interrupts are disabled.
91  * We clear pmd to possibly replace it with page table pointer in
92  * different code paths. So make sure we wait for the parallel
93  * find_current_mm_pte to finish.
94  */
95 void serialize_against_pte_lookup(struct mm_struct *mm)
96 {
97 	smp_mb();
98 	smp_call_function_many(mm_cpumask(mm), do_nothing, NULL, 1);
99 }
100 
101 /*
102  * We use this to invalidate a pmdp entry before switching from a
103  * hugepte to regular pmd entry.
104  */
105 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
106 		     pmd_t *pmdp)
107 {
108 	unsigned long old_pmd;
109 
110 	old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
111 	flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
112 	/*
113 	 * This ensures that generic code that rely on IRQ disabling
114 	 * to prevent a parallel THP split work as expected.
115 	 *
116 	 * Marking the entry with _PAGE_INVALID && ~_PAGE_PRESENT requires
117 	 * a special case check in pmd_access_permitted.
118 	 */
119 	serialize_against_pte_lookup(vma->vm_mm);
120 	return __pmd(old_pmd);
121 }
122 
123 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
124 {
125 	return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
126 }
127 
128 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
129 {
130 	unsigned long pmdv;
131 
132 	pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
133 	return pmd_set_protbits(__pmd(pmdv), pgprot);
134 }
135 
136 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
137 {
138 	return pfn_pmd(page_to_pfn(page), pgprot);
139 }
140 
141 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
142 {
143 	unsigned long pmdv;
144 
145 	pmdv = pmd_val(pmd);
146 	pmdv &= _HPAGE_CHG_MASK;
147 	return pmd_set_protbits(__pmd(pmdv), newprot);
148 }
149 
150 /*
151  * This is called at the end of handling a user page fault, when the
152  * fault has been handled by updating a HUGE PMD entry in the linux page tables.
153  * We use it to preload an HPTE into the hash table corresponding to
154  * the updated linux HUGE PMD entry.
155  */
156 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
157 			  pmd_t *pmd)
158 {
159 	if (radix_enabled())
160 		prefetch((void *)addr);
161 }
162 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
163 
164 /* For use by kexec */
165 void mmu_cleanup_all(void)
166 {
167 	if (radix_enabled())
168 		radix__mmu_cleanup_all();
169 	else if (mmu_hash_ops.hpte_clear_all)
170 		mmu_hash_ops.hpte_clear_all();
171 }
172 
173 #ifdef CONFIG_MEMORY_HOTPLUG
174 int __meminit create_section_mapping(unsigned long start, unsigned long end, int nid)
175 {
176 	if (radix_enabled())
177 		return radix__create_section_mapping(start, end, nid);
178 
179 	return hash__create_section_mapping(start, end, nid);
180 }
181 
182 int __meminit remove_section_mapping(unsigned long start, unsigned long end)
183 {
184 	if (radix_enabled())
185 		return radix__remove_section_mapping(start, end);
186 
187 	return hash__remove_section_mapping(start, end);
188 }
189 #endif /* CONFIG_MEMORY_HOTPLUG */
190 
191 void __init mmu_partition_table_init(void)
192 {
193 	unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
194 	unsigned long ptcr;
195 
196 	BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large.");
197 	/* Initialize the Partition Table with no entries */
198 	partition_tb = memblock_alloc(patb_size, patb_size);
199 	if (!partition_tb)
200 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
201 		      __func__, patb_size, patb_size);
202 
203 	/*
204 	 * update partition table control register,
205 	 * 64 K size.
206 	 */
207 	ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
208 	set_ptcr_when_no_uv(ptcr);
209 	powernv_set_nmmu_ptcr(ptcr);
210 }
211 
212 static void flush_partition(unsigned int lpid, bool radix)
213 {
214 	if (radix) {
215 		radix__flush_all_lpid(lpid);
216 		radix__flush_all_lpid_guest(lpid);
217 	} else {
218 		asm volatile("ptesync" : : : "memory");
219 		asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
220 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
221 		/* do we need fixup here ?*/
222 		asm volatile("eieio; tlbsync; ptesync" : : : "memory");
223 		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
224 	}
225 }
226 
227 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
228 				  unsigned long dw1, bool flush)
229 {
230 	unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
231 
232 	/*
233 	 * When ultravisor is enabled, the partition table is stored in secure
234 	 * memory and can only be accessed doing an ultravisor call. However, we
235 	 * maintain a copy of the partition table in normal memory to allow Nest
236 	 * MMU translations to occur (for normal VMs).
237 	 *
238 	 * Therefore, here we always update partition_tb, regardless of whether
239 	 * we are running under an ultravisor or not.
240 	 */
241 	partition_tb[lpid].patb0 = cpu_to_be64(dw0);
242 	partition_tb[lpid].patb1 = cpu_to_be64(dw1);
243 
244 	/*
245 	 * If ultravisor is enabled, we do an ultravisor call to register the
246 	 * partition table entry (PATE), which also do a global flush of TLBs
247 	 * and partition table caches for the lpid. Otherwise, just do the
248 	 * flush. The type of flush (hash or radix) depends on what the previous
249 	 * use of the partition ID was, not the new use.
250 	 */
251 	if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
252 		uv_register_pate(lpid, dw0, dw1);
253 		pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
254 			dw0, dw1);
255 	} else if (flush) {
256 		/*
257 		 * Boot does not need to flush, because MMU is off and each
258 		 * CPU does a tlbiel_all() before switching them on, which
259 		 * flushes everything.
260 		 */
261 		flush_partition(lpid, (old & PATB_HR));
262 	}
263 }
264 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
265 
266 static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
267 {
268 	void *pmd_frag, *ret;
269 
270 	if (PMD_FRAG_NR == 1)
271 		return NULL;
272 
273 	spin_lock(&mm->page_table_lock);
274 	ret = mm->context.pmd_frag;
275 	if (ret) {
276 		pmd_frag = ret + PMD_FRAG_SIZE;
277 		/*
278 		 * If we have taken up all the fragments mark PTE page NULL
279 		 */
280 		if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
281 			pmd_frag = NULL;
282 		mm->context.pmd_frag = pmd_frag;
283 	}
284 	spin_unlock(&mm->page_table_lock);
285 	return (pmd_t *)ret;
286 }
287 
288 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
289 {
290 	void *ret = NULL;
291 	struct page *page;
292 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
293 
294 	if (mm == &init_mm)
295 		gfp &= ~__GFP_ACCOUNT;
296 	page = alloc_page(gfp);
297 	if (!page)
298 		return NULL;
299 	if (!pgtable_pmd_page_ctor(page)) {
300 		__free_pages(page, 0);
301 		return NULL;
302 	}
303 
304 	atomic_set(&page->pt_frag_refcount, 1);
305 
306 	ret = page_address(page);
307 	/*
308 	 * if we support only one fragment just return the
309 	 * allocated page.
310 	 */
311 	if (PMD_FRAG_NR == 1)
312 		return ret;
313 
314 	spin_lock(&mm->page_table_lock);
315 	/*
316 	 * If we find pgtable_page set, we return
317 	 * the allocated page with single fragement
318 	 * count.
319 	 */
320 	if (likely(!mm->context.pmd_frag)) {
321 		atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR);
322 		mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
323 	}
324 	spin_unlock(&mm->page_table_lock);
325 
326 	return (pmd_t *)ret;
327 }
328 
329 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
330 {
331 	pmd_t *pmd;
332 
333 	pmd = get_pmd_from_cache(mm);
334 	if (pmd)
335 		return pmd;
336 
337 	return __alloc_for_pmdcache(mm);
338 }
339 
340 void pmd_fragment_free(unsigned long *pmd)
341 {
342 	struct page *page = virt_to_page(pmd);
343 
344 	BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0);
345 	if (atomic_dec_and_test(&page->pt_frag_refcount)) {
346 		pgtable_pmd_page_dtor(page);
347 		__free_page(page);
348 	}
349 }
350 
351 static inline void pgtable_free(void *table, int index)
352 {
353 	switch (index) {
354 	case PTE_INDEX:
355 		pte_fragment_free(table, 0);
356 		break;
357 	case PMD_INDEX:
358 		pmd_fragment_free(table);
359 		break;
360 	case PUD_INDEX:
361 		kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), table);
362 		break;
363 #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE)
364 		/* 16M hugepd directory at pud level */
365 	case HTLB_16M_INDEX:
366 		BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0);
367 		kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table);
368 		break;
369 		/* 16G hugepd directory at the pgd level */
370 	case HTLB_16G_INDEX:
371 		BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0);
372 		kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table);
373 		break;
374 #endif
375 		/* We don't free pgd table via RCU callback */
376 	default:
377 		BUG();
378 	}
379 }
380 
381 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
382 {
383 	unsigned long pgf = (unsigned long)table;
384 
385 	BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
386 	pgf |= index;
387 	tlb_remove_table(tlb, (void *)pgf);
388 }
389 
390 void __tlb_remove_table(void *_table)
391 {
392 	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
393 	unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
394 
395 	return pgtable_free(table, index);
396 }
397 
398 #ifdef CONFIG_PROC_FS
399 atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
400 
401 void arch_report_meminfo(struct seq_file *m)
402 {
403 	/*
404 	 * Hash maps the memory with one size mmu_linear_psize.
405 	 * So don't bother to print these on hash
406 	 */
407 	if (!radix_enabled())
408 		return;
409 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
410 		   atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
411 	seq_printf(m, "DirectMap64k:    %8lu kB\n",
412 		   atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
413 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
414 		   atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
415 	seq_printf(m, "DirectMap1G:    %8lu kB\n",
416 		   atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
417 }
418 #endif /* CONFIG_PROC_FS */
419 
420 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
421 			     pte_t *ptep)
422 {
423 	unsigned long pte_val;
424 
425 	/*
426 	 * Clear the _PAGE_PRESENT so that no hardware parallel update is
427 	 * possible. Also keep the pte_present true so that we don't take
428 	 * wrong fault.
429 	 */
430 	pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
431 
432 	return __pte(pte_val);
433 
434 }
435 
436 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
437 			     pte_t *ptep, pte_t old_pte, pte_t pte)
438 {
439 	if (radix_enabled())
440 		return radix__ptep_modify_prot_commit(vma, addr,
441 						      ptep, old_pte, pte);
442 	set_pte_at(vma->vm_mm, addr, ptep, pte);
443 }
444 
445 /*
446  * For hash translation mode, we use the deposited table to store hash slot
447  * information and they are stored at PTRS_PER_PMD offset from related pmd
448  * location. Hence a pmd move requires deposit and withdraw.
449  *
450  * For radix translation with split pmd ptl, we store the deposited table in the
451  * pmd page. Hence if we have different pmd page we need to withdraw during pmd
452  * move.
453  *
454  * With hash we use deposited table always irrespective of anon or not.
455  * With radix we use deposited table only for anonymous mapping.
456  */
457 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
458 			   struct spinlock *old_pmd_ptl,
459 			   struct vm_area_struct *vma)
460 {
461 	if (radix_enabled())
462 		return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
463 
464 	return true;
465 }
466 
467 /*
468  * Does the CPU support tlbie?
469  */
470 bool tlbie_capable __read_mostly = true;
471 EXPORT_SYMBOL(tlbie_capable);
472 
473 /*
474  * Should tlbie be used for management of CPU TLBs, for kernel and process
475  * address spaces? tlbie may still be used for nMMU accelerators, and for KVM
476  * guest address spaces.
477  */
478 bool tlbie_enabled __read_mostly = true;
479 
480 static int __init setup_disable_tlbie(char *str)
481 {
482 	if (!radix_enabled()) {
483 		pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
484 		return 1;
485 	}
486 
487 	tlbie_capable = false;
488 	tlbie_enabled = false;
489 
490         return 1;
491 }
492 __setup("disable_tlbie", setup_disable_tlbie);
493 
494 static int __init pgtable_debugfs_setup(void)
495 {
496 	if (!tlbie_capable)
497 		return 0;
498 
499 	/*
500 	 * There is no locking vs tlb flushing when changing this value.
501 	 * The tlb flushers will see one value or another, and use either
502 	 * tlbie or tlbiel with IPIs. In both cases the TLBs will be
503 	 * invalidated as expected.
504 	 */
505 	debugfs_create_bool("tlbie_enabled", 0600,
506 			powerpc_debugfs_root,
507 			&tlbie_enabled);
508 
509 	return 0;
510 }
511 arch_initcall(pgtable_debugfs_setup);
512