xref: /linux/arch/powerpc/mm/hugetlbpage.c (revision 0be3ff0c)
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/moduleparam.h>
19 #include <linux/swap.h>
20 #include <linux/swapops.h>
21 #include <linux/kmemleak.h>
22 #include <asm/pgalloc.h>
23 #include <asm/tlb.h>
24 #include <asm/setup.h>
25 #include <asm/hugetlb.h>
26 #include <asm/pte-walk.h>
27 
28 bool hugetlb_disabled = false;
29 
30 #define hugepd_none(hpd)	(hpd_val(hpd) == 0)
31 
32 #define PTE_T_ORDER	(__builtin_ffs(sizeof(pte_basic_t)) - \
33 			 __builtin_ffs(sizeof(void *)))
34 
35 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
36 {
37 	/*
38 	 * Only called for hugetlbfs pages, hence can ignore THP and the
39 	 * irq disabled walk.
40 	 */
41 	return __find_linux_pte(mm->pgd, addr, NULL, NULL);
42 }
43 
44 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
45 			   unsigned long address, unsigned int pdshift,
46 			   unsigned int pshift, spinlock_t *ptl)
47 {
48 	struct kmem_cache *cachep;
49 	pte_t *new;
50 	int i;
51 	int num_hugepd;
52 
53 	if (pshift >= pdshift) {
54 		cachep = PGT_CACHE(PTE_T_ORDER);
55 		num_hugepd = 1 << (pshift - pdshift);
56 	} else {
57 		cachep = PGT_CACHE(pdshift - pshift);
58 		num_hugepd = 1;
59 	}
60 
61 	if (!cachep) {
62 		WARN_ONCE(1, "No page table cache created for hugetlb tables");
63 		return -ENOMEM;
64 	}
65 
66 	new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
67 
68 	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
69 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
70 
71 	if (!new)
72 		return -ENOMEM;
73 
74 	/*
75 	 * Make sure other cpus find the hugepd set only after a
76 	 * properly initialized page table is visible to them.
77 	 * For more details look for comment in __pte_alloc().
78 	 */
79 	smp_wmb();
80 
81 	spin_lock(ptl);
82 	/*
83 	 * We have multiple higher-level entries that point to the same
84 	 * actual pte location.  Fill in each as we go and backtrack on error.
85 	 * We need all of these so the DTLB pgtable walk code can find the
86 	 * right higher-level entry without knowing if it's a hugepage or not.
87 	 */
88 	for (i = 0; i < num_hugepd; i++, hpdp++) {
89 		if (unlikely(!hugepd_none(*hpdp)))
90 			break;
91 		hugepd_populate(hpdp, new, pshift);
92 	}
93 	/* If we bailed from the for loop early, an error occurred, clean up */
94 	if (i < num_hugepd) {
95 		for (i = i - 1 ; i >= 0; i--, hpdp--)
96 			*hpdp = __hugepd(0);
97 		kmem_cache_free(cachep, new);
98 	} else {
99 		kmemleak_ignore(new);
100 	}
101 	spin_unlock(ptl);
102 	return 0;
103 }
104 
105 /*
106  * At this point we do the placement change only for BOOK3S 64. This would
107  * possibly work on other subarchs.
108  */
109 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
110 		      unsigned long addr, unsigned long sz)
111 {
112 	pgd_t *pg;
113 	p4d_t *p4;
114 	pud_t *pu;
115 	pmd_t *pm;
116 	hugepd_t *hpdp = NULL;
117 	unsigned pshift = __ffs(sz);
118 	unsigned pdshift = PGDIR_SHIFT;
119 	spinlock_t *ptl;
120 
121 	addr &= ~(sz-1);
122 	pg = pgd_offset(mm, addr);
123 	p4 = p4d_offset(pg, addr);
124 
125 #ifdef CONFIG_PPC_BOOK3S_64
126 	if (pshift == PGDIR_SHIFT)
127 		/* 16GB huge page */
128 		return (pte_t *) p4;
129 	else if (pshift > PUD_SHIFT) {
130 		/*
131 		 * We need to use hugepd table
132 		 */
133 		ptl = &mm->page_table_lock;
134 		hpdp = (hugepd_t *)p4;
135 	} else {
136 		pdshift = PUD_SHIFT;
137 		pu = pud_alloc(mm, p4, addr);
138 		if (!pu)
139 			return NULL;
140 		if (pshift == PUD_SHIFT)
141 			return (pte_t *)pu;
142 		else if (pshift > PMD_SHIFT) {
143 			ptl = pud_lockptr(mm, pu);
144 			hpdp = (hugepd_t *)pu;
145 		} else {
146 			pdshift = PMD_SHIFT;
147 			pm = pmd_alloc(mm, pu, addr);
148 			if (!pm)
149 				return NULL;
150 			if (pshift == PMD_SHIFT)
151 				/* 16MB hugepage */
152 				return (pte_t *)pm;
153 			else {
154 				ptl = pmd_lockptr(mm, pm);
155 				hpdp = (hugepd_t *)pm;
156 			}
157 		}
158 	}
159 #else
160 	if (pshift >= PGDIR_SHIFT) {
161 		ptl = &mm->page_table_lock;
162 		hpdp = (hugepd_t *)p4;
163 	} else {
164 		pdshift = PUD_SHIFT;
165 		pu = pud_alloc(mm, p4, addr);
166 		if (!pu)
167 			return NULL;
168 		if (pshift >= PUD_SHIFT) {
169 			ptl = pud_lockptr(mm, pu);
170 			hpdp = (hugepd_t *)pu;
171 		} else {
172 			pdshift = PMD_SHIFT;
173 			pm = pmd_alloc(mm, pu, addr);
174 			if (!pm)
175 				return NULL;
176 			ptl = pmd_lockptr(mm, pm);
177 			hpdp = (hugepd_t *)pm;
178 		}
179 	}
180 #endif
181 	if (!hpdp)
182 		return NULL;
183 
184 	if (IS_ENABLED(CONFIG_PPC_8xx) && pshift < PMD_SHIFT)
185 		return pte_alloc_map(mm, (pmd_t *)hpdp, addr);
186 
187 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
188 
189 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
190 						  pdshift, pshift, ptl))
191 		return NULL;
192 
193 	return hugepte_offset(*hpdp, addr, pdshift);
194 }
195 
196 #ifdef CONFIG_PPC_BOOK3S_64
197 /*
198  * Tracks gpages after the device tree is scanned and before the
199  * huge_boot_pages list is ready on pseries.
200  */
201 #define MAX_NUMBER_GPAGES	1024
202 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
203 __initdata static unsigned nr_gpages;
204 
205 /*
206  * Build list of addresses of gigantic pages.  This function is used in early
207  * boot before the buddy allocator is setup.
208  */
209 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
210 {
211 	if (!addr)
212 		return;
213 	while (number_of_pages > 0) {
214 		gpage_freearray[nr_gpages] = addr;
215 		nr_gpages++;
216 		number_of_pages--;
217 		addr += page_size;
218 	}
219 }
220 
221 static int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
222 {
223 	struct huge_bootmem_page *m;
224 	if (nr_gpages == 0)
225 		return 0;
226 	m = phys_to_virt(gpage_freearray[--nr_gpages]);
227 	gpage_freearray[nr_gpages] = 0;
228 	list_add(&m->list, &huge_boot_pages);
229 	m->hstate = hstate;
230 	return 1;
231 }
232 
233 bool __init hugetlb_node_alloc_supported(void)
234 {
235 	return false;
236 }
237 #endif
238 
239 
240 int __init alloc_bootmem_huge_page(struct hstate *h, int nid)
241 {
242 
243 #ifdef CONFIG_PPC_BOOK3S_64
244 	if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
245 		return pseries_alloc_bootmem_huge_page(h);
246 #endif
247 	return __alloc_bootmem_huge_page(h, nid);
248 }
249 
250 #ifndef CONFIG_PPC_BOOK3S_64
251 #define HUGEPD_FREELIST_SIZE \
252 	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
253 
254 struct hugepd_freelist {
255 	struct rcu_head	rcu;
256 	unsigned int index;
257 	void *ptes[];
258 };
259 
260 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
261 
262 static void hugepd_free_rcu_callback(struct rcu_head *head)
263 {
264 	struct hugepd_freelist *batch =
265 		container_of(head, struct hugepd_freelist, rcu);
266 	unsigned int i;
267 
268 	for (i = 0; i < batch->index; i++)
269 		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]);
270 
271 	free_page((unsigned long)batch);
272 }
273 
274 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
275 {
276 	struct hugepd_freelist **batchp;
277 
278 	batchp = &get_cpu_var(hugepd_freelist_cur);
279 
280 	if (atomic_read(&tlb->mm->mm_users) < 2 ||
281 	    mm_is_thread_local(tlb->mm)) {
282 		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte);
283 		put_cpu_var(hugepd_freelist_cur);
284 		return;
285 	}
286 
287 	if (*batchp == NULL) {
288 		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
289 		(*batchp)->index = 0;
290 	}
291 
292 	(*batchp)->ptes[(*batchp)->index++] = hugepte;
293 	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
294 		call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback);
295 		*batchp = NULL;
296 	}
297 	put_cpu_var(hugepd_freelist_cur);
298 }
299 #else
300 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
301 #endif
302 
303 /* Return true when the entry to be freed maps more than the area being freed */
304 static bool range_is_outside_limits(unsigned long start, unsigned long end,
305 				    unsigned long floor, unsigned long ceiling,
306 				    unsigned long mask)
307 {
308 	if ((start & mask) < floor)
309 		return true;
310 	if (ceiling) {
311 		ceiling &= mask;
312 		if (!ceiling)
313 			return true;
314 	}
315 	return end - 1 > ceiling - 1;
316 }
317 
318 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
319 			      unsigned long start, unsigned long end,
320 			      unsigned long floor, unsigned long ceiling)
321 {
322 	pte_t *hugepte = hugepd_page(*hpdp);
323 	int i;
324 
325 	unsigned long pdmask = ~((1UL << pdshift) - 1);
326 	unsigned int num_hugepd = 1;
327 	unsigned int shift = hugepd_shift(*hpdp);
328 
329 	/* Note: On fsl the hpdp may be the first of several */
330 	if (shift > pdshift)
331 		num_hugepd = 1 << (shift - pdshift);
332 
333 	if (range_is_outside_limits(start, end, floor, ceiling, pdmask))
334 		return;
335 
336 	for (i = 0; i < num_hugepd; i++, hpdp++)
337 		*hpdp = __hugepd(0);
338 
339 	if (shift >= pdshift)
340 		hugepd_free(tlb, hugepte);
341 	else
342 		pgtable_free_tlb(tlb, hugepte,
343 				 get_hugepd_cache_index(pdshift - shift));
344 }
345 
346 static void hugetlb_free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
347 				   unsigned long addr, unsigned long end,
348 				   unsigned long floor, unsigned long ceiling)
349 {
350 	pgtable_t token = pmd_pgtable(*pmd);
351 
352 	if (range_is_outside_limits(addr, end, floor, ceiling, PMD_MASK))
353 		return;
354 
355 	pmd_clear(pmd);
356 	pte_free_tlb(tlb, token, addr);
357 	mm_dec_nr_ptes(tlb->mm);
358 }
359 
360 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
361 				   unsigned long addr, unsigned long end,
362 				   unsigned long floor, unsigned long ceiling)
363 {
364 	pmd_t *pmd;
365 	unsigned long next;
366 	unsigned long start;
367 
368 	start = addr;
369 	do {
370 		unsigned long more;
371 
372 		pmd = pmd_offset(pud, addr);
373 		next = pmd_addr_end(addr, end);
374 		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
375 			if (pmd_none_or_clear_bad(pmd))
376 				continue;
377 
378 			/*
379 			 * if it is not hugepd pointer, we should already find
380 			 * it cleared.
381 			 */
382 			WARN_ON(!IS_ENABLED(CONFIG_PPC_8xx));
383 
384 			hugetlb_free_pte_range(tlb, pmd, addr, end, floor, ceiling);
385 
386 			continue;
387 		}
388 		/*
389 		 * Increment next by the size of the huge mapping since
390 		 * there may be more than one entry at this level for a
391 		 * single hugepage, but all of them point to
392 		 * the same kmem cache that holds the hugepte.
393 		 */
394 		more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
395 		if (more > next)
396 			next = more;
397 
398 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
399 				  addr, next, floor, ceiling);
400 	} while (addr = next, addr != end);
401 
402 	if (range_is_outside_limits(start, end, floor, ceiling, PUD_MASK))
403 		return;
404 
405 	pmd = pmd_offset(pud, start & PUD_MASK);
406 	pud_clear(pud);
407 	pmd_free_tlb(tlb, pmd, start & PUD_MASK);
408 	mm_dec_nr_pmds(tlb->mm);
409 }
410 
411 static void hugetlb_free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
412 				   unsigned long addr, unsigned long end,
413 				   unsigned long floor, unsigned long ceiling)
414 {
415 	pud_t *pud;
416 	unsigned long next;
417 	unsigned long start;
418 
419 	start = addr;
420 	do {
421 		pud = pud_offset(p4d, addr);
422 		next = pud_addr_end(addr, end);
423 		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
424 			if (pud_none_or_clear_bad(pud))
425 				continue;
426 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
427 					       ceiling);
428 		} else {
429 			unsigned long more;
430 			/*
431 			 * Increment next by the size of the huge mapping since
432 			 * there may be more than one entry at this level for a
433 			 * single hugepage, but all of them point to
434 			 * the same kmem cache that holds the hugepte.
435 			 */
436 			more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
437 			if (more > next)
438 				next = more;
439 
440 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
441 					  addr, next, floor, ceiling);
442 		}
443 	} while (addr = next, addr != end);
444 
445 	if (range_is_outside_limits(start, end, floor, ceiling, PGDIR_MASK))
446 		return;
447 
448 	pud = pud_offset(p4d, start & PGDIR_MASK);
449 	p4d_clear(p4d);
450 	pud_free_tlb(tlb, pud, start & PGDIR_MASK);
451 	mm_dec_nr_puds(tlb->mm);
452 }
453 
454 /*
455  * This function frees user-level page tables of a process.
456  */
457 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
458 			    unsigned long addr, unsigned long end,
459 			    unsigned long floor, unsigned long ceiling)
460 {
461 	pgd_t *pgd;
462 	p4d_t *p4d;
463 	unsigned long next;
464 
465 	/*
466 	 * Because there are a number of different possible pagetable
467 	 * layouts for hugepage ranges, we limit knowledge of how
468 	 * things should be laid out to the allocation path
469 	 * (huge_pte_alloc(), above).  Everything else works out the
470 	 * structure as it goes from information in the hugepd
471 	 * pointers.  That means that we can't here use the
472 	 * optimization used in the normal page free_pgd_range(), of
473 	 * checking whether we're actually covering a large enough
474 	 * range to have to do anything at the top level of the walk
475 	 * instead of at the bottom.
476 	 *
477 	 * To make sense of this, you should probably go read the big
478 	 * block comment at the top of the normal free_pgd_range(),
479 	 * too.
480 	 */
481 
482 	do {
483 		next = pgd_addr_end(addr, end);
484 		pgd = pgd_offset(tlb->mm, addr);
485 		p4d = p4d_offset(pgd, addr);
486 		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
487 			if (p4d_none_or_clear_bad(p4d))
488 				continue;
489 			hugetlb_free_pud_range(tlb, p4d, addr, next, floor, ceiling);
490 		} else {
491 			unsigned long more;
492 			/*
493 			 * Increment next by the size of the huge mapping since
494 			 * there may be more than one entry at the pgd level
495 			 * for a single hugepage, but all of them point to the
496 			 * same kmem cache that holds the hugepte.
497 			 */
498 			more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
499 			if (more > next)
500 				next = more;
501 
502 			free_hugepd_range(tlb, (hugepd_t *)p4d, PGDIR_SHIFT,
503 					  addr, next, floor, ceiling);
504 		}
505 	} while (addr = next, addr != end);
506 }
507 
508 struct page *follow_huge_pd(struct vm_area_struct *vma,
509 			    unsigned long address, hugepd_t hpd,
510 			    int flags, int pdshift)
511 {
512 	pte_t *ptep;
513 	spinlock_t *ptl;
514 	struct page *page = NULL;
515 	unsigned long mask;
516 	int shift = hugepd_shift(hpd);
517 	struct mm_struct *mm = vma->vm_mm;
518 
519 retry:
520 	/*
521 	 * hugepage directory entries are protected by mm->page_table_lock
522 	 * Use this instead of huge_pte_lockptr
523 	 */
524 	ptl = &mm->page_table_lock;
525 	spin_lock(ptl);
526 
527 	ptep = hugepte_offset(hpd, address, pdshift);
528 	if (pte_present(*ptep)) {
529 		mask = (1UL << shift) - 1;
530 		page = pte_page(*ptep);
531 		page += ((address & mask) >> PAGE_SHIFT);
532 		if (flags & FOLL_GET)
533 			get_page(page);
534 	} else {
535 		if (is_hugetlb_entry_migration(*ptep)) {
536 			spin_unlock(ptl);
537 			__migration_entry_wait(mm, ptep, ptl);
538 			goto retry;
539 		}
540 	}
541 	spin_unlock(ptl);
542 	return page;
543 }
544 
545 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
546 static inline int file_to_psize(struct file *file)
547 {
548 	struct hstate *hstate = hstate_file(file);
549 	return shift_to_mmu_psize(huge_page_shift(hstate));
550 }
551 
552 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
553 					unsigned long len, unsigned long pgoff,
554 					unsigned long flags)
555 {
556 #ifdef CONFIG_PPC_RADIX_MMU
557 	if (radix_enabled())
558 		return radix__hugetlb_get_unmapped_area(file, addr, len,
559 						       pgoff, flags);
560 #endif
561 #ifdef CONFIG_PPC_MM_SLICES
562 	return slice_get_unmapped_area(addr, len, flags, file_to_psize(file), 1);
563 #endif
564 	BUG();
565 }
566 #endif
567 
568 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
569 {
570 	/* With radix we don't use slice, so derive it from vma*/
571 	if (IS_ENABLED(CONFIG_PPC_MM_SLICES) && !radix_enabled()) {
572 		unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
573 
574 		return 1UL << mmu_psize_to_shift(psize);
575 	}
576 	return vma_kernel_pagesize(vma);
577 }
578 
579 bool __init arch_hugetlb_valid_size(unsigned long size)
580 {
581 	int shift = __ffs(size);
582 	int mmu_psize;
583 
584 	/* Check that it is a page size supported by the hardware and
585 	 * that it fits within pagetable and slice limits. */
586 	if (size <= PAGE_SIZE || !is_power_of_2(size))
587 		return false;
588 
589 	mmu_psize = check_and_get_huge_psize(shift);
590 	if (mmu_psize < 0)
591 		return false;
592 
593 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
594 
595 	return true;
596 }
597 
598 static int __init add_huge_page_size(unsigned long long size)
599 {
600 	int shift = __ffs(size);
601 
602 	if (!arch_hugetlb_valid_size((unsigned long)size))
603 		return -EINVAL;
604 
605 	hugetlb_add_hstate(shift - PAGE_SHIFT);
606 	return 0;
607 }
608 
609 static int __init hugetlbpage_init(void)
610 {
611 	bool configured = false;
612 	int psize;
613 
614 	if (hugetlb_disabled) {
615 		pr_info("HugeTLB support is disabled!\n");
616 		return 0;
617 	}
618 
619 	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() &&
620 	    !mmu_has_feature(MMU_FTR_16M_PAGE))
621 		return -ENODEV;
622 
623 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
624 		unsigned shift;
625 		unsigned pdshift;
626 
627 		if (!mmu_psize_defs[psize].shift)
628 			continue;
629 
630 		shift = mmu_psize_to_shift(psize);
631 
632 #ifdef CONFIG_PPC_BOOK3S_64
633 		if (shift > PGDIR_SHIFT)
634 			continue;
635 		else if (shift > PUD_SHIFT)
636 			pdshift = PGDIR_SHIFT;
637 		else if (shift > PMD_SHIFT)
638 			pdshift = PUD_SHIFT;
639 		else
640 			pdshift = PMD_SHIFT;
641 #else
642 		if (shift < PUD_SHIFT)
643 			pdshift = PMD_SHIFT;
644 		else if (shift < PGDIR_SHIFT)
645 			pdshift = PUD_SHIFT;
646 		else
647 			pdshift = PGDIR_SHIFT;
648 #endif
649 
650 		if (add_huge_page_size(1ULL << shift) < 0)
651 			continue;
652 		/*
653 		 * if we have pdshift and shift value same, we don't
654 		 * use pgt cache for hugepd.
655 		 */
656 		if (pdshift > shift) {
657 			if (!IS_ENABLED(CONFIG_PPC_8xx))
658 				pgtable_cache_add(pdshift - shift);
659 		} else if (IS_ENABLED(CONFIG_PPC_FSL_BOOK3E) ||
660 			   IS_ENABLED(CONFIG_PPC_8xx)) {
661 			pgtable_cache_add(PTE_T_ORDER);
662 		}
663 
664 		configured = true;
665 	}
666 
667 	if (!configured)
668 		pr_info("Failed to initialize. Disabling HugeTLB");
669 
670 	return 0;
671 }
672 
673 arch_initcall(hugetlbpage_init);
674 
675 void __init gigantic_hugetlb_cma_reserve(void)
676 {
677 	unsigned long order = 0;
678 
679 	if (radix_enabled())
680 		order = PUD_SHIFT - PAGE_SHIFT;
681 	else if (!firmware_has_feature(FW_FEATURE_LPAR) && mmu_psize_defs[MMU_PAGE_16G].shift)
682 		/*
683 		 * For pseries we do use ibm,expected#pages for reserving 16G pages.
684 		 */
685 		order = mmu_psize_to_shift(MMU_PAGE_16G) - PAGE_SHIFT;
686 
687 	if (order) {
688 		VM_WARN_ON(order < MAX_ORDER);
689 		hugetlb_cma_reserve(order);
690 	}
691 }
692