xref: /linux/arch/powerpc/mm/numa.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * pSeries NUMA support
4  *
5  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6  */
7 #define pr_fmt(fmt) "numa: " fmt
8 
9 #include <linux/threads.h>
10 #include <linux/memblock.h>
11 #include <linux/init.h>
12 #include <linux/mm.h>
13 #include <linux/mmzone.h>
14 #include <linux/export.h>
15 #include <linux/nodemask.h>
16 #include <linux/cpu.h>
17 #include <linux/notifier.h>
18 #include <linux/of.h>
19 #include <linux/pfn.h>
20 #include <linux/cpuset.h>
21 #include <linux/node.h>
22 #include <linux/stop_machine.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <asm/cputhreads.h>
28 #include <asm/sparsemem.h>
29 #include <asm/prom.h>
30 #include <asm/smp.h>
31 #include <asm/topology.h>
32 #include <asm/firmware.h>
33 #include <asm/paca.h>
34 #include <asm/hvcall.h>
35 #include <asm/setup.h>
36 #include <asm/vdso.h>
37 #include <asm/drmem.h>
38 
39 static int numa_enabled = 1;
40 
41 static char *cmdline __initdata;
42 
43 static int numa_debug;
44 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
45 
46 int numa_cpu_lookup_table[NR_CPUS];
47 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
48 struct pglist_data *node_data[MAX_NUMNODES];
49 
50 EXPORT_SYMBOL(numa_cpu_lookup_table);
51 EXPORT_SYMBOL(node_to_cpumask_map);
52 EXPORT_SYMBOL(node_data);
53 
54 static int min_common_depth;
55 static int n_mem_addr_cells, n_mem_size_cells;
56 static int form1_affinity;
57 
58 #define MAX_DISTANCE_REF_POINTS 4
59 static int distance_ref_points_depth;
60 static const __be32 *distance_ref_points;
61 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
62 
63 /*
64  * Allocate node_to_cpumask_map based on number of available nodes
65  * Requires node_possible_map to be valid.
66  *
67  * Note: cpumask_of_node() is not valid until after this is done.
68  */
69 static void __init setup_node_to_cpumask_map(void)
70 {
71 	unsigned int node;
72 
73 	/* setup nr_node_ids if not done yet */
74 	if (nr_node_ids == MAX_NUMNODES)
75 		setup_nr_node_ids();
76 
77 	/* allocate the map */
78 	for_each_node(node)
79 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
80 
81 	/* cpumask_of_node() will now work */
82 	dbg("Node to cpumask map for %u nodes\n", nr_node_ids);
83 }
84 
85 static int __init fake_numa_create_new_node(unsigned long end_pfn,
86 						unsigned int *nid)
87 {
88 	unsigned long long mem;
89 	char *p = cmdline;
90 	static unsigned int fake_nid;
91 	static unsigned long long curr_boundary;
92 
93 	/*
94 	 * Modify node id, iff we started creating NUMA nodes
95 	 * We want to continue from where we left of the last time
96 	 */
97 	if (fake_nid)
98 		*nid = fake_nid;
99 	/*
100 	 * In case there are no more arguments to parse, the
101 	 * node_id should be the same as the last fake node id
102 	 * (we've handled this above).
103 	 */
104 	if (!p)
105 		return 0;
106 
107 	mem = memparse(p, &p);
108 	if (!mem)
109 		return 0;
110 
111 	if (mem < curr_boundary)
112 		return 0;
113 
114 	curr_boundary = mem;
115 
116 	if ((end_pfn << PAGE_SHIFT) > mem) {
117 		/*
118 		 * Skip commas and spaces
119 		 */
120 		while (*p == ',' || *p == ' ' || *p == '\t')
121 			p++;
122 
123 		cmdline = p;
124 		fake_nid++;
125 		*nid = fake_nid;
126 		dbg("created new fake_node with id %d\n", fake_nid);
127 		return 1;
128 	}
129 	return 0;
130 }
131 
132 static void reset_numa_cpu_lookup_table(void)
133 {
134 	unsigned int cpu;
135 
136 	for_each_possible_cpu(cpu)
137 		numa_cpu_lookup_table[cpu] = -1;
138 }
139 
140 static void map_cpu_to_node(int cpu, int node)
141 {
142 	update_numa_cpu_lookup_table(cpu, node);
143 
144 	dbg("adding cpu %d to node %d\n", cpu, node);
145 
146 	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
147 		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
148 }
149 
150 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
151 static void unmap_cpu_from_node(unsigned long cpu)
152 {
153 	int node = numa_cpu_lookup_table[cpu];
154 
155 	dbg("removing cpu %lu from node %d\n", cpu, node);
156 
157 	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
158 		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
159 	} else {
160 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
161 		       cpu, node);
162 	}
163 }
164 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
165 
166 /* must hold reference to node during call */
167 static const __be32 *of_get_associativity(struct device_node *dev)
168 {
169 	return of_get_property(dev, "ibm,associativity", NULL);
170 }
171 
172 int __node_distance(int a, int b)
173 {
174 	int i;
175 	int distance = LOCAL_DISTANCE;
176 
177 	if (!form1_affinity)
178 		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
179 
180 	for (i = 0; i < distance_ref_points_depth; i++) {
181 		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
182 			break;
183 
184 		/* Double the distance for each NUMA level */
185 		distance *= 2;
186 	}
187 
188 	return distance;
189 }
190 EXPORT_SYMBOL(__node_distance);
191 
192 static void initialize_distance_lookup_table(int nid,
193 		const __be32 *associativity)
194 {
195 	int i;
196 
197 	if (!form1_affinity)
198 		return;
199 
200 	for (i = 0; i < distance_ref_points_depth; i++) {
201 		const __be32 *entry;
202 
203 		entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
204 		distance_lookup_table[nid][i] = of_read_number(entry, 1);
205 	}
206 }
207 
208 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
209  * info is found.
210  */
211 static int associativity_to_nid(const __be32 *associativity)
212 {
213 	int nid = NUMA_NO_NODE;
214 
215 	if (min_common_depth == -1)
216 		goto out;
217 
218 	if (of_read_number(associativity, 1) >= min_common_depth)
219 		nid = of_read_number(&associativity[min_common_depth], 1);
220 
221 	/* POWER4 LPAR uses 0xffff as invalid node */
222 	if (nid == 0xffff || nid >= MAX_NUMNODES)
223 		nid = NUMA_NO_NODE;
224 
225 	if (nid > 0 &&
226 		of_read_number(associativity, 1) >= distance_ref_points_depth) {
227 		/*
228 		 * Skip the length field and send start of associativity array
229 		 */
230 		initialize_distance_lookup_table(nid, associativity + 1);
231 	}
232 
233 out:
234 	return nid;
235 }
236 
237 /* Returns the nid associated with the given device tree node,
238  * or -1 if not found.
239  */
240 static int of_node_to_nid_single(struct device_node *device)
241 {
242 	int nid = NUMA_NO_NODE;
243 	const __be32 *tmp;
244 
245 	tmp = of_get_associativity(device);
246 	if (tmp)
247 		nid = associativity_to_nid(tmp);
248 	return nid;
249 }
250 
251 /* Walk the device tree upwards, looking for an associativity id */
252 int of_node_to_nid(struct device_node *device)
253 {
254 	int nid = NUMA_NO_NODE;
255 
256 	of_node_get(device);
257 	while (device) {
258 		nid = of_node_to_nid_single(device);
259 		if (nid != -1)
260 			break;
261 
262 		device = of_get_next_parent(device);
263 	}
264 	of_node_put(device);
265 
266 	return nid;
267 }
268 EXPORT_SYMBOL(of_node_to_nid);
269 
270 static int __init find_min_common_depth(void)
271 {
272 	int depth;
273 	struct device_node *root;
274 
275 	if (firmware_has_feature(FW_FEATURE_OPAL))
276 		root = of_find_node_by_path("/ibm,opal");
277 	else
278 		root = of_find_node_by_path("/rtas");
279 	if (!root)
280 		root = of_find_node_by_path("/");
281 
282 	/*
283 	 * This property is a set of 32-bit integers, each representing
284 	 * an index into the ibm,associativity nodes.
285 	 *
286 	 * With form 0 affinity the first integer is for an SMP configuration
287 	 * (should be all 0's) and the second is for a normal NUMA
288 	 * configuration. We have only one level of NUMA.
289 	 *
290 	 * With form 1 affinity the first integer is the most significant
291 	 * NUMA boundary and the following are progressively less significant
292 	 * boundaries. There can be more than one level of NUMA.
293 	 */
294 	distance_ref_points = of_get_property(root,
295 					"ibm,associativity-reference-points",
296 					&distance_ref_points_depth);
297 
298 	if (!distance_ref_points) {
299 		dbg("NUMA: ibm,associativity-reference-points not found.\n");
300 		goto err;
301 	}
302 
303 	distance_ref_points_depth /= sizeof(int);
304 
305 	if (firmware_has_feature(FW_FEATURE_OPAL) ||
306 	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
307 		dbg("Using form 1 affinity\n");
308 		form1_affinity = 1;
309 	}
310 
311 	if (form1_affinity) {
312 		depth = of_read_number(distance_ref_points, 1);
313 	} else {
314 		if (distance_ref_points_depth < 2) {
315 			printk(KERN_WARNING "NUMA: "
316 				"short ibm,associativity-reference-points\n");
317 			goto err;
318 		}
319 
320 		depth = of_read_number(&distance_ref_points[1], 1);
321 	}
322 
323 	/*
324 	 * Warn and cap if the hardware supports more than
325 	 * MAX_DISTANCE_REF_POINTS domains.
326 	 */
327 	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
328 		printk(KERN_WARNING "NUMA: distance array capped at "
329 			"%d entries\n", MAX_DISTANCE_REF_POINTS);
330 		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
331 	}
332 
333 	of_node_put(root);
334 	return depth;
335 
336 err:
337 	of_node_put(root);
338 	return -1;
339 }
340 
341 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
342 {
343 	struct device_node *memory = NULL;
344 
345 	memory = of_find_node_by_type(memory, "memory");
346 	if (!memory)
347 		panic("numa.c: No memory nodes found!");
348 
349 	*n_addr_cells = of_n_addr_cells(memory);
350 	*n_size_cells = of_n_size_cells(memory);
351 	of_node_put(memory);
352 }
353 
354 static unsigned long read_n_cells(int n, const __be32 **buf)
355 {
356 	unsigned long result = 0;
357 
358 	while (n--) {
359 		result = (result << 32) | of_read_number(*buf, 1);
360 		(*buf)++;
361 	}
362 	return result;
363 }
364 
365 struct assoc_arrays {
366 	u32	n_arrays;
367 	u32	array_sz;
368 	const __be32 *arrays;
369 };
370 
371 /*
372  * Retrieve and validate the list of associativity arrays for drconf
373  * memory from the ibm,associativity-lookup-arrays property of the
374  * device tree..
375  *
376  * The layout of the ibm,associativity-lookup-arrays property is a number N
377  * indicating the number of associativity arrays, followed by a number M
378  * indicating the size of each associativity array, followed by a list
379  * of N associativity arrays.
380  */
381 static int of_get_assoc_arrays(struct assoc_arrays *aa)
382 {
383 	struct device_node *memory;
384 	const __be32 *prop;
385 	u32 len;
386 
387 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
388 	if (!memory)
389 		return -1;
390 
391 	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
392 	if (!prop || len < 2 * sizeof(unsigned int)) {
393 		of_node_put(memory);
394 		return -1;
395 	}
396 
397 	aa->n_arrays = of_read_number(prop++, 1);
398 	aa->array_sz = of_read_number(prop++, 1);
399 
400 	of_node_put(memory);
401 
402 	/* Now that we know the number of arrays and size of each array,
403 	 * revalidate the size of the property read in.
404 	 */
405 	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
406 		return -1;
407 
408 	aa->arrays = prop;
409 	return 0;
410 }
411 
412 /*
413  * This is like of_node_to_nid_single() for memory represented in the
414  * ibm,dynamic-reconfiguration-memory node.
415  */
416 static int of_drconf_to_nid_single(struct drmem_lmb *lmb)
417 {
418 	struct assoc_arrays aa = { .arrays = NULL };
419 	int default_nid = 0;
420 	int nid = default_nid;
421 	int rc, index;
422 
423 	rc = of_get_assoc_arrays(&aa);
424 	if (rc)
425 		return default_nid;
426 
427 	if (min_common_depth > 0 && min_common_depth <= aa.array_sz &&
428 	    !(lmb->flags & DRCONF_MEM_AI_INVALID) &&
429 	    lmb->aa_index < aa.n_arrays) {
430 		index = lmb->aa_index * aa.array_sz + min_common_depth - 1;
431 		nid = of_read_number(&aa.arrays[index], 1);
432 
433 		if (nid == 0xffff || nid >= MAX_NUMNODES)
434 			nid = default_nid;
435 
436 		if (nid > 0) {
437 			index = lmb->aa_index * aa.array_sz;
438 			initialize_distance_lookup_table(nid,
439 							&aa.arrays[index]);
440 		}
441 	}
442 
443 	return nid;
444 }
445 
446 /*
447  * Figure out to which domain a cpu belongs and stick it there.
448  * Return the id of the domain used.
449  */
450 static int numa_setup_cpu(unsigned long lcpu)
451 {
452 	int nid = NUMA_NO_NODE;
453 	struct device_node *cpu;
454 
455 	/*
456 	 * If a valid cpu-to-node mapping is already available, use it
457 	 * directly instead of querying the firmware, since it represents
458 	 * the most recent mapping notified to us by the platform (eg: VPHN).
459 	 */
460 	if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
461 		map_cpu_to_node(lcpu, nid);
462 		return nid;
463 	}
464 
465 	cpu = of_get_cpu_node(lcpu, NULL);
466 
467 	if (!cpu) {
468 		WARN_ON(1);
469 		if (cpu_present(lcpu))
470 			goto out_present;
471 		else
472 			goto out;
473 	}
474 
475 	nid = of_node_to_nid_single(cpu);
476 
477 out_present:
478 	if (nid < 0 || !node_possible(nid))
479 		nid = first_online_node;
480 
481 	map_cpu_to_node(lcpu, nid);
482 	of_node_put(cpu);
483 out:
484 	return nid;
485 }
486 
487 static void verify_cpu_node_mapping(int cpu, int node)
488 {
489 	int base, sibling, i;
490 
491 	/* Verify that all the threads in the core belong to the same node */
492 	base = cpu_first_thread_sibling(cpu);
493 
494 	for (i = 0; i < threads_per_core; i++) {
495 		sibling = base + i;
496 
497 		if (sibling == cpu || cpu_is_offline(sibling))
498 			continue;
499 
500 		if (cpu_to_node(sibling) != node) {
501 			WARN(1, "CPU thread siblings %d and %d don't belong"
502 				" to the same node!\n", cpu, sibling);
503 			break;
504 		}
505 	}
506 }
507 
508 /* Must run before sched domains notifier. */
509 static int ppc_numa_cpu_prepare(unsigned int cpu)
510 {
511 	int nid;
512 
513 	nid = numa_setup_cpu(cpu);
514 	verify_cpu_node_mapping(cpu, nid);
515 	return 0;
516 }
517 
518 static int ppc_numa_cpu_dead(unsigned int cpu)
519 {
520 #ifdef CONFIG_HOTPLUG_CPU
521 	unmap_cpu_from_node(cpu);
522 #endif
523 	return 0;
524 }
525 
526 /*
527  * Check and possibly modify a memory region to enforce the memory limit.
528  *
529  * Returns the size the region should have to enforce the memory limit.
530  * This will either be the original value of size, a truncated value,
531  * or zero. If the returned value of size is 0 the region should be
532  * discarded as it lies wholly above the memory limit.
533  */
534 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
535 						      unsigned long size)
536 {
537 	/*
538 	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
539 	 * we've already adjusted it for the limit and it takes care of
540 	 * having memory holes below the limit.  Also, in the case of
541 	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
542 	 */
543 
544 	if (start + size <= memblock_end_of_DRAM())
545 		return size;
546 
547 	if (start >= memblock_end_of_DRAM())
548 		return 0;
549 
550 	return memblock_end_of_DRAM() - start;
551 }
552 
553 /*
554  * Reads the counter for a given entry in
555  * linux,drconf-usable-memory property
556  */
557 static inline int __init read_usm_ranges(const __be32 **usm)
558 {
559 	/*
560 	 * For each lmb in ibm,dynamic-memory a corresponding
561 	 * entry in linux,drconf-usable-memory property contains
562 	 * a counter followed by that many (base, size) duple.
563 	 * read the counter from linux,drconf-usable-memory
564 	 */
565 	return read_n_cells(n_mem_size_cells, usm);
566 }
567 
568 /*
569  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
570  * node.  This assumes n_mem_{addr,size}_cells have been set.
571  */
572 static void __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
573 					const __be32 **usm)
574 {
575 	unsigned int ranges, is_kexec_kdump = 0;
576 	unsigned long base, size, sz;
577 	int nid;
578 
579 	/*
580 	 * Skip this block if the reserved bit is set in flags (0x80)
581 	 * or if the block is not assigned to this partition (0x8)
582 	 */
583 	if ((lmb->flags & DRCONF_MEM_RESERVED)
584 	    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
585 		return;
586 
587 	if (*usm)
588 		is_kexec_kdump = 1;
589 
590 	base = lmb->base_addr;
591 	size = drmem_lmb_size();
592 	ranges = 1;
593 
594 	if (is_kexec_kdump) {
595 		ranges = read_usm_ranges(usm);
596 		if (!ranges) /* there are no (base, size) duple */
597 			return;
598 	}
599 
600 	do {
601 		if (is_kexec_kdump) {
602 			base = read_n_cells(n_mem_addr_cells, usm);
603 			size = read_n_cells(n_mem_size_cells, usm);
604 		}
605 
606 		nid = of_drconf_to_nid_single(lmb);
607 		fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
608 					  &nid);
609 		node_set_online(nid);
610 		sz = numa_enforce_memory_limit(base, size);
611 		if (sz)
612 			memblock_set_node(base, sz, &memblock.memory, nid);
613 	} while (--ranges);
614 }
615 
616 static int __init parse_numa_properties(void)
617 {
618 	struct device_node *memory;
619 	int default_nid = 0;
620 	unsigned long i;
621 
622 	if (numa_enabled == 0) {
623 		printk(KERN_WARNING "NUMA disabled by user\n");
624 		return -1;
625 	}
626 
627 	min_common_depth = find_min_common_depth();
628 
629 	if (min_common_depth < 0)
630 		return min_common_depth;
631 
632 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
633 
634 	/*
635 	 * Even though we connect cpus to numa domains later in SMP
636 	 * init, we need to know the node ids now. This is because
637 	 * each node to be onlined must have NODE_DATA etc backing it.
638 	 */
639 	for_each_present_cpu(i) {
640 		struct device_node *cpu;
641 		int nid;
642 
643 		cpu = of_get_cpu_node(i, NULL);
644 		BUG_ON(!cpu);
645 		nid = of_node_to_nid_single(cpu);
646 		of_node_put(cpu);
647 
648 		/*
649 		 * Don't fall back to default_nid yet -- we will plug
650 		 * cpus into nodes once the memory scan has discovered
651 		 * the topology.
652 		 */
653 		if (nid < 0)
654 			continue;
655 		node_set_online(nid);
656 	}
657 
658 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
659 
660 	for_each_node_by_type(memory, "memory") {
661 		unsigned long start;
662 		unsigned long size;
663 		int nid;
664 		int ranges;
665 		const __be32 *memcell_buf;
666 		unsigned int len;
667 
668 		memcell_buf = of_get_property(memory,
669 			"linux,usable-memory", &len);
670 		if (!memcell_buf || len <= 0)
671 			memcell_buf = of_get_property(memory, "reg", &len);
672 		if (!memcell_buf || len <= 0)
673 			continue;
674 
675 		/* ranges in cell */
676 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
677 new_range:
678 		/* these are order-sensitive, and modify the buffer pointer */
679 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
680 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
681 
682 		/*
683 		 * Assumption: either all memory nodes or none will
684 		 * have associativity properties.  If none, then
685 		 * everything goes to default_nid.
686 		 */
687 		nid = of_node_to_nid_single(memory);
688 		if (nid < 0)
689 			nid = default_nid;
690 
691 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
692 		node_set_online(nid);
693 
694 		size = numa_enforce_memory_limit(start, size);
695 		if (size)
696 			memblock_set_node(start, size, &memblock.memory, nid);
697 
698 		if (--ranges)
699 			goto new_range;
700 	}
701 
702 	/*
703 	 * Now do the same thing for each MEMBLOCK listed in the
704 	 * ibm,dynamic-memory property in the
705 	 * ibm,dynamic-reconfiguration-memory node.
706 	 */
707 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
708 	if (memory) {
709 		walk_drmem_lmbs(memory, numa_setup_drmem_lmb);
710 		of_node_put(memory);
711 	}
712 
713 	return 0;
714 }
715 
716 static void __init setup_nonnuma(void)
717 {
718 	unsigned long top_of_ram = memblock_end_of_DRAM();
719 	unsigned long total_ram = memblock_phys_mem_size();
720 	unsigned long start_pfn, end_pfn;
721 	unsigned int nid = 0;
722 	struct memblock_region *reg;
723 
724 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
725 	       top_of_ram, total_ram);
726 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
727 	       (top_of_ram - total_ram) >> 20);
728 
729 	for_each_memblock(memory, reg) {
730 		start_pfn = memblock_region_memory_base_pfn(reg);
731 		end_pfn = memblock_region_memory_end_pfn(reg);
732 
733 		fake_numa_create_new_node(end_pfn, &nid);
734 		memblock_set_node(PFN_PHYS(start_pfn),
735 				  PFN_PHYS(end_pfn - start_pfn),
736 				  &memblock.memory, nid);
737 		node_set_online(nid);
738 	}
739 }
740 
741 void __init dump_numa_cpu_topology(void)
742 {
743 	unsigned int node;
744 	unsigned int cpu, count;
745 
746 	if (min_common_depth == -1 || !numa_enabled)
747 		return;
748 
749 	for_each_online_node(node) {
750 		pr_info("Node %d CPUs:", node);
751 
752 		count = 0;
753 		/*
754 		 * If we used a CPU iterator here we would miss printing
755 		 * the holes in the cpumap.
756 		 */
757 		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
758 			if (cpumask_test_cpu(cpu,
759 					node_to_cpumask_map[node])) {
760 				if (count == 0)
761 					pr_cont(" %u", cpu);
762 				++count;
763 			} else {
764 				if (count > 1)
765 					pr_cont("-%u", cpu - 1);
766 				count = 0;
767 			}
768 		}
769 
770 		if (count > 1)
771 			pr_cont("-%u", nr_cpu_ids - 1);
772 		pr_cont("\n");
773 	}
774 }
775 
776 /* Initialize NODE_DATA for a node on the local memory */
777 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
778 {
779 	u64 spanned_pages = end_pfn - start_pfn;
780 	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
781 	u64 nd_pa;
782 	void *nd;
783 	int tnid;
784 
785 	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
786 	if (!nd_pa)
787 		panic("Cannot allocate %zu bytes for node %d data\n",
788 		      nd_size, nid);
789 
790 	nd = __va(nd_pa);
791 
792 	/* report and initialize */
793 	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
794 		nd_pa, nd_pa + nd_size - 1);
795 	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
796 	if (tnid != nid)
797 		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
798 
799 	node_data[nid] = nd;
800 	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
801 	NODE_DATA(nid)->node_id = nid;
802 	NODE_DATA(nid)->node_start_pfn = start_pfn;
803 	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
804 }
805 
806 static void __init find_possible_nodes(void)
807 {
808 	struct device_node *rtas;
809 	u32 numnodes, i;
810 
811 	if (min_common_depth <= 0)
812 		return;
813 
814 	rtas = of_find_node_by_path("/rtas");
815 	if (!rtas)
816 		return;
817 
818 	if (of_property_read_u32_index(rtas,
819 				"ibm,max-associativity-domains",
820 				min_common_depth, &numnodes))
821 		goto out;
822 
823 	for (i = 0; i < numnodes; i++) {
824 		if (!node_possible(i))
825 			node_set(i, node_possible_map);
826 	}
827 
828 out:
829 	of_node_put(rtas);
830 }
831 
832 void __init mem_topology_setup(void)
833 {
834 	int cpu;
835 
836 	if (parse_numa_properties())
837 		setup_nonnuma();
838 
839 	/*
840 	 * Modify the set of possible NUMA nodes to reflect information
841 	 * available about the set of online nodes, and the set of nodes
842 	 * that we expect to make use of for this platform's affinity
843 	 * calculations.
844 	 */
845 	nodes_and(node_possible_map, node_possible_map, node_online_map);
846 
847 	find_possible_nodes();
848 
849 	setup_node_to_cpumask_map();
850 
851 	reset_numa_cpu_lookup_table();
852 
853 	for_each_present_cpu(cpu)
854 		numa_setup_cpu(cpu);
855 }
856 
857 void __init initmem_init(void)
858 {
859 	int nid;
860 
861 	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
862 	max_pfn = max_low_pfn;
863 
864 	memblock_dump_all();
865 
866 	for_each_online_node(nid) {
867 		unsigned long start_pfn, end_pfn;
868 
869 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
870 		setup_node_data(nid, start_pfn, end_pfn);
871 		sparse_memory_present_with_active_regions(nid);
872 	}
873 
874 	sparse_init();
875 
876 	/*
877 	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
878 	 * even before we online them, so that we can use cpu_to_{node,mem}
879 	 * early in boot, cf. smp_prepare_cpus().
880 	 * _nocalls() + manual invocation is used because cpuhp is not yet
881 	 * initialized for the boot CPU.
882 	 */
883 	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
884 				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
885 }
886 
887 static int __init early_numa(char *p)
888 {
889 	if (!p)
890 		return 0;
891 
892 	if (strstr(p, "off"))
893 		numa_enabled = 0;
894 
895 	if (strstr(p, "debug"))
896 		numa_debug = 1;
897 
898 	p = strstr(p, "fake=");
899 	if (p)
900 		cmdline = p + strlen("fake=");
901 
902 	return 0;
903 }
904 early_param("numa", early_numa);
905 
906 /*
907  * The platform can inform us through one of several mechanisms
908  * (post-migration device tree updates, PRRN or VPHN) that the NUMA
909  * assignment of a resource has changed. This controls whether we act
910  * on that. Disabled by default.
911  */
912 static bool topology_updates_enabled;
913 
914 static int __init early_topology_updates(char *p)
915 {
916 	if (!p)
917 		return 0;
918 
919 	if (!strcmp(p, "on")) {
920 		pr_warn("Caution: enabling topology updates\n");
921 		topology_updates_enabled = true;
922 	}
923 
924 	return 0;
925 }
926 early_param("topology_updates", early_topology_updates);
927 
928 #ifdef CONFIG_MEMORY_HOTPLUG
929 /*
930  * Find the node associated with a hot added memory section for
931  * memory represented in the device tree by the property
932  * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
933  */
934 static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
935 {
936 	struct drmem_lmb *lmb;
937 	unsigned long lmb_size;
938 	int nid = NUMA_NO_NODE;
939 
940 	lmb_size = drmem_lmb_size();
941 
942 	for_each_drmem_lmb(lmb) {
943 		/* skip this block if it is reserved or not assigned to
944 		 * this partition */
945 		if ((lmb->flags & DRCONF_MEM_RESERVED)
946 		    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
947 			continue;
948 
949 		if ((scn_addr < lmb->base_addr)
950 		    || (scn_addr >= (lmb->base_addr + lmb_size)))
951 			continue;
952 
953 		nid = of_drconf_to_nid_single(lmb);
954 		break;
955 	}
956 
957 	return nid;
958 }
959 
960 /*
961  * Find the node associated with a hot added memory section for memory
962  * represented in the device tree as a node (i.e. memory@XXXX) for
963  * each memblock.
964  */
965 static int hot_add_node_scn_to_nid(unsigned long scn_addr)
966 {
967 	struct device_node *memory;
968 	int nid = NUMA_NO_NODE;
969 
970 	for_each_node_by_type(memory, "memory") {
971 		unsigned long start, size;
972 		int ranges;
973 		const __be32 *memcell_buf;
974 		unsigned int len;
975 
976 		memcell_buf = of_get_property(memory, "reg", &len);
977 		if (!memcell_buf || len <= 0)
978 			continue;
979 
980 		/* ranges in cell */
981 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
982 
983 		while (ranges--) {
984 			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
985 			size = read_n_cells(n_mem_size_cells, &memcell_buf);
986 
987 			if ((scn_addr < start) || (scn_addr >= (start + size)))
988 				continue;
989 
990 			nid = of_node_to_nid_single(memory);
991 			break;
992 		}
993 
994 		if (nid >= 0)
995 			break;
996 	}
997 
998 	of_node_put(memory);
999 
1000 	return nid;
1001 }
1002 
1003 /*
1004  * Find the node associated with a hot added memory section.  Section
1005  * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1006  * sections are fully contained within a single MEMBLOCK.
1007  */
1008 int hot_add_scn_to_nid(unsigned long scn_addr)
1009 {
1010 	struct device_node *memory = NULL;
1011 	int nid;
1012 
1013 	if (!numa_enabled || (min_common_depth < 0))
1014 		return first_online_node;
1015 
1016 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1017 	if (memory) {
1018 		nid = hot_add_drconf_scn_to_nid(scn_addr);
1019 		of_node_put(memory);
1020 	} else {
1021 		nid = hot_add_node_scn_to_nid(scn_addr);
1022 	}
1023 
1024 	if (nid < 0 || !node_possible(nid))
1025 		nid = first_online_node;
1026 
1027 	return nid;
1028 }
1029 
1030 static u64 hot_add_drconf_memory_max(void)
1031 {
1032 	struct device_node *memory = NULL;
1033 	struct device_node *dn = NULL;
1034 	const __be64 *lrdr = NULL;
1035 
1036 	dn = of_find_node_by_path("/rtas");
1037 	if (dn) {
1038 		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1039 		of_node_put(dn);
1040 		if (lrdr)
1041 			return be64_to_cpup(lrdr);
1042 	}
1043 
1044 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1045 	if (memory) {
1046 		of_node_put(memory);
1047 		return drmem_lmb_memory_max();
1048 	}
1049 	return 0;
1050 }
1051 
1052 /*
1053  * memory_hotplug_max - return max address of memory that may be added
1054  *
1055  * This is currently only used on systems that support drconfig memory
1056  * hotplug.
1057  */
1058 u64 memory_hotplug_max(void)
1059 {
1060         return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1061 }
1062 #endif /* CONFIG_MEMORY_HOTPLUG */
1063 
1064 /* Virtual Processor Home Node (VPHN) support */
1065 #ifdef CONFIG_PPC_SPLPAR
1066 
1067 #include "book3s64/vphn.h"
1068 
1069 struct topology_update_data {
1070 	struct topology_update_data *next;
1071 	unsigned int cpu;
1072 	int old_nid;
1073 	int new_nid;
1074 };
1075 
1076 #define TOPOLOGY_DEF_TIMER_SECS	60
1077 
1078 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1079 static cpumask_t cpu_associativity_changes_mask;
1080 static int vphn_enabled;
1081 static int prrn_enabled;
1082 static void reset_topology_timer(void);
1083 static int topology_timer_secs = 1;
1084 static int topology_inited;
1085 
1086 /*
1087  * Change polling interval for associativity changes.
1088  */
1089 int timed_topology_update(int nsecs)
1090 {
1091 	if (vphn_enabled) {
1092 		if (nsecs > 0)
1093 			topology_timer_secs = nsecs;
1094 		else
1095 			topology_timer_secs = TOPOLOGY_DEF_TIMER_SECS;
1096 
1097 		reset_topology_timer();
1098 	}
1099 
1100 	return 0;
1101 }
1102 
1103 /*
1104  * Store the current values of the associativity change counters in the
1105  * hypervisor.
1106  */
1107 static void setup_cpu_associativity_change_counters(void)
1108 {
1109 	int cpu;
1110 
1111 	/* The VPHN feature supports a maximum of 8 reference points */
1112 	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1113 
1114 	for_each_possible_cpu(cpu) {
1115 		int i;
1116 		u8 *counts = vphn_cpu_change_counts[cpu];
1117 		volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1118 
1119 		for (i = 0; i < distance_ref_points_depth; i++)
1120 			counts[i] = hypervisor_counts[i];
1121 	}
1122 }
1123 
1124 /*
1125  * The hypervisor maintains a set of 8 associativity change counters in
1126  * the VPA of each cpu that correspond to the associativity levels in the
1127  * ibm,associativity-reference-points property. When an associativity
1128  * level changes, the corresponding counter is incremented.
1129  *
1130  * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1131  * node associativity levels have changed.
1132  *
1133  * Returns the number of cpus with unhandled associativity changes.
1134  */
1135 static int update_cpu_associativity_changes_mask(void)
1136 {
1137 	int cpu;
1138 	cpumask_t *changes = &cpu_associativity_changes_mask;
1139 
1140 	for_each_possible_cpu(cpu) {
1141 		int i, changed = 0;
1142 		u8 *counts = vphn_cpu_change_counts[cpu];
1143 		volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1144 
1145 		for (i = 0; i < distance_ref_points_depth; i++) {
1146 			if (hypervisor_counts[i] != counts[i]) {
1147 				counts[i] = hypervisor_counts[i];
1148 				changed = 1;
1149 			}
1150 		}
1151 		if (changed) {
1152 			cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1153 			cpu = cpu_last_thread_sibling(cpu);
1154 		}
1155 	}
1156 
1157 	return cpumask_weight(changes);
1158 }
1159 
1160 /*
1161  * Retrieve the new associativity information for a virtual processor's
1162  * home node.
1163  */
1164 static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1165 {
1166 	long rc;
1167 	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1168 	u64 flags = 1;
1169 	int hwcpu = get_hard_smp_processor_id(cpu);
1170 
1171 	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1172 	vphn_unpack_associativity(retbuf, associativity);
1173 
1174 	return rc;
1175 }
1176 
1177 static long vphn_get_associativity(unsigned long cpu,
1178 					__be32 *associativity)
1179 {
1180 	long rc;
1181 
1182 	rc = hcall_vphn(cpu, associativity);
1183 
1184 	switch (rc) {
1185 	case H_FUNCTION:
1186 		printk_once(KERN_INFO
1187 			"VPHN is not supported. Disabling polling...\n");
1188 		stop_topology_update();
1189 		break;
1190 	case H_HARDWARE:
1191 		printk(KERN_ERR
1192 			"hcall_vphn() experienced a hardware fault "
1193 			"preventing VPHN. Disabling polling...\n");
1194 		stop_topology_update();
1195 		break;
1196 	case H_SUCCESS:
1197 		dbg("VPHN hcall succeeded. Reset polling...\n");
1198 		timed_topology_update(0);
1199 		break;
1200 	}
1201 
1202 	return rc;
1203 }
1204 
1205 int find_and_online_cpu_nid(int cpu)
1206 {
1207 	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1208 	int new_nid;
1209 
1210 	/* Use associativity from first thread for all siblings */
1211 	if (vphn_get_associativity(cpu, associativity))
1212 		return cpu_to_node(cpu);
1213 
1214 	new_nid = associativity_to_nid(associativity);
1215 	if (new_nid < 0 || !node_possible(new_nid))
1216 		new_nid = first_online_node;
1217 
1218 	if (NODE_DATA(new_nid) == NULL) {
1219 #ifdef CONFIG_MEMORY_HOTPLUG
1220 		/*
1221 		 * Need to ensure that NODE_DATA is initialized for a node from
1222 		 * available memory (see memblock_alloc_try_nid). If unable to
1223 		 * init the node, then default to nearest node that has memory
1224 		 * installed. Skip onlining a node if the subsystems are not
1225 		 * yet initialized.
1226 		 */
1227 		if (!topology_inited || try_online_node(new_nid))
1228 			new_nid = first_online_node;
1229 #else
1230 		/*
1231 		 * Default to using the nearest node that has memory installed.
1232 		 * Otherwise, it would be necessary to patch the kernel MM code
1233 		 * to deal with more memoryless-node error conditions.
1234 		 */
1235 		new_nid = first_online_node;
1236 #endif
1237 	}
1238 
1239 	pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
1240 		cpu, new_nid);
1241 	return new_nid;
1242 }
1243 
1244 /*
1245  * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1246  * characteristics change. This function doesn't perform any locking and is
1247  * only safe to call from stop_machine().
1248  */
1249 static int update_cpu_topology(void *data)
1250 {
1251 	struct topology_update_data *update;
1252 	unsigned long cpu;
1253 
1254 	if (!data)
1255 		return -EINVAL;
1256 
1257 	cpu = smp_processor_id();
1258 
1259 	for (update = data; update; update = update->next) {
1260 		int new_nid = update->new_nid;
1261 		if (cpu != update->cpu)
1262 			continue;
1263 
1264 		unmap_cpu_from_node(cpu);
1265 		map_cpu_to_node(cpu, new_nid);
1266 		set_cpu_numa_node(cpu, new_nid);
1267 		set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1268 		vdso_getcpu_init();
1269 	}
1270 
1271 	return 0;
1272 }
1273 
1274 static int update_lookup_table(void *data)
1275 {
1276 	struct topology_update_data *update;
1277 
1278 	if (!data)
1279 		return -EINVAL;
1280 
1281 	/*
1282 	 * Upon topology update, the numa-cpu lookup table needs to be updated
1283 	 * for all threads in the core, including offline CPUs, to ensure that
1284 	 * future hotplug operations respect the cpu-to-node associativity
1285 	 * properly.
1286 	 */
1287 	for (update = data; update; update = update->next) {
1288 		int nid, base, j;
1289 
1290 		nid = update->new_nid;
1291 		base = cpu_first_thread_sibling(update->cpu);
1292 
1293 		for (j = 0; j < threads_per_core; j++) {
1294 			update_numa_cpu_lookup_table(base + j, nid);
1295 		}
1296 	}
1297 
1298 	return 0;
1299 }
1300 
1301 /*
1302  * Update the node maps and sysfs entries for each cpu whose home node
1303  * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1304  *
1305  * cpus_locked says whether we already hold cpu_hotplug_lock.
1306  */
1307 int numa_update_cpu_topology(bool cpus_locked)
1308 {
1309 	unsigned int cpu, sibling, changed = 0;
1310 	struct topology_update_data *updates, *ud;
1311 	cpumask_t updated_cpus;
1312 	struct device *dev;
1313 	int weight, new_nid, i = 0;
1314 
1315 	if (!prrn_enabled && !vphn_enabled && topology_inited)
1316 		return 0;
1317 
1318 	weight = cpumask_weight(&cpu_associativity_changes_mask);
1319 	if (!weight)
1320 		return 0;
1321 
1322 	updates = kcalloc(weight, sizeof(*updates), GFP_KERNEL);
1323 	if (!updates)
1324 		return 0;
1325 
1326 	cpumask_clear(&updated_cpus);
1327 
1328 	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1329 		/*
1330 		 * If siblings aren't flagged for changes, updates list
1331 		 * will be too short. Skip on this update and set for next
1332 		 * update.
1333 		 */
1334 		if (!cpumask_subset(cpu_sibling_mask(cpu),
1335 					&cpu_associativity_changes_mask)) {
1336 			pr_info("Sibling bits not set for associativity "
1337 					"change, cpu%d\n", cpu);
1338 			cpumask_or(&cpu_associativity_changes_mask,
1339 					&cpu_associativity_changes_mask,
1340 					cpu_sibling_mask(cpu));
1341 			cpu = cpu_last_thread_sibling(cpu);
1342 			continue;
1343 		}
1344 
1345 		new_nid = find_and_online_cpu_nid(cpu);
1346 
1347 		if (new_nid == numa_cpu_lookup_table[cpu]) {
1348 			cpumask_andnot(&cpu_associativity_changes_mask,
1349 					&cpu_associativity_changes_mask,
1350 					cpu_sibling_mask(cpu));
1351 			dbg("Assoc chg gives same node %d for cpu%d\n",
1352 					new_nid, cpu);
1353 			cpu = cpu_last_thread_sibling(cpu);
1354 			continue;
1355 		}
1356 
1357 		for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1358 			ud = &updates[i++];
1359 			ud->next = &updates[i];
1360 			ud->cpu = sibling;
1361 			ud->new_nid = new_nid;
1362 			ud->old_nid = numa_cpu_lookup_table[sibling];
1363 			cpumask_set_cpu(sibling, &updated_cpus);
1364 		}
1365 		cpu = cpu_last_thread_sibling(cpu);
1366 	}
1367 
1368 	/*
1369 	 * Prevent processing of 'updates' from overflowing array
1370 	 * where last entry filled in a 'next' pointer.
1371 	 */
1372 	if (i)
1373 		updates[i-1].next = NULL;
1374 
1375 	pr_debug("Topology update for the following CPUs:\n");
1376 	if (cpumask_weight(&updated_cpus)) {
1377 		for (ud = &updates[0]; ud; ud = ud->next) {
1378 			pr_debug("cpu %d moving from node %d "
1379 					  "to %d\n", ud->cpu,
1380 					  ud->old_nid, ud->new_nid);
1381 		}
1382 	}
1383 
1384 	/*
1385 	 * In cases where we have nothing to update (because the updates list
1386 	 * is too short or because the new topology is same as the old one),
1387 	 * skip invoking update_cpu_topology() via stop-machine(). This is
1388 	 * necessary (and not just a fast-path optimization) since stop-machine
1389 	 * can end up electing a random CPU to run update_cpu_topology(), and
1390 	 * thus trick us into setting up incorrect cpu-node mappings (since
1391 	 * 'updates' is kzalloc()'ed).
1392 	 *
1393 	 * And for the similar reason, we will skip all the following updating.
1394 	 */
1395 	if (!cpumask_weight(&updated_cpus))
1396 		goto out;
1397 
1398 	if (cpus_locked)
1399 		stop_machine_cpuslocked(update_cpu_topology, &updates[0],
1400 					&updated_cpus);
1401 	else
1402 		stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1403 
1404 	/*
1405 	 * Update the numa-cpu lookup table with the new mappings, even for
1406 	 * offline CPUs. It is best to perform this update from the stop-
1407 	 * machine context.
1408 	 */
1409 	if (cpus_locked)
1410 		stop_machine_cpuslocked(update_lookup_table, &updates[0],
1411 					cpumask_of(raw_smp_processor_id()));
1412 	else
1413 		stop_machine(update_lookup_table, &updates[0],
1414 			     cpumask_of(raw_smp_processor_id()));
1415 
1416 	for (ud = &updates[0]; ud; ud = ud->next) {
1417 		unregister_cpu_under_node(ud->cpu, ud->old_nid);
1418 		register_cpu_under_node(ud->cpu, ud->new_nid);
1419 
1420 		dev = get_cpu_device(ud->cpu);
1421 		if (dev)
1422 			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1423 		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1424 		changed = 1;
1425 	}
1426 
1427 out:
1428 	kfree(updates);
1429 	return changed;
1430 }
1431 
1432 int arch_update_cpu_topology(void)
1433 {
1434 	return numa_update_cpu_topology(true);
1435 }
1436 
1437 static void topology_work_fn(struct work_struct *work)
1438 {
1439 	rebuild_sched_domains();
1440 }
1441 static DECLARE_WORK(topology_work, topology_work_fn);
1442 
1443 static void topology_schedule_update(void)
1444 {
1445 	schedule_work(&topology_work);
1446 }
1447 
1448 static void topology_timer_fn(struct timer_list *unused)
1449 {
1450 	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1451 		topology_schedule_update();
1452 	else if (vphn_enabled) {
1453 		if (update_cpu_associativity_changes_mask() > 0)
1454 			topology_schedule_update();
1455 		reset_topology_timer();
1456 	}
1457 }
1458 static struct timer_list topology_timer;
1459 
1460 static void reset_topology_timer(void)
1461 {
1462 	if (vphn_enabled)
1463 		mod_timer(&topology_timer, jiffies + topology_timer_secs * HZ);
1464 }
1465 
1466 #ifdef CONFIG_SMP
1467 
1468 static int dt_update_callback(struct notifier_block *nb,
1469 				unsigned long action, void *data)
1470 {
1471 	struct of_reconfig_data *update = data;
1472 	int rc = NOTIFY_DONE;
1473 
1474 	switch (action) {
1475 	case OF_RECONFIG_UPDATE_PROPERTY:
1476 		if (of_node_is_type(update->dn, "cpu") &&
1477 		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1478 			u32 core_id;
1479 			of_property_read_u32(update->dn, "reg", &core_id);
1480 			rc = dlpar_cpu_readd(core_id);
1481 			rc = NOTIFY_OK;
1482 		}
1483 		break;
1484 	}
1485 
1486 	return rc;
1487 }
1488 
1489 static struct notifier_block dt_update_nb = {
1490 	.notifier_call = dt_update_callback,
1491 };
1492 
1493 #endif
1494 
1495 /*
1496  * Start polling for associativity changes.
1497  */
1498 int start_topology_update(void)
1499 {
1500 	int rc = 0;
1501 
1502 	if (!topology_updates_enabled)
1503 		return 0;
1504 
1505 	if (firmware_has_feature(FW_FEATURE_PRRN)) {
1506 		if (!prrn_enabled) {
1507 			prrn_enabled = 1;
1508 #ifdef CONFIG_SMP
1509 			rc = of_reconfig_notifier_register(&dt_update_nb);
1510 #endif
1511 		}
1512 	}
1513 	if (firmware_has_feature(FW_FEATURE_VPHN) &&
1514 		   lppaca_shared_proc(get_lppaca())) {
1515 		if (!vphn_enabled) {
1516 			vphn_enabled = 1;
1517 			setup_cpu_associativity_change_counters();
1518 			timer_setup(&topology_timer, topology_timer_fn,
1519 				    TIMER_DEFERRABLE);
1520 			reset_topology_timer();
1521 		}
1522 	}
1523 
1524 	pr_info("Starting topology update%s%s\n",
1525 		(prrn_enabled ? " prrn_enabled" : ""),
1526 		(vphn_enabled ? " vphn_enabled" : ""));
1527 
1528 	return rc;
1529 }
1530 
1531 /*
1532  * Disable polling for VPHN associativity changes.
1533  */
1534 int stop_topology_update(void)
1535 {
1536 	int rc = 0;
1537 
1538 	if (!topology_updates_enabled)
1539 		return 0;
1540 
1541 	if (prrn_enabled) {
1542 		prrn_enabled = 0;
1543 #ifdef CONFIG_SMP
1544 		rc = of_reconfig_notifier_unregister(&dt_update_nb);
1545 #endif
1546 	}
1547 	if (vphn_enabled) {
1548 		vphn_enabled = 0;
1549 		rc = del_timer_sync(&topology_timer);
1550 	}
1551 
1552 	pr_info("Stopping topology update\n");
1553 
1554 	return rc;
1555 }
1556 
1557 int prrn_is_enabled(void)
1558 {
1559 	return prrn_enabled;
1560 }
1561 
1562 void __init shared_proc_topology_init(void)
1563 {
1564 	if (lppaca_shared_proc(get_lppaca())) {
1565 		bitmap_fill(cpumask_bits(&cpu_associativity_changes_mask),
1566 			    nr_cpumask_bits);
1567 		numa_update_cpu_topology(false);
1568 	}
1569 }
1570 
1571 static int topology_read(struct seq_file *file, void *v)
1572 {
1573 	if (vphn_enabled || prrn_enabled)
1574 		seq_puts(file, "on\n");
1575 	else
1576 		seq_puts(file, "off\n");
1577 
1578 	return 0;
1579 }
1580 
1581 static int topology_open(struct inode *inode, struct file *file)
1582 {
1583 	return single_open(file, topology_read, NULL);
1584 }
1585 
1586 static ssize_t topology_write(struct file *file, const char __user *buf,
1587 			      size_t count, loff_t *off)
1588 {
1589 	char kbuf[4]; /* "on" or "off" plus null. */
1590 	int read_len;
1591 
1592 	read_len = count < 3 ? count : 3;
1593 	if (copy_from_user(kbuf, buf, read_len))
1594 		return -EINVAL;
1595 
1596 	kbuf[read_len] = '\0';
1597 
1598 	if (!strncmp(kbuf, "on", 2)) {
1599 		topology_updates_enabled = true;
1600 		start_topology_update();
1601 	} else if (!strncmp(kbuf, "off", 3)) {
1602 		stop_topology_update();
1603 		topology_updates_enabled = false;
1604 	} else
1605 		return -EINVAL;
1606 
1607 	return count;
1608 }
1609 
1610 static const struct file_operations topology_ops = {
1611 	.read = seq_read,
1612 	.write = topology_write,
1613 	.open = topology_open,
1614 	.release = single_release
1615 };
1616 
1617 static int topology_update_init(void)
1618 {
1619 	start_topology_update();
1620 
1621 	if (vphn_enabled)
1622 		topology_schedule_update();
1623 
1624 	if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
1625 		return -ENOMEM;
1626 
1627 	topology_inited = 1;
1628 	return 0;
1629 }
1630 device_initcall(topology_update_init);
1631 #endif /* CONFIG_PPC_SPLPAR */
1632