xref: /linux/arch/powerpc/platforms/8xx/cpm1.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * General Purpose functions for the global management of the
4  * Communication Processor Module.
5  * Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
6  *
7  * In addition to the individual control of the communication
8  * channels, there are a few functions that globally affect the
9  * communication processor.
10  *
11  * Buffer descriptors must be allocated from the dual ported memory
12  * space.  The allocator for that is here.  When the communication
13  * process is reset, we reclaim the memory available.  There is
14  * currently no deallocator for this memory.
15  * The amount of space available is platform dependent.  On the
16  * MBX, the EPPC software loads additional microcode into the
17  * communication processor, and uses some of the DP ram for this
18  * purpose.  Current, the first 512 bytes and the last 256 bytes of
19  * memory are used.  Right now I am conservative and only use the
20  * memory that can never be used for microcode.  If there are
21  * applications that require more DP ram, we can expand the boundaries
22  * but then we have to be careful of any downloaded microcode.
23  */
24 #include <linux/errno.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/param.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/interrupt.h>
32 #include <linux/irq.h>
33 #include <linux/module.h>
34 #include <linux/spinlock.h>
35 #include <linux/slab.h>
36 #include <asm/page.h>
37 #include <asm/pgtable.h>
38 #include <asm/8xx_immap.h>
39 #include <asm/cpm1.h>
40 #include <asm/io.h>
41 #include <asm/rheap.h>
42 #include <asm/prom.h>
43 #include <asm/cpm.h>
44 
45 #include <asm/fs_pd.h>
46 
47 #ifdef CONFIG_8xx_GPIO
48 #include <linux/of_gpio.h>
49 #endif
50 
51 #define CPM_MAP_SIZE    (0x4000)
52 
53 cpm8xx_t __iomem *cpmp;  /* Pointer to comm processor space */
54 immap_t __iomem *mpc8xx_immr = (void __iomem *)VIRT_IMMR_BASE;
55 static cpic8xx_t __iomem *cpic_reg;
56 
57 static struct irq_domain *cpm_pic_host;
58 
59 static void cpm_mask_irq(struct irq_data *d)
60 {
61 	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
62 
63 	clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
64 }
65 
66 static void cpm_unmask_irq(struct irq_data *d)
67 {
68 	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
69 
70 	setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
71 }
72 
73 static void cpm_end_irq(struct irq_data *d)
74 {
75 	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
76 
77 	out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
78 }
79 
80 static struct irq_chip cpm_pic = {
81 	.name = "CPM PIC",
82 	.irq_mask = cpm_mask_irq,
83 	.irq_unmask = cpm_unmask_irq,
84 	.irq_eoi = cpm_end_irq,
85 };
86 
87 int cpm_get_irq(void)
88 {
89 	int cpm_vec;
90 
91 	/*
92 	 * Get the vector by setting the ACK bit and then reading
93 	 * the register.
94 	 */
95 	out_be16(&cpic_reg->cpic_civr, 1);
96 	cpm_vec = in_be16(&cpic_reg->cpic_civr);
97 	cpm_vec >>= 11;
98 
99 	return irq_linear_revmap(cpm_pic_host, cpm_vec);
100 }
101 
102 static int cpm_pic_host_map(struct irq_domain *h, unsigned int virq,
103 			  irq_hw_number_t hw)
104 {
105 	pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
106 
107 	irq_set_status_flags(virq, IRQ_LEVEL);
108 	irq_set_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
109 	return 0;
110 }
111 
112 /*
113  * The CPM can generate the error interrupt when there is a race condition
114  * between generating and masking interrupts.  All we have to do is ACK it
115  * and return.  This is a no-op function so we don't need any special
116  * tests in the interrupt handler.
117  */
118 static irqreturn_t cpm_error_interrupt(int irq, void *dev)
119 {
120 	return IRQ_HANDLED;
121 }
122 
123 static struct irqaction cpm_error_irqaction = {
124 	.handler = cpm_error_interrupt,
125 	.flags = IRQF_NO_THREAD,
126 	.name = "error",
127 };
128 
129 static const struct irq_domain_ops cpm_pic_host_ops = {
130 	.map = cpm_pic_host_map,
131 };
132 
133 unsigned int __init cpm_pic_init(void)
134 {
135 	struct device_node *np = NULL;
136 	struct resource res;
137 	unsigned int sirq = 0, hwirq, eirq;
138 	int ret;
139 
140 	pr_debug("cpm_pic_init\n");
141 
142 	np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
143 	if (np == NULL)
144 		np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
145 	if (np == NULL) {
146 		printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
147 		return sirq;
148 	}
149 
150 	ret = of_address_to_resource(np, 0, &res);
151 	if (ret)
152 		goto end;
153 
154 	cpic_reg = ioremap(res.start, resource_size(&res));
155 	if (cpic_reg == NULL)
156 		goto end;
157 
158 	sirq = irq_of_parse_and_map(np, 0);
159 	if (!sirq)
160 		goto end;
161 
162 	/* Initialize the CPM interrupt controller. */
163 	hwirq = (unsigned int)virq_to_hw(sirq);
164 	out_be32(&cpic_reg->cpic_cicr,
165 	    (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
166 		((hwirq/2) << 13) | CICR_HP_MASK);
167 
168 	out_be32(&cpic_reg->cpic_cimr, 0);
169 
170 	cpm_pic_host = irq_domain_add_linear(np, 64, &cpm_pic_host_ops, NULL);
171 	if (cpm_pic_host == NULL) {
172 		printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
173 		sirq = 0;
174 		goto end;
175 	}
176 
177 	/* Install our own error handler. */
178 	np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
179 	if (np == NULL)
180 		np = of_find_node_by_type(NULL, "cpm");
181 	if (np == NULL) {
182 		printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
183 		goto end;
184 	}
185 
186 	eirq = irq_of_parse_and_map(np, 0);
187 	if (!eirq)
188 		goto end;
189 
190 	if (setup_irq(eirq, &cpm_error_irqaction))
191 		printk(KERN_ERR "Could not allocate CPM error IRQ!");
192 
193 	setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
194 
195 end:
196 	of_node_put(np);
197 	return sirq;
198 }
199 
200 void __init cpm_reset(void)
201 {
202 	sysconf8xx_t __iomem *siu_conf;
203 
204 	cpmp = &mpc8xx_immr->im_cpm;
205 
206 #ifndef CONFIG_PPC_EARLY_DEBUG_CPM
207 	/* Perform a reset. */
208 	out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
209 
210 	/* Wait for it. */
211 	while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
212 #endif
213 
214 #ifdef CONFIG_UCODE_PATCH
215 	cpm_load_patch(cpmp);
216 #endif
217 
218 	/*
219 	 * Set SDMA Bus Request priority 5.
220 	 * On 860T, this also enables FEC priority 6.  I am not sure
221 	 * this is what we really want for some applications, but the
222 	 * manual recommends it.
223 	 * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
224 	 */
225 	siu_conf = immr_map(im_siu_conf);
226 	if ((mfspr(SPRN_IMMR) & 0xffff) == 0x0900) /* MPC885 */
227 		out_be32(&siu_conf->sc_sdcr, 0x40);
228 	else
229 		out_be32(&siu_conf->sc_sdcr, 1);
230 	immr_unmap(siu_conf);
231 }
232 
233 static DEFINE_SPINLOCK(cmd_lock);
234 
235 #define MAX_CR_CMD_LOOPS        10000
236 
237 int cpm_command(u32 command, u8 opcode)
238 {
239 	int i, ret;
240 	unsigned long flags;
241 
242 	if (command & 0xffffff0f)
243 		return -EINVAL;
244 
245 	spin_lock_irqsave(&cmd_lock, flags);
246 
247 	ret = 0;
248 	out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8));
249 	for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
250 		if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
251 			goto out;
252 
253 	printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
254 	ret = -EIO;
255 out:
256 	spin_unlock_irqrestore(&cmd_lock, flags);
257 	return ret;
258 }
259 EXPORT_SYMBOL(cpm_command);
260 
261 /*
262  * Set a baud rate generator.  This needs lots of work.  There are
263  * four BRGs, any of which can be wired to any channel.
264  * The internal baud rate clock is the system clock divided by 16.
265  * This assumes the baudrate is 16x oversampled by the uart.
266  */
267 #define BRG_INT_CLK		(get_brgfreq())
268 #define BRG_UART_CLK		(BRG_INT_CLK/16)
269 #define BRG_UART_CLK_DIV16	(BRG_UART_CLK/16)
270 
271 void
272 cpm_setbrg(uint brg, uint rate)
273 {
274 	u32 __iomem *bp;
275 
276 	/* This is good enough to get SMCs running..... */
277 	bp = &cpmp->cp_brgc1;
278 	bp += brg;
279 	/*
280 	 * The BRG has a 12-bit counter.  For really slow baud rates (or
281 	 * really fast processors), we may have to further divide by 16.
282 	 */
283 	if (((BRG_UART_CLK / rate) - 1) < 4096)
284 		out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
285 	else
286 		out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
287 			      CPM_BRG_EN | CPM_BRG_DIV16);
288 }
289 
290 struct cpm_ioport16 {
291 	__be16 dir, par, odr_sor, dat, intr;
292 	__be16 res[3];
293 };
294 
295 struct cpm_ioport32b {
296 	__be32 dir, par, odr, dat;
297 };
298 
299 struct cpm_ioport32e {
300 	__be32 dir, par, sor, odr, dat;
301 };
302 
303 static void __init cpm1_set_pin32(int port, int pin, int flags)
304 {
305 	struct cpm_ioport32e __iomem *iop;
306 	pin = 1 << (31 - pin);
307 
308 	if (port == CPM_PORTB)
309 		iop = (struct cpm_ioport32e __iomem *)
310 		      &mpc8xx_immr->im_cpm.cp_pbdir;
311 	else
312 		iop = (struct cpm_ioport32e __iomem *)
313 		      &mpc8xx_immr->im_cpm.cp_pedir;
314 
315 	if (flags & CPM_PIN_OUTPUT)
316 		setbits32(&iop->dir, pin);
317 	else
318 		clrbits32(&iop->dir, pin);
319 
320 	if (!(flags & CPM_PIN_GPIO))
321 		setbits32(&iop->par, pin);
322 	else
323 		clrbits32(&iop->par, pin);
324 
325 	if (port == CPM_PORTB) {
326 		if (flags & CPM_PIN_OPENDRAIN)
327 			setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
328 		else
329 			clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
330 	}
331 
332 	if (port == CPM_PORTE) {
333 		if (flags & CPM_PIN_SECONDARY)
334 			setbits32(&iop->sor, pin);
335 		else
336 			clrbits32(&iop->sor, pin);
337 
338 		if (flags & CPM_PIN_OPENDRAIN)
339 			setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
340 		else
341 			clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
342 	}
343 }
344 
345 static void __init cpm1_set_pin16(int port, int pin, int flags)
346 {
347 	struct cpm_ioport16 __iomem *iop =
348 		(struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
349 
350 	pin = 1 << (15 - pin);
351 
352 	if (port != 0)
353 		iop += port - 1;
354 
355 	if (flags & CPM_PIN_OUTPUT)
356 		setbits16(&iop->dir, pin);
357 	else
358 		clrbits16(&iop->dir, pin);
359 
360 	if (!(flags & CPM_PIN_GPIO))
361 		setbits16(&iop->par, pin);
362 	else
363 		clrbits16(&iop->par, pin);
364 
365 	if (port == CPM_PORTA) {
366 		if (flags & CPM_PIN_OPENDRAIN)
367 			setbits16(&iop->odr_sor, pin);
368 		else
369 			clrbits16(&iop->odr_sor, pin);
370 	}
371 	if (port == CPM_PORTC) {
372 		if (flags & CPM_PIN_SECONDARY)
373 			setbits16(&iop->odr_sor, pin);
374 		else
375 			clrbits16(&iop->odr_sor, pin);
376 		if (flags & CPM_PIN_FALLEDGE)
377 			setbits16(&iop->intr, pin);
378 		else
379 			clrbits16(&iop->intr, pin);
380 	}
381 }
382 
383 void __init cpm1_set_pin(enum cpm_port port, int pin, int flags)
384 {
385 	if (port == CPM_PORTB || port == CPM_PORTE)
386 		cpm1_set_pin32(port, pin, flags);
387 	else
388 		cpm1_set_pin16(port, pin, flags);
389 }
390 
391 int __init cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
392 {
393 	int shift;
394 	int i, bits = 0;
395 	u32 __iomem *reg;
396 	u32 mask = 7;
397 
398 	u8 clk_map[][3] = {
399 		{CPM_CLK_SCC1, CPM_BRG1, 0},
400 		{CPM_CLK_SCC1, CPM_BRG2, 1},
401 		{CPM_CLK_SCC1, CPM_BRG3, 2},
402 		{CPM_CLK_SCC1, CPM_BRG4, 3},
403 		{CPM_CLK_SCC1, CPM_CLK1, 4},
404 		{CPM_CLK_SCC1, CPM_CLK2, 5},
405 		{CPM_CLK_SCC1, CPM_CLK3, 6},
406 		{CPM_CLK_SCC1, CPM_CLK4, 7},
407 
408 		{CPM_CLK_SCC2, CPM_BRG1, 0},
409 		{CPM_CLK_SCC2, CPM_BRG2, 1},
410 		{CPM_CLK_SCC2, CPM_BRG3, 2},
411 		{CPM_CLK_SCC2, CPM_BRG4, 3},
412 		{CPM_CLK_SCC2, CPM_CLK1, 4},
413 		{CPM_CLK_SCC2, CPM_CLK2, 5},
414 		{CPM_CLK_SCC2, CPM_CLK3, 6},
415 		{CPM_CLK_SCC2, CPM_CLK4, 7},
416 
417 		{CPM_CLK_SCC3, CPM_BRG1, 0},
418 		{CPM_CLK_SCC3, CPM_BRG2, 1},
419 		{CPM_CLK_SCC3, CPM_BRG3, 2},
420 		{CPM_CLK_SCC3, CPM_BRG4, 3},
421 		{CPM_CLK_SCC3, CPM_CLK5, 4},
422 		{CPM_CLK_SCC3, CPM_CLK6, 5},
423 		{CPM_CLK_SCC3, CPM_CLK7, 6},
424 		{CPM_CLK_SCC3, CPM_CLK8, 7},
425 
426 		{CPM_CLK_SCC4, CPM_BRG1, 0},
427 		{CPM_CLK_SCC4, CPM_BRG2, 1},
428 		{CPM_CLK_SCC4, CPM_BRG3, 2},
429 		{CPM_CLK_SCC4, CPM_BRG4, 3},
430 		{CPM_CLK_SCC4, CPM_CLK5, 4},
431 		{CPM_CLK_SCC4, CPM_CLK6, 5},
432 		{CPM_CLK_SCC4, CPM_CLK7, 6},
433 		{CPM_CLK_SCC4, CPM_CLK8, 7},
434 
435 		{CPM_CLK_SMC1, CPM_BRG1, 0},
436 		{CPM_CLK_SMC1, CPM_BRG2, 1},
437 		{CPM_CLK_SMC1, CPM_BRG3, 2},
438 		{CPM_CLK_SMC1, CPM_BRG4, 3},
439 		{CPM_CLK_SMC1, CPM_CLK1, 4},
440 		{CPM_CLK_SMC1, CPM_CLK2, 5},
441 		{CPM_CLK_SMC1, CPM_CLK3, 6},
442 		{CPM_CLK_SMC1, CPM_CLK4, 7},
443 
444 		{CPM_CLK_SMC2, CPM_BRG1, 0},
445 		{CPM_CLK_SMC2, CPM_BRG2, 1},
446 		{CPM_CLK_SMC2, CPM_BRG3, 2},
447 		{CPM_CLK_SMC2, CPM_BRG4, 3},
448 		{CPM_CLK_SMC2, CPM_CLK5, 4},
449 		{CPM_CLK_SMC2, CPM_CLK6, 5},
450 		{CPM_CLK_SMC2, CPM_CLK7, 6},
451 		{CPM_CLK_SMC2, CPM_CLK8, 7},
452 	};
453 
454 	switch (target) {
455 	case CPM_CLK_SCC1:
456 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
457 		shift = 0;
458 		break;
459 
460 	case CPM_CLK_SCC2:
461 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
462 		shift = 8;
463 		break;
464 
465 	case CPM_CLK_SCC3:
466 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
467 		shift = 16;
468 		break;
469 
470 	case CPM_CLK_SCC4:
471 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
472 		shift = 24;
473 		break;
474 
475 	case CPM_CLK_SMC1:
476 		reg = &mpc8xx_immr->im_cpm.cp_simode;
477 		shift = 12;
478 		break;
479 
480 	case CPM_CLK_SMC2:
481 		reg = &mpc8xx_immr->im_cpm.cp_simode;
482 		shift = 28;
483 		break;
484 
485 	default:
486 		printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
487 		return -EINVAL;
488 	}
489 
490 	for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
491 		if (clk_map[i][0] == target && clk_map[i][1] == clock) {
492 			bits = clk_map[i][2];
493 			break;
494 		}
495 	}
496 
497 	if (i == ARRAY_SIZE(clk_map)) {
498 		printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
499 		return -EINVAL;
500 	}
501 
502 	bits <<= shift;
503 	mask <<= shift;
504 
505 	if (reg == &mpc8xx_immr->im_cpm.cp_sicr) {
506 		if (mode == CPM_CLK_RTX) {
507 			bits |= bits << 3;
508 			mask |= mask << 3;
509 		} else if (mode == CPM_CLK_RX) {
510 			bits <<= 3;
511 			mask <<= 3;
512 		}
513 	}
514 
515 	out_be32(reg, (in_be32(reg) & ~mask) | bits);
516 
517 	return 0;
518 }
519 
520 /*
521  * GPIO LIB API implementation
522  */
523 #ifdef CONFIG_8xx_GPIO
524 
525 struct cpm1_gpio16_chip {
526 	struct of_mm_gpio_chip mm_gc;
527 	spinlock_t lock;
528 
529 	/* shadowed data register to clear/set bits safely */
530 	u16 cpdata;
531 
532 	/* IRQ associated with Pins when relevant */
533 	int irq[16];
534 };
535 
536 static void cpm1_gpio16_save_regs(struct of_mm_gpio_chip *mm_gc)
537 {
538 	struct cpm1_gpio16_chip *cpm1_gc =
539 		container_of(mm_gc, struct cpm1_gpio16_chip, mm_gc);
540 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
541 
542 	cpm1_gc->cpdata = in_be16(&iop->dat);
543 }
544 
545 static int cpm1_gpio16_get(struct gpio_chip *gc, unsigned int gpio)
546 {
547 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
548 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
549 	u16 pin_mask;
550 
551 	pin_mask = 1 << (15 - gpio);
552 
553 	return !!(in_be16(&iop->dat) & pin_mask);
554 }
555 
556 static void __cpm1_gpio16_set(struct of_mm_gpio_chip *mm_gc, u16 pin_mask,
557 	int value)
558 {
559 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
560 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
561 
562 	if (value)
563 		cpm1_gc->cpdata |= pin_mask;
564 	else
565 		cpm1_gc->cpdata &= ~pin_mask;
566 
567 	out_be16(&iop->dat, cpm1_gc->cpdata);
568 }
569 
570 static void cpm1_gpio16_set(struct gpio_chip *gc, unsigned int gpio, int value)
571 {
572 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
573 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
574 	unsigned long flags;
575 	u16 pin_mask = 1 << (15 - gpio);
576 
577 	spin_lock_irqsave(&cpm1_gc->lock, flags);
578 
579 	__cpm1_gpio16_set(mm_gc, pin_mask, value);
580 
581 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
582 }
583 
584 static int cpm1_gpio16_to_irq(struct gpio_chip *gc, unsigned int gpio)
585 {
586 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
587 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
588 
589 	return cpm1_gc->irq[gpio] ? : -ENXIO;
590 }
591 
592 static int cpm1_gpio16_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
593 {
594 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
595 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
596 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
597 	unsigned long flags;
598 	u16 pin_mask = 1 << (15 - gpio);
599 
600 	spin_lock_irqsave(&cpm1_gc->lock, flags);
601 
602 	setbits16(&iop->dir, pin_mask);
603 	__cpm1_gpio16_set(mm_gc, pin_mask, val);
604 
605 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
606 
607 	return 0;
608 }
609 
610 static int cpm1_gpio16_dir_in(struct gpio_chip *gc, unsigned int gpio)
611 {
612 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
613 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
614 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
615 	unsigned long flags;
616 	u16 pin_mask = 1 << (15 - gpio);
617 
618 	spin_lock_irqsave(&cpm1_gc->lock, flags);
619 
620 	clrbits16(&iop->dir, pin_mask);
621 
622 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
623 
624 	return 0;
625 }
626 
627 int cpm1_gpiochip_add16(struct device *dev)
628 {
629 	struct device_node *np = dev->of_node;
630 	struct cpm1_gpio16_chip *cpm1_gc;
631 	struct of_mm_gpio_chip *mm_gc;
632 	struct gpio_chip *gc;
633 	u16 mask;
634 
635 	cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
636 	if (!cpm1_gc)
637 		return -ENOMEM;
638 
639 	spin_lock_init(&cpm1_gc->lock);
640 
641 	if (!of_property_read_u16(np, "fsl,cpm1-gpio-irq-mask", &mask)) {
642 		int i, j;
643 
644 		for (i = 0, j = 0; i < 16; i++)
645 			if (mask & (1 << (15 - i)))
646 				cpm1_gc->irq[i] = irq_of_parse_and_map(np, j++);
647 	}
648 
649 	mm_gc = &cpm1_gc->mm_gc;
650 	gc = &mm_gc->gc;
651 
652 	mm_gc->save_regs = cpm1_gpio16_save_regs;
653 	gc->ngpio = 16;
654 	gc->direction_input = cpm1_gpio16_dir_in;
655 	gc->direction_output = cpm1_gpio16_dir_out;
656 	gc->get = cpm1_gpio16_get;
657 	gc->set = cpm1_gpio16_set;
658 	gc->to_irq = cpm1_gpio16_to_irq;
659 	gc->parent = dev;
660 	gc->owner = THIS_MODULE;
661 
662 	return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc);
663 }
664 
665 struct cpm1_gpio32_chip {
666 	struct of_mm_gpio_chip mm_gc;
667 	spinlock_t lock;
668 
669 	/* shadowed data register to clear/set bits safely */
670 	u32 cpdata;
671 };
672 
673 static void cpm1_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc)
674 {
675 	struct cpm1_gpio32_chip *cpm1_gc =
676 		container_of(mm_gc, struct cpm1_gpio32_chip, mm_gc);
677 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
678 
679 	cpm1_gc->cpdata = in_be32(&iop->dat);
680 }
681 
682 static int cpm1_gpio32_get(struct gpio_chip *gc, unsigned int gpio)
683 {
684 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
685 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
686 	u32 pin_mask;
687 
688 	pin_mask = 1 << (31 - gpio);
689 
690 	return !!(in_be32(&iop->dat) & pin_mask);
691 }
692 
693 static void __cpm1_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask,
694 	int value)
695 {
696 	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
697 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
698 
699 	if (value)
700 		cpm1_gc->cpdata |= pin_mask;
701 	else
702 		cpm1_gc->cpdata &= ~pin_mask;
703 
704 	out_be32(&iop->dat, cpm1_gc->cpdata);
705 }
706 
707 static void cpm1_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value)
708 {
709 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
710 	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
711 	unsigned long flags;
712 	u32 pin_mask = 1 << (31 - gpio);
713 
714 	spin_lock_irqsave(&cpm1_gc->lock, flags);
715 
716 	__cpm1_gpio32_set(mm_gc, pin_mask, value);
717 
718 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
719 }
720 
721 static int cpm1_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
722 {
723 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
724 	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
725 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
726 	unsigned long flags;
727 	u32 pin_mask = 1 << (31 - gpio);
728 
729 	spin_lock_irqsave(&cpm1_gc->lock, flags);
730 
731 	setbits32(&iop->dir, pin_mask);
732 	__cpm1_gpio32_set(mm_gc, pin_mask, val);
733 
734 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
735 
736 	return 0;
737 }
738 
739 static int cpm1_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio)
740 {
741 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
742 	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
743 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
744 	unsigned long flags;
745 	u32 pin_mask = 1 << (31 - gpio);
746 
747 	spin_lock_irqsave(&cpm1_gc->lock, flags);
748 
749 	clrbits32(&iop->dir, pin_mask);
750 
751 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
752 
753 	return 0;
754 }
755 
756 int cpm1_gpiochip_add32(struct device *dev)
757 {
758 	struct device_node *np = dev->of_node;
759 	struct cpm1_gpio32_chip *cpm1_gc;
760 	struct of_mm_gpio_chip *mm_gc;
761 	struct gpio_chip *gc;
762 
763 	cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
764 	if (!cpm1_gc)
765 		return -ENOMEM;
766 
767 	spin_lock_init(&cpm1_gc->lock);
768 
769 	mm_gc = &cpm1_gc->mm_gc;
770 	gc = &mm_gc->gc;
771 
772 	mm_gc->save_regs = cpm1_gpio32_save_regs;
773 	gc->ngpio = 32;
774 	gc->direction_input = cpm1_gpio32_dir_in;
775 	gc->direction_output = cpm1_gpio32_dir_out;
776 	gc->get = cpm1_gpio32_get;
777 	gc->set = cpm1_gpio32_set;
778 	gc->parent = dev;
779 	gc->owner = THIS_MODULE;
780 
781 	return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc);
782 }
783 
784 #endif /* CONFIG_8xx_GPIO */
785