xref: /linux/arch/powerpc/platforms/cell/spufs/switch.c (revision 7a214200)
1 /*
2  * spu_switch.c
3  *
4  * (C) Copyright IBM Corp. 2005
5  *
6  * Author: Mark Nutter <mnutter@us.ibm.com>
7  *
8  * Host-side part of SPU context switch sequence outlined in
9  * Synergistic Processor Element, Book IV.
10  *
11  * A fully premptive switch of an SPE is very expensive in terms
12  * of time and system resources.  SPE Book IV indicates that SPE
13  * allocation should follow a "serially reusable device" model,
14  * in which the SPE is assigned a task until it completes.  When
15  * this is not possible, this sequence may be used to premptively
16  * save, and then later (optionally) restore the context of a
17  * program executing on an SPE.
18  *
19  *
20  * This program is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2, or (at your option)
23  * any later version.
24  *
25  * This program is distributed in the hope that it will be useful,
26  * but WITHOUT ANY WARRANTY; without even the implied warranty of
27  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28  * GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with this program; if not, write to the Free Software
32  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/errno.h>
37 #include <linux/hardirq.h>
38 #include <linux/sched.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/smp.h>
43 #include <linux/stddef.h>
44 #include <linux/unistd.h>
45 
46 #include <asm/io.h>
47 #include <asm/spu.h>
48 #include <asm/spu_priv1.h>
49 #include <asm/spu_csa.h>
50 #include <asm/mmu_context.h>
51 
52 #include "spufs.h"
53 
54 #include "spu_save_dump.h"
55 #include "spu_restore_dump.h"
56 
57 #if 0
58 #define POLL_WHILE_TRUE(_c) {				\
59     do {						\
60     } while (_c);					\
61   }
62 #else
63 #define RELAX_SPIN_COUNT				1000
64 #define POLL_WHILE_TRUE(_c) {				\
65     do {						\
66 	int _i;						\
67 	for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
68 	    cpu_relax();				\
69 	}						\
70 	if (unlikely(_c)) yield();			\
71 	else break;					\
72     } while (_c);					\
73   }
74 #endif				/* debug */
75 
76 #define POLL_WHILE_FALSE(_c)	POLL_WHILE_TRUE(!(_c))
77 
78 static inline void acquire_spu_lock(struct spu *spu)
79 {
80 	/* Save, Step 1:
81 	 * Restore, Step 1:
82 	 *    Acquire SPU-specific mutual exclusion lock.
83 	 *    TBD.
84 	 */
85 }
86 
87 static inline void release_spu_lock(struct spu *spu)
88 {
89 	/* Restore, Step 76:
90 	 *    Release SPU-specific mutual exclusion lock.
91 	 *    TBD.
92 	 */
93 }
94 
95 static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
96 {
97 	struct spu_problem __iomem *prob = spu->problem;
98 	u32 isolate_state;
99 
100 	/* Save, Step 2:
101 	 * Save, Step 6:
102 	 *     If SPU_Status[E,L,IS] any field is '1', this
103 	 *     SPU is in isolate state and cannot be context
104 	 *     saved at this time.
105 	 */
106 	isolate_state = SPU_STATUS_ISOLATED_STATE |
107 	    SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS;
108 	return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
109 }
110 
111 static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
112 {
113 	/* Save, Step 3:
114 	 * Restore, Step 2:
115 	 *     Save INT_Mask_class0 in CSA.
116 	 *     Write INT_MASK_class0 with value of 0.
117 	 *     Save INT_Mask_class1 in CSA.
118 	 *     Write INT_MASK_class1 with value of 0.
119 	 *     Save INT_Mask_class2 in CSA.
120 	 *     Write INT_MASK_class2 with value of 0.
121 	 *     Synchronize all three interrupts to be sure
122 	 *     we no longer execute a handler on another CPU.
123 	 */
124 	spin_lock_irq(&spu->register_lock);
125 	if (csa) {
126 		csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
127 		csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
128 		csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
129 	}
130 	spu_int_mask_set(spu, 0, 0ul);
131 	spu_int_mask_set(spu, 1, 0ul);
132 	spu_int_mask_set(spu, 2, 0ul);
133 	eieio();
134 	spin_unlock_irq(&spu->register_lock);
135 
136 	/*
137 	 * This flag needs to be set before calling synchronize_irq so
138 	 * that the update will be visible to the relevant handlers
139 	 * via a simple load.
140 	 */
141 	set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
142 	synchronize_irq(spu->irqs[0]);
143 	synchronize_irq(spu->irqs[1]);
144 	synchronize_irq(spu->irqs[2]);
145 }
146 
147 static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
148 {
149 	/* Save, Step 4:
150 	 * Restore, Step 25.
151 	 *    Set a software watchdog timer, which specifies the
152 	 *    maximum allowable time for a context save sequence.
153 	 *
154 	 *    For present, this implementation will not set a global
155 	 *    watchdog timer, as virtualization & variable system load
156 	 *    may cause unpredictable execution times.
157 	 */
158 }
159 
160 static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
161 {
162 	/* Save, Step 5:
163 	 * Restore, Step 3:
164 	 *     Inhibit user-space access (if provided) to this
165 	 *     SPU by unmapping the virtual pages assigned to
166 	 *     the SPU memory-mapped I/O (MMIO) for problem
167 	 *     state. TBD.
168 	 */
169 }
170 
171 static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
172 {
173 	/* Save, Step 7:
174 	 * Restore, Step 5:
175 	 *     Set a software context switch pending flag.
176 	 *     Done above in Step 3 - disable_interrupts().
177 	 */
178 }
179 
180 static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
181 {
182 	struct spu_priv2 __iomem *priv2 = spu->priv2;
183 
184 	/* Save, Step 8:
185 	 *     Suspend DMA and save MFC_CNTL.
186 	 */
187 	switch (in_be64(&priv2->mfc_control_RW) &
188 	       MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
189 	case MFC_CNTL_SUSPEND_IN_PROGRESS:
190 		POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
191 				  MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
192 				 MFC_CNTL_SUSPEND_COMPLETE);
193 		/* fall through */
194 	case MFC_CNTL_SUSPEND_COMPLETE:
195 		if (csa)
196 			csa->priv2.mfc_control_RW =
197 				in_be64(&priv2->mfc_control_RW) |
198 				MFC_CNTL_SUSPEND_DMA_QUEUE;
199 		break;
200 	case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
201 		out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
202 		POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
203 				  MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
204 				 MFC_CNTL_SUSPEND_COMPLETE);
205 		if (csa)
206 			csa->priv2.mfc_control_RW =
207 				in_be64(&priv2->mfc_control_RW) &
208 				~MFC_CNTL_SUSPEND_DMA_QUEUE &
209 				~MFC_CNTL_SUSPEND_MASK;
210 		break;
211 	}
212 }
213 
214 static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
215 {
216 	struct spu_problem __iomem *prob = spu->problem;
217 
218 	/* Save, Step 9:
219 	 *     Save SPU_Runcntl in the CSA.  This value contains
220 	 *     the "Application Desired State".
221 	 */
222 	csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
223 }
224 
225 static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
226 {
227 	/* Save, Step 10:
228 	 *     Save MFC_SR1 in the CSA.
229 	 */
230 	csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
231 }
232 
233 static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
234 {
235 	struct spu_problem __iomem *prob = spu->problem;
236 
237 	/* Save, Step 11:
238 	 *     Read SPU_Status[R], and save to CSA.
239 	 */
240 	if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
241 		csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
242 	} else {
243 		u32 stopped;
244 
245 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
246 		eieio();
247 		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
248 				SPU_STATUS_RUNNING);
249 		stopped =
250 		    SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
251 		    SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
252 		if ((in_be32(&prob->spu_status_R) & stopped) == 0)
253 			csa->prob.spu_status_R = SPU_STATUS_RUNNING;
254 		else
255 			csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
256 	}
257 }
258 
259 static inline void save_mfc_stopped_status(struct spu_state *csa,
260 		struct spu *spu)
261 {
262 	struct spu_priv2 __iomem *priv2 = spu->priv2;
263 	const u64 mask = MFC_CNTL_DECREMENTER_RUNNING |
264 			MFC_CNTL_DMA_QUEUES_EMPTY;
265 
266 	/* Save, Step 12:
267 	 *     Read MFC_CNTL[Ds].  Update saved copy of
268 	 *     CSA.MFC_CNTL[Ds].
269 	 *
270 	 * update: do the same with MFC_CNTL[Q].
271 	 */
272 	csa->priv2.mfc_control_RW &= ~mask;
273 	csa->priv2.mfc_control_RW |= in_be64(&priv2->mfc_control_RW) & mask;
274 }
275 
276 static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
277 {
278 	struct spu_priv2 __iomem *priv2 = spu->priv2;
279 
280 	/* Save, Step 13:
281 	 *     Write MFC_CNTL[Dh] set to a '1' to halt
282 	 *     the decrementer.
283 	 */
284 	out_be64(&priv2->mfc_control_RW,
285 		 MFC_CNTL_DECREMENTER_HALTED | MFC_CNTL_SUSPEND_MASK);
286 	eieio();
287 }
288 
289 static inline void save_timebase(struct spu_state *csa, struct spu *spu)
290 {
291 	/* Save, Step 14:
292 	 *    Read PPE Timebase High and Timebase low registers
293 	 *    and save in CSA.  TBD.
294 	 */
295 	csa->suspend_time = get_cycles();
296 }
297 
298 static inline void remove_other_spu_access(struct spu_state *csa,
299 					   struct spu *spu)
300 {
301 	/* Save, Step 15:
302 	 *     Remove other SPU access to this SPU by unmapping
303 	 *     this SPU's pages from their address space.  TBD.
304 	 */
305 }
306 
307 static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
308 {
309 	struct spu_problem __iomem *prob = spu->problem;
310 
311 	/* Save, Step 16:
312 	 * Restore, Step 11.
313 	 *     Write SPU_MSSync register. Poll SPU_MSSync[P]
314 	 *     for a value of 0.
315 	 */
316 	out_be64(&prob->spc_mssync_RW, 1UL);
317 	POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
318 }
319 
320 static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
321 {
322 	/* Save, Step 17:
323 	 * Restore, Step 12.
324 	 * Restore, Step 48.
325 	 *     Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
326 	 *     Then issue a PPE sync instruction.
327 	 */
328 	spu_tlb_invalidate(spu);
329 	mb();
330 }
331 
332 static inline void handle_pending_interrupts(struct spu_state *csa,
333 					     struct spu *spu)
334 {
335 	/* Save, Step 18:
336 	 *     Handle any pending interrupts from this SPU
337 	 *     here.  This is OS or hypervisor specific.  One
338 	 *     option is to re-enable interrupts to handle any
339 	 *     pending interrupts, with the interrupt handlers
340 	 *     recognizing the software Context Switch Pending
341 	 *     flag, to ensure the SPU execution or MFC command
342 	 *     queue is not restarted.  TBD.
343 	 */
344 }
345 
346 static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
347 {
348 	struct spu_priv2 __iomem *priv2 = spu->priv2;
349 	int i;
350 
351 	/* Save, Step 19:
352 	 *     If MFC_Cntl[Se]=0 then save
353 	 *     MFC command queues.
354 	 */
355 	if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
356 		for (i = 0; i < 8; i++) {
357 			csa->priv2.puq[i].mfc_cq_data0_RW =
358 			    in_be64(&priv2->puq[i].mfc_cq_data0_RW);
359 			csa->priv2.puq[i].mfc_cq_data1_RW =
360 			    in_be64(&priv2->puq[i].mfc_cq_data1_RW);
361 			csa->priv2.puq[i].mfc_cq_data2_RW =
362 			    in_be64(&priv2->puq[i].mfc_cq_data2_RW);
363 			csa->priv2.puq[i].mfc_cq_data3_RW =
364 			    in_be64(&priv2->puq[i].mfc_cq_data3_RW);
365 		}
366 		for (i = 0; i < 16; i++) {
367 			csa->priv2.spuq[i].mfc_cq_data0_RW =
368 			    in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
369 			csa->priv2.spuq[i].mfc_cq_data1_RW =
370 			    in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
371 			csa->priv2.spuq[i].mfc_cq_data2_RW =
372 			    in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
373 			csa->priv2.spuq[i].mfc_cq_data3_RW =
374 			    in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
375 		}
376 	}
377 }
378 
379 static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
380 {
381 	struct spu_problem __iomem *prob = spu->problem;
382 
383 	/* Save, Step 20:
384 	 *     Save the PPU_QueryMask register
385 	 *     in the CSA.
386 	 */
387 	csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
388 }
389 
390 static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
391 {
392 	struct spu_problem __iomem *prob = spu->problem;
393 
394 	/* Save, Step 21:
395 	 *     Save the PPU_QueryType register
396 	 *     in the CSA.
397 	 */
398 	csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
399 }
400 
401 static inline void save_ppu_tagstatus(struct spu_state *csa, struct spu *spu)
402 {
403 	struct spu_problem __iomem *prob = spu->problem;
404 
405 	/* Save the Prxy_TagStatus register in the CSA.
406 	 *
407 	 * It is unnecessary to restore dma_tagstatus_R, however,
408 	 * dma_tagstatus_R in the CSA is accessed via backing_ops, so
409 	 * we must save it.
410 	 */
411 	csa->prob.dma_tagstatus_R = in_be32(&prob->dma_tagstatus_R);
412 }
413 
414 static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
415 {
416 	struct spu_priv2 __iomem *priv2 = spu->priv2;
417 
418 	/* Save, Step 22:
419 	 *     Save the MFC_CSR_TSQ register
420 	 *     in the LSCSA.
421 	 */
422 	csa->priv2.spu_tag_status_query_RW =
423 	    in_be64(&priv2->spu_tag_status_query_RW);
424 }
425 
426 static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
427 {
428 	struct spu_priv2 __iomem *priv2 = spu->priv2;
429 
430 	/* Save, Step 23:
431 	 *     Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
432 	 *     registers in the CSA.
433 	 */
434 	csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
435 	csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
436 }
437 
438 static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
439 {
440 	struct spu_priv2 __iomem *priv2 = spu->priv2;
441 
442 	/* Save, Step 24:
443 	 *     Save the MFC_CSR_ATO register in
444 	 *     the CSA.
445 	 */
446 	csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
447 }
448 
449 static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
450 {
451 	/* Save, Step 25:
452 	 *     Save the MFC_TCLASS_ID register in
453 	 *     the CSA.
454 	 */
455 	csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
456 }
457 
458 static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
459 {
460 	/* Save, Step 26:
461 	 * Restore, Step 23.
462 	 *     Write the MFC_TCLASS_ID register with
463 	 *     the value 0x10000000.
464 	 */
465 	spu_mfc_tclass_id_set(spu, 0x10000000);
466 	eieio();
467 }
468 
469 static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
470 {
471 	struct spu_priv2 __iomem *priv2 = spu->priv2;
472 
473 	/* Save, Step 27:
474 	 * Restore, Step 14.
475 	 *     Write MFC_CNTL[Pc]=1 (purge queue).
476 	 */
477 	out_be64(&priv2->mfc_control_RW,
478 			MFC_CNTL_PURGE_DMA_REQUEST |
479 			MFC_CNTL_SUSPEND_MASK);
480 	eieio();
481 }
482 
483 static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
484 {
485 	struct spu_priv2 __iomem *priv2 = spu->priv2;
486 
487 	/* Save, Step 28:
488 	 *     Poll MFC_CNTL[Ps] until value '11' is read
489 	 *     (purge complete).
490 	 */
491 	POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
492 			 MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
493 			 MFC_CNTL_PURGE_DMA_COMPLETE);
494 }
495 
496 static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
497 {
498 	/* Save, Step 30:
499 	 * Restore, Step 18:
500 	 *     Write MFC_SR1 with MFC_SR1[D=0,S=1] and
501 	 *     MFC_SR1[TL,R,Pr,T] set correctly for the
502 	 *     OS specific environment.
503 	 *
504 	 *     Implementation note: The SPU-side code
505 	 *     for save/restore is privileged, so the
506 	 *     MFC_SR1[Pr] bit is not set.
507 	 *
508 	 */
509 	spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
510 			      MFC_STATE1_RELOCATE_MASK |
511 			      MFC_STATE1_BUS_TLBIE_MASK));
512 }
513 
514 static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
515 {
516 	struct spu_problem __iomem *prob = spu->problem;
517 
518 	/* Save, Step 31:
519 	 *     Save SPU_NPC in the CSA.
520 	 */
521 	csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
522 }
523 
524 static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
525 {
526 	struct spu_priv2 __iomem *priv2 = spu->priv2;
527 
528 	/* Save, Step 32:
529 	 *     Save SPU_PrivCntl in the CSA.
530 	 */
531 	csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
532 }
533 
534 static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
535 {
536 	struct spu_priv2 __iomem *priv2 = spu->priv2;
537 
538 	/* Save, Step 33:
539 	 * Restore, Step 16:
540 	 *     Write SPU_PrivCntl[S,Le,A] fields reset to 0.
541 	 */
542 	out_be64(&priv2->spu_privcntl_RW, 0UL);
543 	eieio();
544 }
545 
546 static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
547 {
548 	struct spu_priv2 __iomem *priv2 = spu->priv2;
549 
550 	/* Save, Step 34:
551 	 *     Save SPU_LSLR in the CSA.
552 	 */
553 	csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
554 }
555 
556 static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
557 {
558 	struct spu_priv2 __iomem *priv2 = spu->priv2;
559 
560 	/* Save, Step 35:
561 	 * Restore, Step 17.
562 	 *     Reset SPU_LSLR.
563 	 */
564 	out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
565 	eieio();
566 }
567 
568 static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
569 {
570 	struct spu_priv2 __iomem *priv2 = spu->priv2;
571 
572 	/* Save, Step 36:
573 	 *     Save SPU_Cfg in the CSA.
574 	 */
575 	csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
576 }
577 
578 static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
579 {
580 	/* Save, Step 37:
581 	 *     Save PM_Trace_Tag_Wait_Mask in the CSA.
582 	 *     Not performed by this implementation.
583 	 */
584 }
585 
586 static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
587 {
588 	/* Save, Step 38:
589 	 *     Save RA_GROUP_ID register and the
590 	 *     RA_ENABLE reigster in the CSA.
591 	 */
592 	csa->priv1.resource_allocation_groupID_RW =
593 		spu_resource_allocation_groupID_get(spu);
594 	csa->priv1.resource_allocation_enable_RW =
595 		spu_resource_allocation_enable_get(spu);
596 }
597 
598 static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
599 {
600 	struct spu_problem __iomem *prob = spu->problem;
601 
602 	/* Save, Step 39:
603 	 *     Save MB_Stat register in the CSA.
604 	 */
605 	csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
606 }
607 
608 static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
609 {
610 	struct spu_problem __iomem *prob = spu->problem;
611 
612 	/* Save, Step 40:
613 	 *     Save the PPU_MB register in the CSA.
614 	 */
615 	csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
616 }
617 
618 static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
619 {
620 	struct spu_priv2 __iomem *priv2 = spu->priv2;
621 
622 	/* Save, Step 41:
623 	 *     Save the PPUINT_MB register in the CSA.
624 	 */
625 	csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
626 }
627 
628 static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
629 {
630 	struct spu_priv2 __iomem *priv2 = spu->priv2;
631 	u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
632 	int i;
633 
634 	/* Save, Step 42:
635 	 */
636 
637 	/* Save CH 1, without channel count */
638 	out_be64(&priv2->spu_chnlcntptr_RW, 1);
639 	csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
640 
641 	/* Save the following CH: [0,3,4,24,25,27] */
642 	for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
643 		idx = ch_indices[i];
644 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
645 		eieio();
646 		csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
647 		csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
648 		out_be64(&priv2->spu_chnldata_RW, 0UL);
649 		out_be64(&priv2->spu_chnlcnt_RW, 0UL);
650 		eieio();
651 	}
652 }
653 
654 static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
655 {
656 	struct spu_priv2 __iomem *priv2 = spu->priv2;
657 	int i;
658 
659 	/* Save, Step 43:
660 	 *     Save SPU Read Mailbox Channel.
661 	 */
662 	out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
663 	eieio();
664 	csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
665 	for (i = 0; i < 4; i++) {
666 		csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
667 	}
668 	out_be64(&priv2->spu_chnlcnt_RW, 0UL);
669 	eieio();
670 }
671 
672 static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
673 {
674 	struct spu_priv2 __iomem *priv2 = spu->priv2;
675 
676 	/* Save, Step 44:
677 	 *     Save MFC_CMD Channel.
678 	 */
679 	out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
680 	eieio();
681 	csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
682 	eieio();
683 }
684 
685 static inline void reset_ch(struct spu_state *csa, struct spu *spu)
686 {
687 	struct spu_priv2 __iomem *priv2 = spu->priv2;
688 	u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
689 	u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
690 	u64 idx;
691 	int i;
692 
693 	/* Save, Step 45:
694 	 *     Reset the following CH: [21, 23, 28, 30]
695 	 */
696 	for (i = 0; i < 4; i++) {
697 		idx = ch_indices[i];
698 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
699 		eieio();
700 		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
701 		eieio();
702 	}
703 }
704 
705 static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
706 {
707 	struct spu_priv2 __iomem *priv2 = spu->priv2;
708 
709 	/* Save, Step 46:
710 	 * Restore, Step 25.
711 	 *     Write MFC_CNTL[Sc]=0 (resume queue processing).
712 	 */
713 	out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
714 }
715 
716 static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu,
717 		unsigned int *code, int code_size)
718 {
719 	/* Save, Step 47:
720 	 * Restore, Step 30.
721 	 *     If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
722 	 *     register, then initialize SLB_VSID and SLB_ESID
723 	 *     to provide access to SPU context save code and
724 	 *     LSCSA.
725 	 *
726 	 *     This implementation places both the context
727 	 *     switch code and LSCSA in kernel address space.
728 	 *
729 	 *     Further this implementation assumes that the
730 	 *     MFC_SR1[R]=1 (in other words, assume that
731 	 *     translation is desired by OS environment).
732 	 */
733 	spu_invalidate_slbs(spu);
734 	spu_setup_kernel_slbs(spu, csa->lscsa, code, code_size);
735 }
736 
737 static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
738 {
739 	/* Save, Step 48:
740 	 * Restore, Step 23.
741 	 *     Change the software context switch pending flag
742 	 *     to context switch active.
743 	 *
744 	 *     This implementation does not uses a switch active flag.
745 	 */
746 	clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
747 	mb();
748 }
749 
750 static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
751 {
752 	unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
753 	    CLASS1_ENABLE_STORAGE_FAULT_INTR;
754 
755 	/* Save, Step 49:
756 	 * Restore, Step 22:
757 	 *     Reset and then enable interrupts, as
758 	 *     needed by OS.
759 	 *
760 	 *     This implementation enables only class1
761 	 *     (translation) interrupts.
762 	 */
763 	spin_lock_irq(&spu->register_lock);
764 	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
765 	spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
766 	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
767 	spu_int_mask_set(spu, 0, 0ul);
768 	spu_int_mask_set(spu, 1, class1_mask);
769 	spu_int_mask_set(spu, 2, 0ul);
770 	spin_unlock_irq(&spu->register_lock);
771 }
772 
773 static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
774 			       unsigned int ls_offset, unsigned int size,
775 			       unsigned int tag, unsigned int rclass,
776 			       unsigned int cmd)
777 {
778 	struct spu_problem __iomem *prob = spu->problem;
779 	union mfc_tag_size_class_cmd command;
780 	unsigned int transfer_size;
781 	volatile unsigned int status = 0x0;
782 
783 	while (size > 0) {
784 		transfer_size =
785 		    (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
786 		command.u.mfc_size = transfer_size;
787 		command.u.mfc_tag = tag;
788 		command.u.mfc_rclassid = rclass;
789 		command.u.mfc_cmd = cmd;
790 		do {
791 			out_be32(&prob->mfc_lsa_W, ls_offset);
792 			out_be64(&prob->mfc_ea_W, ea);
793 			out_be64(&prob->mfc_union_W.all64, command.all64);
794 			status =
795 			    in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
796 			if (unlikely(status & 0x2)) {
797 				cpu_relax();
798 			}
799 		} while (status & 0x3);
800 		size -= transfer_size;
801 		ea += transfer_size;
802 		ls_offset += transfer_size;
803 	}
804 	return 0;
805 }
806 
807 static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
808 {
809 	unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
810 	unsigned int ls_offset = 0x0;
811 	unsigned int size = 16384;
812 	unsigned int tag = 0;
813 	unsigned int rclass = 0;
814 	unsigned int cmd = MFC_PUT_CMD;
815 
816 	/* Save, Step 50:
817 	 *     Issue a DMA command to copy the first 16K bytes
818 	 *     of local storage to the CSA.
819 	 */
820 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
821 }
822 
823 static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
824 {
825 	struct spu_problem __iomem *prob = spu->problem;
826 
827 	/* Save, Step 51:
828 	 * Restore, Step 31.
829 	 *     Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
830 	 *     point address of context save code in local
831 	 *     storage.
832 	 *
833 	 *     This implementation uses SPU-side save/restore
834 	 *     programs with entry points at LSA of 0.
835 	 */
836 	out_be32(&prob->spu_npc_RW, 0);
837 	eieio();
838 }
839 
840 static inline void set_signot1(struct spu_state *csa, struct spu *spu)
841 {
842 	struct spu_problem __iomem *prob = spu->problem;
843 	union {
844 		u64 ull;
845 		u32 ui[2];
846 	} addr64;
847 
848 	/* Save, Step 52:
849 	 * Restore, Step 32:
850 	 *    Write SPU_Sig_Notify_1 register with upper 32-bits
851 	 *    of the CSA.LSCSA effective address.
852 	 */
853 	addr64.ull = (u64) csa->lscsa;
854 	out_be32(&prob->signal_notify1, addr64.ui[0]);
855 	eieio();
856 }
857 
858 static inline void set_signot2(struct spu_state *csa, struct spu *spu)
859 {
860 	struct spu_problem __iomem *prob = spu->problem;
861 	union {
862 		u64 ull;
863 		u32 ui[2];
864 	} addr64;
865 
866 	/* Save, Step 53:
867 	 * Restore, Step 33:
868 	 *    Write SPU_Sig_Notify_2 register with lower 32-bits
869 	 *    of the CSA.LSCSA effective address.
870 	 */
871 	addr64.ull = (u64) csa->lscsa;
872 	out_be32(&prob->signal_notify2, addr64.ui[1]);
873 	eieio();
874 }
875 
876 static inline void send_save_code(struct spu_state *csa, struct spu *spu)
877 {
878 	unsigned long addr = (unsigned long)&spu_save_code[0];
879 	unsigned int ls_offset = 0x0;
880 	unsigned int size = sizeof(spu_save_code);
881 	unsigned int tag = 0;
882 	unsigned int rclass = 0;
883 	unsigned int cmd = MFC_GETFS_CMD;
884 
885 	/* Save, Step 54:
886 	 *     Issue a DMA command to copy context save code
887 	 *     to local storage and start SPU.
888 	 */
889 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
890 }
891 
892 static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
893 {
894 	struct spu_problem __iomem *prob = spu->problem;
895 
896 	/* Save, Step 55:
897 	 * Restore, Step 38.
898 	 *     Write PPU_QueryMask=1 (enable Tag Group 0)
899 	 *     and issue eieio instruction.
900 	 */
901 	out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
902 	eieio();
903 }
904 
905 static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
906 {
907 	struct spu_problem __iomem *prob = spu->problem;
908 	u32 mask = MFC_TAGID_TO_TAGMASK(0);
909 	unsigned long flags;
910 
911 	/* Save, Step 56:
912 	 * Restore, Step 39.
913 	 * Restore, Step 39.
914 	 * Restore, Step 46.
915 	 *     Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
916 	 *     or write PPU_QueryType[TS]=01 and wait for Tag Group
917 	 *     Complete Interrupt.  Write INT_Stat_Class0 or
918 	 *     INT_Stat_Class2 with value of 'handled'.
919 	 */
920 	POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
921 
922 	local_irq_save(flags);
923 	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
924 	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
925 	local_irq_restore(flags);
926 }
927 
928 static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
929 {
930 	struct spu_problem __iomem *prob = spu->problem;
931 	unsigned long flags;
932 
933 	/* Save, Step 57:
934 	 * Restore, Step 40.
935 	 *     Poll until SPU_Status[R]=0 or wait for SPU Class 0
936 	 *     or SPU Class 2 interrupt.  Write INT_Stat_class0
937 	 *     or INT_Stat_class2 with value of handled.
938 	 */
939 	POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
940 
941 	local_irq_save(flags);
942 	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
943 	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
944 	local_irq_restore(flags);
945 }
946 
947 static inline int check_save_status(struct spu_state *csa, struct spu *spu)
948 {
949 	struct spu_problem __iomem *prob = spu->problem;
950 	u32 complete;
951 
952 	/* Save, Step 54:
953 	 *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
954 	 *     context save succeeded, otherwise context save
955 	 *     failed.
956 	 */
957 	complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
958 		    SPU_STATUS_STOPPED_BY_STOP);
959 	return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
960 }
961 
962 static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
963 {
964 	/* Restore, Step 4:
965 	 *    If required, notify the "using application" that
966 	 *    the SPU task has been terminated.  TBD.
967 	 */
968 }
969 
970 static inline void suspend_mfc_and_halt_decr(struct spu_state *csa,
971 		struct spu *spu)
972 {
973 	struct spu_priv2 __iomem *priv2 = spu->priv2;
974 
975 	/* Restore, Step 7:
976 	 *     Write MFC_Cntl[Dh,Sc,Sm]='1','1','0' to suspend
977 	 *     the queue and halt the decrementer.
978 	 */
979 	out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
980 		 MFC_CNTL_DECREMENTER_HALTED);
981 	eieio();
982 }
983 
984 static inline void wait_suspend_mfc_complete(struct spu_state *csa,
985 					     struct spu *spu)
986 {
987 	struct spu_priv2 __iomem *priv2 = spu->priv2;
988 
989 	/* Restore, Step 8:
990 	 * Restore, Step 47.
991 	 *     Poll MFC_CNTL[Ss] until 11 is returned.
992 	 */
993 	POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
994 			 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
995 			 MFC_CNTL_SUSPEND_COMPLETE);
996 }
997 
998 static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
999 {
1000 	struct spu_problem __iomem *prob = spu->problem;
1001 
1002 	/* Restore, Step 9:
1003 	 *    If SPU_Status[R]=1, stop SPU execution
1004 	 *    and wait for stop to complete.
1005 	 *
1006 	 *    Returns       1 if SPU_Status[R]=1 on entry.
1007 	 *                  0 otherwise
1008 	 */
1009 	if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
1010 		if (in_be32(&prob->spu_status_R) &
1011 		    SPU_STATUS_ISOLATED_EXIT_STATUS) {
1012 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1013 					SPU_STATUS_RUNNING);
1014 		}
1015 		if ((in_be32(&prob->spu_status_R) &
1016 		     SPU_STATUS_ISOLATED_LOAD_STATUS)
1017 		    || (in_be32(&prob->spu_status_R) &
1018 			SPU_STATUS_ISOLATED_STATE)) {
1019 			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1020 			eieio();
1021 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1022 					SPU_STATUS_RUNNING);
1023 			out_be32(&prob->spu_runcntl_RW, 0x2);
1024 			eieio();
1025 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1026 					SPU_STATUS_RUNNING);
1027 		}
1028 		if (in_be32(&prob->spu_status_R) &
1029 		    SPU_STATUS_WAITING_FOR_CHANNEL) {
1030 			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1031 			eieio();
1032 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1033 					SPU_STATUS_RUNNING);
1034 		}
1035 		return 1;
1036 	}
1037 	return 0;
1038 }
1039 
1040 static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1041 {
1042 	struct spu_problem __iomem *prob = spu->problem;
1043 
1044 	/* Restore, Step 10:
1045 	 *    If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1046 	 *    release SPU from isolate state.
1047 	 */
1048 	if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1049 		if (in_be32(&prob->spu_status_R) &
1050 		    SPU_STATUS_ISOLATED_EXIT_STATUS) {
1051 			spu_mfc_sr1_set(spu,
1052 					MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1053 			eieio();
1054 			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1055 			eieio();
1056 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1057 					SPU_STATUS_RUNNING);
1058 		}
1059 		if ((in_be32(&prob->spu_status_R) &
1060 		     SPU_STATUS_ISOLATED_LOAD_STATUS)
1061 		    || (in_be32(&prob->spu_status_R) &
1062 			SPU_STATUS_ISOLATED_STATE)) {
1063 			spu_mfc_sr1_set(spu,
1064 					MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1065 			eieio();
1066 			out_be32(&prob->spu_runcntl_RW, 0x2);
1067 			eieio();
1068 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1069 					SPU_STATUS_RUNNING);
1070 		}
1071 	}
1072 }
1073 
1074 static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1075 {
1076 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1077 	u64 ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1078 	u64 idx;
1079 	int i;
1080 
1081 	/* Restore, Step 20:
1082 	 */
1083 
1084 	/* Reset CH 1 */
1085 	out_be64(&priv2->spu_chnlcntptr_RW, 1);
1086 	out_be64(&priv2->spu_chnldata_RW, 0UL);
1087 
1088 	/* Reset the following CH: [0,3,4,24,25,27] */
1089 	for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1090 		idx = ch_indices[i];
1091 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1092 		eieio();
1093 		out_be64(&priv2->spu_chnldata_RW, 0UL);
1094 		out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1095 		eieio();
1096 	}
1097 }
1098 
1099 static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1100 {
1101 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1102 	u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1103 	u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1104 	u64 idx;
1105 	int i;
1106 
1107 	/* Restore, Step 21:
1108 	 *     Reset the following CH: [21, 23, 28, 29, 30]
1109 	 */
1110 	for (i = 0; i < 5; i++) {
1111 		idx = ch_indices[i];
1112 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1113 		eieio();
1114 		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1115 		eieio();
1116 	}
1117 }
1118 
1119 static inline void setup_spu_status_part1(struct spu_state *csa,
1120 					  struct spu *spu)
1121 {
1122 	u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1123 	u32 status_I = SPU_STATUS_INVALID_INSTR;
1124 	u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1125 	u32 status_S = SPU_STATUS_SINGLE_STEP;
1126 	u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1127 	u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1128 	u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1129 	u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1130 	u32 status_code;
1131 
1132 	/* Restore, Step 27:
1133 	 *     If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1134 	 *     instruction sequence to the end of the SPU based restore
1135 	 *     code (after the "context restored" stop and signal) to
1136 	 *     restore the correct SPU status.
1137 	 *
1138 	 *     NOTE: Rather than modifying the SPU executable, we
1139 	 *     instead add a new 'stopped_status' field to the
1140 	 *     LSCSA.  The SPU-side restore reads this field and
1141 	 *     takes the appropriate action when exiting.
1142 	 */
1143 
1144 	status_code =
1145 	    (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1146 	if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1147 
1148 		/* SPU_Status[P,I]=1 - Illegal Instruction followed
1149 		 * by Stop and Signal instruction, followed by 'br -4'.
1150 		 *
1151 		 */
1152 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1153 		csa->lscsa->stopped_status.slot[1] = status_code;
1154 
1155 	} else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1156 
1157 		/* SPU_Status[P,H]=1 - Halt Conditional, followed
1158 		 * by Stop and Signal instruction, followed by
1159 		 * 'br -4'.
1160 		 */
1161 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1162 		csa->lscsa->stopped_status.slot[1] = status_code;
1163 
1164 	} else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1165 
1166 		/* SPU_Status[S,P]=1 - Stop and Signal instruction
1167 		 * followed by 'br -4'.
1168 		 */
1169 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1170 		csa->lscsa->stopped_status.slot[1] = status_code;
1171 
1172 	} else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1173 
1174 		/* SPU_Status[S,I]=1 - Illegal instruction followed
1175 		 * by 'br -4'.
1176 		 */
1177 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1178 		csa->lscsa->stopped_status.slot[1] = status_code;
1179 
1180 	} else if ((csa->prob.spu_status_R & status_P) == status_P) {
1181 
1182 		/* SPU_Status[P]=1 - Stop and Signal instruction
1183 		 * followed by 'br -4'.
1184 		 */
1185 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1186 		csa->lscsa->stopped_status.slot[1] = status_code;
1187 
1188 	} else if ((csa->prob.spu_status_R & status_H) == status_H) {
1189 
1190 		/* SPU_Status[H]=1 - Halt Conditional, followed
1191 		 * by 'br -4'.
1192 		 */
1193 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1194 
1195 	} else if ((csa->prob.spu_status_R & status_S) == status_S) {
1196 
1197 		/* SPU_Status[S]=1 - Two nop instructions.
1198 		 */
1199 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1200 
1201 	} else if ((csa->prob.spu_status_R & status_I) == status_I) {
1202 
1203 		/* SPU_Status[I]=1 - Illegal instruction followed
1204 		 * by 'br -4'.
1205 		 */
1206 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1207 
1208 	}
1209 }
1210 
1211 static inline void setup_spu_status_part2(struct spu_state *csa,
1212 					  struct spu *spu)
1213 {
1214 	u32 mask;
1215 
1216 	/* Restore, Step 28:
1217 	 *     If the CSA.SPU_Status[I,S,H,P,R]=0 then
1218 	 *     add a 'br *' instruction to the end of
1219 	 *     the SPU based restore code.
1220 	 *
1221 	 *     NOTE: Rather than modifying the SPU executable, we
1222 	 *     instead add a new 'stopped_status' field to the
1223 	 *     LSCSA.  The SPU-side restore reads this field and
1224 	 *     takes the appropriate action when exiting.
1225 	 */
1226 	mask = SPU_STATUS_INVALID_INSTR |
1227 	    SPU_STATUS_SINGLE_STEP |
1228 	    SPU_STATUS_STOPPED_BY_HALT |
1229 	    SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1230 	if (!(csa->prob.spu_status_R & mask)) {
1231 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1232 	}
1233 }
1234 
1235 static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1236 {
1237 	/* Restore, Step 29:
1238 	 *     Restore RA_GROUP_ID register and the
1239 	 *     RA_ENABLE reigster from the CSA.
1240 	 */
1241 	spu_resource_allocation_groupID_set(spu,
1242 			csa->priv1.resource_allocation_groupID_RW);
1243 	spu_resource_allocation_enable_set(spu,
1244 			csa->priv1.resource_allocation_enable_RW);
1245 }
1246 
1247 static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1248 {
1249 	unsigned long addr = (unsigned long)&spu_restore_code[0];
1250 	unsigned int ls_offset = 0x0;
1251 	unsigned int size = sizeof(spu_restore_code);
1252 	unsigned int tag = 0;
1253 	unsigned int rclass = 0;
1254 	unsigned int cmd = MFC_GETFS_CMD;
1255 
1256 	/* Restore, Step 37:
1257 	 *     Issue MFC DMA command to copy context
1258 	 *     restore code to local storage.
1259 	 */
1260 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1261 }
1262 
1263 static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1264 {
1265 	/* Restore, Step 34:
1266 	 *     If CSA.MFC_CNTL[Ds]=1 (decrementer was
1267 	 *     running) then adjust decrementer, set
1268 	 *     decrementer running status in LSCSA,
1269 	 *     and set decrementer "wrapped" status
1270 	 *     in LSCSA.
1271 	 */
1272 	if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1273 		cycles_t resume_time = get_cycles();
1274 		cycles_t delta_time = resume_time - csa->suspend_time;
1275 
1276 		csa->lscsa->decr_status.slot[0] = SPU_DECR_STATUS_RUNNING;
1277 		if (csa->lscsa->decr.slot[0] < delta_time) {
1278 			csa->lscsa->decr_status.slot[0] |=
1279 				 SPU_DECR_STATUS_WRAPPED;
1280 		}
1281 
1282 		csa->lscsa->decr.slot[0] -= delta_time;
1283 	} else {
1284 		csa->lscsa->decr_status.slot[0] = 0;
1285 	}
1286 }
1287 
1288 static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1289 {
1290 	/* Restore, Step 35:
1291 	 *     Copy the CSA.PU_MB data into the LSCSA.
1292 	 */
1293 	csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1294 }
1295 
1296 static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1297 {
1298 	/* Restore, Step 36:
1299 	 *     Copy the CSA.PUINT_MB data into the LSCSA.
1300 	 */
1301 	csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1302 }
1303 
1304 static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1305 {
1306 	struct spu_problem __iomem *prob = spu->problem;
1307 	u32 complete;
1308 
1309 	/* Restore, Step 40:
1310 	 *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1311 	 *     context restore succeeded, otherwise context restore
1312 	 *     failed.
1313 	 */
1314 	complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1315 		    SPU_STATUS_STOPPED_BY_STOP);
1316 	return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1317 }
1318 
1319 static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1320 {
1321 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1322 
1323 	/* Restore, Step 41:
1324 	 *     Restore SPU_PrivCntl from the CSA.
1325 	 */
1326 	out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1327 	eieio();
1328 }
1329 
1330 static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1331 {
1332 	struct spu_problem __iomem *prob = spu->problem;
1333 	u32 mask;
1334 
1335 	/* Restore, Step 42:
1336 	 *     If any CSA.SPU_Status[I,S,H,P]=1, then
1337 	 *     restore the error or single step state.
1338 	 */
1339 	mask = SPU_STATUS_INVALID_INSTR |
1340 	    SPU_STATUS_SINGLE_STEP |
1341 	    SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1342 	if (csa->prob.spu_status_R & mask) {
1343 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1344 		eieio();
1345 		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1346 				SPU_STATUS_RUNNING);
1347 	}
1348 }
1349 
1350 static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1351 {
1352 	struct spu_problem __iomem *prob = spu->problem;
1353 	u32 mask;
1354 
1355 	/* Restore, Step 43:
1356 	 *     If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1357 	 *     SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1358 	 *     then write '00' to SPU_RunCntl[R0R1] and wait
1359 	 *     for SPU_Status[R]=0.
1360 	 */
1361 	mask = SPU_STATUS_INVALID_INSTR |
1362 	    SPU_STATUS_SINGLE_STEP |
1363 	    SPU_STATUS_STOPPED_BY_HALT |
1364 	    SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1365 	if (!(csa->prob.spu_status_R & mask)) {
1366 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1367 		eieio();
1368 		POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1369 				 SPU_STATUS_RUNNING);
1370 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1371 		eieio();
1372 		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1373 				SPU_STATUS_RUNNING);
1374 	}
1375 }
1376 
1377 static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1378 {
1379 	unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1380 	unsigned int ls_offset = 0x0;
1381 	unsigned int size = 16384;
1382 	unsigned int tag = 0;
1383 	unsigned int rclass = 0;
1384 	unsigned int cmd = MFC_GET_CMD;
1385 
1386 	/* Restore, Step 44:
1387 	 *     Issue a DMA command to restore the first
1388 	 *     16kb of local storage from CSA.
1389 	 */
1390 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1391 }
1392 
1393 static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
1394 {
1395 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1396 
1397 	/* Restore, Step 47.
1398 	 *     Write MFC_Cntl[Sc,Sm]='1','0' to suspend
1399 	 *     the queue.
1400 	 */
1401 	out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
1402 	eieio();
1403 }
1404 
1405 static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1406 {
1407 	/* Restore, Step 49:
1408 	 *     Write INT_MASK_class0 with value of 0.
1409 	 *     Write INT_MASK_class1 with value of 0.
1410 	 *     Write INT_MASK_class2 with value of 0.
1411 	 *     Write INT_STAT_class0 with value of -1.
1412 	 *     Write INT_STAT_class1 with value of -1.
1413 	 *     Write INT_STAT_class2 with value of -1.
1414 	 */
1415 	spin_lock_irq(&spu->register_lock);
1416 	spu_int_mask_set(spu, 0, 0ul);
1417 	spu_int_mask_set(spu, 1, 0ul);
1418 	spu_int_mask_set(spu, 2, 0ul);
1419 	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
1420 	spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
1421 	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
1422 	spin_unlock_irq(&spu->register_lock);
1423 }
1424 
1425 static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1426 {
1427 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1428 	int i;
1429 
1430 	/* Restore, Step 50:
1431 	 *     If MFC_Cntl[Se]!=0 then restore
1432 	 *     MFC command queues.
1433 	 */
1434 	if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1435 		for (i = 0; i < 8; i++) {
1436 			out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1437 				 csa->priv2.puq[i].mfc_cq_data0_RW);
1438 			out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1439 				 csa->priv2.puq[i].mfc_cq_data1_RW);
1440 			out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1441 				 csa->priv2.puq[i].mfc_cq_data2_RW);
1442 			out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1443 				 csa->priv2.puq[i].mfc_cq_data3_RW);
1444 		}
1445 		for (i = 0; i < 16; i++) {
1446 			out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1447 				 csa->priv2.spuq[i].mfc_cq_data0_RW);
1448 			out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1449 				 csa->priv2.spuq[i].mfc_cq_data1_RW);
1450 			out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1451 				 csa->priv2.spuq[i].mfc_cq_data2_RW);
1452 			out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1453 				 csa->priv2.spuq[i].mfc_cq_data3_RW);
1454 		}
1455 	}
1456 	eieio();
1457 }
1458 
1459 static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1460 {
1461 	struct spu_problem __iomem *prob = spu->problem;
1462 
1463 	/* Restore, Step 51:
1464 	 *     Restore the PPU_QueryMask register from CSA.
1465 	 */
1466 	out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1467 	eieio();
1468 }
1469 
1470 static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1471 {
1472 	struct spu_problem __iomem *prob = spu->problem;
1473 
1474 	/* Restore, Step 52:
1475 	 *     Restore the PPU_QueryType register from CSA.
1476 	 */
1477 	out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1478 	eieio();
1479 }
1480 
1481 static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1482 {
1483 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1484 
1485 	/* Restore, Step 53:
1486 	 *     Restore the MFC_CSR_TSQ register from CSA.
1487 	 */
1488 	out_be64(&priv2->spu_tag_status_query_RW,
1489 		 csa->priv2.spu_tag_status_query_RW);
1490 	eieio();
1491 }
1492 
1493 static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1494 {
1495 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1496 
1497 	/* Restore, Step 54:
1498 	 *     Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1499 	 *     registers from CSA.
1500 	 */
1501 	out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1502 	out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1503 	eieio();
1504 }
1505 
1506 static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1507 {
1508 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1509 
1510 	/* Restore, Step 55:
1511 	 *     Restore the MFC_CSR_ATO register from CSA.
1512 	 */
1513 	out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1514 }
1515 
1516 static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1517 {
1518 	/* Restore, Step 56:
1519 	 *     Restore the MFC_TCLASS_ID register from CSA.
1520 	 */
1521 	spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1522 	eieio();
1523 }
1524 
1525 static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1526 {
1527 	u64 ch0_cnt, ch0_data;
1528 	u64 ch1_data;
1529 
1530 	/* Restore, Step 57:
1531 	 *    Set the Lock Line Reservation Lost Event by:
1532 	 *      1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1533 	 *      2. If CSA.SPU_Channel_0_Count=0 and
1534 	 *         CSA.SPU_Wr_Event_Mask[Lr]=1 and
1535 	 *         CSA.SPU_Event_Status[Lr]=0 then set
1536 	 *         CSA.SPU_Event_Status_Count=1.
1537 	 */
1538 	ch0_cnt = csa->spu_chnlcnt_RW[0];
1539 	ch0_data = csa->spu_chnldata_RW[0];
1540 	ch1_data = csa->spu_chnldata_RW[1];
1541 	csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1542 	if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1543 	    (ch1_data & MFC_LLR_LOST_EVENT)) {
1544 		csa->spu_chnlcnt_RW[0] = 1;
1545 	}
1546 }
1547 
1548 static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1549 {
1550 	/* Restore, Step 58:
1551 	 *     If the status of the CSA software decrementer
1552 	 *     "wrapped" flag is set, OR in a '1' to
1553 	 *     CSA.SPU_Event_Status[Tm].
1554 	 */
1555 	if (!(csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED))
1556 		return;
1557 
1558 	if ((csa->spu_chnlcnt_RW[0] == 0) &&
1559 	    (csa->spu_chnldata_RW[1] & 0x20) &&
1560 	    !(csa->spu_chnldata_RW[0] & 0x20))
1561 		csa->spu_chnlcnt_RW[0] = 1;
1562 
1563 	csa->spu_chnldata_RW[0] |= 0x20;
1564 }
1565 
1566 static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1567 {
1568 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1569 	u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1570 	int i;
1571 
1572 	/* Restore, Step 59:
1573 	 *	Restore the following CH: [0,3,4,24,25,27]
1574 	 */
1575 	for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1576 		idx = ch_indices[i];
1577 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1578 		eieio();
1579 		out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1580 		out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1581 		eieio();
1582 	}
1583 }
1584 
1585 static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1586 {
1587 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1588 	u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1589 	u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1590 	u64 idx;
1591 	int i;
1592 
1593 	/* Restore, Step 60:
1594 	 *     Restore the following CH: [9,21,23].
1595 	 */
1596 	ch_counts[0] = 1UL;
1597 	ch_counts[1] = csa->spu_chnlcnt_RW[21];
1598 	ch_counts[2] = 1UL;
1599 	for (i = 0; i < 3; i++) {
1600 		idx = ch_indices[i];
1601 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1602 		eieio();
1603 		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1604 		eieio();
1605 	}
1606 }
1607 
1608 static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1609 {
1610 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1611 
1612 	/* Restore, Step 61:
1613 	 *     Restore the SPU_LSLR register from CSA.
1614 	 */
1615 	out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1616 	eieio();
1617 }
1618 
1619 static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1620 {
1621 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1622 
1623 	/* Restore, Step 62:
1624 	 *     Restore the SPU_Cfg register from CSA.
1625 	 */
1626 	out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1627 	eieio();
1628 }
1629 
1630 static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1631 {
1632 	/* Restore, Step 63:
1633 	 *     Restore PM_Trace_Tag_Wait_Mask from CSA.
1634 	 *     Not performed by this implementation.
1635 	 */
1636 }
1637 
1638 static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1639 {
1640 	struct spu_problem __iomem *prob = spu->problem;
1641 
1642 	/* Restore, Step 64:
1643 	 *     Restore SPU_NPC from CSA.
1644 	 */
1645 	out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1646 	eieio();
1647 }
1648 
1649 static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1650 {
1651 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1652 	int i;
1653 
1654 	/* Restore, Step 65:
1655 	 *     Restore MFC_RdSPU_MB from CSA.
1656 	 */
1657 	out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1658 	eieio();
1659 	out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1660 	for (i = 0; i < 4; i++) {
1661 		out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1662 	}
1663 	eieio();
1664 }
1665 
1666 static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1667 {
1668 	struct spu_problem __iomem *prob = spu->problem;
1669 	u32 dummy = 0;
1670 
1671 	/* Restore, Step 66:
1672 	 *     If CSA.MB_Stat[P]=0 (mailbox empty) then
1673 	 *     read from the PPU_MB register.
1674 	 */
1675 	if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1676 		dummy = in_be32(&prob->pu_mb_R);
1677 		eieio();
1678 	}
1679 }
1680 
1681 static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1682 {
1683 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1684 	u64 dummy = 0UL;
1685 
1686 	/* Restore, Step 66:
1687 	 *     If CSA.MB_Stat[I]=0 (mailbox empty) then
1688 	 *     read from the PPUINT_MB register.
1689 	 */
1690 	if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1691 		dummy = in_be64(&priv2->puint_mb_R);
1692 		eieio();
1693 		spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1694 		eieio();
1695 	}
1696 }
1697 
1698 static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1699 {
1700 	/* Restore, Step 69:
1701 	 *     Restore the MFC_SR1 register from CSA.
1702 	 */
1703 	spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1704 	eieio();
1705 }
1706 
1707 static inline void set_int_route(struct spu_state *csa, struct spu *spu)
1708 {
1709 	struct spu_context *ctx = spu->ctx;
1710 
1711 	spu_cpu_affinity_set(spu, ctx->last_ran);
1712 }
1713 
1714 static inline void restore_other_spu_access(struct spu_state *csa,
1715 					    struct spu *spu)
1716 {
1717 	/* Restore, Step 70:
1718 	 *     Restore other SPU mappings to this SPU. TBD.
1719 	 */
1720 }
1721 
1722 static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1723 {
1724 	struct spu_problem __iomem *prob = spu->problem;
1725 
1726 	/* Restore, Step 71:
1727 	 *     If CSA.SPU_Status[R]=1 then write
1728 	 *     SPU_RunCntl[R0R1]='01'.
1729 	 */
1730 	if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1731 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1732 		eieio();
1733 	}
1734 }
1735 
1736 static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1737 {
1738 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1739 
1740 	/* Restore, Step 72:
1741 	 *    Restore the MFC_CNTL register for the CSA.
1742 	 */
1743 	out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1744 	eieio();
1745 	/*
1746 	 * FIXME: this is to restart a DMA that we were processing
1747 	 *        before the save. better remember the fault information
1748 	 *        in the csa instead.
1749 	 */
1750 	if ((csa->priv2.mfc_control_RW & MFC_CNTL_SUSPEND_DMA_QUEUE_MASK)) {
1751 		out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
1752 		eieio();
1753 	}
1754 }
1755 
1756 static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1757 {
1758 	/* Restore, Step 73:
1759 	 *     Enable user-space access (if provided) to this
1760 	 *     SPU by mapping the virtual pages assigned to
1761 	 *     the SPU memory-mapped I/O (MMIO) for problem
1762 	 *     state. TBD.
1763 	 */
1764 }
1765 
1766 static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1767 {
1768 	/* Restore, Step 74:
1769 	 *     Reset the "context switch active" flag.
1770 	 *     Not performed by this implementation.
1771 	 */
1772 }
1773 
1774 static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1775 {
1776 	/* Restore, Step 75:
1777 	 *     Re-enable SPU interrupts.
1778 	 */
1779 	spin_lock_irq(&spu->register_lock);
1780 	spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1781 	spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1782 	spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1783 	spin_unlock_irq(&spu->register_lock);
1784 }
1785 
1786 static int quiece_spu(struct spu_state *prev, struct spu *spu)
1787 {
1788 	/*
1789 	 * Combined steps 2-18 of SPU context save sequence, which
1790 	 * quiesce the SPU state (disable SPU execution, MFC command
1791 	 * queues, decrementer, SPU interrupts, etc.).
1792 	 *
1793 	 * Returns      0 on success.
1794 	 *              2 if failed step 2.
1795 	 *              6 if failed step 6.
1796 	 */
1797 
1798 	if (check_spu_isolate(prev, spu)) {	/* Step 2. */
1799 		return 2;
1800 	}
1801 	disable_interrupts(prev, spu);	        /* Step 3. */
1802 	set_watchdog_timer(prev, spu);	        /* Step 4. */
1803 	inhibit_user_access(prev, spu);	        /* Step 5. */
1804 	if (check_spu_isolate(prev, spu)) {	/* Step 6. */
1805 		return 6;
1806 	}
1807 	set_switch_pending(prev, spu);	        /* Step 7. */
1808 	save_mfc_cntl(prev, spu);		/* Step 8. */
1809 	save_spu_runcntl(prev, spu);	        /* Step 9. */
1810 	save_mfc_sr1(prev, spu);	        /* Step 10. */
1811 	save_spu_status(prev, spu);	        /* Step 11. */
1812 	save_mfc_stopped_status(prev, spu);     /* Step 12. */
1813 	halt_mfc_decr(prev, spu);	        /* Step 13. */
1814 	save_timebase(prev, spu);		/* Step 14. */
1815 	remove_other_spu_access(prev, spu);	/* Step 15. */
1816 	do_mfc_mssync(prev, spu);	        /* Step 16. */
1817 	issue_mfc_tlbie(prev, spu);	        /* Step 17. */
1818 	handle_pending_interrupts(prev, spu);	/* Step 18. */
1819 
1820 	return 0;
1821 }
1822 
1823 static void save_csa(struct spu_state *prev, struct spu *spu)
1824 {
1825 	/*
1826 	 * Combine steps 19-44 of SPU context save sequence, which
1827 	 * save regions of the privileged & problem state areas.
1828 	 */
1829 
1830 	save_mfc_queues(prev, spu);	/* Step 19. */
1831 	save_ppu_querymask(prev, spu);	/* Step 20. */
1832 	save_ppu_querytype(prev, spu);	/* Step 21. */
1833 	save_ppu_tagstatus(prev, spu);  /* NEW.     */
1834 	save_mfc_csr_tsq(prev, spu);	/* Step 22. */
1835 	save_mfc_csr_cmd(prev, spu);	/* Step 23. */
1836 	save_mfc_csr_ato(prev, spu);	/* Step 24. */
1837 	save_mfc_tclass_id(prev, spu);	/* Step 25. */
1838 	set_mfc_tclass_id(prev, spu);	/* Step 26. */
1839 	save_mfc_cmd(prev, spu);	/* Step 26a - moved from 44. */
1840 	purge_mfc_queue(prev, spu);	/* Step 27. */
1841 	wait_purge_complete(prev, spu);	/* Step 28. */
1842 	setup_mfc_sr1(prev, spu);	/* Step 30. */
1843 	save_spu_npc(prev, spu);	/* Step 31. */
1844 	save_spu_privcntl(prev, spu);	/* Step 32. */
1845 	reset_spu_privcntl(prev, spu);	/* Step 33. */
1846 	save_spu_lslr(prev, spu);	/* Step 34. */
1847 	reset_spu_lslr(prev, spu);	/* Step 35. */
1848 	save_spu_cfg(prev, spu);	/* Step 36. */
1849 	save_pm_trace(prev, spu);	/* Step 37. */
1850 	save_mfc_rag(prev, spu);	/* Step 38. */
1851 	save_ppu_mb_stat(prev, spu);	/* Step 39. */
1852 	save_ppu_mb(prev, spu);	        /* Step 40. */
1853 	save_ppuint_mb(prev, spu);	/* Step 41. */
1854 	save_ch_part1(prev, spu);	/* Step 42. */
1855 	save_spu_mb(prev, spu);	        /* Step 43. */
1856 	reset_ch(prev, spu);	        /* Step 45. */
1857 }
1858 
1859 static void save_lscsa(struct spu_state *prev, struct spu *spu)
1860 {
1861 	/*
1862 	 * Perform steps 46-57 of SPU context save sequence,
1863 	 * which save regions of the local store and register
1864 	 * file.
1865 	 */
1866 
1867 	resume_mfc_queue(prev, spu);	/* Step 46. */
1868 	/* Step 47. */
1869 	setup_mfc_slbs(prev, spu, spu_save_code, sizeof(spu_save_code));
1870 	set_switch_active(prev, spu);	/* Step 48. */
1871 	enable_interrupts(prev, spu);	/* Step 49. */
1872 	save_ls_16kb(prev, spu);	/* Step 50. */
1873 	set_spu_npc(prev, spu);	        /* Step 51. */
1874 	set_signot1(prev, spu);		/* Step 52. */
1875 	set_signot2(prev, spu);		/* Step 53. */
1876 	send_save_code(prev, spu);	/* Step 54. */
1877 	set_ppu_querymask(prev, spu);	/* Step 55. */
1878 	wait_tag_complete(prev, spu);	/* Step 56. */
1879 	wait_spu_stopped(prev, spu);	/* Step 57. */
1880 }
1881 
1882 static void force_spu_isolate_exit(struct spu *spu)
1883 {
1884 	struct spu_problem __iomem *prob = spu->problem;
1885 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1886 
1887 	/* Stop SPE execution and wait for completion. */
1888 	out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1889 	iobarrier_rw();
1890 	POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
1891 
1892 	/* Restart SPE master runcntl. */
1893 	spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1894 	iobarrier_w();
1895 
1896 	/* Initiate isolate exit request and wait for completion. */
1897 	out_be64(&priv2->spu_privcntl_RW, 4LL);
1898 	iobarrier_w();
1899 	out_be32(&prob->spu_runcntl_RW, 2);
1900 	iobarrier_rw();
1901 	POLL_WHILE_FALSE((in_be32(&prob->spu_status_R)
1902 				& SPU_STATUS_STOPPED_BY_STOP));
1903 
1904 	/* Reset load request to normal. */
1905 	out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL);
1906 	iobarrier_w();
1907 }
1908 
1909 /**
1910  * stop_spu_isolate
1911  *	Check SPU run-control state and force isolated
1912  *	exit function as necessary.
1913  */
1914 static void stop_spu_isolate(struct spu *spu)
1915 {
1916 	struct spu_problem __iomem *prob = spu->problem;
1917 
1918 	if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) {
1919 		/* The SPU is in isolated state; the only way
1920 		 * to get it out is to perform an isolated
1921 		 * exit (clean) operation.
1922 		 */
1923 		force_spu_isolate_exit(spu);
1924 	}
1925 }
1926 
1927 static void harvest(struct spu_state *prev, struct spu *spu)
1928 {
1929 	/*
1930 	 * Perform steps 2-25 of SPU context restore sequence,
1931 	 * which resets an SPU either after a failed save, or
1932 	 * when using SPU for first time.
1933 	 */
1934 
1935 	disable_interrupts(prev, spu);	        /* Step 2.  */
1936 	inhibit_user_access(prev, spu);	        /* Step 3.  */
1937 	terminate_spu_app(prev, spu);	        /* Step 4.  */
1938 	set_switch_pending(prev, spu);	        /* Step 5.  */
1939 	stop_spu_isolate(spu);			/* NEW.     */
1940 	remove_other_spu_access(prev, spu);	/* Step 6.  */
1941 	suspend_mfc_and_halt_decr(prev, spu);	/* Step 7.  */
1942 	wait_suspend_mfc_complete(prev, spu);	/* Step 8.  */
1943 	if (!suspend_spe(prev, spu))	        /* Step 9.  */
1944 		clear_spu_status(prev, spu);	/* Step 10. */
1945 	do_mfc_mssync(prev, spu);	        /* Step 11. */
1946 	issue_mfc_tlbie(prev, spu);	        /* Step 12. */
1947 	handle_pending_interrupts(prev, spu);	/* Step 13. */
1948 	purge_mfc_queue(prev, spu);	        /* Step 14. */
1949 	wait_purge_complete(prev, spu);	        /* Step 15. */
1950 	reset_spu_privcntl(prev, spu);	        /* Step 16. */
1951 	reset_spu_lslr(prev, spu);              /* Step 17. */
1952 	setup_mfc_sr1(prev, spu);	        /* Step 18. */
1953 	spu_invalidate_slbs(spu);		/* Step 19. */
1954 	reset_ch_part1(prev, spu);	        /* Step 20. */
1955 	reset_ch_part2(prev, spu);	        /* Step 21. */
1956 	enable_interrupts(prev, spu);	        /* Step 22. */
1957 	set_switch_active(prev, spu);	        /* Step 23. */
1958 	set_mfc_tclass_id(prev, spu);	        /* Step 24. */
1959 	resume_mfc_queue(prev, spu);	        /* Step 25. */
1960 }
1961 
1962 static void restore_lscsa(struct spu_state *next, struct spu *spu)
1963 {
1964 	/*
1965 	 * Perform steps 26-40 of SPU context restore sequence,
1966 	 * which restores regions of the local store and register
1967 	 * file.
1968 	 */
1969 
1970 	set_watchdog_timer(next, spu);	        /* Step 26. */
1971 	setup_spu_status_part1(next, spu);	/* Step 27. */
1972 	setup_spu_status_part2(next, spu);	/* Step 28. */
1973 	restore_mfc_rag(next, spu);	        /* Step 29. */
1974 	/* Step 30. */
1975 	setup_mfc_slbs(next, spu, spu_restore_code, sizeof(spu_restore_code));
1976 	set_spu_npc(next, spu);	                /* Step 31. */
1977 	set_signot1(next, spu);	                /* Step 32. */
1978 	set_signot2(next, spu);	                /* Step 33. */
1979 	setup_decr(next, spu);	                /* Step 34. */
1980 	setup_ppu_mb(next, spu);	        /* Step 35. */
1981 	setup_ppuint_mb(next, spu);	        /* Step 36. */
1982 	send_restore_code(next, spu);	        /* Step 37. */
1983 	set_ppu_querymask(next, spu);	        /* Step 38. */
1984 	wait_tag_complete(next, spu);	        /* Step 39. */
1985 	wait_spu_stopped(next, spu);	        /* Step 40. */
1986 }
1987 
1988 static void restore_csa(struct spu_state *next, struct spu *spu)
1989 {
1990 	/*
1991 	 * Combine steps 41-76 of SPU context restore sequence, which
1992 	 * restore regions of the privileged & problem state areas.
1993 	 */
1994 
1995 	restore_spu_privcntl(next, spu);	/* Step 41. */
1996 	restore_status_part1(next, spu);	/* Step 42. */
1997 	restore_status_part2(next, spu);	/* Step 43. */
1998 	restore_ls_16kb(next, spu);	        /* Step 44. */
1999 	wait_tag_complete(next, spu);	        /* Step 45. */
2000 	suspend_mfc(next, spu);	                /* Step 46. */
2001 	wait_suspend_mfc_complete(next, spu);	/* Step 47. */
2002 	issue_mfc_tlbie(next, spu);	        /* Step 48. */
2003 	clear_interrupts(next, spu);	        /* Step 49. */
2004 	restore_mfc_queues(next, spu);	        /* Step 50. */
2005 	restore_ppu_querymask(next, spu);	/* Step 51. */
2006 	restore_ppu_querytype(next, spu);	/* Step 52. */
2007 	restore_mfc_csr_tsq(next, spu);	        /* Step 53. */
2008 	restore_mfc_csr_cmd(next, spu);	        /* Step 54. */
2009 	restore_mfc_csr_ato(next, spu);	        /* Step 55. */
2010 	restore_mfc_tclass_id(next, spu);	/* Step 56. */
2011 	set_llr_event(next, spu);	        /* Step 57. */
2012 	restore_decr_wrapped(next, spu);	/* Step 58. */
2013 	restore_ch_part1(next, spu);	        /* Step 59. */
2014 	restore_ch_part2(next, spu);	        /* Step 60. */
2015 	restore_spu_lslr(next, spu);	        /* Step 61. */
2016 	restore_spu_cfg(next, spu);	        /* Step 62. */
2017 	restore_pm_trace(next, spu);	        /* Step 63. */
2018 	restore_spu_npc(next, spu);	        /* Step 64. */
2019 	restore_spu_mb(next, spu);	        /* Step 65. */
2020 	check_ppu_mb_stat(next, spu);	        /* Step 66. */
2021 	check_ppuint_mb_stat(next, spu);	/* Step 67. */
2022 	spu_invalidate_slbs(spu);		/* Modified Step 68. */
2023 	restore_mfc_sr1(next, spu);	        /* Step 69. */
2024 	set_int_route(next, spu);		/* NEW      */
2025 	restore_other_spu_access(next, spu);	/* Step 70. */
2026 	restore_spu_runcntl(next, spu);	        /* Step 71. */
2027 	restore_mfc_cntl(next, spu);	        /* Step 72. */
2028 	enable_user_access(next, spu);	        /* Step 73. */
2029 	reset_switch_active(next, spu);	        /* Step 74. */
2030 	reenable_interrupts(next, spu);	        /* Step 75. */
2031 }
2032 
2033 static int __do_spu_save(struct spu_state *prev, struct spu *spu)
2034 {
2035 	int rc;
2036 
2037 	/*
2038 	 * SPU context save can be broken into three phases:
2039 	 *
2040 	 *     (a) quiesce [steps 2-16].
2041 	 *     (b) save of CSA, performed by PPE [steps 17-42]
2042 	 *     (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2043 	 *
2044 	 * Returns      0 on success.
2045 	 *              2,6 if failed to quiece SPU
2046 	 *              53 if SPU-side of save failed.
2047 	 */
2048 
2049 	rc = quiece_spu(prev, spu);	        /* Steps 2-16. */
2050 	switch (rc) {
2051 	default:
2052 	case 2:
2053 	case 6:
2054 		harvest(prev, spu);
2055 		return rc;
2056 		break;
2057 	case 0:
2058 		break;
2059 	}
2060 	save_csa(prev, spu);	                /* Steps 17-43. */
2061 	save_lscsa(prev, spu);	                /* Steps 44-53. */
2062 	return check_save_status(prev, spu);	/* Step 54.     */
2063 }
2064 
2065 static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2066 {
2067 	int rc;
2068 
2069 	/*
2070 	 * SPU context restore can be broken into three phases:
2071 	 *
2072 	 *    (a) harvest (or reset) SPU [steps 2-24].
2073 	 *    (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2074 	 *    (c) restore CSA [steps 41-76], performed by PPE.
2075 	 *
2076 	 * The 'harvest' step is not performed here, but rather
2077 	 * as needed below.
2078 	 */
2079 
2080 	restore_lscsa(next, spu);	        /* Steps 24-39. */
2081 	rc = check_restore_status(next, spu);	/* Step 40.     */
2082 	switch (rc) {
2083 	default:
2084 		/* Failed. Return now. */
2085 		return rc;
2086 		break;
2087 	case 0:
2088 		/* Fall through to next step. */
2089 		break;
2090 	}
2091 	restore_csa(next, spu);
2092 
2093 	return 0;
2094 }
2095 
2096 /**
2097  * spu_save - SPU context save, with locking.
2098  * @prev: pointer to SPU context save area, to be saved.
2099  * @spu: pointer to SPU iomem structure.
2100  *
2101  * Acquire locks, perform the save operation then return.
2102  */
2103 int spu_save(struct spu_state *prev, struct spu *spu)
2104 {
2105 	int rc;
2106 
2107 	acquire_spu_lock(spu);	        /* Step 1.     */
2108 	rc = __do_spu_save(prev, spu);	/* Steps 2-53. */
2109 	release_spu_lock(spu);
2110 	if (rc != 0 && rc != 2 && rc != 6) {
2111 		panic("%s failed on SPU[%d], rc=%d.\n",
2112 		      __func__, spu->number, rc);
2113 	}
2114 	return 0;
2115 }
2116 EXPORT_SYMBOL_GPL(spu_save);
2117 
2118 /**
2119  * spu_restore - SPU context restore, with harvest and locking.
2120  * @new: pointer to SPU context save area, to be restored.
2121  * @spu: pointer to SPU iomem structure.
2122  *
2123  * Perform harvest + restore, as we may not be coming
2124  * from a previous successful save operation, and the
2125  * hardware state is unknown.
2126  */
2127 int spu_restore(struct spu_state *new, struct spu *spu)
2128 {
2129 	int rc;
2130 
2131 	acquire_spu_lock(spu);
2132 	harvest(NULL, spu);
2133 	spu->slb_replace = 0;
2134 	rc = __do_spu_restore(new, spu);
2135 	release_spu_lock(spu);
2136 	if (rc) {
2137 		panic("%s failed on SPU[%d] rc=%d.\n",
2138 		       __func__, spu->number, rc);
2139 	}
2140 	return rc;
2141 }
2142 EXPORT_SYMBOL_GPL(spu_restore);
2143 
2144 static void init_prob(struct spu_state *csa)
2145 {
2146 	csa->spu_chnlcnt_RW[9] = 1;
2147 	csa->spu_chnlcnt_RW[21] = 16;
2148 	csa->spu_chnlcnt_RW[23] = 1;
2149 	csa->spu_chnlcnt_RW[28] = 1;
2150 	csa->spu_chnlcnt_RW[30] = 1;
2151 	csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2152 	csa->prob.mb_stat_R = 0x000400;
2153 }
2154 
2155 static void init_priv1(struct spu_state *csa)
2156 {
2157 	/* Enable decode, relocate, tlbie response, master runcntl. */
2158 	csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2159 	    MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2160 	    MFC_STATE1_PROBLEM_STATE_MASK |
2161 	    MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2162 
2163 	/* Enable OS-specific set of interrupts. */
2164 	csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2165 	    CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2166 	    CLASS0_ENABLE_SPU_ERROR_INTR;
2167 	csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2168 	    CLASS1_ENABLE_STORAGE_FAULT_INTR;
2169 	csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2170 	    CLASS2_ENABLE_SPU_HALT_INTR |
2171 	    CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2172 }
2173 
2174 static void init_priv2(struct spu_state *csa)
2175 {
2176 	csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2177 	csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2178 	    MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2179 	    MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2180 }
2181 
2182 /**
2183  * spu_alloc_csa - allocate and initialize an SPU context save area.
2184  *
2185  * Allocate and initialize the contents of an SPU context save area.
2186  * This includes enabling address translation, interrupt masks, etc.,
2187  * as appropriate for the given OS environment.
2188  *
2189  * Note that storage for the 'lscsa' is allocated separately,
2190  * as it is by far the largest of the context save regions,
2191  * and may need to be pinned or otherwise specially aligned.
2192  */
2193 int spu_init_csa(struct spu_state *csa)
2194 {
2195 	int rc;
2196 
2197 	if (!csa)
2198 		return -EINVAL;
2199 	memset(csa, 0, sizeof(struct spu_state));
2200 
2201 	rc = spu_alloc_lscsa(csa);
2202 	if (rc)
2203 		return rc;
2204 
2205 	spin_lock_init(&csa->register_lock);
2206 
2207 	init_prob(csa);
2208 	init_priv1(csa);
2209 	init_priv2(csa);
2210 
2211 	return 0;
2212 }
2213 
2214 void spu_fini_csa(struct spu_state *csa)
2215 {
2216 	spu_free_lscsa(csa);
2217 }
2218