xref: /linux/arch/powerpc/platforms/cell/spufs/switch.c (revision cf17df22)
1 /*
2  * spu_switch.c
3  *
4  * (C) Copyright IBM Corp. 2005
5  *
6  * Author: Mark Nutter <mnutter@us.ibm.com>
7  *
8  * Host-side part of SPU context switch sequence outlined in
9  * Synergistic Processor Element, Book IV.
10  *
11  * A fully premptive switch of an SPE is very expensive in terms
12  * of time and system resources.  SPE Book IV indicates that SPE
13  * allocation should follow a "serially reusable device" model,
14  * in which the SPE is assigned a task until it completes.  When
15  * this is not possible, this sequence may be used to premptively
16  * save, and then later (optionally) restore the context of a
17  * program executing on an SPE.
18  *
19  *
20  * This program is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2, or (at your option)
23  * any later version.
24  *
25  * This program is distributed in the hope that it will be useful,
26  * but WITHOUT ANY WARRANTY; without even the implied warranty of
27  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28  * GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with this program; if not, write to the Free Software
32  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/errno.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/vmalloc.h>
41 #include <linux/smp.h>
42 #include <linux/stddef.h>
43 #include <linux/unistd.h>
44 
45 #include <asm/io.h>
46 #include <asm/spu.h>
47 #include <asm/spu_priv1.h>
48 #include <asm/spu_csa.h>
49 #include <asm/mmu_context.h>
50 
51 #include "spu_save_dump.h"
52 #include "spu_restore_dump.h"
53 
54 #if 0
55 #define POLL_WHILE_TRUE(_c) {				\
56     do {						\
57     } while (_c);					\
58   }
59 #else
60 #define RELAX_SPIN_COUNT				1000
61 #define POLL_WHILE_TRUE(_c) {				\
62     do {						\
63 	int _i;						\
64 	for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
65 	    cpu_relax();				\
66 	}						\
67 	if (unlikely(_c)) yield();			\
68 	else break;					\
69     } while (_c);					\
70   }
71 #endif				/* debug */
72 
73 #define POLL_WHILE_FALSE(_c)	POLL_WHILE_TRUE(!(_c))
74 
75 static inline void acquire_spu_lock(struct spu *spu)
76 {
77 	/* Save, Step 1:
78 	 * Restore, Step 1:
79 	 *    Acquire SPU-specific mutual exclusion lock.
80 	 *    TBD.
81 	 */
82 }
83 
84 static inline void release_spu_lock(struct spu *spu)
85 {
86 	/* Restore, Step 76:
87 	 *    Release SPU-specific mutual exclusion lock.
88 	 *    TBD.
89 	 */
90 }
91 
92 static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
93 {
94 	struct spu_problem __iomem *prob = spu->problem;
95 	u32 isolate_state;
96 
97 	/* Save, Step 2:
98 	 * Save, Step 6:
99 	 *     If SPU_Status[E,L,IS] any field is '1', this
100 	 *     SPU is in isolate state and cannot be context
101 	 *     saved at this time.
102 	 */
103 	isolate_state = SPU_STATUS_ISOLATED_STATE |
104 	    SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS;
105 	return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
106 }
107 
108 static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
109 {
110 	/* Save, Step 3:
111 	 * Restore, Step 2:
112 	 *     Save INT_Mask_class0 in CSA.
113 	 *     Write INT_MASK_class0 with value of 0.
114 	 *     Save INT_Mask_class1 in CSA.
115 	 *     Write INT_MASK_class1 with value of 0.
116 	 *     Save INT_Mask_class2 in CSA.
117 	 *     Write INT_MASK_class2 with value of 0.
118 	 */
119 	spin_lock_irq(&spu->register_lock);
120 	if (csa) {
121 		csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
122 		csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
123 		csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
124 	}
125 	spu_int_mask_set(spu, 0, 0ul);
126 	spu_int_mask_set(spu, 1, 0ul);
127 	spu_int_mask_set(spu, 2, 0ul);
128 	eieio();
129 	spin_unlock_irq(&spu->register_lock);
130 }
131 
132 static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
133 {
134 	/* Save, Step 4:
135 	 * Restore, Step 25.
136 	 *    Set a software watchdog timer, which specifies the
137 	 *    maximum allowable time for a context save sequence.
138 	 *
139 	 *    For present, this implementation will not set a global
140 	 *    watchdog timer, as virtualization & variable system load
141 	 *    may cause unpredictable execution times.
142 	 */
143 }
144 
145 static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
146 {
147 	/* Save, Step 5:
148 	 * Restore, Step 3:
149 	 *     Inhibit user-space access (if provided) to this
150 	 *     SPU by unmapping the virtual pages assigned to
151 	 *     the SPU memory-mapped I/O (MMIO) for problem
152 	 *     state. TBD.
153 	 */
154 }
155 
156 static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
157 {
158 	/* Save, Step 7:
159 	 * Restore, Step 5:
160 	 *     Set a software context switch pending flag.
161 	 */
162 	set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
163 	mb();
164 }
165 
166 static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
167 {
168 	struct spu_priv2 __iomem *priv2 = spu->priv2;
169 
170 	/* Save, Step 8:
171 	 *     Suspend DMA and save MFC_CNTL.
172 	 */
173 	switch (in_be64(&priv2->mfc_control_RW) &
174 	       MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
175 	case MFC_CNTL_SUSPEND_IN_PROGRESS:
176 		POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
177 				  MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
178 				 MFC_CNTL_SUSPEND_COMPLETE);
179 		/* fall through */
180 	case MFC_CNTL_SUSPEND_COMPLETE:
181 		if (csa) {
182 			csa->priv2.mfc_control_RW =
183 				MFC_CNTL_SUSPEND_MASK |
184 				MFC_CNTL_SUSPEND_DMA_QUEUE;
185 		}
186 		break;
187 	case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
188 		out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
189 		POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
190 				  MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
191 				 MFC_CNTL_SUSPEND_COMPLETE);
192 		if (csa) {
193 			csa->priv2.mfc_control_RW = 0;
194 		}
195 		break;
196 	}
197 }
198 
199 static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
200 {
201 	struct spu_problem __iomem *prob = spu->problem;
202 
203 	/* Save, Step 9:
204 	 *     Save SPU_Runcntl in the CSA.  This value contains
205 	 *     the "Application Desired State".
206 	 */
207 	csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
208 }
209 
210 static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
211 {
212 	/* Save, Step 10:
213 	 *     Save MFC_SR1 in the CSA.
214 	 */
215 	csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
216 }
217 
218 static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
219 {
220 	struct spu_problem __iomem *prob = spu->problem;
221 
222 	/* Save, Step 11:
223 	 *     Read SPU_Status[R], and save to CSA.
224 	 */
225 	if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
226 		csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
227 	} else {
228 		u32 stopped;
229 
230 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
231 		eieio();
232 		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
233 				SPU_STATUS_RUNNING);
234 		stopped =
235 		    SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
236 		    SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
237 		if ((in_be32(&prob->spu_status_R) & stopped) == 0)
238 			csa->prob.spu_status_R = SPU_STATUS_RUNNING;
239 		else
240 			csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
241 	}
242 }
243 
244 static inline void save_mfc_decr(struct spu_state *csa, struct spu *spu)
245 {
246 	struct spu_priv2 __iomem *priv2 = spu->priv2;
247 
248 	/* Save, Step 12:
249 	 *     Read MFC_CNTL[Ds].  Update saved copy of
250 	 *     CSA.MFC_CNTL[Ds].
251 	 */
252 	csa->priv2.mfc_control_RW |=
253 		in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DECREMENTER_RUNNING;
254 }
255 
256 static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
257 {
258 	struct spu_priv2 __iomem *priv2 = spu->priv2;
259 
260 	/* Save, Step 13:
261 	 *     Write MFC_CNTL[Dh] set to a '1' to halt
262 	 *     the decrementer.
263 	 */
264 	out_be64(&priv2->mfc_control_RW,
265 		 MFC_CNTL_DECREMENTER_HALTED | MFC_CNTL_SUSPEND_MASK);
266 	eieio();
267 }
268 
269 static inline void save_timebase(struct spu_state *csa, struct spu *spu)
270 {
271 	/* Save, Step 14:
272 	 *    Read PPE Timebase High and Timebase low registers
273 	 *    and save in CSA.  TBD.
274 	 */
275 	csa->suspend_time = get_cycles();
276 }
277 
278 static inline void remove_other_spu_access(struct spu_state *csa,
279 					   struct spu *spu)
280 {
281 	/* Save, Step 15:
282 	 *     Remove other SPU access to this SPU by unmapping
283 	 *     this SPU's pages from their address space.  TBD.
284 	 */
285 }
286 
287 static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
288 {
289 	struct spu_problem __iomem *prob = spu->problem;
290 
291 	/* Save, Step 16:
292 	 * Restore, Step 11.
293 	 *     Write SPU_MSSync register. Poll SPU_MSSync[P]
294 	 *     for a value of 0.
295 	 */
296 	out_be64(&prob->spc_mssync_RW, 1UL);
297 	POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
298 }
299 
300 static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
301 {
302 	/* Save, Step 17:
303 	 * Restore, Step 12.
304 	 * Restore, Step 48.
305 	 *     Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
306 	 *     Then issue a PPE sync instruction.
307 	 */
308 	spu_tlb_invalidate(spu);
309 	mb();
310 }
311 
312 static inline void handle_pending_interrupts(struct spu_state *csa,
313 					     struct spu *spu)
314 {
315 	/* Save, Step 18:
316 	 *     Handle any pending interrupts from this SPU
317 	 *     here.  This is OS or hypervisor specific.  One
318 	 *     option is to re-enable interrupts to handle any
319 	 *     pending interrupts, with the interrupt handlers
320 	 *     recognizing the software Context Switch Pending
321 	 *     flag, to ensure the SPU execution or MFC command
322 	 *     queue is not restarted.  TBD.
323 	 */
324 }
325 
326 static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
327 {
328 	struct spu_priv2 __iomem *priv2 = spu->priv2;
329 	int i;
330 
331 	/* Save, Step 19:
332 	 *     If MFC_Cntl[Se]=0 then save
333 	 *     MFC command queues.
334 	 */
335 	if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
336 		for (i = 0; i < 8; i++) {
337 			csa->priv2.puq[i].mfc_cq_data0_RW =
338 			    in_be64(&priv2->puq[i].mfc_cq_data0_RW);
339 			csa->priv2.puq[i].mfc_cq_data1_RW =
340 			    in_be64(&priv2->puq[i].mfc_cq_data1_RW);
341 			csa->priv2.puq[i].mfc_cq_data2_RW =
342 			    in_be64(&priv2->puq[i].mfc_cq_data2_RW);
343 			csa->priv2.puq[i].mfc_cq_data3_RW =
344 			    in_be64(&priv2->puq[i].mfc_cq_data3_RW);
345 		}
346 		for (i = 0; i < 16; i++) {
347 			csa->priv2.spuq[i].mfc_cq_data0_RW =
348 			    in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
349 			csa->priv2.spuq[i].mfc_cq_data1_RW =
350 			    in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
351 			csa->priv2.spuq[i].mfc_cq_data2_RW =
352 			    in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
353 			csa->priv2.spuq[i].mfc_cq_data3_RW =
354 			    in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
355 		}
356 	}
357 }
358 
359 static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
360 {
361 	struct spu_problem __iomem *prob = spu->problem;
362 
363 	/* Save, Step 20:
364 	 *     Save the PPU_QueryMask register
365 	 *     in the CSA.
366 	 */
367 	csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
368 }
369 
370 static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
371 {
372 	struct spu_problem __iomem *prob = spu->problem;
373 
374 	/* Save, Step 21:
375 	 *     Save the PPU_QueryType register
376 	 *     in the CSA.
377 	 */
378 	csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
379 }
380 
381 static inline void save_ppu_tagstatus(struct spu_state *csa, struct spu *spu)
382 {
383 	struct spu_problem __iomem *prob = spu->problem;
384 
385 	/* Save the Prxy_TagStatus register in the CSA.
386 	 *
387 	 * It is unnecessary to restore dma_tagstatus_R, however,
388 	 * dma_tagstatus_R in the CSA is accessed via backing_ops, so
389 	 * we must save it.
390 	 */
391 	csa->prob.dma_tagstatus_R = in_be32(&prob->dma_tagstatus_R);
392 }
393 
394 static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
395 {
396 	struct spu_priv2 __iomem *priv2 = spu->priv2;
397 
398 	/* Save, Step 22:
399 	 *     Save the MFC_CSR_TSQ register
400 	 *     in the LSCSA.
401 	 */
402 	csa->priv2.spu_tag_status_query_RW =
403 	    in_be64(&priv2->spu_tag_status_query_RW);
404 }
405 
406 static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
407 {
408 	struct spu_priv2 __iomem *priv2 = spu->priv2;
409 
410 	/* Save, Step 23:
411 	 *     Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
412 	 *     registers in the CSA.
413 	 */
414 	csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
415 	csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
416 }
417 
418 static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
419 {
420 	struct spu_priv2 __iomem *priv2 = spu->priv2;
421 
422 	/* Save, Step 24:
423 	 *     Save the MFC_CSR_ATO register in
424 	 *     the CSA.
425 	 */
426 	csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
427 }
428 
429 static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
430 {
431 	/* Save, Step 25:
432 	 *     Save the MFC_TCLASS_ID register in
433 	 *     the CSA.
434 	 */
435 	csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
436 }
437 
438 static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
439 {
440 	/* Save, Step 26:
441 	 * Restore, Step 23.
442 	 *     Write the MFC_TCLASS_ID register with
443 	 *     the value 0x10000000.
444 	 */
445 	spu_mfc_tclass_id_set(spu, 0x10000000);
446 	eieio();
447 }
448 
449 static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
450 {
451 	struct spu_priv2 __iomem *priv2 = spu->priv2;
452 
453 	/* Save, Step 27:
454 	 * Restore, Step 14.
455 	 *     Write MFC_CNTL[Pc]=1 (purge queue).
456 	 */
457 	out_be64(&priv2->mfc_control_RW, MFC_CNTL_PURGE_DMA_REQUEST);
458 	eieio();
459 }
460 
461 static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
462 {
463 	struct spu_priv2 __iomem *priv2 = spu->priv2;
464 
465 	/* Save, Step 28:
466 	 *     Poll MFC_CNTL[Ps] until value '11' is read
467 	 *     (purge complete).
468 	 */
469 	POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
470 			 MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
471 			 MFC_CNTL_PURGE_DMA_COMPLETE);
472 }
473 
474 static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
475 {
476 	/* Save, Step 30:
477 	 * Restore, Step 18:
478 	 *     Write MFC_SR1 with MFC_SR1[D=0,S=1] and
479 	 *     MFC_SR1[TL,R,Pr,T] set correctly for the
480 	 *     OS specific environment.
481 	 *
482 	 *     Implementation note: The SPU-side code
483 	 *     for save/restore is privileged, so the
484 	 *     MFC_SR1[Pr] bit is not set.
485 	 *
486 	 */
487 	spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
488 			      MFC_STATE1_RELOCATE_MASK |
489 			      MFC_STATE1_BUS_TLBIE_MASK));
490 }
491 
492 static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
493 {
494 	struct spu_problem __iomem *prob = spu->problem;
495 
496 	/* Save, Step 31:
497 	 *     Save SPU_NPC in the CSA.
498 	 */
499 	csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
500 }
501 
502 static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
503 {
504 	struct spu_priv2 __iomem *priv2 = spu->priv2;
505 
506 	/* Save, Step 32:
507 	 *     Save SPU_PrivCntl in the CSA.
508 	 */
509 	csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
510 }
511 
512 static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
513 {
514 	struct spu_priv2 __iomem *priv2 = spu->priv2;
515 
516 	/* Save, Step 33:
517 	 * Restore, Step 16:
518 	 *     Write SPU_PrivCntl[S,Le,A] fields reset to 0.
519 	 */
520 	out_be64(&priv2->spu_privcntl_RW, 0UL);
521 	eieio();
522 }
523 
524 static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
525 {
526 	struct spu_priv2 __iomem *priv2 = spu->priv2;
527 
528 	/* Save, Step 34:
529 	 *     Save SPU_LSLR in the CSA.
530 	 */
531 	csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
532 }
533 
534 static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
535 {
536 	struct spu_priv2 __iomem *priv2 = spu->priv2;
537 
538 	/* Save, Step 35:
539 	 * Restore, Step 17.
540 	 *     Reset SPU_LSLR.
541 	 */
542 	out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
543 	eieio();
544 }
545 
546 static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
547 {
548 	struct spu_priv2 __iomem *priv2 = spu->priv2;
549 
550 	/* Save, Step 36:
551 	 *     Save SPU_Cfg in the CSA.
552 	 */
553 	csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
554 }
555 
556 static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
557 {
558 	/* Save, Step 37:
559 	 *     Save PM_Trace_Tag_Wait_Mask in the CSA.
560 	 *     Not performed by this implementation.
561 	 */
562 }
563 
564 static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
565 {
566 	/* Save, Step 38:
567 	 *     Save RA_GROUP_ID register and the
568 	 *     RA_ENABLE reigster in the CSA.
569 	 */
570 	csa->priv1.resource_allocation_groupID_RW =
571 		spu_resource_allocation_groupID_get(spu);
572 	csa->priv1.resource_allocation_enable_RW =
573 		spu_resource_allocation_enable_get(spu);
574 }
575 
576 static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
577 {
578 	struct spu_problem __iomem *prob = spu->problem;
579 
580 	/* Save, Step 39:
581 	 *     Save MB_Stat register in the CSA.
582 	 */
583 	csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
584 }
585 
586 static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
587 {
588 	struct spu_problem __iomem *prob = spu->problem;
589 
590 	/* Save, Step 40:
591 	 *     Save the PPU_MB register in the CSA.
592 	 */
593 	csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
594 }
595 
596 static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
597 {
598 	struct spu_priv2 __iomem *priv2 = spu->priv2;
599 
600 	/* Save, Step 41:
601 	 *     Save the PPUINT_MB register in the CSA.
602 	 */
603 	csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
604 }
605 
606 static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
607 {
608 	struct spu_priv2 __iomem *priv2 = spu->priv2;
609 	u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
610 	int i;
611 
612 	/* Save, Step 42:
613 	 */
614 
615 	/* Save CH 1, without channel count */
616 	out_be64(&priv2->spu_chnlcntptr_RW, 1);
617 	csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
618 
619 	/* Save the following CH: [0,3,4,24,25,27] */
620 	for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
621 		idx = ch_indices[i];
622 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
623 		eieio();
624 		csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
625 		csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
626 		out_be64(&priv2->spu_chnldata_RW, 0UL);
627 		out_be64(&priv2->spu_chnlcnt_RW, 0UL);
628 		eieio();
629 	}
630 }
631 
632 static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
633 {
634 	struct spu_priv2 __iomem *priv2 = spu->priv2;
635 	int i;
636 
637 	/* Save, Step 43:
638 	 *     Save SPU Read Mailbox Channel.
639 	 */
640 	out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
641 	eieio();
642 	csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
643 	for (i = 0; i < 4; i++) {
644 		csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
645 	}
646 	out_be64(&priv2->spu_chnlcnt_RW, 0UL);
647 	eieio();
648 }
649 
650 static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
651 {
652 	struct spu_priv2 __iomem *priv2 = spu->priv2;
653 
654 	/* Save, Step 44:
655 	 *     Save MFC_CMD Channel.
656 	 */
657 	out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
658 	eieio();
659 	csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
660 	eieio();
661 }
662 
663 static inline void reset_ch(struct spu_state *csa, struct spu *spu)
664 {
665 	struct spu_priv2 __iomem *priv2 = spu->priv2;
666 	u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
667 	u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
668 	u64 idx;
669 	int i;
670 
671 	/* Save, Step 45:
672 	 *     Reset the following CH: [21, 23, 28, 30]
673 	 */
674 	for (i = 0; i < 4; i++) {
675 		idx = ch_indices[i];
676 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
677 		eieio();
678 		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
679 		eieio();
680 	}
681 }
682 
683 static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
684 {
685 	struct spu_priv2 __iomem *priv2 = spu->priv2;
686 
687 	/* Save, Step 46:
688 	 * Restore, Step 25.
689 	 *     Write MFC_CNTL[Sc]=0 (resume queue processing).
690 	 */
691 	out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
692 }
693 
694 static inline void get_kernel_slb(u64 ea, u64 slb[2])
695 {
696 	u64 llp;
697 
698 	if (REGION_ID(ea) == KERNEL_REGION_ID)
699 		llp = mmu_psize_defs[mmu_linear_psize].sllp;
700 	else
701 		llp = mmu_psize_defs[mmu_virtual_psize].sllp;
702 	slb[0] = (get_kernel_vsid(ea) << SLB_VSID_SHIFT) |
703 		SLB_VSID_KERNEL | llp;
704 	slb[1] = (ea & ESID_MASK) | SLB_ESID_V;
705 }
706 
707 static inline void load_mfc_slb(struct spu *spu, u64 slb[2], int slbe)
708 {
709 	struct spu_priv2 __iomem *priv2 = spu->priv2;
710 
711 	out_be64(&priv2->slb_index_W, slbe);
712 	eieio();
713 	out_be64(&priv2->slb_vsid_RW, slb[0]);
714 	out_be64(&priv2->slb_esid_RW, slb[1]);
715 	eieio();
716 }
717 
718 static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu)
719 {
720 	u64 code_slb[2];
721 	u64 lscsa_slb[2];
722 
723 	/* Save, Step 47:
724 	 * Restore, Step 30.
725 	 *     If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
726 	 *     register, then initialize SLB_VSID and SLB_ESID
727 	 *     to provide access to SPU context save code and
728 	 *     LSCSA.
729 	 *
730 	 *     This implementation places both the context
731 	 *     switch code and LSCSA in kernel address space.
732 	 *
733 	 *     Further this implementation assumes that the
734 	 *     MFC_SR1[R]=1 (in other words, assume that
735 	 *     translation is desired by OS environment).
736 	 */
737 	spu_invalidate_slbs(spu);
738 	get_kernel_slb((unsigned long)&spu_save_code[0], code_slb);
739 	get_kernel_slb((unsigned long)csa->lscsa, lscsa_slb);
740 	load_mfc_slb(spu, code_slb, 0);
741 	if ((lscsa_slb[0] != code_slb[0]) || (lscsa_slb[1] != code_slb[1]))
742 		load_mfc_slb(spu, lscsa_slb, 1);
743 }
744 
745 static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
746 {
747 	/* Save, Step 48:
748 	 * Restore, Step 23.
749 	 *     Change the software context switch pending flag
750 	 *     to context switch active.
751 	 */
752 	set_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
753 	clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
754 	mb();
755 }
756 
757 static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
758 {
759 	unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
760 	    CLASS1_ENABLE_STORAGE_FAULT_INTR;
761 
762 	/* Save, Step 49:
763 	 * Restore, Step 22:
764 	 *     Reset and then enable interrupts, as
765 	 *     needed by OS.
766 	 *
767 	 *     This implementation enables only class1
768 	 *     (translation) interrupts.
769 	 */
770 	spin_lock_irq(&spu->register_lock);
771 	spu_int_stat_clear(spu, 0, ~0ul);
772 	spu_int_stat_clear(spu, 1, ~0ul);
773 	spu_int_stat_clear(spu, 2, ~0ul);
774 	spu_int_mask_set(spu, 0, 0ul);
775 	spu_int_mask_set(spu, 1, class1_mask);
776 	spu_int_mask_set(spu, 2, 0ul);
777 	spin_unlock_irq(&spu->register_lock);
778 }
779 
780 static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
781 			       unsigned int ls_offset, unsigned int size,
782 			       unsigned int tag, unsigned int rclass,
783 			       unsigned int cmd)
784 {
785 	struct spu_problem __iomem *prob = spu->problem;
786 	union mfc_tag_size_class_cmd command;
787 	unsigned int transfer_size;
788 	volatile unsigned int status = 0x0;
789 
790 	while (size > 0) {
791 		transfer_size =
792 		    (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
793 		command.u.mfc_size = transfer_size;
794 		command.u.mfc_tag = tag;
795 		command.u.mfc_rclassid = rclass;
796 		command.u.mfc_cmd = cmd;
797 		do {
798 			out_be32(&prob->mfc_lsa_W, ls_offset);
799 			out_be64(&prob->mfc_ea_W, ea);
800 			out_be64(&prob->mfc_union_W.all64, command.all64);
801 			status =
802 			    in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
803 			if (unlikely(status & 0x2)) {
804 				cpu_relax();
805 			}
806 		} while (status & 0x3);
807 		size -= transfer_size;
808 		ea += transfer_size;
809 		ls_offset += transfer_size;
810 	}
811 	return 0;
812 }
813 
814 static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
815 {
816 	unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
817 	unsigned int ls_offset = 0x0;
818 	unsigned int size = 16384;
819 	unsigned int tag = 0;
820 	unsigned int rclass = 0;
821 	unsigned int cmd = MFC_PUT_CMD;
822 
823 	/* Save, Step 50:
824 	 *     Issue a DMA command to copy the first 16K bytes
825 	 *     of local storage to the CSA.
826 	 */
827 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
828 }
829 
830 static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
831 {
832 	struct spu_problem __iomem *prob = spu->problem;
833 
834 	/* Save, Step 51:
835 	 * Restore, Step 31.
836 	 *     Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
837 	 *     point address of context save code in local
838 	 *     storage.
839 	 *
840 	 *     This implementation uses SPU-side save/restore
841 	 *     programs with entry points at LSA of 0.
842 	 */
843 	out_be32(&prob->spu_npc_RW, 0);
844 	eieio();
845 }
846 
847 static inline void set_signot1(struct spu_state *csa, struct spu *spu)
848 {
849 	struct spu_problem __iomem *prob = spu->problem;
850 	union {
851 		u64 ull;
852 		u32 ui[2];
853 	} addr64;
854 
855 	/* Save, Step 52:
856 	 * Restore, Step 32:
857 	 *    Write SPU_Sig_Notify_1 register with upper 32-bits
858 	 *    of the CSA.LSCSA effective address.
859 	 */
860 	addr64.ull = (u64) csa->lscsa;
861 	out_be32(&prob->signal_notify1, addr64.ui[0]);
862 	eieio();
863 }
864 
865 static inline void set_signot2(struct spu_state *csa, struct spu *spu)
866 {
867 	struct spu_problem __iomem *prob = spu->problem;
868 	union {
869 		u64 ull;
870 		u32 ui[2];
871 	} addr64;
872 
873 	/* Save, Step 53:
874 	 * Restore, Step 33:
875 	 *    Write SPU_Sig_Notify_2 register with lower 32-bits
876 	 *    of the CSA.LSCSA effective address.
877 	 */
878 	addr64.ull = (u64) csa->lscsa;
879 	out_be32(&prob->signal_notify2, addr64.ui[1]);
880 	eieio();
881 }
882 
883 static inline void send_save_code(struct spu_state *csa, struct spu *spu)
884 {
885 	unsigned long addr = (unsigned long)&spu_save_code[0];
886 	unsigned int ls_offset = 0x0;
887 	unsigned int size = sizeof(spu_save_code);
888 	unsigned int tag = 0;
889 	unsigned int rclass = 0;
890 	unsigned int cmd = MFC_GETFS_CMD;
891 
892 	/* Save, Step 54:
893 	 *     Issue a DMA command to copy context save code
894 	 *     to local storage and start SPU.
895 	 */
896 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
897 }
898 
899 static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
900 {
901 	struct spu_problem __iomem *prob = spu->problem;
902 
903 	/* Save, Step 55:
904 	 * Restore, Step 38.
905 	 *     Write PPU_QueryMask=1 (enable Tag Group 0)
906 	 *     and issue eieio instruction.
907 	 */
908 	out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
909 	eieio();
910 }
911 
912 static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
913 {
914 	struct spu_problem __iomem *prob = spu->problem;
915 	u32 mask = MFC_TAGID_TO_TAGMASK(0);
916 	unsigned long flags;
917 
918 	/* Save, Step 56:
919 	 * Restore, Step 39.
920 	 * Restore, Step 39.
921 	 * Restore, Step 46.
922 	 *     Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
923 	 *     or write PPU_QueryType[TS]=01 and wait for Tag Group
924 	 *     Complete Interrupt.  Write INT_Stat_Class0 or
925 	 *     INT_Stat_Class2 with value of 'handled'.
926 	 */
927 	POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
928 
929 	local_irq_save(flags);
930 	spu_int_stat_clear(spu, 0, ~(0ul));
931 	spu_int_stat_clear(spu, 2, ~(0ul));
932 	local_irq_restore(flags);
933 }
934 
935 static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
936 {
937 	struct spu_problem __iomem *prob = spu->problem;
938 	unsigned long flags;
939 
940 	/* Save, Step 57:
941 	 * Restore, Step 40.
942 	 *     Poll until SPU_Status[R]=0 or wait for SPU Class 0
943 	 *     or SPU Class 2 interrupt.  Write INT_Stat_class0
944 	 *     or INT_Stat_class2 with value of handled.
945 	 */
946 	POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
947 
948 	local_irq_save(flags);
949 	spu_int_stat_clear(spu, 0, ~(0ul));
950 	spu_int_stat_clear(spu, 2, ~(0ul));
951 	local_irq_restore(flags);
952 }
953 
954 static inline int check_save_status(struct spu_state *csa, struct spu *spu)
955 {
956 	struct spu_problem __iomem *prob = spu->problem;
957 	u32 complete;
958 
959 	/* Save, Step 54:
960 	 *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
961 	 *     context save succeeded, otherwise context save
962 	 *     failed.
963 	 */
964 	complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
965 		    SPU_STATUS_STOPPED_BY_STOP);
966 	return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
967 }
968 
969 static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
970 {
971 	/* Restore, Step 4:
972 	 *    If required, notify the "using application" that
973 	 *    the SPU task has been terminated.  TBD.
974 	 */
975 }
976 
977 static inline void suspend_mfc_and_halt_decr(struct spu_state *csa,
978 		struct spu *spu)
979 {
980 	struct spu_priv2 __iomem *priv2 = spu->priv2;
981 
982 	/* Restore, Step 7:
983 	 *     Write MFC_Cntl[Dh,Sc,Sm]='1','1','0' to suspend
984 	 *     the queue and halt the decrementer.
985 	 */
986 	out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
987 		 MFC_CNTL_DECREMENTER_HALTED);
988 	eieio();
989 }
990 
991 static inline void wait_suspend_mfc_complete(struct spu_state *csa,
992 					     struct spu *spu)
993 {
994 	struct spu_priv2 __iomem *priv2 = spu->priv2;
995 
996 	/* Restore, Step 8:
997 	 * Restore, Step 47.
998 	 *     Poll MFC_CNTL[Ss] until 11 is returned.
999 	 */
1000 	POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
1001 			 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
1002 			 MFC_CNTL_SUSPEND_COMPLETE);
1003 }
1004 
1005 static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
1006 {
1007 	struct spu_problem __iomem *prob = spu->problem;
1008 
1009 	/* Restore, Step 9:
1010 	 *    If SPU_Status[R]=1, stop SPU execution
1011 	 *    and wait for stop to complete.
1012 	 *
1013 	 *    Returns       1 if SPU_Status[R]=1 on entry.
1014 	 *                  0 otherwise
1015 	 */
1016 	if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
1017 		if (in_be32(&prob->spu_status_R) &
1018 		    SPU_STATUS_ISOLATED_EXIT_STATUS) {
1019 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1020 					SPU_STATUS_RUNNING);
1021 		}
1022 		if ((in_be32(&prob->spu_status_R) &
1023 		     SPU_STATUS_ISOLATED_LOAD_STATUS)
1024 		    || (in_be32(&prob->spu_status_R) &
1025 			SPU_STATUS_ISOLATED_STATE)) {
1026 			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1027 			eieio();
1028 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1029 					SPU_STATUS_RUNNING);
1030 			out_be32(&prob->spu_runcntl_RW, 0x2);
1031 			eieio();
1032 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1033 					SPU_STATUS_RUNNING);
1034 		}
1035 		if (in_be32(&prob->spu_status_R) &
1036 		    SPU_STATUS_WAITING_FOR_CHANNEL) {
1037 			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1038 			eieio();
1039 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1040 					SPU_STATUS_RUNNING);
1041 		}
1042 		return 1;
1043 	}
1044 	return 0;
1045 }
1046 
1047 static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1048 {
1049 	struct spu_problem __iomem *prob = spu->problem;
1050 
1051 	/* Restore, Step 10:
1052 	 *    If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1053 	 *    release SPU from isolate state.
1054 	 */
1055 	if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1056 		if (in_be32(&prob->spu_status_R) &
1057 		    SPU_STATUS_ISOLATED_EXIT_STATUS) {
1058 			spu_mfc_sr1_set(spu,
1059 					MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1060 			eieio();
1061 			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1062 			eieio();
1063 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1064 					SPU_STATUS_RUNNING);
1065 		}
1066 		if ((in_be32(&prob->spu_status_R) &
1067 		     SPU_STATUS_ISOLATED_LOAD_STATUS)
1068 		    || (in_be32(&prob->spu_status_R) &
1069 			SPU_STATUS_ISOLATED_STATE)) {
1070 			spu_mfc_sr1_set(spu,
1071 					MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1072 			eieio();
1073 			out_be32(&prob->spu_runcntl_RW, 0x2);
1074 			eieio();
1075 			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1076 					SPU_STATUS_RUNNING);
1077 		}
1078 	}
1079 }
1080 
1081 static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1082 {
1083 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1084 	u64 ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1085 	u64 idx;
1086 	int i;
1087 
1088 	/* Restore, Step 20:
1089 	 */
1090 
1091 	/* Reset CH 1 */
1092 	out_be64(&priv2->spu_chnlcntptr_RW, 1);
1093 	out_be64(&priv2->spu_chnldata_RW, 0UL);
1094 
1095 	/* Reset the following CH: [0,3,4,24,25,27] */
1096 	for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1097 		idx = ch_indices[i];
1098 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1099 		eieio();
1100 		out_be64(&priv2->spu_chnldata_RW, 0UL);
1101 		out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1102 		eieio();
1103 	}
1104 }
1105 
1106 static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1107 {
1108 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1109 	u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1110 	u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1111 	u64 idx;
1112 	int i;
1113 
1114 	/* Restore, Step 21:
1115 	 *     Reset the following CH: [21, 23, 28, 29, 30]
1116 	 */
1117 	for (i = 0; i < 5; i++) {
1118 		idx = ch_indices[i];
1119 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1120 		eieio();
1121 		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1122 		eieio();
1123 	}
1124 }
1125 
1126 static inline void setup_spu_status_part1(struct spu_state *csa,
1127 					  struct spu *spu)
1128 {
1129 	u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1130 	u32 status_I = SPU_STATUS_INVALID_INSTR;
1131 	u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1132 	u32 status_S = SPU_STATUS_SINGLE_STEP;
1133 	u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1134 	u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1135 	u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1136 	u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1137 	u32 status_code;
1138 
1139 	/* Restore, Step 27:
1140 	 *     If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1141 	 *     instruction sequence to the end of the SPU based restore
1142 	 *     code (after the "context restored" stop and signal) to
1143 	 *     restore the correct SPU status.
1144 	 *
1145 	 *     NOTE: Rather than modifying the SPU executable, we
1146 	 *     instead add a new 'stopped_status' field to the
1147 	 *     LSCSA.  The SPU-side restore reads this field and
1148 	 *     takes the appropriate action when exiting.
1149 	 */
1150 
1151 	status_code =
1152 	    (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1153 	if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1154 
1155 		/* SPU_Status[P,I]=1 - Illegal Instruction followed
1156 		 * by Stop and Signal instruction, followed by 'br -4'.
1157 		 *
1158 		 */
1159 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1160 		csa->lscsa->stopped_status.slot[1] = status_code;
1161 
1162 	} else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1163 
1164 		/* SPU_Status[P,H]=1 - Halt Conditional, followed
1165 		 * by Stop and Signal instruction, followed by
1166 		 * 'br -4'.
1167 		 */
1168 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1169 		csa->lscsa->stopped_status.slot[1] = status_code;
1170 
1171 	} else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1172 
1173 		/* SPU_Status[S,P]=1 - Stop and Signal instruction
1174 		 * followed by 'br -4'.
1175 		 */
1176 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1177 		csa->lscsa->stopped_status.slot[1] = status_code;
1178 
1179 	} else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1180 
1181 		/* SPU_Status[S,I]=1 - Illegal instruction followed
1182 		 * by 'br -4'.
1183 		 */
1184 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1185 		csa->lscsa->stopped_status.slot[1] = status_code;
1186 
1187 	} else if ((csa->prob.spu_status_R & status_P) == status_P) {
1188 
1189 		/* SPU_Status[P]=1 - Stop and Signal instruction
1190 		 * followed by 'br -4'.
1191 		 */
1192 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1193 		csa->lscsa->stopped_status.slot[1] = status_code;
1194 
1195 	} else if ((csa->prob.spu_status_R & status_H) == status_H) {
1196 
1197 		/* SPU_Status[H]=1 - Halt Conditional, followed
1198 		 * by 'br -4'.
1199 		 */
1200 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1201 
1202 	} else if ((csa->prob.spu_status_R & status_S) == status_S) {
1203 
1204 		/* SPU_Status[S]=1 - Two nop instructions.
1205 		 */
1206 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1207 
1208 	} else if ((csa->prob.spu_status_R & status_I) == status_I) {
1209 
1210 		/* SPU_Status[I]=1 - Illegal instruction followed
1211 		 * by 'br -4'.
1212 		 */
1213 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1214 
1215 	}
1216 }
1217 
1218 static inline void setup_spu_status_part2(struct spu_state *csa,
1219 					  struct spu *spu)
1220 {
1221 	u32 mask;
1222 
1223 	/* Restore, Step 28:
1224 	 *     If the CSA.SPU_Status[I,S,H,P,R]=0 then
1225 	 *     add a 'br *' instruction to the end of
1226 	 *     the SPU based restore code.
1227 	 *
1228 	 *     NOTE: Rather than modifying the SPU executable, we
1229 	 *     instead add a new 'stopped_status' field to the
1230 	 *     LSCSA.  The SPU-side restore reads this field and
1231 	 *     takes the appropriate action when exiting.
1232 	 */
1233 	mask = SPU_STATUS_INVALID_INSTR |
1234 	    SPU_STATUS_SINGLE_STEP |
1235 	    SPU_STATUS_STOPPED_BY_HALT |
1236 	    SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1237 	if (!(csa->prob.spu_status_R & mask)) {
1238 		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1239 	}
1240 }
1241 
1242 static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1243 {
1244 	/* Restore, Step 29:
1245 	 *     Restore RA_GROUP_ID register and the
1246 	 *     RA_ENABLE reigster from the CSA.
1247 	 */
1248 	spu_resource_allocation_groupID_set(spu,
1249 			csa->priv1.resource_allocation_groupID_RW);
1250 	spu_resource_allocation_enable_set(spu,
1251 			csa->priv1.resource_allocation_enable_RW);
1252 }
1253 
1254 static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1255 {
1256 	unsigned long addr = (unsigned long)&spu_restore_code[0];
1257 	unsigned int ls_offset = 0x0;
1258 	unsigned int size = sizeof(spu_restore_code);
1259 	unsigned int tag = 0;
1260 	unsigned int rclass = 0;
1261 	unsigned int cmd = MFC_GETFS_CMD;
1262 
1263 	/* Restore, Step 37:
1264 	 *     Issue MFC DMA command to copy context
1265 	 *     restore code to local storage.
1266 	 */
1267 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1268 }
1269 
1270 static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1271 {
1272 	/* Restore, Step 34:
1273 	 *     If CSA.MFC_CNTL[Ds]=1 (decrementer was
1274 	 *     running) then adjust decrementer, set
1275 	 *     decrementer running status in LSCSA,
1276 	 *     and set decrementer "wrapped" status
1277 	 *     in LSCSA.
1278 	 */
1279 	if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1280 		cycles_t resume_time = get_cycles();
1281 		cycles_t delta_time = resume_time - csa->suspend_time;
1282 
1283 		csa->lscsa->decr_status.slot[0] = SPU_DECR_STATUS_RUNNING;
1284 		if (csa->lscsa->decr.slot[0] < delta_time) {
1285 			csa->lscsa->decr_status.slot[0] |=
1286 				 SPU_DECR_STATUS_WRAPPED;
1287 		}
1288 
1289 		csa->lscsa->decr.slot[0] -= delta_time;
1290 	} else {
1291 		csa->lscsa->decr_status.slot[0] = 0;
1292 	}
1293 }
1294 
1295 static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1296 {
1297 	/* Restore, Step 35:
1298 	 *     Copy the CSA.PU_MB data into the LSCSA.
1299 	 */
1300 	csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1301 }
1302 
1303 static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1304 {
1305 	/* Restore, Step 36:
1306 	 *     Copy the CSA.PUINT_MB data into the LSCSA.
1307 	 */
1308 	csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1309 }
1310 
1311 static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1312 {
1313 	struct spu_problem __iomem *prob = spu->problem;
1314 	u32 complete;
1315 
1316 	/* Restore, Step 40:
1317 	 *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1318 	 *     context restore succeeded, otherwise context restore
1319 	 *     failed.
1320 	 */
1321 	complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1322 		    SPU_STATUS_STOPPED_BY_STOP);
1323 	return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1324 }
1325 
1326 static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1327 {
1328 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1329 
1330 	/* Restore, Step 41:
1331 	 *     Restore SPU_PrivCntl from the CSA.
1332 	 */
1333 	out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1334 	eieio();
1335 }
1336 
1337 static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1338 {
1339 	struct spu_problem __iomem *prob = spu->problem;
1340 	u32 mask;
1341 
1342 	/* Restore, Step 42:
1343 	 *     If any CSA.SPU_Status[I,S,H,P]=1, then
1344 	 *     restore the error or single step state.
1345 	 */
1346 	mask = SPU_STATUS_INVALID_INSTR |
1347 	    SPU_STATUS_SINGLE_STEP |
1348 	    SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1349 	if (csa->prob.spu_status_R & mask) {
1350 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1351 		eieio();
1352 		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1353 				SPU_STATUS_RUNNING);
1354 	}
1355 }
1356 
1357 static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1358 {
1359 	struct spu_problem __iomem *prob = spu->problem;
1360 	u32 mask;
1361 
1362 	/* Restore, Step 43:
1363 	 *     If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1364 	 *     SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1365 	 *     then write '00' to SPU_RunCntl[R0R1] and wait
1366 	 *     for SPU_Status[R]=0.
1367 	 */
1368 	mask = SPU_STATUS_INVALID_INSTR |
1369 	    SPU_STATUS_SINGLE_STEP |
1370 	    SPU_STATUS_STOPPED_BY_HALT |
1371 	    SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1372 	if (!(csa->prob.spu_status_R & mask)) {
1373 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1374 		eieio();
1375 		POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1376 				 SPU_STATUS_RUNNING);
1377 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1378 		eieio();
1379 		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1380 				SPU_STATUS_RUNNING);
1381 	}
1382 }
1383 
1384 static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1385 {
1386 	unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1387 	unsigned int ls_offset = 0x0;
1388 	unsigned int size = 16384;
1389 	unsigned int tag = 0;
1390 	unsigned int rclass = 0;
1391 	unsigned int cmd = MFC_GET_CMD;
1392 
1393 	/* Restore, Step 44:
1394 	 *     Issue a DMA command to restore the first
1395 	 *     16kb of local storage from CSA.
1396 	 */
1397 	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1398 }
1399 
1400 static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
1401 {
1402 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1403 
1404 	/* Restore, Step 47.
1405 	 *     Write MFC_Cntl[Sc,Sm]='1','0' to suspend
1406 	 *     the queue.
1407 	 */
1408 	out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
1409 	eieio();
1410 }
1411 
1412 static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1413 {
1414 	/* Restore, Step 49:
1415 	 *     Write INT_MASK_class0 with value of 0.
1416 	 *     Write INT_MASK_class1 with value of 0.
1417 	 *     Write INT_MASK_class2 with value of 0.
1418 	 *     Write INT_STAT_class0 with value of -1.
1419 	 *     Write INT_STAT_class1 with value of -1.
1420 	 *     Write INT_STAT_class2 with value of -1.
1421 	 */
1422 	spin_lock_irq(&spu->register_lock);
1423 	spu_int_mask_set(spu, 0, 0ul);
1424 	spu_int_mask_set(spu, 1, 0ul);
1425 	spu_int_mask_set(spu, 2, 0ul);
1426 	spu_int_stat_clear(spu, 0, ~0ul);
1427 	spu_int_stat_clear(spu, 1, ~0ul);
1428 	spu_int_stat_clear(spu, 2, ~0ul);
1429 	spin_unlock_irq(&spu->register_lock);
1430 }
1431 
1432 static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1433 {
1434 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1435 	int i;
1436 
1437 	/* Restore, Step 50:
1438 	 *     If MFC_Cntl[Se]!=0 then restore
1439 	 *     MFC command queues.
1440 	 */
1441 	if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1442 		for (i = 0; i < 8; i++) {
1443 			out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1444 				 csa->priv2.puq[i].mfc_cq_data0_RW);
1445 			out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1446 				 csa->priv2.puq[i].mfc_cq_data1_RW);
1447 			out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1448 				 csa->priv2.puq[i].mfc_cq_data2_RW);
1449 			out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1450 				 csa->priv2.puq[i].mfc_cq_data3_RW);
1451 		}
1452 		for (i = 0; i < 16; i++) {
1453 			out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1454 				 csa->priv2.spuq[i].mfc_cq_data0_RW);
1455 			out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1456 				 csa->priv2.spuq[i].mfc_cq_data1_RW);
1457 			out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1458 				 csa->priv2.spuq[i].mfc_cq_data2_RW);
1459 			out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1460 				 csa->priv2.spuq[i].mfc_cq_data3_RW);
1461 		}
1462 	}
1463 	eieio();
1464 }
1465 
1466 static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1467 {
1468 	struct spu_problem __iomem *prob = spu->problem;
1469 
1470 	/* Restore, Step 51:
1471 	 *     Restore the PPU_QueryMask register from CSA.
1472 	 */
1473 	out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1474 	eieio();
1475 }
1476 
1477 static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1478 {
1479 	struct spu_problem __iomem *prob = spu->problem;
1480 
1481 	/* Restore, Step 52:
1482 	 *     Restore the PPU_QueryType register from CSA.
1483 	 */
1484 	out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1485 	eieio();
1486 }
1487 
1488 static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1489 {
1490 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1491 
1492 	/* Restore, Step 53:
1493 	 *     Restore the MFC_CSR_TSQ register from CSA.
1494 	 */
1495 	out_be64(&priv2->spu_tag_status_query_RW,
1496 		 csa->priv2.spu_tag_status_query_RW);
1497 	eieio();
1498 }
1499 
1500 static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1501 {
1502 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1503 
1504 	/* Restore, Step 54:
1505 	 *     Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1506 	 *     registers from CSA.
1507 	 */
1508 	out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1509 	out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1510 	eieio();
1511 }
1512 
1513 static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1514 {
1515 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1516 
1517 	/* Restore, Step 55:
1518 	 *     Restore the MFC_CSR_ATO register from CSA.
1519 	 */
1520 	out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1521 }
1522 
1523 static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1524 {
1525 	/* Restore, Step 56:
1526 	 *     Restore the MFC_TCLASS_ID register from CSA.
1527 	 */
1528 	spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1529 	eieio();
1530 }
1531 
1532 static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1533 {
1534 	u64 ch0_cnt, ch0_data;
1535 	u64 ch1_data;
1536 
1537 	/* Restore, Step 57:
1538 	 *    Set the Lock Line Reservation Lost Event by:
1539 	 *      1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1540 	 *      2. If CSA.SPU_Channel_0_Count=0 and
1541 	 *         CSA.SPU_Wr_Event_Mask[Lr]=1 and
1542 	 *         CSA.SPU_Event_Status[Lr]=0 then set
1543 	 *         CSA.SPU_Event_Status_Count=1.
1544 	 */
1545 	ch0_cnt = csa->spu_chnlcnt_RW[0];
1546 	ch0_data = csa->spu_chnldata_RW[0];
1547 	ch1_data = csa->spu_chnldata_RW[1];
1548 	csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1549 	if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1550 	    (ch1_data & MFC_LLR_LOST_EVENT)) {
1551 		csa->spu_chnlcnt_RW[0] = 1;
1552 	}
1553 }
1554 
1555 static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1556 {
1557 	/* Restore, Step 58:
1558 	 *     If the status of the CSA software decrementer
1559 	 *     "wrapped" flag is set, OR in a '1' to
1560 	 *     CSA.SPU_Event_Status[Tm].
1561 	 */
1562 	if (csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED) {
1563 		csa->spu_chnldata_RW[0] |= 0x20;
1564 	}
1565 	if ((csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED) &&
1566 	    (csa->spu_chnlcnt_RW[0] == 0 &&
1567 	     ((csa->spu_chnldata_RW[2] & 0x20) == 0x0) &&
1568 	     ((csa->spu_chnldata_RW[0] & 0x20) != 0x1))) {
1569 		csa->spu_chnlcnt_RW[0] = 1;
1570 	}
1571 }
1572 
1573 static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1574 {
1575 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1576 	u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1577 	int i;
1578 
1579 	/* Restore, Step 59:
1580 	 *	Restore the following CH: [0,3,4,24,25,27]
1581 	 */
1582 	for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1583 		idx = ch_indices[i];
1584 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1585 		eieio();
1586 		out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1587 		out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1588 		eieio();
1589 	}
1590 }
1591 
1592 static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1593 {
1594 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1595 	u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1596 	u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1597 	u64 idx;
1598 	int i;
1599 
1600 	/* Restore, Step 60:
1601 	 *     Restore the following CH: [9,21,23].
1602 	 */
1603 	ch_counts[0] = 1UL;
1604 	ch_counts[1] = csa->spu_chnlcnt_RW[21];
1605 	ch_counts[2] = 1UL;
1606 	for (i = 0; i < 3; i++) {
1607 		idx = ch_indices[i];
1608 		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1609 		eieio();
1610 		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1611 		eieio();
1612 	}
1613 }
1614 
1615 static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1616 {
1617 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1618 
1619 	/* Restore, Step 61:
1620 	 *     Restore the SPU_LSLR register from CSA.
1621 	 */
1622 	out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1623 	eieio();
1624 }
1625 
1626 static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1627 {
1628 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1629 
1630 	/* Restore, Step 62:
1631 	 *     Restore the SPU_Cfg register from CSA.
1632 	 */
1633 	out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1634 	eieio();
1635 }
1636 
1637 static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1638 {
1639 	/* Restore, Step 63:
1640 	 *     Restore PM_Trace_Tag_Wait_Mask from CSA.
1641 	 *     Not performed by this implementation.
1642 	 */
1643 }
1644 
1645 static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1646 {
1647 	struct spu_problem __iomem *prob = spu->problem;
1648 
1649 	/* Restore, Step 64:
1650 	 *     Restore SPU_NPC from CSA.
1651 	 */
1652 	out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1653 	eieio();
1654 }
1655 
1656 static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1657 {
1658 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1659 	int i;
1660 
1661 	/* Restore, Step 65:
1662 	 *     Restore MFC_RdSPU_MB from CSA.
1663 	 */
1664 	out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1665 	eieio();
1666 	out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1667 	for (i = 0; i < 4; i++) {
1668 		out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1669 	}
1670 	eieio();
1671 }
1672 
1673 static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1674 {
1675 	struct spu_problem __iomem *prob = spu->problem;
1676 	u32 dummy = 0;
1677 
1678 	/* Restore, Step 66:
1679 	 *     If CSA.MB_Stat[P]=0 (mailbox empty) then
1680 	 *     read from the PPU_MB register.
1681 	 */
1682 	if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1683 		dummy = in_be32(&prob->pu_mb_R);
1684 		eieio();
1685 	}
1686 }
1687 
1688 static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1689 {
1690 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1691 	u64 dummy = 0UL;
1692 
1693 	/* Restore, Step 66:
1694 	 *     If CSA.MB_Stat[I]=0 (mailbox empty) then
1695 	 *     read from the PPUINT_MB register.
1696 	 */
1697 	if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1698 		dummy = in_be64(&priv2->puint_mb_R);
1699 		eieio();
1700 		spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1701 		eieio();
1702 	}
1703 }
1704 
1705 static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1706 {
1707 	/* Restore, Step 69:
1708 	 *     Restore the MFC_SR1 register from CSA.
1709 	 */
1710 	spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1711 	eieio();
1712 }
1713 
1714 static inline void restore_other_spu_access(struct spu_state *csa,
1715 					    struct spu *spu)
1716 {
1717 	/* Restore, Step 70:
1718 	 *     Restore other SPU mappings to this SPU. TBD.
1719 	 */
1720 }
1721 
1722 static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1723 {
1724 	struct spu_problem __iomem *prob = spu->problem;
1725 
1726 	/* Restore, Step 71:
1727 	 *     If CSA.SPU_Status[R]=1 then write
1728 	 *     SPU_RunCntl[R0R1]='01'.
1729 	 */
1730 	if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1731 		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1732 		eieio();
1733 	}
1734 }
1735 
1736 static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1737 {
1738 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1739 
1740 	/* Restore, Step 72:
1741 	 *    Restore the MFC_CNTL register for the CSA.
1742 	 */
1743 	out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1744 	eieio();
1745 	/*
1746 	 * FIXME: this is to restart a DMA that we were processing
1747 	 *        before the save. better remember the fault information
1748 	 *        in the csa instead.
1749 	 */
1750 	if ((csa->priv2.mfc_control_RW & MFC_CNTL_SUSPEND_DMA_QUEUE_MASK)) {
1751 		out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
1752 		eieio();
1753 	}
1754 }
1755 
1756 static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1757 {
1758 	/* Restore, Step 73:
1759 	 *     Enable user-space access (if provided) to this
1760 	 *     SPU by mapping the virtual pages assigned to
1761 	 *     the SPU memory-mapped I/O (MMIO) for problem
1762 	 *     state. TBD.
1763 	 */
1764 }
1765 
1766 static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1767 {
1768 	/* Restore, Step 74:
1769 	 *     Reset the "context switch active" flag.
1770 	 */
1771 	clear_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
1772 	mb();
1773 }
1774 
1775 static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1776 {
1777 	/* Restore, Step 75:
1778 	 *     Re-enable SPU interrupts.
1779 	 */
1780 	spin_lock_irq(&spu->register_lock);
1781 	spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1782 	spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1783 	spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1784 	spin_unlock_irq(&spu->register_lock);
1785 }
1786 
1787 static int quiece_spu(struct spu_state *prev, struct spu *spu)
1788 {
1789 	/*
1790 	 * Combined steps 2-18 of SPU context save sequence, which
1791 	 * quiesce the SPU state (disable SPU execution, MFC command
1792 	 * queues, decrementer, SPU interrupts, etc.).
1793 	 *
1794 	 * Returns      0 on success.
1795 	 *              2 if failed step 2.
1796 	 *              6 if failed step 6.
1797 	 */
1798 
1799 	if (check_spu_isolate(prev, spu)) {	/* Step 2. */
1800 		return 2;
1801 	}
1802 	disable_interrupts(prev, spu);	        /* Step 3. */
1803 	set_watchdog_timer(prev, spu);	        /* Step 4. */
1804 	inhibit_user_access(prev, spu);	        /* Step 5. */
1805 	if (check_spu_isolate(prev, spu)) {	/* Step 6. */
1806 		return 6;
1807 	}
1808 	set_switch_pending(prev, spu);	        /* Step 7. */
1809 	save_mfc_cntl(prev, spu);		/* Step 8. */
1810 	save_spu_runcntl(prev, spu);	        /* Step 9. */
1811 	save_mfc_sr1(prev, spu);	        /* Step 10. */
1812 	save_spu_status(prev, spu);	        /* Step 11. */
1813 	save_mfc_decr(prev, spu);	        /* Step 12. */
1814 	halt_mfc_decr(prev, spu);	        /* Step 13. */
1815 	save_timebase(prev, spu);		/* Step 14. */
1816 	remove_other_spu_access(prev, spu);	/* Step 15. */
1817 	do_mfc_mssync(prev, spu);	        /* Step 16. */
1818 	issue_mfc_tlbie(prev, spu);	        /* Step 17. */
1819 	handle_pending_interrupts(prev, spu);	/* Step 18. */
1820 
1821 	return 0;
1822 }
1823 
1824 static void save_csa(struct spu_state *prev, struct spu *spu)
1825 {
1826 	/*
1827 	 * Combine steps 19-44 of SPU context save sequence, which
1828 	 * save regions of the privileged & problem state areas.
1829 	 */
1830 
1831 	save_mfc_queues(prev, spu);	/* Step 19. */
1832 	save_ppu_querymask(prev, spu);	/* Step 20. */
1833 	save_ppu_querytype(prev, spu);	/* Step 21. */
1834 	save_ppu_tagstatus(prev, spu);  /* NEW.     */
1835 	save_mfc_csr_tsq(prev, spu);	/* Step 22. */
1836 	save_mfc_csr_cmd(prev, spu);	/* Step 23. */
1837 	save_mfc_csr_ato(prev, spu);	/* Step 24. */
1838 	save_mfc_tclass_id(prev, spu);	/* Step 25. */
1839 	set_mfc_tclass_id(prev, spu);	/* Step 26. */
1840 	purge_mfc_queue(prev, spu);	/* Step 27. */
1841 	wait_purge_complete(prev, spu);	/* Step 28. */
1842 	setup_mfc_sr1(prev, spu);	/* Step 30. */
1843 	save_spu_npc(prev, spu);	/* Step 31. */
1844 	save_spu_privcntl(prev, spu);	/* Step 32. */
1845 	reset_spu_privcntl(prev, spu);	/* Step 33. */
1846 	save_spu_lslr(prev, spu);	/* Step 34. */
1847 	reset_spu_lslr(prev, spu);	/* Step 35. */
1848 	save_spu_cfg(prev, spu);	/* Step 36. */
1849 	save_pm_trace(prev, spu);	/* Step 37. */
1850 	save_mfc_rag(prev, spu);	/* Step 38. */
1851 	save_ppu_mb_stat(prev, spu);	/* Step 39. */
1852 	save_ppu_mb(prev, spu);	        /* Step 40. */
1853 	save_ppuint_mb(prev, spu);	/* Step 41. */
1854 	save_ch_part1(prev, spu);	/* Step 42. */
1855 	save_spu_mb(prev, spu);	        /* Step 43. */
1856 	save_mfc_cmd(prev, spu);	/* Step 44. */
1857 	reset_ch(prev, spu);	        /* Step 45. */
1858 }
1859 
1860 static void save_lscsa(struct spu_state *prev, struct spu *spu)
1861 {
1862 	/*
1863 	 * Perform steps 46-57 of SPU context save sequence,
1864 	 * which save regions of the local store and register
1865 	 * file.
1866 	 */
1867 
1868 	resume_mfc_queue(prev, spu);	/* Step 46. */
1869 	setup_mfc_slbs(prev, spu);	/* Step 47. */
1870 	set_switch_active(prev, spu);	/* Step 48. */
1871 	enable_interrupts(prev, spu);	/* Step 49. */
1872 	save_ls_16kb(prev, spu);	/* Step 50. */
1873 	set_spu_npc(prev, spu);	        /* Step 51. */
1874 	set_signot1(prev, spu);		/* Step 52. */
1875 	set_signot2(prev, spu);		/* Step 53. */
1876 	send_save_code(prev, spu);	/* Step 54. */
1877 	set_ppu_querymask(prev, spu);	/* Step 55. */
1878 	wait_tag_complete(prev, spu);	/* Step 56. */
1879 	wait_spu_stopped(prev, spu);	/* Step 57. */
1880 }
1881 
1882 static void force_spu_isolate_exit(struct spu *spu)
1883 {
1884 	struct spu_problem __iomem *prob = spu->problem;
1885 	struct spu_priv2 __iomem *priv2 = spu->priv2;
1886 
1887 	/* Stop SPE execution and wait for completion. */
1888 	out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1889 	iobarrier_rw();
1890 	POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
1891 
1892 	/* Restart SPE master runcntl. */
1893 	spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1894 	iobarrier_w();
1895 
1896 	/* Initiate isolate exit request and wait for completion. */
1897 	out_be64(&priv2->spu_privcntl_RW, 4LL);
1898 	iobarrier_w();
1899 	out_be32(&prob->spu_runcntl_RW, 2);
1900 	iobarrier_rw();
1901 	POLL_WHILE_FALSE((in_be32(&prob->spu_status_R)
1902 				& SPU_STATUS_STOPPED_BY_STOP));
1903 
1904 	/* Reset load request to normal. */
1905 	out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL);
1906 	iobarrier_w();
1907 }
1908 
1909 /**
1910  * stop_spu_isolate
1911  *	Check SPU run-control state and force isolated
1912  *	exit function as necessary.
1913  */
1914 static void stop_spu_isolate(struct spu *spu)
1915 {
1916 	struct spu_problem __iomem *prob = spu->problem;
1917 
1918 	if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) {
1919 		/* The SPU is in isolated state; the only way
1920 		 * to get it out is to perform an isolated
1921 		 * exit (clean) operation.
1922 		 */
1923 		force_spu_isolate_exit(spu);
1924 	}
1925 }
1926 
1927 static void harvest(struct spu_state *prev, struct spu *spu)
1928 {
1929 	/*
1930 	 * Perform steps 2-25 of SPU context restore sequence,
1931 	 * which resets an SPU either after a failed save, or
1932 	 * when using SPU for first time.
1933 	 */
1934 
1935 	disable_interrupts(prev, spu);	        /* Step 2.  */
1936 	inhibit_user_access(prev, spu);	        /* Step 3.  */
1937 	terminate_spu_app(prev, spu);	        /* Step 4.  */
1938 	set_switch_pending(prev, spu);	        /* Step 5.  */
1939 	stop_spu_isolate(spu);			/* NEW.     */
1940 	remove_other_spu_access(prev, spu);	/* Step 6.  */
1941 	suspend_mfc_and_halt_decr(prev, spu);	/* Step 7.  */
1942 	wait_suspend_mfc_complete(prev, spu);	/* Step 8.  */
1943 	if (!suspend_spe(prev, spu))	        /* Step 9.  */
1944 		clear_spu_status(prev, spu);	/* Step 10. */
1945 	do_mfc_mssync(prev, spu);	        /* Step 11. */
1946 	issue_mfc_tlbie(prev, spu);	        /* Step 12. */
1947 	handle_pending_interrupts(prev, spu);	/* Step 13. */
1948 	purge_mfc_queue(prev, spu);	        /* Step 14. */
1949 	wait_purge_complete(prev, spu);	        /* Step 15. */
1950 	reset_spu_privcntl(prev, spu);	        /* Step 16. */
1951 	reset_spu_lslr(prev, spu);              /* Step 17. */
1952 	setup_mfc_sr1(prev, spu);	        /* Step 18. */
1953 	spu_invalidate_slbs(spu);		/* Step 19. */
1954 	reset_ch_part1(prev, spu);	        /* Step 20. */
1955 	reset_ch_part2(prev, spu);	        /* Step 21. */
1956 	enable_interrupts(prev, spu);	        /* Step 22. */
1957 	set_switch_active(prev, spu);	        /* Step 23. */
1958 	set_mfc_tclass_id(prev, spu);	        /* Step 24. */
1959 	resume_mfc_queue(prev, spu);	        /* Step 25. */
1960 }
1961 
1962 static void restore_lscsa(struct spu_state *next, struct spu *spu)
1963 {
1964 	/*
1965 	 * Perform steps 26-40 of SPU context restore sequence,
1966 	 * which restores regions of the local store and register
1967 	 * file.
1968 	 */
1969 
1970 	set_watchdog_timer(next, spu);	        /* Step 26. */
1971 	setup_spu_status_part1(next, spu);	/* Step 27. */
1972 	setup_spu_status_part2(next, spu);	/* Step 28. */
1973 	restore_mfc_rag(next, spu);	        /* Step 29. */
1974 	setup_mfc_slbs(next, spu);	        /* Step 30. */
1975 	set_spu_npc(next, spu);	                /* Step 31. */
1976 	set_signot1(next, spu);	                /* Step 32. */
1977 	set_signot2(next, spu);	                /* Step 33. */
1978 	setup_decr(next, spu);	                /* Step 34. */
1979 	setup_ppu_mb(next, spu);	        /* Step 35. */
1980 	setup_ppuint_mb(next, spu);	        /* Step 36. */
1981 	send_restore_code(next, spu);	        /* Step 37. */
1982 	set_ppu_querymask(next, spu);	        /* Step 38. */
1983 	wait_tag_complete(next, spu);	        /* Step 39. */
1984 	wait_spu_stopped(next, spu);	        /* Step 40. */
1985 }
1986 
1987 static void restore_csa(struct spu_state *next, struct spu *spu)
1988 {
1989 	/*
1990 	 * Combine steps 41-76 of SPU context restore sequence, which
1991 	 * restore regions of the privileged & problem state areas.
1992 	 */
1993 
1994 	restore_spu_privcntl(next, spu);	/* Step 41. */
1995 	restore_status_part1(next, spu);	/* Step 42. */
1996 	restore_status_part2(next, spu);	/* Step 43. */
1997 	restore_ls_16kb(next, spu);	        /* Step 44. */
1998 	wait_tag_complete(next, spu);	        /* Step 45. */
1999 	suspend_mfc(next, spu);	                /* Step 46. */
2000 	wait_suspend_mfc_complete(next, spu);	/* Step 47. */
2001 	issue_mfc_tlbie(next, spu);	        /* Step 48. */
2002 	clear_interrupts(next, spu);	        /* Step 49. */
2003 	restore_mfc_queues(next, spu);	        /* Step 50. */
2004 	restore_ppu_querymask(next, spu);	/* Step 51. */
2005 	restore_ppu_querytype(next, spu);	/* Step 52. */
2006 	restore_mfc_csr_tsq(next, spu);	        /* Step 53. */
2007 	restore_mfc_csr_cmd(next, spu);	        /* Step 54. */
2008 	restore_mfc_csr_ato(next, spu);	        /* Step 55. */
2009 	restore_mfc_tclass_id(next, spu);	/* Step 56. */
2010 	set_llr_event(next, spu);	        /* Step 57. */
2011 	restore_decr_wrapped(next, spu);	/* Step 58. */
2012 	restore_ch_part1(next, spu);	        /* Step 59. */
2013 	restore_ch_part2(next, spu);	        /* Step 60. */
2014 	restore_spu_lslr(next, spu);	        /* Step 61. */
2015 	restore_spu_cfg(next, spu);	        /* Step 62. */
2016 	restore_pm_trace(next, spu);	        /* Step 63. */
2017 	restore_spu_npc(next, spu);	        /* Step 64. */
2018 	restore_spu_mb(next, spu);	        /* Step 65. */
2019 	check_ppu_mb_stat(next, spu);	        /* Step 66. */
2020 	check_ppuint_mb_stat(next, spu);	/* Step 67. */
2021 	spu_invalidate_slbs(spu);		/* Modified Step 68. */
2022 	restore_mfc_sr1(next, spu);	        /* Step 69. */
2023 	restore_other_spu_access(next, spu);	/* Step 70. */
2024 	restore_spu_runcntl(next, spu);	        /* Step 71. */
2025 	restore_mfc_cntl(next, spu);	        /* Step 72. */
2026 	enable_user_access(next, spu);	        /* Step 73. */
2027 	reset_switch_active(next, spu);	        /* Step 74. */
2028 	reenable_interrupts(next, spu);	        /* Step 75. */
2029 }
2030 
2031 static int __do_spu_save(struct spu_state *prev, struct spu *spu)
2032 {
2033 	int rc;
2034 
2035 	/*
2036 	 * SPU context save can be broken into three phases:
2037 	 *
2038 	 *     (a) quiesce [steps 2-16].
2039 	 *     (b) save of CSA, performed by PPE [steps 17-42]
2040 	 *     (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2041 	 *
2042 	 * Returns      0 on success.
2043 	 *              2,6 if failed to quiece SPU
2044 	 *              53 if SPU-side of save failed.
2045 	 */
2046 
2047 	rc = quiece_spu(prev, spu);	        /* Steps 2-16. */
2048 	switch (rc) {
2049 	default:
2050 	case 2:
2051 	case 6:
2052 		harvest(prev, spu);
2053 		return rc;
2054 		break;
2055 	case 0:
2056 		break;
2057 	}
2058 	save_csa(prev, spu);	                /* Steps 17-43. */
2059 	save_lscsa(prev, spu);	                /* Steps 44-53. */
2060 	return check_save_status(prev, spu);	/* Step 54.     */
2061 }
2062 
2063 static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2064 {
2065 	int rc;
2066 
2067 	/*
2068 	 * SPU context restore can be broken into three phases:
2069 	 *
2070 	 *    (a) harvest (or reset) SPU [steps 2-24].
2071 	 *    (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2072 	 *    (c) restore CSA [steps 41-76], performed by PPE.
2073 	 *
2074 	 * The 'harvest' step is not performed here, but rather
2075 	 * as needed below.
2076 	 */
2077 
2078 	restore_lscsa(next, spu);	        /* Steps 24-39. */
2079 	rc = check_restore_status(next, spu);	/* Step 40.     */
2080 	switch (rc) {
2081 	default:
2082 		/* Failed. Return now. */
2083 		return rc;
2084 		break;
2085 	case 0:
2086 		/* Fall through to next step. */
2087 		break;
2088 	}
2089 	restore_csa(next, spu);
2090 
2091 	return 0;
2092 }
2093 
2094 /**
2095  * spu_save - SPU context save, with locking.
2096  * @prev: pointer to SPU context save area, to be saved.
2097  * @spu: pointer to SPU iomem structure.
2098  *
2099  * Acquire locks, perform the save operation then return.
2100  */
2101 int spu_save(struct spu_state *prev, struct spu *spu)
2102 {
2103 	int rc;
2104 
2105 	acquire_spu_lock(spu);	        /* Step 1.     */
2106 	prev->dar = spu->dar;
2107 	prev->dsisr = spu->dsisr;
2108 	spu->dar = 0;
2109 	spu->dsisr = 0;
2110 	rc = __do_spu_save(prev, spu);	/* Steps 2-53. */
2111 	release_spu_lock(spu);
2112 	if (rc != 0 && rc != 2 && rc != 6) {
2113 		panic("%s failed on SPU[%d], rc=%d.\n",
2114 		      __func__, spu->number, rc);
2115 	}
2116 	return 0;
2117 }
2118 EXPORT_SYMBOL_GPL(spu_save);
2119 
2120 /**
2121  * spu_restore - SPU context restore, with harvest and locking.
2122  * @new: pointer to SPU context save area, to be restored.
2123  * @spu: pointer to SPU iomem structure.
2124  *
2125  * Perform harvest + restore, as we may not be coming
2126  * from a previous successful save operation, and the
2127  * hardware state is unknown.
2128  */
2129 int spu_restore(struct spu_state *new, struct spu *spu)
2130 {
2131 	int rc;
2132 
2133 	acquire_spu_lock(spu);
2134 	harvest(NULL, spu);
2135 	spu->slb_replace = 0;
2136 	new->dar = 0;
2137 	new->dsisr = 0;
2138 	spu->class_0_pending = 0;
2139 	rc = __do_spu_restore(new, spu);
2140 	release_spu_lock(spu);
2141 	if (rc) {
2142 		panic("%s failed on SPU[%d] rc=%d.\n",
2143 		       __func__, spu->number, rc);
2144 	}
2145 	return rc;
2146 }
2147 EXPORT_SYMBOL_GPL(spu_restore);
2148 
2149 /**
2150  * spu_harvest - SPU harvest (reset) operation
2151  * @spu: pointer to SPU iomem structure.
2152  *
2153  * Perform SPU harvest (reset) operation.
2154  */
2155 void spu_harvest(struct spu *spu)
2156 {
2157 	acquire_spu_lock(spu);
2158 	harvest(NULL, spu);
2159 	release_spu_lock(spu);
2160 }
2161 
2162 static void init_prob(struct spu_state *csa)
2163 {
2164 	csa->spu_chnlcnt_RW[9] = 1;
2165 	csa->spu_chnlcnt_RW[21] = 16;
2166 	csa->spu_chnlcnt_RW[23] = 1;
2167 	csa->spu_chnlcnt_RW[28] = 1;
2168 	csa->spu_chnlcnt_RW[30] = 1;
2169 	csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2170 	csa->prob.mb_stat_R = 0x000400;
2171 }
2172 
2173 static void init_priv1(struct spu_state *csa)
2174 {
2175 	/* Enable decode, relocate, tlbie response, master runcntl. */
2176 	csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2177 	    MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2178 	    MFC_STATE1_PROBLEM_STATE_MASK |
2179 	    MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2180 
2181 	/* Enable OS-specific set of interrupts. */
2182 	csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2183 	    CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2184 	    CLASS0_ENABLE_SPU_ERROR_INTR;
2185 	csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2186 	    CLASS1_ENABLE_STORAGE_FAULT_INTR;
2187 	csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2188 	    CLASS2_ENABLE_SPU_HALT_INTR |
2189 	    CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2190 }
2191 
2192 static void init_priv2(struct spu_state *csa)
2193 {
2194 	csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2195 	csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2196 	    MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2197 	    MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2198 }
2199 
2200 /**
2201  * spu_alloc_csa - allocate and initialize an SPU context save area.
2202  *
2203  * Allocate and initialize the contents of an SPU context save area.
2204  * This includes enabling address translation, interrupt masks, etc.,
2205  * as appropriate for the given OS environment.
2206  *
2207  * Note that storage for the 'lscsa' is allocated separately,
2208  * as it is by far the largest of the context save regions,
2209  * and may need to be pinned or otherwise specially aligned.
2210  */
2211 int spu_init_csa(struct spu_state *csa)
2212 {
2213 	int rc;
2214 
2215 	if (!csa)
2216 		return -EINVAL;
2217 	memset(csa, 0, sizeof(struct spu_state));
2218 
2219 	rc = spu_alloc_lscsa(csa);
2220 	if (rc)
2221 		return rc;
2222 
2223 	spin_lock_init(&csa->register_lock);
2224 
2225 	init_prob(csa);
2226 	init_priv1(csa);
2227 	init_priv2(csa);
2228 
2229 	return 0;
2230 }
2231 EXPORT_SYMBOL_GPL(spu_init_csa);
2232 
2233 void spu_fini_csa(struct spu_state *csa)
2234 {
2235 	spu_free_lscsa(csa);
2236 }
2237 EXPORT_SYMBOL_GPL(spu_fini_csa);
2238