xref: /linux/arch/powerpc/platforms/powernv/pci.h (revision 908fc4c2)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __POWERNV_PCI_H
3 #define __POWERNV_PCI_H
4 
5 #include <linux/compiler.h>		/* for __printf */
6 #include <linux/iommu.h>
7 #include <asm/iommu.h>
8 #include <asm/msi_bitmap.h>
9 
10 struct pci_dn;
11 
12 enum pnv_phb_type {
13 	PNV_PHB_IODA1,
14 	PNV_PHB_IODA2,
15 	PNV_PHB_NPU_OCAPI,
16 };
17 
18 /* Precise PHB model for error management */
19 enum pnv_phb_model {
20 	PNV_PHB_MODEL_UNKNOWN,
21 	PNV_PHB_MODEL_P7IOC,
22 	PNV_PHB_MODEL_PHB3,
23 };
24 
25 #define PNV_PCI_DIAG_BUF_SIZE	8192
26 #define PNV_IODA_PE_DEV		(1 << 0)	/* PE has single PCI device	*/
27 #define PNV_IODA_PE_BUS		(1 << 1)	/* PE has primary PCI bus	*/
28 #define PNV_IODA_PE_BUS_ALL	(1 << 2)	/* PE has subordinate buses	*/
29 #define PNV_IODA_PE_MASTER	(1 << 3)	/* Master PE in compound case	*/
30 #define PNV_IODA_PE_SLAVE	(1 << 4)	/* Slave PE in compound case	*/
31 #define PNV_IODA_PE_VF		(1 << 5)	/* PE for one VF 		*/
32 
33 /*
34  * A brief note on PNV_IODA_PE_BUS_ALL
35  *
36  * This is needed because of the behaviour of PCIe-to-PCI bridges. The PHB uses
37  * the Requester ID field of the PCIe request header to determine the device
38  * (and PE) that initiated a DMA. In legacy PCI individual memory read/write
39  * requests aren't tagged with the RID. To work around this the PCIe-to-PCI
40  * bridge will use (secondary_bus_no << 8) | 0x00 as the RID on the PCIe side.
41  *
42  * PCIe-to-X bridges have a similar issue even though PCI-X requests also have
43  * a RID in the transaction header. The PCIe-to-X bridge is permitted to "take
44  * ownership" of a transaction by a PCI-X device when forwarding it to the PCIe
45  * side of the bridge.
46  *
47  * To work around these problems we use the BUS_ALL flag since every subordinate
48  * bus of the bridge should go into the same PE.
49  */
50 
51 /* Indicates operations are frozen for a PE: MMIO in PESTA & DMA in PESTB. */
52 #define PNV_IODA_STOPPED_STATE	0x8000000000000000
53 
54 /* Data associated with a PE, including IOMMU tracking etc.. */
55 struct pnv_phb;
56 struct pnv_ioda_pe {
57 	unsigned long		flags;
58 	struct pnv_phb		*phb;
59 	int			device_count;
60 
61 	/* A PE can be associated with a single device or an
62 	 * entire bus (& children). In the former case, pdev
63 	 * is populated, in the later case, pbus is.
64 	 */
65 #ifdef CONFIG_PCI_IOV
66 	struct pci_dev          *parent_dev;
67 #endif
68 	struct pci_dev		*pdev;
69 	struct pci_bus		*pbus;
70 
71 	/* Effective RID (device RID for a device PE and base bus
72 	 * RID with devfn 0 for a bus PE)
73 	 */
74 	unsigned int		rid;
75 
76 	/* PE number */
77 	unsigned int		pe_number;
78 
79 	/* "Base" iommu table, ie, 4K TCEs, 32-bit DMA */
80 	struct iommu_table_group table_group;
81 
82 	/* 64-bit TCE bypass region */
83 	bool			tce_bypass_enabled;
84 	uint64_t		tce_bypass_base;
85 
86 	/*
87 	 * Used to track whether we've done DMA setup for this PE or not. We
88 	 * want to defer allocating TCE tables, etc until we've added a
89 	 * non-bridge device to the PE.
90 	 */
91 	bool			dma_setup_done;
92 
93 	/* MSIs. MVE index is identical for 32 and 64 bit MSI
94 	 * and -1 if not supported. (It's actually identical to the
95 	 * PE number)
96 	 */
97 	int			mve_number;
98 
99 	/* PEs in compound case */
100 	struct pnv_ioda_pe	*master;
101 	struct list_head	slaves;
102 
103 	/* Link in list of PE#s */
104 	struct list_head	list;
105 };
106 
107 #define PNV_PHB_FLAG_EEH	(1 << 0)
108 
109 struct pnv_phb {
110 	struct pci_controller	*hose;
111 	enum pnv_phb_type	type;
112 	enum pnv_phb_model	model;
113 	u64			hub_id;
114 	u64			opal_id;
115 	int			flags;
116 	void __iomem		*regs;
117 	u64			regs_phys;
118 	spinlock_t		lock;
119 
120 #ifdef CONFIG_DEBUG_FS
121 	int			has_dbgfs;
122 	struct dentry		*dbgfs;
123 #endif
124 
125 	unsigned int		msi_base;
126 	struct msi_bitmap	msi_bmp;
127 	int (*init_m64)(struct pnv_phb *phb);
128 	int (*get_pe_state)(struct pnv_phb *phb, int pe_no);
129 	void (*freeze_pe)(struct pnv_phb *phb, int pe_no);
130 	int (*unfreeze_pe)(struct pnv_phb *phb, int pe_no, int opt);
131 
132 	struct {
133 		/* Global bridge info */
134 		unsigned int		total_pe_num;
135 		unsigned int		reserved_pe_idx;
136 		unsigned int		root_pe_idx;
137 
138 		/* 32-bit MMIO window */
139 		unsigned int		m32_size;
140 		unsigned int		m32_segsize;
141 		unsigned int		m32_pci_base;
142 
143 		/* 64-bit MMIO window */
144 		unsigned int		m64_bar_idx;
145 		unsigned long		m64_size;
146 		unsigned long		m64_segsize;
147 		unsigned long		m64_base;
148 #define MAX_M64_BARS 64
149 		unsigned long		m64_bar_alloc;
150 
151 		/* IO ports */
152 		unsigned int		io_size;
153 		unsigned int		io_segsize;
154 		unsigned int		io_pci_base;
155 
156 		/* PE allocation */
157 		struct mutex		pe_alloc_mutex;
158 		unsigned long		*pe_alloc;
159 		struct pnv_ioda_pe	*pe_array;
160 
161 		/* M32 & IO segment maps */
162 		unsigned int		*m64_segmap;
163 		unsigned int		*m32_segmap;
164 		unsigned int		*io_segmap;
165 
166 		/* DMA32 segment maps - IODA1 only */
167 		unsigned int		dma32_count;
168 		unsigned int		*dma32_segmap;
169 
170 		/* IRQ chip */
171 		int			irq_chip_init;
172 		struct irq_chip		irq_chip;
173 
174 		/* Sorted list of used PE's based
175 		 * on the sequence of creation
176 		 */
177 		struct list_head	pe_list;
178 		struct mutex            pe_list_mutex;
179 
180 		/* Reverse map of PEs, indexed by {bus, devfn} */
181 		unsigned int		pe_rmap[0x10000];
182 	} ioda;
183 
184 	/* PHB and hub diagnostics */
185 	unsigned int		diag_data_size;
186 	u8			*diag_data;
187 };
188 
189 
190 /* IODA PE management */
191 
192 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
193 {
194 	/*
195 	 * WARNING: We cannot rely on the resource flags. The Linux PCI
196 	 * allocation code sometimes decides to put a 64-bit prefetchable
197 	 * BAR in the 32-bit window, so we have to compare the addresses.
198 	 *
199 	 * For simplicity we only test resource start.
200 	 */
201 	return (r->start >= phb->ioda.m64_base &&
202 		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
203 }
204 
205 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
206 {
207 	unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
208 
209 	return (resource_flags & flags) == flags;
210 }
211 
212 int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe);
213 int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe);
214 
215 void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe);
216 void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe);
217 
218 struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count);
219 void pnv_ioda_free_pe(struct pnv_ioda_pe *pe);
220 
221 #ifdef CONFIG_PCI_IOV
222 /*
223  * For SR-IOV we want to put each VF's MMIO resource in to a separate PE.
224  * This requires a bit of acrobatics with the MMIO -> PE configuration
225  * and this structure is used to keep track of it all.
226  */
227 struct pnv_iov_data {
228 	/* number of VFs enabled */
229 	u16     num_vfs;
230 
231 	/* pointer to the array of VF PEs. num_vfs long*/
232 	struct pnv_ioda_pe *vf_pe_arr;
233 
234 	/* Did we map the VF BAR with single-PE IODA BARs? */
235 	bool    m64_single_mode[PCI_SRIOV_NUM_BARS];
236 
237 	/*
238 	 * True if we're using any segmented windows. In that case we need
239 	 * shift the start of the IOV resource the segment corresponding to
240 	 * the allocated PE.
241 	 */
242 	bool    need_shift;
243 
244 	/*
245 	 * Bit mask used to track which m64 windows are used to map the
246 	 * SR-IOV BARs for this device.
247 	 */
248 	DECLARE_BITMAP(used_m64_bar_mask, MAX_M64_BARS);
249 
250 	/*
251 	 * If we map the SR-IOV BARs with a segmented window then
252 	 * parts of that window will be "claimed" by other PEs.
253 	 *
254 	 * "holes" here is used to reserve the leading portion
255 	 * of the window that is used by other (non VF) PEs.
256 	 */
257 	struct resource holes[PCI_SRIOV_NUM_BARS];
258 };
259 
260 static inline struct pnv_iov_data *pnv_iov_get(struct pci_dev *pdev)
261 {
262 	return pdev->dev.archdata.iov_data;
263 }
264 
265 void pnv_pci_ioda_fixup_iov(struct pci_dev *pdev);
266 resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev, int resno);
267 
268 int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs);
269 int pnv_pcibios_sriov_disable(struct pci_dev *pdev);
270 #endif /* CONFIG_PCI_IOV */
271 
272 extern struct pci_ops pnv_pci_ops;
273 
274 void pnv_pci_dump_phb_diag_data(struct pci_controller *hose,
275 				unsigned char *log_buff);
276 int pnv_pci_cfg_read(struct pci_dn *pdn,
277 		     int where, int size, u32 *val);
278 int pnv_pci_cfg_write(struct pci_dn *pdn,
279 		      int where, int size, u32 val);
280 extern struct iommu_table *pnv_pci_table_alloc(int nid);
281 
282 extern void pnv_pci_init_ioda_hub(struct device_node *np);
283 extern void pnv_pci_init_ioda2_phb(struct device_node *np);
284 extern void pnv_pci_init_npu2_opencapi_phb(struct device_node *np);
285 extern void pnv_pci_reset_secondary_bus(struct pci_dev *dev);
286 extern int pnv_eeh_phb_reset(struct pci_controller *hose, int option);
287 
288 extern struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn);
289 extern struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev);
290 extern void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq);
291 extern unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
292 		__u64 window_size, __u32 levels);
293 extern int pnv_eeh_post_init(void);
294 
295 __printf(3, 4)
296 extern void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
297 			    const char *fmt, ...);
298 #define pe_err(pe, fmt, ...)					\
299 	pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
300 #define pe_warn(pe, fmt, ...)					\
301 	pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
302 #define pe_info(pe, fmt, ...)					\
303 	pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
304 
305 /* pci-ioda-tce.c */
306 #define POWERNV_IOMMU_DEFAULT_LEVELS	2
307 #define POWERNV_IOMMU_MAX_LEVELS	5
308 
309 extern int pnv_tce_build(struct iommu_table *tbl, long index, long npages,
310 		unsigned long uaddr, enum dma_data_direction direction,
311 		unsigned long attrs);
312 extern void pnv_tce_free(struct iommu_table *tbl, long index, long npages);
313 extern int pnv_tce_xchg(struct iommu_table *tbl, long index,
314 		unsigned long *hpa, enum dma_data_direction *direction);
315 extern __be64 *pnv_tce_useraddrptr(struct iommu_table *tbl, long index,
316 		bool alloc);
317 extern unsigned long pnv_tce_get(struct iommu_table *tbl, long index);
318 
319 extern long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
320 		__u32 page_shift, __u64 window_size, __u32 levels,
321 		bool alloc_userspace_copy, struct iommu_table *tbl);
322 extern void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
323 
324 extern long pnv_pci_link_table_and_group(int node, int num,
325 		struct iommu_table *tbl,
326 		struct iommu_table_group *table_group);
327 extern void pnv_pci_unlink_table_and_group(struct iommu_table *tbl,
328 		struct iommu_table_group *table_group);
329 extern void pnv_pci_setup_iommu_table(struct iommu_table *tbl,
330 		void *tce_mem, u64 tce_size,
331 		u64 dma_offset, unsigned int page_shift);
332 
333 extern unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb);
334 
335 static inline struct pnv_phb *pci_bus_to_pnvhb(struct pci_bus *bus)
336 {
337 	struct pci_controller *hose = bus->sysdata;
338 
339 	if (hose)
340 		return hose->private_data;
341 
342 	return NULL;
343 }
344 
345 #endif /* __POWERNV_PCI_H */
346