xref: /linux/arch/s390/kvm/kvm-s390.c (revision 1e525507)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * hosting IBM Z kernel virtual machines (s390x)
4  *
5  * Copyright IBM Corp. 2008, 2020
6  *
7  *    Author(s): Carsten Otte <cotte@de.ibm.com>
8  *               Christian Borntraeger <borntraeger@de.ibm.com>
9  *               Christian Ehrhardt <ehrhardt@de.ibm.com>
10  *               Jason J. Herne <jjherne@us.ibm.com>
11  */
12 
13 #define KMSG_COMPONENT "kvm-s390"
14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
15 
16 #include <linux/compiler.h>
17 #include <linux/err.h>
18 #include <linux/fs.h>
19 #include <linux/hrtimer.h>
20 #include <linux/init.h>
21 #include <linux/kvm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/mman.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/random.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/vmalloc.h>
30 #include <linux/bitmap.h>
31 #include <linux/sched/signal.h>
32 #include <linux/string.h>
33 #include <linux/pgtable.h>
34 #include <linux/mmu_notifier.h>
35 
36 #include <asm/access-regs.h>
37 #include <asm/asm-offsets.h>
38 #include <asm/lowcore.h>
39 #include <asm/stp.h>
40 #include <asm/gmap.h>
41 #include <asm/nmi.h>
42 #include <asm/isc.h>
43 #include <asm/sclp.h>
44 #include <asm/cpacf.h>
45 #include <asm/timex.h>
46 #include <asm/fpu.h>
47 #include <asm/ap.h>
48 #include <asm/uv.h>
49 #include "kvm-s390.h"
50 #include "gaccess.h"
51 #include "pci.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55 #include "trace-s390.h"
56 
57 #define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
58 #define LOCAL_IRQS 32
59 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
60 			   (KVM_MAX_VCPUS + LOCAL_IRQS))
61 
62 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
63 	KVM_GENERIC_VM_STATS(),
64 	STATS_DESC_COUNTER(VM, inject_io),
65 	STATS_DESC_COUNTER(VM, inject_float_mchk),
66 	STATS_DESC_COUNTER(VM, inject_pfault_done),
67 	STATS_DESC_COUNTER(VM, inject_service_signal),
68 	STATS_DESC_COUNTER(VM, inject_virtio),
69 	STATS_DESC_COUNTER(VM, aen_forward),
70 	STATS_DESC_COUNTER(VM, gmap_shadow_reuse),
71 	STATS_DESC_COUNTER(VM, gmap_shadow_create),
72 	STATS_DESC_COUNTER(VM, gmap_shadow_r1_entry),
73 	STATS_DESC_COUNTER(VM, gmap_shadow_r2_entry),
74 	STATS_DESC_COUNTER(VM, gmap_shadow_r3_entry),
75 	STATS_DESC_COUNTER(VM, gmap_shadow_sg_entry),
76 	STATS_DESC_COUNTER(VM, gmap_shadow_pg_entry),
77 };
78 
79 const struct kvm_stats_header kvm_vm_stats_header = {
80 	.name_size = KVM_STATS_NAME_SIZE,
81 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
82 	.id_offset = sizeof(struct kvm_stats_header),
83 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
84 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
85 		       sizeof(kvm_vm_stats_desc),
86 };
87 
88 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
89 	KVM_GENERIC_VCPU_STATS(),
90 	STATS_DESC_COUNTER(VCPU, exit_userspace),
91 	STATS_DESC_COUNTER(VCPU, exit_null),
92 	STATS_DESC_COUNTER(VCPU, exit_external_request),
93 	STATS_DESC_COUNTER(VCPU, exit_io_request),
94 	STATS_DESC_COUNTER(VCPU, exit_external_interrupt),
95 	STATS_DESC_COUNTER(VCPU, exit_stop_request),
96 	STATS_DESC_COUNTER(VCPU, exit_validity),
97 	STATS_DESC_COUNTER(VCPU, exit_instruction),
98 	STATS_DESC_COUNTER(VCPU, exit_pei),
99 	STATS_DESC_COUNTER(VCPU, halt_no_poll_steal),
100 	STATS_DESC_COUNTER(VCPU, instruction_lctl),
101 	STATS_DESC_COUNTER(VCPU, instruction_lctlg),
102 	STATS_DESC_COUNTER(VCPU, instruction_stctl),
103 	STATS_DESC_COUNTER(VCPU, instruction_stctg),
104 	STATS_DESC_COUNTER(VCPU, exit_program_interruption),
105 	STATS_DESC_COUNTER(VCPU, exit_instr_and_program),
106 	STATS_DESC_COUNTER(VCPU, exit_operation_exception),
107 	STATS_DESC_COUNTER(VCPU, deliver_ckc),
108 	STATS_DESC_COUNTER(VCPU, deliver_cputm),
109 	STATS_DESC_COUNTER(VCPU, deliver_external_call),
110 	STATS_DESC_COUNTER(VCPU, deliver_emergency_signal),
111 	STATS_DESC_COUNTER(VCPU, deliver_service_signal),
112 	STATS_DESC_COUNTER(VCPU, deliver_virtio),
113 	STATS_DESC_COUNTER(VCPU, deliver_stop_signal),
114 	STATS_DESC_COUNTER(VCPU, deliver_prefix_signal),
115 	STATS_DESC_COUNTER(VCPU, deliver_restart_signal),
116 	STATS_DESC_COUNTER(VCPU, deliver_program),
117 	STATS_DESC_COUNTER(VCPU, deliver_io),
118 	STATS_DESC_COUNTER(VCPU, deliver_machine_check),
119 	STATS_DESC_COUNTER(VCPU, exit_wait_state),
120 	STATS_DESC_COUNTER(VCPU, inject_ckc),
121 	STATS_DESC_COUNTER(VCPU, inject_cputm),
122 	STATS_DESC_COUNTER(VCPU, inject_external_call),
123 	STATS_DESC_COUNTER(VCPU, inject_emergency_signal),
124 	STATS_DESC_COUNTER(VCPU, inject_mchk),
125 	STATS_DESC_COUNTER(VCPU, inject_pfault_init),
126 	STATS_DESC_COUNTER(VCPU, inject_program),
127 	STATS_DESC_COUNTER(VCPU, inject_restart),
128 	STATS_DESC_COUNTER(VCPU, inject_set_prefix),
129 	STATS_DESC_COUNTER(VCPU, inject_stop_signal),
130 	STATS_DESC_COUNTER(VCPU, instruction_epsw),
131 	STATS_DESC_COUNTER(VCPU, instruction_gs),
132 	STATS_DESC_COUNTER(VCPU, instruction_io_other),
133 	STATS_DESC_COUNTER(VCPU, instruction_lpsw),
134 	STATS_DESC_COUNTER(VCPU, instruction_lpswe),
135 	STATS_DESC_COUNTER(VCPU, instruction_pfmf),
136 	STATS_DESC_COUNTER(VCPU, instruction_ptff),
137 	STATS_DESC_COUNTER(VCPU, instruction_sck),
138 	STATS_DESC_COUNTER(VCPU, instruction_sckpf),
139 	STATS_DESC_COUNTER(VCPU, instruction_stidp),
140 	STATS_DESC_COUNTER(VCPU, instruction_spx),
141 	STATS_DESC_COUNTER(VCPU, instruction_stpx),
142 	STATS_DESC_COUNTER(VCPU, instruction_stap),
143 	STATS_DESC_COUNTER(VCPU, instruction_iske),
144 	STATS_DESC_COUNTER(VCPU, instruction_ri),
145 	STATS_DESC_COUNTER(VCPU, instruction_rrbe),
146 	STATS_DESC_COUNTER(VCPU, instruction_sske),
147 	STATS_DESC_COUNTER(VCPU, instruction_ipte_interlock),
148 	STATS_DESC_COUNTER(VCPU, instruction_stsi),
149 	STATS_DESC_COUNTER(VCPU, instruction_stfl),
150 	STATS_DESC_COUNTER(VCPU, instruction_tb),
151 	STATS_DESC_COUNTER(VCPU, instruction_tpi),
152 	STATS_DESC_COUNTER(VCPU, instruction_tprot),
153 	STATS_DESC_COUNTER(VCPU, instruction_tsch),
154 	STATS_DESC_COUNTER(VCPU, instruction_sie),
155 	STATS_DESC_COUNTER(VCPU, instruction_essa),
156 	STATS_DESC_COUNTER(VCPU, instruction_sthyi),
157 	STATS_DESC_COUNTER(VCPU, instruction_sigp_sense),
158 	STATS_DESC_COUNTER(VCPU, instruction_sigp_sense_running),
159 	STATS_DESC_COUNTER(VCPU, instruction_sigp_external_call),
160 	STATS_DESC_COUNTER(VCPU, instruction_sigp_emergency),
161 	STATS_DESC_COUNTER(VCPU, instruction_sigp_cond_emergency),
162 	STATS_DESC_COUNTER(VCPU, instruction_sigp_start),
163 	STATS_DESC_COUNTER(VCPU, instruction_sigp_stop),
164 	STATS_DESC_COUNTER(VCPU, instruction_sigp_stop_store_status),
165 	STATS_DESC_COUNTER(VCPU, instruction_sigp_store_status),
166 	STATS_DESC_COUNTER(VCPU, instruction_sigp_store_adtl_status),
167 	STATS_DESC_COUNTER(VCPU, instruction_sigp_arch),
168 	STATS_DESC_COUNTER(VCPU, instruction_sigp_prefix),
169 	STATS_DESC_COUNTER(VCPU, instruction_sigp_restart),
170 	STATS_DESC_COUNTER(VCPU, instruction_sigp_init_cpu_reset),
171 	STATS_DESC_COUNTER(VCPU, instruction_sigp_cpu_reset),
172 	STATS_DESC_COUNTER(VCPU, instruction_sigp_unknown),
173 	STATS_DESC_COUNTER(VCPU, instruction_diagnose_10),
174 	STATS_DESC_COUNTER(VCPU, instruction_diagnose_44),
175 	STATS_DESC_COUNTER(VCPU, instruction_diagnose_9c),
176 	STATS_DESC_COUNTER(VCPU, diag_9c_ignored),
177 	STATS_DESC_COUNTER(VCPU, diag_9c_forward),
178 	STATS_DESC_COUNTER(VCPU, instruction_diagnose_258),
179 	STATS_DESC_COUNTER(VCPU, instruction_diagnose_308),
180 	STATS_DESC_COUNTER(VCPU, instruction_diagnose_500),
181 	STATS_DESC_COUNTER(VCPU, instruction_diagnose_other),
182 	STATS_DESC_COUNTER(VCPU, pfault_sync)
183 };
184 
185 const struct kvm_stats_header kvm_vcpu_stats_header = {
186 	.name_size = KVM_STATS_NAME_SIZE,
187 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
188 	.id_offset = sizeof(struct kvm_stats_header),
189 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
190 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
191 		       sizeof(kvm_vcpu_stats_desc),
192 };
193 
194 /* allow nested virtualization in KVM (if enabled by user space) */
195 static int nested;
196 module_param(nested, int, S_IRUGO);
197 MODULE_PARM_DESC(nested, "Nested virtualization support");
198 
199 /* allow 1m huge page guest backing, if !nested */
200 static int hpage;
201 module_param(hpage, int, 0444);
202 MODULE_PARM_DESC(hpage, "1m huge page backing support");
203 
204 /* maximum percentage of steal time for polling.  >100 is treated like 100 */
205 static u8 halt_poll_max_steal = 10;
206 module_param(halt_poll_max_steal, byte, 0644);
207 MODULE_PARM_DESC(halt_poll_max_steal, "Maximum percentage of steal time to allow polling");
208 
209 /* if set to true, the GISA will be initialized and used if available */
210 static bool use_gisa  = true;
211 module_param(use_gisa, bool, 0644);
212 MODULE_PARM_DESC(use_gisa, "Use the GISA if the host supports it.");
213 
214 /* maximum diag9c forwarding per second */
215 unsigned int diag9c_forwarding_hz;
216 module_param(diag9c_forwarding_hz, uint, 0644);
217 MODULE_PARM_DESC(diag9c_forwarding_hz, "Maximum diag9c forwarding per second, 0 to turn off");
218 
219 /*
220  * allow asynchronous deinit for protected guests; enable by default since
221  * the feature is opt-in anyway
222  */
223 static int async_destroy = 1;
224 module_param(async_destroy, int, 0444);
225 MODULE_PARM_DESC(async_destroy, "Asynchronous destroy for protected guests");
226 
227 /*
228  * For now we handle at most 16 double words as this is what the s390 base
229  * kernel handles and stores in the prefix page. If we ever need to go beyond
230  * this, this requires changes to code, but the external uapi can stay.
231  */
232 #define SIZE_INTERNAL 16
233 
234 /*
235  * Base feature mask that defines default mask for facilities. Consists of the
236  * defines in FACILITIES_KVM and the non-hypervisor managed bits.
237  */
238 static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM };
239 /*
240  * Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL
241  * and defines the facilities that can be enabled via a cpu model.
242  */
243 static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL };
244 
245 static unsigned long kvm_s390_fac_size(void)
246 {
247 	BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64);
248 	BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64);
249 	BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) >
250 		sizeof(stfle_fac_list));
251 
252 	return SIZE_INTERNAL;
253 }
254 
255 /* available cpu features supported by kvm */
256 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
257 /* available subfunctions indicated via query / "test bit" */
258 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
259 
260 static struct gmap_notifier gmap_notifier;
261 static struct gmap_notifier vsie_gmap_notifier;
262 debug_info_t *kvm_s390_dbf;
263 debug_info_t *kvm_s390_dbf_uv;
264 
265 /* Section: not file related */
266 /* forward declarations */
267 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
268 			      unsigned long end);
269 static int sca_switch_to_extended(struct kvm *kvm);
270 
271 static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta)
272 {
273 	u8 delta_idx = 0;
274 
275 	/*
276 	 * The TOD jumps by delta, we have to compensate this by adding
277 	 * -delta to the epoch.
278 	 */
279 	delta = -delta;
280 
281 	/* sign-extension - we're adding to signed values below */
282 	if ((s64)delta < 0)
283 		delta_idx = -1;
284 
285 	scb->epoch += delta;
286 	if (scb->ecd & ECD_MEF) {
287 		scb->epdx += delta_idx;
288 		if (scb->epoch < delta)
289 			scb->epdx += 1;
290 	}
291 }
292 
293 /*
294  * This callback is executed during stop_machine(). All CPUs are therefore
295  * temporarily stopped. In order not to change guest behavior, we have to
296  * disable preemption whenever we touch the epoch of kvm and the VCPUs,
297  * so a CPU won't be stopped while calculating with the epoch.
298  */
299 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
300 			  void *v)
301 {
302 	struct kvm *kvm;
303 	struct kvm_vcpu *vcpu;
304 	unsigned long i;
305 	unsigned long long *delta = v;
306 
307 	list_for_each_entry(kvm, &vm_list, vm_list) {
308 		kvm_for_each_vcpu(i, vcpu, kvm) {
309 			kvm_clock_sync_scb(vcpu->arch.sie_block, *delta);
310 			if (i == 0) {
311 				kvm->arch.epoch = vcpu->arch.sie_block->epoch;
312 				kvm->arch.epdx = vcpu->arch.sie_block->epdx;
313 			}
314 			if (vcpu->arch.cputm_enabled)
315 				vcpu->arch.cputm_start += *delta;
316 			if (vcpu->arch.vsie_block)
317 				kvm_clock_sync_scb(vcpu->arch.vsie_block,
318 						   *delta);
319 		}
320 	}
321 	return NOTIFY_OK;
322 }
323 
324 static struct notifier_block kvm_clock_notifier = {
325 	.notifier_call = kvm_clock_sync,
326 };
327 
328 static void allow_cpu_feat(unsigned long nr)
329 {
330 	set_bit_inv(nr, kvm_s390_available_cpu_feat);
331 }
332 
333 static inline int plo_test_bit(unsigned char nr)
334 {
335 	unsigned long function = (unsigned long)nr | 0x100;
336 	int cc;
337 
338 	asm volatile(
339 		"	lgr	0,%[function]\n"
340 		/* Parameter registers are ignored for "test bit" */
341 		"	plo	0,0,0,0(0)\n"
342 		"	ipm	%0\n"
343 		"	srl	%0,28\n"
344 		: "=d" (cc)
345 		: [function] "d" (function)
346 		: "cc", "0");
347 	return cc == 0;
348 }
349 
350 static __always_inline void __insn32_query(unsigned int opcode, u8 *query)
351 {
352 	asm volatile(
353 		"	lghi	0,0\n"
354 		"	lgr	1,%[query]\n"
355 		/* Parameter registers are ignored */
356 		"	.insn	rrf,%[opc] << 16,2,4,6,0\n"
357 		:
358 		: [query] "d" ((unsigned long)query), [opc] "i" (opcode)
359 		: "cc", "memory", "0", "1");
360 }
361 
362 #define INSN_SORTL 0xb938
363 #define INSN_DFLTCC 0xb939
364 
365 static void __init kvm_s390_cpu_feat_init(void)
366 {
367 	int i;
368 
369 	for (i = 0; i < 256; ++i) {
370 		if (plo_test_bit(i))
371 			kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
372 	}
373 
374 	if (test_facility(28)) /* TOD-clock steering */
375 		ptff(kvm_s390_available_subfunc.ptff,
376 		     sizeof(kvm_s390_available_subfunc.ptff),
377 		     PTFF_QAF);
378 
379 	if (test_facility(17)) { /* MSA */
380 		__cpacf_query(CPACF_KMAC, (cpacf_mask_t *)
381 			      kvm_s390_available_subfunc.kmac);
382 		__cpacf_query(CPACF_KMC, (cpacf_mask_t *)
383 			      kvm_s390_available_subfunc.kmc);
384 		__cpacf_query(CPACF_KM, (cpacf_mask_t *)
385 			      kvm_s390_available_subfunc.km);
386 		__cpacf_query(CPACF_KIMD, (cpacf_mask_t *)
387 			      kvm_s390_available_subfunc.kimd);
388 		__cpacf_query(CPACF_KLMD, (cpacf_mask_t *)
389 			      kvm_s390_available_subfunc.klmd);
390 	}
391 	if (test_facility(76)) /* MSA3 */
392 		__cpacf_query(CPACF_PCKMO, (cpacf_mask_t *)
393 			      kvm_s390_available_subfunc.pckmo);
394 	if (test_facility(77)) { /* MSA4 */
395 		__cpacf_query(CPACF_KMCTR, (cpacf_mask_t *)
396 			      kvm_s390_available_subfunc.kmctr);
397 		__cpacf_query(CPACF_KMF, (cpacf_mask_t *)
398 			      kvm_s390_available_subfunc.kmf);
399 		__cpacf_query(CPACF_KMO, (cpacf_mask_t *)
400 			      kvm_s390_available_subfunc.kmo);
401 		__cpacf_query(CPACF_PCC, (cpacf_mask_t *)
402 			      kvm_s390_available_subfunc.pcc);
403 	}
404 	if (test_facility(57)) /* MSA5 */
405 		__cpacf_query(CPACF_PRNO, (cpacf_mask_t *)
406 			      kvm_s390_available_subfunc.ppno);
407 
408 	if (test_facility(146)) /* MSA8 */
409 		__cpacf_query(CPACF_KMA, (cpacf_mask_t *)
410 			      kvm_s390_available_subfunc.kma);
411 
412 	if (test_facility(155)) /* MSA9 */
413 		__cpacf_query(CPACF_KDSA, (cpacf_mask_t *)
414 			      kvm_s390_available_subfunc.kdsa);
415 
416 	if (test_facility(150)) /* SORTL */
417 		__insn32_query(INSN_SORTL, kvm_s390_available_subfunc.sortl);
418 
419 	if (test_facility(151)) /* DFLTCC */
420 		__insn32_query(INSN_DFLTCC, kvm_s390_available_subfunc.dfltcc);
421 
422 	if (MACHINE_HAS_ESOP)
423 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
424 	/*
425 	 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
426 	 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
427 	 */
428 	if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
429 	    !test_facility(3) || !nested)
430 		return;
431 	allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
432 	if (sclp.has_64bscao)
433 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
434 	if (sclp.has_siif)
435 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
436 	if (sclp.has_gpere)
437 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
438 	if (sclp.has_gsls)
439 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
440 	if (sclp.has_ib)
441 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
442 	if (sclp.has_cei)
443 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
444 	if (sclp.has_ibs)
445 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
446 	if (sclp.has_kss)
447 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS);
448 	/*
449 	 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
450 	 * all skey handling functions read/set the skey from the PGSTE
451 	 * instead of the real storage key.
452 	 *
453 	 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
454 	 * pages being detected as preserved although they are resident.
455 	 *
456 	 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
457 	 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
458 	 *
459 	 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
460 	 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
461 	 * correctly shadowed. We can do that for the PGSTE but not for PTE.I.
462 	 *
463 	 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
464 	 * cannot easily shadow the SCA because of the ipte lock.
465 	 */
466 }
467 
468 static int __init __kvm_s390_init(void)
469 {
470 	int rc = -ENOMEM;
471 
472 	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
473 	if (!kvm_s390_dbf)
474 		return -ENOMEM;
475 
476 	kvm_s390_dbf_uv = debug_register("kvm-uv", 32, 1, 7 * sizeof(long));
477 	if (!kvm_s390_dbf_uv)
478 		goto err_kvm_uv;
479 
480 	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view) ||
481 	    debug_register_view(kvm_s390_dbf_uv, &debug_sprintf_view))
482 		goto err_debug_view;
483 
484 	kvm_s390_cpu_feat_init();
485 
486 	/* Register floating interrupt controller interface. */
487 	rc = kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
488 	if (rc) {
489 		pr_err("A FLIC registration call failed with rc=%d\n", rc);
490 		goto err_flic;
491 	}
492 
493 	if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) {
494 		rc = kvm_s390_pci_init();
495 		if (rc) {
496 			pr_err("Unable to allocate AIFT for PCI\n");
497 			goto err_pci;
498 		}
499 	}
500 
501 	rc = kvm_s390_gib_init(GAL_ISC);
502 	if (rc)
503 		goto err_gib;
504 
505 	gmap_notifier.notifier_call = kvm_gmap_notifier;
506 	gmap_register_pte_notifier(&gmap_notifier);
507 	vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
508 	gmap_register_pte_notifier(&vsie_gmap_notifier);
509 	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
510 				       &kvm_clock_notifier);
511 
512 	return 0;
513 
514 err_gib:
515 	if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
516 		kvm_s390_pci_exit();
517 err_pci:
518 err_flic:
519 err_debug_view:
520 	debug_unregister(kvm_s390_dbf_uv);
521 err_kvm_uv:
522 	debug_unregister(kvm_s390_dbf);
523 	return rc;
524 }
525 
526 static void __kvm_s390_exit(void)
527 {
528 	gmap_unregister_pte_notifier(&gmap_notifier);
529 	gmap_unregister_pte_notifier(&vsie_gmap_notifier);
530 	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
531 					 &kvm_clock_notifier);
532 
533 	kvm_s390_gib_destroy();
534 	if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
535 		kvm_s390_pci_exit();
536 	debug_unregister(kvm_s390_dbf);
537 	debug_unregister(kvm_s390_dbf_uv);
538 }
539 
540 /* Section: device related */
541 long kvm_arch_dev_ioctl(struct file *filp,
542 			unsigned int ioctl, unsigned long arg)
543 {
544 	if (ioctl == KVM_S390_ENABLE_SIE)
545 		return s390_enable_sie();
546 	return -EINVAL;
547 }
548 
549 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
550 {
551 	int r;
552 
553 	switch (ext) {
554 	case KVM_CAP_S390_PSW:
555 	case KVM_CAP_S390_GMAP:
556 	case KVM_CAP_SYNC_MMU:
557 #ifdef CONFIG_KVM_S390_UCONTROL
558 	case KVM_CAP_S390_UCONTROL:
559 #endif
560 	case KVM_CAP_ASYNC_PF:
561 	case KVM_CAP_SYNC_REGS:
562 	case KVM_CAP_ONE_REG:
563 	case KVM_CAP_ENABLE_CAP:
564 	case KVM_CAP_S390_CSS_SUPPORT:
565 	case KVM_CAP_IOEVENTFD:
566 	case KVM_CAP_S390_IRQCHIP:
567 	case KVM_CAP_VM_ATTRIBUTES:
568 	case KVM_CAP_MP_STATE:
569 	case KVM_CAP_IMMEDIATE_EXIT:
570 	case KVM_CAP_S390_INJECT_IRQ:
571 	case KVM_CAP_S390_USER_SIGP:
572 	case KVM_CAP_S390_USER_STSI:
573 	case KVM_CAP_S390_SKEYS:
574 	case KVM_CAP_S390_IRQ_STATE:
575 	case KVM_CAP_S390_USER_INSTR0:
576 	case KVM_CAP_S390_CMMA_MIGRATION:
577 	case KVM_CAP_S390_AIS:
578 	case KVM_CAP_S390_AIS_MIGRATION:
579 	case KVM_CAP_S390_VCPU_RESETS:
580 	case KVM_CAP_SET_GUEST_DEBUG:
581 	case KVM_CAP_S390_DIAG318:
582 	case KVM_CAP_IRQFD_RESAMPLE:
583 		r = 1;
584 		break;
585 	case KVM_CAP_SET_GUEST_DEBUG2:
586 		r = KVM_GUESTDBG_VALID_MASK;
587 		break;
588 	case KVM_CAP_S390_HPAGE_1M:
589 		r = 0;
590 		if (hpage && !kvm_is_ucontrol(kvm))
591 			r = 1;
592 		break;
593 	case KVM_CAP_S390_MEM_OP:
594 		r = MEM_OP_MAX_SIZE;
595 		break;
596 	case KVM_CAP_S390_MEM_OP_EXTENSION:
597 		/*
598 		 * Flag bits indicating which extensions are supported.
599 		 * If r > 0, the base extension must also be supported/indicated,
600 		 * in order to maintain backwards compatibility.
601 		 */
602 		r = KVM_S390_MEMOP_EXTENSION_CAP_BASE |
603 		    KVM_S390_MEMOP_EXTENSION_CAP_CMPXCHG;
604 		break;
605 	case KVM_CAP_NR_VCPUS:
606 	case KVM_CAP_MAX_VCPUS:
607 	case KVM_CAP_MAX_VCPU_ID:
608 		r = KVM_S390_BSCA_CPU_SLOTS;
609 		if (!kvm_s390_use_sca_entries())
610 			r = KVM_MAX_VCPUS;
611 		else if (sclp.has_esca && sclp.has_64bscao)
612 			r = KVM_S390_ESCA_CPU_SLOTS;
613 		if (ext == KVM_CAP_NR_VCPUS)
614 			r = min_t(unsigned int, num_online_cpus(), r);
615 		break;
616 	case KVM_CAP_S390_COW:
617 		r = MACHINE_HAS_ESOP;
618 		break;
619 	case KVM_CAP_S390_VECTOR_REGISTERS:
620 		r = test_facility(129);
621 		break;
622 	case KVM_CAP_S390_RI:
623 		r = test_facility(64);
624 		break;
625 	case KVM_CAP_S390_GS:
626 		r = test_facility(133);
627 		break;
628 	case KVM_CAP_S390_BPB:
629 		r = test_facility(82);
630 		break;
631 	case KVM_CAP_S390_PROTECTED_ASYNC_DISABLE:
632 		r = async_destroy && is_prot_virt_host();
633 		break;
634 	case KVM_CAP_S390_PROTECTED:
635 		r = is_prot_virt_host();
636 		break;
637 	case KVM_CAP_S390_PROTECTED_DUMP: {
638 		u64 pv_cmds_dump[] = {
639 			BIT_UVC_CMD_DUMP_INIT,
640 			BIT_UVC_CMD_DUMP_CONFIG_STOR_STATE,
641 			BIT_UVC_CMD_DUMP_CPU,
642 			BIT_UVC_CMD_DUMP_COMPLETE,
643 		};
644 		int i;
645 
646 		r = is_prot_virt_host();
647 
648 		for (i = 0; i < ARRAY_SIZE(pv_cmds_dump); i++) {
649 			if (!test_bit_inv(pv_cmds_dump[i],
650 					  (unsigned long *)&uv_info.inst_calls_list)) {
651 				r = 0;
652 				break;
653 			}
654 		}
655 		break;
656 	}
657 	case KVM_CAP_S390_ZPCI_OP:
658 		r = kvm_s390_pci_interp_allowed();
659 		break;
660 	case KVM_CAP_S390_CPU_TOPOLOGY:
661 		r = test_facility(11);
662 		break;
663 	default:
664 		r = 0;
665 	}
666 	return r;
667 }
668 
669 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
670 {
671 	int i;
672 	gfn_t cur_gfn, last_gfn;
673 	unsigned long gaddr, vmaddr;
674 	struct gmap *gmap = kvm->arch.gmap;
675 	DECLARE_BITMAP(bitmap, _PAGE_ENTRIES);
676 
677 	/* Loop over all guest segments */
678 	cur_gfn = memslot->base_gfn;
679 	last_gfn = memslot->base_gfn + memslot->npages;
680 	for (; cur_gfn <= last_gfn; cur_gfn += _PAGE_ENTRIES) {
681 		gaddr = gfn_to_gpa(cur_gfn);
682 		vmaddr = gfn_to_hva_memslot(memslot, cur_gfn);
683 		if (kvm_is_error_hva(vmaddr))
684 			continue;
685 
686 		bitmap_zero(bitmap, _PAGE_ENTRIES);
687 		gmap_sync_dirty_log_pmd(gmap, bitmap, gaddr, vmaddr);
688 		for (i = 0; i < _PAGE_ENTRIES; i++) {
689 			if (test_bit(i, bitmap))
690 				mark_page_dirty(kvm, cur_gfn + i);
691 		}
692 
693 		if (fatal_signal_pending(current))
694 			return;
695 		cond_resched();
696 	}
697 }
698 
699 /* Section: vm related */
700 static void sca_del_vcpu(struct kvm_vcpu *vcpu);
701 
702 /*
703  * Get (and clear) the dirty memory log for a memory slot.
704  */
705 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
706 			       struct kvm_dirty_log *log)
707 {
708 	int r;
709 	unsigned long n;
710 	struct kvm_memory_slot *memslot;
711 	int is_dirty;
712 
713 	if (kvm_is_ucontrol(kvm))
714 		return -EINVAL;
715 
716 	mutex_lock(&kvm->slots_lock);
717 
718 	r = -EINVAL;
719 	if (log->slot >= KVM_USER_MEM_SLOTS)
720 		goto out;
721 
722 	r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot);
723 	if (r)
724 		goto out;
725 
726 	/* Clear the dirty log */
727 	if (is_dirty) {
728 		n = kvm_dirty_bitmap_bytes(memslot);
729 		memset(memslot->dirty_bitmap, 0, n);
730 	}
731 	r = 0;
732 out:
733 	mutex_unlock(&kvm->slots_lock);
734 	return r;
735 }
736 
737 static void icpt_operexc_on_all_vcpus(struct kvm *kvm)
738 {
739 	unsigned long i;
740 	struct kvm_vcpu *vcpu;
741 
742 	kvm_for_each_vcpu(i, vcpu, kvm) {
743 		kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu);
744 	}
745 }
746 
747 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
748 {
749 	int r;
750 
751 	if (cap->flags)
752 		return -EINVAL;
753 
754 	switch (cap->cap) {
755 	case KVM_CAP_S390_IRQCHIP:
756 		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
757 		kvm->arch.use_irqchip = 1;
758 		r = 0;
759 		break;
760 	case KVM_CAP_S390_USER_SIGP:
761 		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
762 		kvm->arch.user_sigp = 1;
763 		r = 0;
764 		break;
765 	case KVM_CAP_S390_VECTOR_REGISTERS:
766 		mutex_lock(&kvm->lock);
767 		if (kvm->created_vcpus) {
768 			r = -EBUSY;
769 		} else if (cpu_has_vx()) {
770 			set_kvm_facility(kvm->arch.model.fac_mask, 129);
771 			set_kvm_facility(kvm->arch.model.fac_list, 129);
772 			if (test_facility(134)) {
773 				set_kvm_facility(kvm->arch.model.fac_mask, 134);
774 				set_kvm_facility(kvm->arch.model.fac_list, 134);
775 			}
776 			if (test_facility(135)) {
777 				set_kvm_facility(kvm->arch.model.fac_mask, 135);
778 				set_kvm_facility(kvm->arch.model.fac_list, 135);
779 			}
780 			if (test_facility(148)) {
781 				set_kvm_facility(kvm->arch.model.fac_mask, 148);
782 				set_kvm_facility(kvm->arch.model.fac_list, 148);
783 			}
784 			if (test_facility(152)) {
785 				set_kvm_facility(kvm->arch.model.fac_mask, 152);
786 				set_kvm_facility(kvm->arch.model.fac_list, 152);
787 			}
788 			if (test_facility(192)) {
789 				set_kvm_facility(kvm->arch.model.fac_mask, 192);
790 				set_kvm_facility(kvm->arch.model.fac_list, 192);
791 			}
792 			r = 0;
793 		} else
794 			r = -EINVAL;
795 		mutex_unlock(&kvm->lock);
796 		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
797 			 r ? "(not available)" : "(success)");
798 		break;
799 	case KVM_CAP_S390_RI:
800 		r = -EINVAL;
801 		mutex_lock(&kvm->lock);
802 		if (kvm->created_vcpus) {
803 			r = -EBUSY;
804 		} else if (test_facility(64)) {
805 			set_kvm_facility(kvm->arch.model.fac_mask, 64);
806 			set_kvm_facility(kvm->arch.model.fac_list, 64);
807 			r = 0;
808 		}
809 		mutex_unlock(&kvm->lock);
810 		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
811 			 r ? "(not available)" : "(success)");
812 		break;
813 	case KVM_CAP_S390_AIS:
814 		mutex_lock(&kvm->lock);
815 		if (kvm->created_vcpus) {
816 			r = -EBUSY;
817 		} else {
818 			set_kvm_facility(kvm->arch.model.fac_mask, 72);
819 			set_kvm_facility(kvm->arch.model.fac_list, 72);
820 			r = 0;
821 		}
822 		mutex_unlock(&kvm->lock);
823 		VM_EVENT(kvm, 3, "ENABLE: AIS %s",
824 			 r ? "(not available)" : "(success)");
825 		break;
826 	case KVM_CAP_S390_GS:
827 		r = -EINVAL;
828 		mutex_lock(&kvm->lock);
829 		if (kvm->created_vcpus) {
830 			r = -EBUSY;
831 		} else if (test_facility(133)) {
832 			set_kvm_facility(kvm->arch.model.fac_mask, 133);
833 			set_kvm_facility(kvm->arch.model.fac_list, 133);
834 			r = 0;
835 		}
836 		mutex_unlock(&kvm->lock);
837 		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s",
838 			 r ? "(not available)" : "(success)");
839 		break;
840 	case KVM_CAP_S390_HPAGE_1M:
841 		mutex_lock(&kvm->lock);
842 		if (kvm->created_vcpus)
843 			r = -EBUSY;
844 		else if (!hpage || kvm->arch.use_cmma || kvm_is_ucontrol(kvm))
845 			r = -EINVAL;
846 		else {
847 			r = 0;
848 			mmap_write_lock(kvm->mm);
849 			kvm->mm->context.allow_gmap_hpage_1m = 1;
850 			mmap_write_unlock(kvm->mm);
851 			/*
852 			 * We might have to create fake 4k page
853 			 * tables. To avoid that the hardware works on
854 			 * stale PGSTEs, we emulate these instructions.
855 			 */
856 			kvm->arch.use_skf = 0;
857 			kvm->arch.use_pfmfi = 0;
858 		}
859 		mutex_unlock(&kvm->lock);
860 		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_HPAGE %s",
861 			 r ? "(not available)" : "(success)");
862 		break;
863 	case KVM_CAP_S390_USER_STSI:
864 		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
865 		kvm->arch.user_stsi = 1;
866 		r = 0;
867 		break;
868 	case KVM_CAP_S390_USER_INSTR0:
869 		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0");
870 		kvm->arch.user_instr0 = 1;
871 		icpt_operexc_on_all_vcpus(kvm);
872 		r = 0;
873 		break;
874 	case KVM_CAP_S390_CPU_TOPOLOGY:
875 		r = -EINVAL;
876 		mutex_lock(&kvm->lock);
877 		if (kvm->created_vcpus) {
878 			r = -EBUSY;
879 		} else if (test_facility(11)) {
880 			set_kvm_facility(kvm->arch.model.fac_mask, 11);
881 			set_kvm_facility(kvm->arch.model.fac_list, 11);
882 			r = 0;
883 		}
884 		mutex_unlock(&kvm->lock);
885 		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_CPU_TOPOLOGY %s",
886 			 r ? "(not available)" : "(success)");
887 		break;
888 	default:
889 		r = -EINVAL;
890 		break;
891 	}
892 	return r;
893 }
894 
895 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
896 {
897 	int ret;
898 
899 	switch (attr->attr) {
900 	case KVM_S390_VM_MEM_LIMIT_SIZE:
901 		ret = 0;
902 		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
903 			 kvm->arch.mem_limit);
904 		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
905 			ret = -EFAULT;
906 		break;
907 	default:
908 		ret = -ENXIO;
909 		break;
910 	}
911 	return ret;
912 }
913 
914 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
915 {
916 	int ret;
917 	unsigned int idx;
918 	switch (attr->attr) {
919 	case KVM_S390_VM_MEM_ENABLE_CMMA:
920 		ret = -ENXIO;
921 		if (!sclp.has_cmma)
922 			break;
923 
924 		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
925 		mutex_lock(&kvm->lock);
926 		if (kvm->created_vcpus)
927 			ret = -EBUSY;
928 		else if (kvm->mm->context.allow_gmap_hpage_1m)
929 			ret = -EINVAL;
930 		else {
931 			kvm->arch.use_cmma = 1;
932 			/* Not compatible with cmma. */
933 			kvm->arch.use_pfmfi = 0;
934 			ret = 0;
935 		}
936 		mutex_unlock(&kvm->lock);
937 		break;
938 	case KVM_S390_VM_MEM_CLR_CMMA:
939 		ret = -ENXIO;
940 		if (!sclp.has_cmma)
941 			break;
942 		ret = -EINVAL;
943 		if (!kvm->arch.use_cmma)
944 			break;
945 
946 		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
947 		mutex_lock(&kvm->lock);
948 		idx = srcu_read_lock(&kvm->srcu);
949 		s390_reset_cmma(kvm->arch.gmap->mm);
950 		srcu_read_unlock(&kvm->srcu, idx);
951 		mutex_unlock(&kvm->lock);
952 		ret = 0;
953 		break;
954 	case KVM_S390_VM_MEM_LIMIT_SIZE: {
955 		unsigned long new_limit;
956 
957 		if (kvm_is_ucontrol(kvm))
958 			return -EINVAL;
959 
960 		if (get_user(new_limit, (u64 __user *)attr->addr))
961 			return -EFAULT;
962 
963 		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
964 		    new_limit > kvm->arch.mem_limit)
965 			return -E2BIG;
966 
967 		if (!new_limit)
968 			return -EINVAL;
969 
970 		/* gmap_create takes last usable address */
971 		if (new_limit != KVM_S390_NO_MEM_LIMIT)
972 			new_limit -= 1;
973 
974 		ret = -EBUSY;
975 		mutex_lock(&kvm->lock);
976 		if (!kvm->created_vcpus) {
977 			/* gmap_create will round the limit up */
978 			struct gmap *new = gmap_create(current->mm, new_limit);
979 
980 			if (!new) {
981 				ret = -ENOMEM;
982 			} else {
983 				gmap_remove(kvm->arch.gmap);
984 				new->private = kvm;
985 				kvm->arch.gmap = new;
986 				ret = 0;
987 			}
988 		}
989 		mutex_unlock(&kvm->lock);
990 		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
991 		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
992 			 (void *) kvm->arch.gmap->asce);
993 		break;
994 	}
995 	default:
996 		ret = -ENXIO;
997 		break;
998 	}
999 	return ret;
1000 }
1001 
1002 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);
1003 
1004 void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm)
1005 {
1006 	struct kvm_vcpu *vcpu;
1007 	unsigned long i;
1008 
1009 	kvm_s390_vcpu_block_all(kvm);
1010 
1011 	kvm_for_each_vcpu(i, vcpu, kvm) {
1012 		kvm_s390_vcpu_crypto_setup(vcpu);
1013 		/* recreate the shadow crycb by leaving the VSIE handler */
1014 		kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu);
1015 	}
1016 
1017 	kvm_s390_vcpu_unblock_all(kvm);
1018 }
1019 
1020 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
1021 {
1022 	mutex_lock(&kvm->lock);
1023 	switch (attr->attr) {
1024 	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
1025 		if (!test_kvm_facility(kvm, 76)) {
1026 			mutex_unlock(&kvm->lock);
1027 			return -EINVAL;
1028 		}
1029 		get_random_bytes(
1030 			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
1031 			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
1032 		kvm->arch.crypto.aes_kw = 1;
1033 		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
1034 		break;
1035 	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
1036 		if (!test_kvm_facility(kvm, 76)) {
1037 			mutex_unlock(&kvm->lock);
1038 			return -EINVAL;
1039 		}
1040 		get_random_bytes(
1041 			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
1042 			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1043 		kvm->arch.crypto.dea_kw = 1;
1044 		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
1045 		break;
1046 	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
1047 		if (!test_kvm_facility(kvm, 76)) {
1048 			mutex_unlock(&kvm->lock);
1049 			return -EINVAL;
1050 		}
1051 		kvm->arch.crypto.aes_kw = 0;
1052 		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
1053 			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
1054 		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
1055 		break;
1056 	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
1057 		if (!test_kvm_facility(kvm, 76)) {
1058 			mutex_unlock(&kvm->lock);
1059 			return -EINVAL;
1060 		}
1061 		kvm->arch.crypto.dea_kw = 0;
1062 		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
1063 			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1064 		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
1065 		break;
1066 	case KVM_S390_VM_CRYPTO_ENABLE_APIE:
1067 		if (!ap_instructions_available()) {
1068 			mutex_unlock(&kvm->lock);
1069 			return -EOPNOTSUPP;
1070 		}
1071 		kvm->arch.crypto.apie = 1;
1072 		break;
1073 	case KVM_S390_VM_CRYPTO_DISABLE_APIE:
1074 		if (!ap_instructions_available()) {
1075 			mutex_unlock(&kvm->lock);
1076 			return -EOPNOTSUPP;
1077 		}
1078 		kvm->arch.crypto.apie = 0;
1079 		break;
1080 	default:
1081 		mutex_unlock(&kvm->lock);
1082 		return -ENXIO;
1083 	}
1084 
1085 	kvm_s390_vcpu_crypto_reset_all(kvm);
1086 	mutex_unlock(&kvm->lock);
1087 	return 0;
1088 }
1089 
1090 static void kvm_s390_vcpu_pci_setup(struct kvm_vcpu *vcpu)
1091 {
1092 	/* Only set the ECB bits after guest requests zPCI interpretation */
1093 	if (!vcpu->kvm->arch.use_zpci_interp)
1094 		return;
1095 
1096 	vcpu->arch.sie_block->ecb2 |= ECB2_ZPCI_LSI;
1097 	vcpu->arch.sie_block->ecb3 |= ECB3_AISII + ECB3_AISI;
1098 }
1099 
1100 void kvm_s390_vcpu_pci_enable_interp(struct kvm *kvm)
1101 {
1102 	struct kvm_vcpu *vcpu;
1103 	unsigned long i;
1104 
1105 	lockdep_assert_held(&kvm->lock);
1106 
1107 	if (!kvm_s390_pci_interp_allowed())
1108 		return;
1109 
1110 	/*
1111 	 * If host is configured for PCI and the necessary facilities are
1112 	 * available, turn on interpretation for the life of this guest
1113 	 */
1114 	kvm->arch.use_zpci_interp = 1;
1115 
1116 	kvm_s390_vcpu_block_all(kvm);
1117 
1118 	kvm_for_each_vcpu(i, vcpu, kvm) {
1119 		kvm_s390_vcpu_pci_setup(vcpu);
1120 		kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu);
1121 	}
1122 
1123 	kvm_s390_vcpu_unblock_all(kvm);
1124 }
1125 
1126 static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req)
1127 {
1128 	unsigned long cx;
1129 	struct kvm_vcpu *vcpu;
1130 
1131 	kvm_for_each_vcpu(cx, vcpu, kvm)
1132 		kvm_s390_sync_request(req, vcpu);
1133 }
1134 
1135 /*
1136  * Must be called with kvm->srcu held to avoid races on memslots, and with
1137  * kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration.
1138  */
1139 static int kvm_s390_vm_start_migration(struct kvm *kvm)
1140 {
1141 	struct kvm_memory_slot *ms;
1142 	struct kvm_memslots *slots;
1143 	unsigned long ram_pages = 0;
1144 	int bkt;
1145 
1146 	/* migration mode already enabled */
1147 	if (kvm->arch.migration_mode)
1148 		return 0;
1149 	slots = kvm_memslots(kvm);
1150 	if (!slots || kvm_memslots_empty(slots))
1151 		return -EINVAL;
1152 
1153 	if (!kvm->arch.use_cmma) {
1154 		kvm->arch.migration_mode = 1;
1155 		return 0;
1156 	}
1157 	/* mark all the pages in active slots as dirty */
1158 	kvm_for_each_memslot(ms, bkt, slots) {
1159 		if (!ms->dirty_bitmap)
1160 			return -EINVAL;
1161 		/*
1162 		 * The second half of the bitmap is only used on x86,
1163 		 * and would be wasted otherwise, so we put it to good
1164 		 * use here to keep track of the state of the storage
1165 		 * attributes.
1166 		 */
1167 		memset(kvm_second_dirty_bitmap(ms), 0xff, kvm_dirty_bitmap_bytes(ms));
1168 		ram_pages += ms->npages;
1169 	}
1170 	atomic64_set(&kvm->arch.cmma_dirty_pages, ram_pages);
1171 	kvm->arch.migration_mode = 1;
1172 	kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION);
1173 	return 0;
1174 }
1175 
1176 /*
1177  * Must be called with kvm->slots_lock to avoid races with ourselves and
1178  * kvm_s390_vm_start_migration.
1179  */
1180 static int kvm_s390_vm_stop_migration(struct kvm *kvm)
1181 {
1182 	/* migration mode already disabled */
1183 	if (!kvm->arch.migration_mode)
1184 		return 0;
1185 	kvm->arch.migration_mode = 0;
1186 	if (kvm->arch.use_cmma)
1187 		kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION);
1188 	return 0;
1189 }
1190 
1191 static int kvm_s390_vm_set_migration(struct kvm *kvm,
1192 				     struct kvm_device_attr *attr)
1193 {
1194 	int res = -ENXIO;
1195 
1196 	mutex_lock(&kvm->slots_lock);
1197 	switch (attr->attr) {
1198 	case KVM_S390_VM_MIGRATION_START:
1199 		res = kvm_s390_vm_start_migration(kvm);
1200 		break;
1201 	case KVM_S390_VM_MIGRATION_STOP:
1202 		res = kvm_s390_vm_stop_migration(kvm);
1203 		break;
1204 	default:
1205 		break;
1206 	}
1207 	mutex_unlock(&kvm->slots_lock);
1208 
1209 	return res;
1210 }
1211 
1212 static int kvm_s390_vm_get_migration(struct kvm *kvm,
1213 				     struct kvm_device_attr *attr)
1214 {
1215 	u64 mig = kvm->arch.migration_mode;
1216 
1217 	if (attr->attr != KVM_S390_VM_MIGRATION_STATUS)
1218 		return -ENXIO;
1219 
1220 	if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig)))
1221 		return -EFAULT;
1222 	return 0;
1223 }
1224 
1225 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod);
1226 
1227 static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
1228 {
1229 	struct kvm_s390_vm_tod_clock gtod;
1230 
1231 	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
1232 		return -EFAULT;
1233 
1234 	if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx)
1235 		return -EINVAL;
1236 	__kvm_s390_set_tod_clock(kvm, &gtod);
1237 
1238 	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx",
1239 		gtod.epoch_idx, gtod.tod);
1240 
1241 	return 0;
1242 }
1243 
1244 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
1245 {
1246 	u8 gtod_high;
1247 
1248 	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
1249 					   sizeof(gtod_high)))
1250 		return -EFAULT;
1251 
1252 	if (gtod_high != 0)
1253 		return -EINVAL;
1254 	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
1255 
1256 	return 0;
1257 }
1258 
1259 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
1260 {
1261 	struct kvm_s390_vm_tod_clock gtod = { 0 };
1262 
1263 	if (copy_from_user(&gtod.tod, (void __user *)attr->addr,
1264 			   sizeof(gtod.tod)))
1265 		return -EFAULT;
1266 
1267 	__kvm_s390_set_tod_clock(kvm, &gtod);
1268 	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod);
1269 	return 0;
1270 }
1271 
1272 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
1273 {
1274 	int ret;
1275 
1276 	if (attr->flags)
1277 		return -EINVAL;
1278 
1279 	mutex_lock(&kvm->lock);
1280 	/*
1281 	 * For protected guests, the TOD is managed by the ultravisor, so trying
1282 	 * to change it will never bring the expected results.
1283 	 */
1284 	if (kvm_s390_pv_is_protected(kvm)) {
1285 		ret = -EOPNOTSUPP;
1286 		goto out_unlock;
1287 	}
1288 
1289 	switch (attr->attr) {
1290 	case KVM_S390_VM_TOD_EXT:
1291 		ret = kvm_s390_set_tod_ext(kvm, attr);
1292 		break;
1293 	case KVM_S390_VM_TOD_HIGH:
1294 		ret = kvm_s390_set_tod_high(kvm, attr);
1295 		break;
1296 	case KVM_S390_VM_TOD_LOW:
1297 		ret = kvm_s390_set_tod_low(kvm, attr);
1298 		break;
1299 	default:
1300 		ret = -ENXIO;
1301 		break;
1302 	}
1303 
1304 out_unlock:
1305 	mutex_unlock(&kvm->lock);
1306 	return ret;
1307 }
1308 
1309 static void kvm_s390_get_tod_clock(struct kvm *kvm,
1310 				   struct kvm_s390_vm_tod_clock *gtod)
1311 {
1312 	union tod_clock clk;
1313 
1314 	preempt_disable();
1315 
1316 	store_tod_clock_ext(&clk);
1317 
1318 	gtod->tod = clk.tod + kvm->arch.epoch;
1319 	gtod->epoch_idx = 0;
1320 	if (test_kvm_facility(kvm, 139)) {
1321 		gtod->epoch_idx = clk.ei + kvm->arch.epdx;
1322 		if (gtod->tod < clk.tod)
1323 			gtod->epoch_idx += 1;
1324 	}
1325 
1326 	preempt_enable();
1327 }
1328 
1329 static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
1330 {
1331 	struct kvm_s390_vm_tod_clock gtod;
1332 
1333 	memset(&gtod, 0, sizeof(gtod));
1334 	kvm_s390_get_tod_clock(kvm, &gtod);
1335 	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
1336 		return -EFAULT;
1337 
1338 	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx",
1339 		gtod.epoch_idx, gtod.tod);
1340 	return 0;
1341 }
1342 
1343 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
1344 {
1345 	u8 gtod_high = 0;
1346 
1347 	if (copy_to_user((void __user *)attr->addr, &gtod_high,
1348 					 sizeof(gtod_high)))
1349 		return -EFAULT;
1350 	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
1351 
1352 	return 0;
1353 }
1354 
1355 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
1356 {
1357 	u64 gtod;
1358 
1359 	gtod = kvm_s390_get_tod_clock_fast(kvm);
1360 	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
1361 		return -EFAULT;
1362 	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
1363 
1364 	return 0;
1365 }
1366 
1367 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
1368 {
1369 	int ret;
1370 
1371 	if (attr->flags)
1372 		return -EINVAL;
1373 
1374 	switch (attr->attr) {
1375 	case KVM_S390_VM_TOD_EXT:
1376 		ret = kvm_s390_get_tod_ext(kvm, attr);
1377 		break;
1378 	case KVM_S390_VM_TOD_HIGH:
1379 		ret = kvm_s390_get_tod_high(kvm, attr);
1380 		break;
1381 	case KVM_S390_VM_TOD_LOW:
1382 		ret = kvm_s390_get_tod_low(kvm, attr);
1383 		break;
1384 	default:
1385 		ret = -ENXIO;
1386 		break;
1387 	}
1388 	return ret;
1389 }
1390 
1391 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
1392 {
1393 	struct kvm_s390_vm_cpu_processor *proc;
1394 	u16 lowest_ibc, unblocked_ibc;
1395 	int ret = 0;
1396 
1397 	mutex_lock(&kvm->lock);
1398 	if (kvm->created_vcpus) {
1399 		ret = -EBUSY;
1400 		goto out;
1401 	}
1402 	proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT);
1403 	if (!proc) {
1404 		ret = -ENOMEM;
1405 		goto out;
1406 	}
1407 	if (!copy_from_user(proc, (void __user *)attr->addr,
1408 			    sizeof(*proc))) {
1409 		kvm->arch.model.cpuid = proc->cpuid;
1410 		lowest_ibc = sclp.ibc >> 16 & 0xfff;
1411 		unblocked_ibc = sclp.ibc & 0xfff;
1412 		if (lowest_ibc && proc->ibc) {
1413 			if (proc->ibc > unblocked_ibc)
1414 				kvm->arch.model.ibc = unblocked_ibc;
1415 			else if (proc->ibc < lowest_ibc)
1416 				kvm->arch.model.ibc = lowest_ibc;
1417 			else
1418 				kvm->arch.model.ibc = proc->ibc;
1419 		}
1420 		memcpy(kvm->arch.model.fac_list, proc->fac_list,
1421 		       S390_ARCH_FAC_LIST_SIZE_BYTE);
1422 		VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
1423 			 kvm->arch.model.ibc,
1424 			 kvm->arch.model.cpuid);
1425 		VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1426 			 kvm->arch.model.fac_list[0],
1427 			 kvm->arch.model.fac_list[1],
1428 			 kvm->arch.model.fac_list[2]);
1429 	} else
1430 		ret = -EFAULT;
1431 	kfree(proc);
1432 out:
1433 	mutex_unlock(&kvm->lock);
1434 	return ret;
1435 }
1436 
1437 static int kvm_s390_set_processor_feat(struct kvm *kvm,
1438 				       struct kvm_device_attr *attr)
1439 {
1440 	struct kvm_s390_vm_cpu_feat data;
1441 
1442 	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
1443 		return -EFAULT;
1444 	if (!bitmap_subset((unsigned long *) data.feat,
1445 			   kvm_s390_available_cpu_feat,
1446 			   KVM_S390_VM_CPU_FEAT_NR_BITS))
1447 		return -EINVAL;
1448 
1449 	mutex_lock(&kvm->lock);
1450 	if (kvm->created_vcpus) {
1451 		mutex_unlock(&kvm->lock);
1452 		return -EBUSY;
1453 	}
1454 	bitmap_from_arr64(kvm->arch.cpu_feat, data.feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
1455 	mutex_unlock(&kvm->lock);
1456 	VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
1457 			 data.feat[0],
1458 			 data.feat[1],
1459 			 data.feat[2]);
1460 	return 0;
1461 }
1462 
1463 static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
1464 					  struct kvm_device_attr *attr)
1465 {
1466 	mutex_lock(&kvm->lock);
1467 	if (kvm->created_vcpus) {
1468 		mutex_unlock(&kvm->lock);
1469 		return -EBUSY;
1470 	}
1471 
1472 	if (copy_from_user(&kvm->arch.model.subfuncs, (void __user *)attr->addr,
1473 			   sizeof(struct kvm_s390_vm_cpu_subfunc))) {
1474 		mutex_unlock(&kvm->lock);
1475 		return -EFAULT;
1476 	}
1477 	mutex_unlock(&kvm->lock);
1478 
1479 	VM_EVENT(kvm, 3, "SET: guest PLO    subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1480 		 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0],
1481 		 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1],
1482 		 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2],
1483 		 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]);
1484 	VM_EVENT(kvm, 3, "SET: guest PTFF   subfunc 0x%16.16lx.%16.16lx",
1485 		 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0],
1486 		 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]);
1487 	VM_EVENT(kvm, 3, "SET: guest KMAC   subfunc 0x%16.16lx.%16.16lx",
1488 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0],
1489 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]);
1490 	VM_EVENT(kvm, 3, "SET: guest KMC    subfunc 0x%16.16lx.%16.16lx",
1491 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0],
1492 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]);
1493 	VM_EVENT(kvm, 3, "SET: guest KM     subfunc 0x%16.16lx.%16.16lx",
1494 		 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0],
1495 		 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]);
1496 	VM_EVENT(kvm, 3, "SET: guest KIMD   subfunc 0x%16.16lx.%16.16lx",
1497 		 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0],
1498 		 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]);
1499 	VM_EVENT(kvm, 3, "SET: guest KLMD   subfunc 0x%16.16lx.%16.16lx",
1500 		 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0],
1501 		 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]);
1502 	VM_EVENT(kvm, 3, "SET: guest PCKMO  subfunc 0x%16.16lx.%16.16lx",
1503 		 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0],
1504 		 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]);
1505 	VM_EVENT(kvm, 3, "SET: guest KMCTR  subfunc 0x%16.16lx.%16.16lx",
1506 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0],
1507 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]);
1508 	VM_EVENT(kvm, 3, "SET: guest KMF    subfunc 0x%16.16lx.%16.16lx",
1509 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0],
1510 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]);
1511 	VM_EVENT(kvm, 3, "SET: guest KMO    subfunc 0x%16.16lx.%16.16lx",
1512 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0],
1513 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]);
1514 	VM_EVENT(kvm, 3, "SET: guest PCC    subfunc 0x%16.16lx.%16.16lx",
1515 		 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0],
1516 		 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]);
1517 	VM_EVENT(kvm, 3, "SET: guest PPNO   subfunc 0x%16.16lx.%16.16lx",
1518 		 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0],
1519 		 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]);
1520 	VM_EVENT(kvm, 3, "SET: guest KMA    subfunc 0x%16.16lx.%16.16lx",
1521 		 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0],
1522 		 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]);
1523 	VM_EVENT(kvm, 3, "SET: guest KDSA   subfunc 0x%16.16lx.%16.16lx",
1524 		 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0],
1525 		 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]);
1526 	VM_EVENT(kvm, 3, "SET: guest SORTL  subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1527 		 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0],
1528 		 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1],
1529 		 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2],
1530 		 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]);
1531 	VM_EVENT(kvm, 3, "SET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1532 		 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0],
1533 		 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1],
1534 		 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2],
1535 		 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]);
1536 
1537 	return 0;
1538 }
1539 
1540 #define KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK	\
1541 (						\
1542 	((struct kvm_s390_vm_cpu_uv_feat){	\
1543 		.ap = 1,			\
1544 		.ap_intr = 1,			\
1545 	})					\
1546 	.feat					\
1547 )
1548 
1549 static int kvm_s390_set_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr)
1550 {
1551 	struct kvm_s390_vm_cpu_uv_feat __user *ptr = (void __user *)attr->addr;
1552 	unsigned long data, filter;
1553 
1554 	filter = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK;
1555 	if (get_user(data, &ptr->feat))
1556 		return -EFAULT;
1557 	if (!bitmap_subset(&data, &filter, KVM_S390_VM_CPU_UV_FEAT_NR_BITS))
1558 		return -EINVAL;
1559 
1560 	mutex_lock(&kvm->lock);
1561 	if (kvm->created_vcpus) {
1562 		mutex_unlock(&kvm->lock);
1563 		return -EBUSY;
1564 	}
1565 	kvm->arch.model.uv_feat_guest.feat = data;
1566 	mutex_unlock(&kvm->lock);
1567 
1568 	VM_EVENT(kvm, 3, "SET: guest UV-feat: 0x%16.16lx", data);
1569 
1570 	return 0;
1571 }
1572 
1573 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
1574 {
1575 	int ret = -ENXIO;
1576 
1577 	switch (attr->attr) {
1578 	case KVM_S390_VM_CPU_PROCESSOR:
1579 		ret = kvm_s390_set_processor(kvm, attr);
1580 		break;
1581 	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
1582 		ret = kvm_s390_set_processor_feat(kvm, attr);
1583 		break;
1584 	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1585 		ret = kvm_s390_set_processor_subfunc(kvm, attr);
1586 		break;
1587 	case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST:
1588 		ret = kvm_s390_set_uv_feat(kvm, attr);
1589 		break;
1590 	}
1591 	return ret;
1592 }
1593 
1594 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
1595 {
1596 	struct kvm_s390_vm_cpu_processor *proc;
1597 	int ret = 0;
1598 
1599 	proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT);
1600 	if (!proc) {
1601 		ret = -ENOMEM;
1602 		goto out;
1603 	}
1604 	proc->cpuid = kvm->arch.model.cpuid;
1605 	proc->ibc = kvm->arch.model.ibc;
1606 	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
1607 	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1608 	VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
1609 		 kvm->arch.model.ibc,
1610 		 kvm->arch.model.cpuid);
1611 	VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1612 		 kvm->arch.model.fac_list[0],
1613 		 kvm->arch.model.fac_list[1],
1614 		 kvm->arch.model.fac_list[2]);
1615 	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
1616 		ret = -EFAULT;
1617 	kfree(proc);
1618 out:
1619 	return ret;
1620 }
1621 
1622 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
1623 {
1624 	struct kvm_s390_vm_cpu_machine *mach;
1625 	int ret = 0;
1626 
1627 	mach = kzalloc(sizeof(*mach), GFP_KERNEL_ACCOUNT);
1628 	if (!mach) {
1629 		ret = -ENOMEM;
1630 		goto out;
1631 	}
1632 	get_cpu_id((struct cpuid *) &mach->cpuid);
1633 	mach->ibc = sclp.ibc;
1634 	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
1635 	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1636 	memcpy((unsigned long *)&mach->fac_list, stfle_fac_list,
1637 	       sizeof(stfle_fac_list));
1638 	VM_EVENT(kvm, 3, "GET: host ibc:  0x%4.4x, host cpuid:  0x%16.16llx",
1639 		 kvm->arch.model.ibc,
1640 		 kvm->arch.model.cpuid);
1641 	VM_EVENT(kvm, 3, "GET: host facmask:  0x%16.16llx.%16.16llx.%16.16llx",
1642 		 mach->fac_mask[0],
1643 		 mach->fac_mask[1],
1644 		 mach->fac_mask[2]);
1645 	VM_EVENT(kvm, 3, "GET: host faclist:  0x%16.16llx.%16.16llx.%16.16llx",
1646 		 mach->fac_list[0],
1647 		 mach->fac_list[1],
1648 		 mach->fac_list[2]);
1649 	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
1650 		ret = -EFAULT;
1651 	kfree(mach);
1652 out:
1653 	return ret;
1654 }
1655 
1656 static int kvm_s390_get_processor_feat(struct kvm *kvm,
1657 				       struct kvm_device_attr *attr)
1658 {
1659 	struct kvm_s390_vm_cpu_feat data;
1660 
1661 	bitmap_to_arr64(data.feat, kvm->arch.cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
1662 	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
1663 		return -EFAULT;
1664 	VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
1665 			 data.feat[0],
1666 			 data.feat[1],
1667 			 data.feat[2]);
1668 	return 0;
1669 }
1670 
1671 static int kvm_s390_get_machine_feat(struct kvm *kvm,
1672 				     struct kvm_device_attr *attr)
1673 {
1674 	struct kvm_s390_vm_cpu_feat data;
1675 
1676 	bitmap_to_arr64(data.feat, kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
1677 	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
1678 		return -EFAULT;
1679 	VM_EVENT(kvm, 3, "GET: host feat:  0x%16.16llx.0x%16.16llx.0x%16.16llx",
1680 			 data.feat[0],
1681 			 data.feat[1],
1682 			 data.feat[2]);
1683 	return 0;
1684 }
1685 
1686 static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
1687 					  struct kvm_device_attr *attr)
1688 {
1689 	if (copy_to_user((void __user *)attr->addr, &kvm->arch.model.subfuncs,
1690 	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
1691 		return -EFAULT;
1692 
1693 	VM_EVENT(kvm, 3, "GET: guest PLO    subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1694 		 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0],
1695 		 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1],
1696 		 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2],
1697 		 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]);
1698 	VM_EVENT(kvm, 3, "GET: guest PTFF   subfunc 0x%16.16lx.%16.16lx",
1699 		 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0],
1700 		 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]);
1701 	VM_EVENT(kvm, 3, "GET: guest KMAC   subfunc 0x%16.16lx.%16.16lx",
1702 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0],
1703 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]);
1704 	VM_EVENT(kvm, 3, "GET: guest KMC    subfunc 0x%16.16lx.%16.16lx",
1705 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0],
1706 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]);
1707 	VM_EVENT(kvm, 3, "GET: guest KM     subfunc 0x%16.16lx.%16.16lx",
1708 		 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0],
1709 		 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]);
1710 	VM_EVENT(kvm, 3, "GET: guest KIMD   subfunc 0x%16.16lx.%16.16lx",
1711 		 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0],
1712 		 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]);
1713 	VM_EVENT(kvm, 3, "GET: guest KLMD   subfunc 0x%16.16lx.%16.16lx",
1714 		 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0],
1715 		 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]);
1716 	VM_EVENT(kvm, 3, "GET: guest PCKMO  subfunc 0x%16.16lx.%16.16lx",
1717 		 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0],
1718 		 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]);
1719 	VM_EVENT(kvm, 3, "GET: guest KMCTR  subfunc 0x%16.16lx.%16.16lx",
1720 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0],
1721 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]);
1722 	VM_EVENT(kvm, 3, "GET: guest KMF    subfunc 0x%16.16lx.%16.16lx",
1723 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0],
1724 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]);
1725 	VM_EVENT(kvm, 3, "GET: guest KMO    subfunc 0x%16.16lx.%16.16lx",
1726 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0],
1727 		 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]);
1728 	VM_EVENT(kvm, 3, "GET: guest PCC    subfunc 0x%16.16lx.%16.16lx",
1729 		 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0],
1730 		 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]);
1731 	VM_EVENT(kvm, 3, "GET: guest PPNO   subfunc 0x%16.16lx.%16.16lx",
1732 		 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0],
1733 		 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]);
1734 	VM_EVENT(kvm, 3, "GET: guest KMA    subfunc 0x%16.16lx.%16.16lx",
1735 		 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0],
1736 		 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]);
1737 	VM_EVENT(kvm, 3, "GET: guest KDSA   subfunc 0x%16.16lx.%16.16lx",
1738 		 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0],
1739 		 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]);
1740 	VM_EVENT(kvm, 3, "GET: guest SORTL  subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1741 		 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0],
1742 		 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1],
1743 		 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2],
1744 		 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]);
1745 	VM_EVENT(kvm, 3, "GET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1746 		 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0],
1747 		 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1],
1748 		 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2],
1749 		 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]);
1750 
1751 	return 0;
1752 }
1753 
1754 static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
1755 					struct kvm_device_attr *attr)
1756 {
1757 	if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
1758 	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
1759 		return -EFAULT;
1760 
1761 	VM_EVENT(kvm, 3, "GET: host  PLO    subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1762 		 ((unsigned long *) &kvm_s390_available_subfunc.plo)[0],
1763 		 ((unsigned long *) &kvm_s390_available_subfunc.plo)[1],
1764 		 ((unsigned long *) &kvm_s390_available_subfunc.plo)[2],
1765 		 ((unsigned long *) &kvm_s390_available_subfunc.plo)[3]);
1766 	VM_EVENT(kvm, 3, "GET: host  PTFF   subfunc 0x%16.16lx.%16.16lx",
1767 		 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[0],
1768 		 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[1]);
1769 	VM_EVENT(kvm, 3, "GET: host  KMAC   subfunc 0x%16.16lx.%16.16lx",
1770 		 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[0],
1771 		 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[1]);
1772 	VM_EVENT(kvm, 3, "GET: host  KMC    subfunc 0x%16.16lx.%16.16lx",
1773 		 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[0],
1774 		 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[1]);
1775 	VM_EVENT(kvm, 3, "GET: host  KM     subfunc 0x%16.16lx.%16.16lx",
1776 		 ((unsigned long *) &kvm_s390_available_subfunc.km)[0],
1777 		 ((unsigned long *) &kvm_s390_available_subfunc.km)[1]);
1778 	VM_EVENT(kvm, 3, "GET: host  KIMD   subfunc 0x%16.16lx.%16.16lx",
1779 		 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[0],
1780 		 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[1]);
1781 	VM_EVENT(kvm, 3, "GET: host  KLMD   subfunc 0x%16.16lx.%16.16lx",
1782 		 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[0],
1783 		 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[1]);
1784 	VM_EVENT(kvm, 3, "GET: host  PCKMO  subfunc 0x%16.16lx.%16.16lx",
1785 		 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[0],
1786 		 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[1]);
1787 	VM_EVENT(kvm, 3, "GET: host  KMCTR  subfunc 0x%16.16lx.%16.16lx",
1788 		 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[0],
1789 		 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[1]);
1790 	VM_EVENT(kvm, 3, "GET: host  KMF    subfunc 0x%16.16lx.%16.16lx",
1791 		 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[0],
1792 		 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[1]);
1793 	VM_EVENT(kvm, 3, "GET: host  KMO    subfunc 0x%16.16lx.%16.16lx",
1794 		 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[0],
1795 		 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[1]);
1796 	VM_EVENT(kvm, 3, "GET: host  PCC    subfunc 0x%16.16lx.%16.16lx",
1797 		 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[0],
1798 		 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[1]);
1799 	VM_EVENT(kvm, 3, "GET: host  PPNO   subfunc 0x%16.16lx.%16.16lx",
1800 		 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[0],
1801 		 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[1]);
1802 	VM_EVENT(kvm, 3, "GET: host  KMA    subfunc 0x%16.16lx.%16.16lx",
1803 		 ((unsigned long *) &kvm_s390_available_subfunc.kma)[0],
1804 		 ((unsigned long *) &kvm_s390_available_subfunc.kma)[1]);
1805 	VM_EVENT(kvm, 3, "GET: host  KDSA   subfunc 0x%16.16lx.%16.16lx",
1806 		 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[0],
1807 		 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[1]);
1808 	VM_EVENT(kvm, 3, "GET: host  SORTL  subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1809 		 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[0],
1810 		 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[1],
1811 		 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[2],
1812 		 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[3]);
1813 	VM_EVENT(kvm, 3, "GET: host  DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1814 		 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[0],
1815 		 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[1],
1816 		 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[2],
1817 		 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[3]);
1818 
1819 	return 0;
1820 }
1821 
1822 static int kvm_s390_get_processor_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr)
1823 {
1824 	struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr;
1825 	unsigned long feat = kvm->arch.model.uv_feat_guest.feat;
1826 
1827 	if (put_user(feat, &dst->feat))
1828 		return -EFAULT;
1829 	VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat);
1830 
1831 	return 0;
1832 }
1833 
1834 static int kvm_s390_get_machine_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr)
1835 {
1836 	struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr;
1837 	unsigned long feat;
1838 
1839 	BUILD_BUG_ON(sizeof(*dst) != sizeof(uv_info.uv_feature_indications));
1840 
1841 	feat = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK;
1842 	if (put_user(feat, &dst->feat))
1843 		return -EFAULT;
1844 	VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat);
1845 
1846 	return 0;
1847 }
1848 
1849 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
1850 {
1851 	int ret = -ENXIO;
1852 
1853 	switch (attr->attr) {
1854 	case KVM_S390_VM_CPU_PROCESSOR:
1855 		ret = kvm_s390_get_processor(kvm, attr);
1856 		break;
1857 	case KVM_S390_VM_CPU_MACHINE:
1858 		ret = kvm_s390_get_machine(kvm, attr);
1859 		break;
1860 	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
1861 		ret = kvm_s390_get_processor_feat(kvm, attr);
1862 		break;
1863 	case KVM_S390_VM_CPU_MACHINE_FEAT:
1864 		ret = kvm_s390_get_machine_feat(kvm, attr);
1865 		break;
1866 	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1867 		ret = kvm_s390_get_processor_subfunc(kvm, attr);
1868 		break;
1869 	case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1870 		ret = kvm_s390_get_machine_subfunc(kvm, attr);
1871 		break;
1872 	case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST:
1873 		ret = kvm_s390_get_processor_uv_feat(kvm, attr);
1874 		break;
1875 	case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST:
1876 		ret = kvm_s390_get_machine_uv_feat(kvm, attr);
1877 		break;
1878 	}
1879 	return ret;
1880 }
1881 
1882 /**
1883  * kvm_s390_update_topology_change_report - update CPU topology change report
1884  * @kvm: guest KVM description
1885  * @val: set or clear the MTCR bit
1886  *
1887  * Updates the Multiprocessor Topology-Change-Report bit to signal
1888  * the guest with a topology change.
1889  * This is only relevant if the topology facility is present.
1890  *
1891  * The SCA version, bsca or esca, doesn't matter as offset is the same.
1892  */
1893 static void kvm_s390_update_topology_change_report(struct kvm *kvm, bool val)
1894 {
1895 	union sca_utility new, old;
1896 	struct bsca_block *sca;
1897 
1898 	read_lock(&kvm->arch.sca_lock);
1899 	sca = kvm->arch.sca;
1900 	do {
1901 		old = READ_ONCE(sca->utility);
1902 		new = old;
1903 		new.mtcr = val;
1904 	} while (cmpxchg(&sca->utility.val, old.val, new.val) != old.val);
1905 	read_unlock(&kvm->arch.sca_lock);
1906 }
1907 
1908 static int kvm_s390_set_topo_change_indication(struct kvm *kvm,
1909 					       struct kvm_device_attr *attr)
1910 {
1911 	if (!test_kvm_facility(kvm, 11))
1912 		return -ENXIO;
1913 
1914 	kvm_s390_update_topology_change_report(kvm, !!attr->attr);
1915 	return 0;
1916 }
1917 
1918 static int kvm_s390_get_topo_change_indication(struct kvm *kvm,
1919 					       struct kvm_device_attr *attr)
1920 {
1921 	u8 topo;
1922 
1923 	if (!test_kvm_facility(kvm, 11))
1924 		return -ENXIO;
1925 
1926 	read_lock(&kvm->arch.sca_lock);
1927 	topo = ((struct bsca_block *)kvm->arch.sca)->utility.mtcr;
1928 	read_unlock(&kvm->arch.sca_lock);
1929 
1930 	return put_user(topo, (u8 __user *)attr->addr);
1931 }
1932 
1933 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1934 {
1935 	int ret;
1936 
1937 	switch (attr->group) {
1938 	case KVM_S390_VM_MEM_CTRL:
1939 		ret = kvm_s390_set_mem_control(kvm, attr);
1940 		break;
1941 	case KVM_S390_VM_TOD:
1942 		ret = kvm_s390_set_tod(kvm, attr);
1943 		break;
1944 	case KVM_S390_VM_CPU_MODEL:
1945 		ret = kvm_s390_set_cpu_model(kvm, attr);
1946 		break;
1947 	case KVM_S390_VM_CRYPTO:
1948 		ret = kvm_s390_vm_set_crypto(kvm, attr);
1949 		break;
1950 	case KVM_S390_VM_MIGRATION:
1951 		ret = kvm_s390_vm_set_migration(kvm, attr);
1952 		break;
1953 	case KVM_S390_VM_CPU_TOPOLOGY:
1954 		ret = kvm_s390_set_topo_change_indication(kvm, attr);
1955 		break;
1956 	default:
1957 		ret = -ENXIO;
1958 		break;
1959 	}
1960 
1961 	return ret;
1962 }
1963 
1964 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1965 {
1966 	int ret;
1967 
1968 	switch (attr->group) {
1969 	case KVM_S390_VM_MEM_CTRL:
1970 		ret = kvm_s390_get_mem_control(kvm, attr);
1971 		break;
1972 	case KVM_S390_VM_TOD:
1973 		ret = kvm_s390_get_tod(kvm, attr);
1974 		break;
1975 	case KVM_S390_VM_CPU_MODEL:
1976 		ret = kvm_s390_get_cpu_model(kvm, attr);
1977 		break;
1978 	case KVM_S390_VM_MIGRATION:
1979 		ret = kvm_s390_vm_get_migration(kvm, attr);
1980 		break;
1981 	case KVM_S390_VM_CPU_TOPOLOGY:
1982 		ret = kvm_s390_get_topo_change_indication(kvm, attr);
1983 		break;
1984 	default:
1985 		ret = -ENXIO;
1986 		break;
1987 	}
1988 
1989 	return ret;
1990 }
1991 
1992 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1993 {
1994 	int ret;
1995 
1996 	switch (attr->group) {
1997 	case KVM_S390_VM_MEM_CTRL:
1998 		switch (attr->attr) {
1999 		case KVM_S390_VM_MEM_ENABLE_CMMA:
2000 		case KVM_S390_VM_MEM_CLR_CMMA:
2001 			ret = sclp.has_cmma ? 0 : -ENXIO;
2002 			break;
2003 		case KVM_S390_VM_MEM_LIMIT_SIZE:
2004 			ret = 0;
2005 			break;
2006 		default:
2007 			ret = -ENXIO;
2008 			break;
2009 		}
2010 		break;
2011 	case KVM_S390_VM_TOD:
2012 		switch (attr->attr) {
2013 		case KVM_S390_VM_TOD_LOW:
2014 		case KVM_S390_VM_TOD_HIGH:
2015 			ret = 0;
2016 			break;
2017 		default:
2018 			ret = -ENXIO;
2019 			break;
2020 		}
2021 		break;
2022 	case KVM_S390_VM_CPU_MODEL:
2023 		switch (attr->attr) {
2024 		case KVM_S390_VM_CPU_PROCESSOR:
2025 		case KVM_S390_VM_CPU_MACHINE:
2026 		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
2027 		case KVM_S390_VM_CPU_MACHINE_FEAT:
2028 		case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
2029 		case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
2030 		case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST:
2031 		case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST:
2032 			ret = 0;
2033 			break;
2034 		default:
2035 			ret = -ENXIO;
2036 			break;
2037 		}
2038 		break;
2039 	case KVM_S390_VM_CRYPTO:
2040 		switch (attr->attr) {
2041 		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
2042 		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
2043 		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
2044 		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
2045 			ret = 0;
2046 			break;
2047 		case KVM_S390_VM_CRYPTO_ENABLE_APIE:
2048 		case KVM_S390_VM_CRYPTO_DISABLE_APIE:
2049 			ret = ap_instructions_available() ? 0 : -ENXIO;
2050 			break;
2051 		default:
2052 			ret = -ENXIO;
2053 			break;
2054 		}
2055 		break;
2056 	case KVM_S390_VM_MIGRATION:
2057 		ret = 0;
2058 		break;
2059 	case KVM_S390_VM_CPU_TOPOLOGY:
2060 		ret = test_kvm_facility(kvm, 11) ? 0 : -ENXIO;
2061 		break;
2062 	default:
2063 		ret = -ENXIO;
2064 		break;
2065 	}
2066 
2067 	return ret;
2068 }
2069 
2070 static int kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
2071 {
2072 	uint8_t *keys;
2073 	uint64_t hva;
2074 	int srcu_idx, i, r = 0;
2075 
2076 	if (args->flags != 0)
2077 		return -EINVAL;
2078 
2079 	/* Is this guest using storage keys? */
2080 	if (!mm_uses_skeys(current->mm))
2081 		return KVM_S390_GET_SKEYS_NONE;
2082 
2083 	/* Enforce sane limit on memory allocation */
2084 	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
2085 		return -EINVAL;
2086 
2087 	keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT);
2088 	if (!keys)
2089 		return -ENOMEM;
2090 
2091 	mmap_read_lock(current->mm);
2092 	srcu_idx = srcu_read_lock(&kvm->srcu);
2093 	for (i = 0; i < args->count; i++) {
2094 		hva = gfn_to_hva(kvm, args->start_gfn + i);
2095 		if (kvm_is_error_hva(hva)) {
2096 			r = -EFAULT;
2097 			break;
2098 		}
2099 
2100 		r = get_guest_storage_key(current->mm, hva, &keys[i]);
2101 		if (r)
2102 			break;
2103 	}
2104 	srcu_read_unlock(&kvm->srcu, srcu_idx);
2105 	mmap_read_unlock(current->mm);
2106 
2107 	if (!r) {
2108 		r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
2109 				 sizeof(uint8_t) * args->count);
2110 		if (r)
2111 			r = -EFAULT;
2112 	}
2113 
2114 	kvfree(keys);
2115 	return r;
2116 }
2117 
2118 static int kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
2119 {
2120 	uint8_t *keys;
2121 	uint64_t hva;
2122 	int srcu_idx, i, r = 0;
2123 	bool unlocked;
2124 
2125 	if (args->flags != 0)
2126 		return -EINVAL;
2127 
2128 	/* Enforce sane limit on memory allocation */
2129 	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
2130 		return -EINVAL;
2131 
2132 	keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT);
2133 	if (!keys)
2134 		return -ENOMEM;
2135 
2136 	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
2137 			   sizeof(uint8_t) * args->count);
2138 	if (r) {
2139 		r = -EFAULT;
2140 		goto out;
2141 	}
2142 
2143 	/* Enable storage key handling for the guest */
2144 	r = s390_enable_skey();
2145 	if (r)
2146 		goto out;
2147 
2148 	i = 0;
2149 	mmap_read_lock(current->mm);
2150 	srcu_idx = srcu_read_lock(&kvm->srcu);
2151         while (i < args->count) {
2152 		unlocked = false;
2153 		hva = gfn_to_hva(kvm, args->start_gfn + i);
2154 		if (kvm_is_error_hva(hva)) {
2155 			r = -EFAULT;
2156 			break;
2157 		}
2158 
2159 		/* Lowest order bit is reserved */
2160 		if (keys[i] & 0x01) {
2161 			r = -EINVAL;
2162 			break;
2163 		}
2164 
2165 		r = set_guest_storage_key(current->mm, hva, keys[i], 0);
2166 		if (r) {
2167 			r = fixup_user_fault(current->mm, hva,
2168 					     FAULT_FLAG_WRITE, &unlocked);
2169 			if (r)
2170 				break;
2171 		}
2172 		if (!r)
2173 			i++;
2174 	}
2175 	srcu_read_unlock(&kvm->srcu, srcu_idx);
2176 	mmap_read_unlock(current->mm);
2177 out:
2178 	kvfree(keys);
2179 	return r;
2180 }
2181 
2182 /*
2183  * Base address and length must be sent at the start of each block, therefore
2184  * it's cheaper to send some clean data, as long as it's less than the size of
2185  * two longs.
2186  */
2187 #define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *))
2188 /* for consistency */
2189 #define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX)
2190 
2191 static int kvm_s390_peek_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args,
2192 			      u8 *res, unsigned long bufsize)
2193 {
2194 	unsigned long pgstev, hva, cur_gfn = args->start_gfn;
2195 
2196 	args->count = 0;
2197 	while (args->count < bufsize) {
2198 		hva = gfn_to_hva(kvm, cur_gfn);
2199 		/*
2200 		 * We return an error if the first value was invalid, but we
2201 		 * return successfully if at least one value was copied.
2202 		 */
2203 		if (kvm_is_error_hva(hva))
2204 			return args->count ? 0 : -EFAULT;
2205 		if (get_pgste(kvm->mm, hva, &pgstev) < 0)
2206 			pgstev = 0;
2207 		res[args->count++] = (pgstev >> 24) & 0x43;
2208 		cur_gfn++;
2209 	}
2210 
2211 	return 0;
2212 }
2213 
2214 static struct kvm_memory_slot *gfn_to_memslot_approx(struct kvm_memslots *slots,
2215 						     gfn_t gfn)
2216 {
2217 	return ____gfn_to_memslot(slots, gfn, true);
2218 }
2219 
2220 static unsigned long kvm_s390_next_dirty_cmma(struct kvm_memslots *slots,
2221 					      unsigned long cur_gfn)
2222 {
2223 	struct kvm_memory_slot *ms = gfn_to_memslot_approx(slots, cur_gfn);
2224 	unsigned long ofs = cur_gfn - ms->base_gfn;
2225 	struct rb_node *mnode = &ms->gfn_node[slots->node_idx];
2226 
2227 	if (ms->base_gfn + ms->npages <= cur_gfn) {
2228 		mnode = rb_next(mnode);
2229 		/* If we are above the highest slot, wrap around */
2230 		if (!mnode)
2231 			mnode = rb_first(&slots->gfn_tree);
2232 
2233 		ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]);
2234 		ofs = 0;
2235 	}
2236 
2237 	if (cur_gfn < ms->base_gfn)
2238 		ofs = 0;
2239 
2240 	ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, ofs);
2241 	while (ofs >= ms->npages && (mnode = rb_next(mnode))) {
2242 		ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]);
2243 		ofs = find_first_bit(kvm_second_dirty_bitmap(ms), ms->npages);
2244 	}
2245 	return ms->base_gfn + ofs;
2246 }
2247 
2248 static int kvm_s390_get_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args,
2249 			     u8 *res, unsigned long bufsize)
2250 {
2251 	unsigned long mem_end, cur_gfn, next_gfn, hva, pgstev;
2252 	struct kvm_memslots *slots = kvm_memslots(kvm);
2253 	struct kvm_memory_slot *ms;
2254 
2255 	if (unlikely(kvm_memslots_empty(slots)))
2256 		return 0;
2257 
2258 	cur_gfn = kvm_s390_next_dirty_cmma(slots, args->start_gfn);
2259 	ms = gfn_to_memslot(kvm, cur_gfn);
2260 	args->count = 0;
2261 	args->start_gfn = cur_gfn;
2262 	if (!ms)
2263 		return 0;
2264 	next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1);
2265 	mem_end = kvm_s390_get_gfn_end(slots);
2266 
2267 	while (args->count < bufsize) {
2268 		hva = gfn_to_hva(kvm, cur_gfn);
2269 		if (kvm_is_error_hva(hva))
2270 			return 0;
2271 		/* Decrement only if we actually flipped the bit to 0 */
2272 		if (test_and_clear_bit(cur_gfn - ms->base_gfn, kvm_second_dirty_bitmap(ms)))
2273 			atomic64_dec(&kvm->arch.cmma_dirty_pages);
2274 		if (get_pgste(kvm->mm, hva, &pgstev) < 0)
2275 			pgstev = 0;
2276 		/* Save the value */
2277 		res[args->count++] = (pgstev >> 24) & 0x43;
2278 		/* If the next bit is too far away, stop. */
2279 		if (next_gfn > cur_gfn + KVM_S390_MAX_BIT_DISTANCE)
2280 			return 0;
2281 		/* If we reached the previous "next", find the next one */
2282 		if (cur_gfn == next_gfn)
2283 			next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1);
2284 		/* Reached the end of memory or of the buffer, stop */
2285 		if ((next_gfn >= mem_end) ||
2286 		    (next_gfn - args->start_gfn >= bufsize))
2287 			return 0;
2288 		cur_gfn++;
2289 		/* Reached the end of the current memslot, take the next one. */
2290 		if (cur_gfn - ms->base_gfn >= ms->npages) {
2291 			ms = gfn_to_memslot(kvm, cur_gfn);
2292 			if (!ms)
2293 				return 0;
2294 		}
2295 	}
2296 	return 0;
2297 }
2298 
2299 /*
2300  * This function searches for the next page with dirty CMMA attributes, and
2301  * saves the attributes in the buffer up to either the end of the buffer or
2302  * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found;
2303  * no trailing clean bytes are saved.
2304  * In case no dirty bits were found, or if CMMA was not enabled or used, the
2305  * output buffer will indicate 0 as length.
2306  */
2307 static int kvm_s390_get_cmma_bits(struct kvm *kvm,
2308 				  struct kvm_s390_cmma_log *args)
2309 {
2310 	unsigned long bufsize;
2311 	int srcu_idx, peek, ret;
2312 	u8 *values;
2313 
2314 	if (!kvm->arch.use_cmma)
2315 		return -ENXIO;
2316 	/* Invalid/unsupported flags were specified */
2317 	if (args->flags & ~KVM_S390_CMMA_PEEK)
2318 		return -EINVAL;
2319 	/* Migration mode query, and we are not doing a migration */
2320 	peek = !!(args->flags & KVM_S390_CMMA_PEEK);
2321 	if (!peek && !kvm->arch.migration_mode)
2322 		return -EINVAL;
2323 	/* CMMA is disabled or was not used, or the buffer has length zero */
2324 	bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX);
2325 	if (!bufsize || !kvm->mm->context.uses_cmm) {
2326 		memset(args, 0, sizeof(*args));
2327 		return 0;
2328 	}
2329 	/* We are not peeking, and there are no dirty pages */
2330 	if (!peek && !atomic64_read(&kvm->arch.cmma_dirty_pages)) {
2331 		memset(args, 0, sizeof(*args));
2332 		return 0;
2333 	}
2334 
2335 	values = vmalloc(bufsize);
2336 	if (!values)
2337 		return -ENOMEM;
2338 
2339 	mmap_read_lock(kvm->mm);
2340 	srcu_idx = srcu_read_lock(&kvm->srcu);
2341 	if (peek)
2342 		ret = kvm_s390_peek_cmma(kvm, args, values, bufsize);
2343 	else
2344 		ret = kvm_s390_get_cmma(kvm, args, values, bufsize);
2345 	srcu_read_unlock(&kvm->srcu, srcu_idx);
2346 	mmap_read_unlock(kvm->mm);
2347 
2348 	if (kvm->arch.migration_mode)
2349 		args->remaining = atomic64_read(&kvm->arch.cmma_dirty_pages);
2350 	else
2351 		args->remaining = 0;
2352 
2353 	if (copy_to_user((void __user *)args->values, values, args->count))
2354 		ret = -EFAULT;
2355 
2356 	vfree(values);
2357 	return ret;
2358 }
2359 
2360 /*
2361  * This function sets the CMMA attributes for the given pages. If the input
2362  * buffer has zero length, no action is taken, otherwise the attributes are
2363  * set and the mm->context.uses_cmm flag is set.
2364  */
2365 static int kvm_s390_set_cmma_bits(struct kvm *kvm,
2366 				  const struct kvm_s390_cmma_log *args)
2367 {
2368 	unsigned long hva, mask, pgstev, i;
2369 	uint8_t *bits;
2370 	int srcu_idx, r = 0;
2371 
2372 	mask = args->mask;
2373 
2374 	if (!kvm->arch.use_cmma)
2375 		return -ENXIO;
2376 	/* invalid/unsupported flags */
2377 	if (args->flags != 0)
2378 		return -EINVAL;
2379 	/* Enforce sane limit on memory allocation */
2380 	if (args->count > KVM_S390_CMMA_SIZE_MAX)
2381 		return -EINVAL;
2382 	/* Nothing to do */
2383 	if (args->count == 0)
2384 		return 0;
2385 
2386 	bits = vmalloc(array_size(sizeof(*bits), args->count));
2387 	if (!bits)
2388 		return -ENOMEM;
2389 
2390 	r = copy_from_user(bits, (void __user *)args->values, args->count);
2391 	if (r) {
2392 		r = -EFAULT;
2393 		goto out;
2394 	}
2395 
2396 	mmap_read_lock(kvm->mm);
2397 	srcu_idx = srcu_read_lock(&kvm->srcu);
2398 	for (i = 0; i < args->count; i++) {
2399 		hva = gfn_to_hva(kvm, args->start_gfn + i);
2400 		if (kvm_is_error_hva(hva)) {
2401 			r = -EFAULT;
2402 			break;
2403 		}
2404 
2405 		pgstev = bits[i];
2406 		pgstev = pgstev << 24;
2407 		mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT;
2408 		set_pgste_bits(kvm->mm, hva, mask, pgstev);
2409 	}
2410 	srcu_read_unlock(&kvm->srcu, srcu_idx);
2411 	mmap_read_unlock(kvm->mm);
2412 
2413 	if (!kvm->mm->context.uses_cmm) {
2414 		mmap_write_lock(kvm->mm);
2415 		kvm->mm->context.uses_cmm = 1;
2416 		mmap_write_unlock(kvm->mm);
2417 	}
2418 out:
2419 	vfree(bits);
2420 	return r;
2421 }
2422 
2423 /**
2424  * kvm_s390_cpus_from_pv - Convert all protected vCPUs in a protected VM to
2425  * non protected.
2426  * @kvm: the VM whose protected vCPUs are to be converted
2427  * @rc: return value for the RC field of the UVC (in case of error)
2428  * @rrc: return value for the RRC field of the UVC (in case of error)
2429  *
2430  * Does not stop in case of error, tries to convert as many
2431  * CPUs as possible. In case of error, the RC and RRC of the last error are
2432  * returned.
2433  *
2434  * Return: 0 in case of success, otherwise -EIO
2435  */
2436 int kvm_s390_cpus_from_pv(struct kvm *kvm, u16 *rc, u16 *rrc)
2437 {
2438 	struct kvm_vcpu *vcpu;
2439 	unsigned long i;
2440 	u16 _rc, _rrc;
2441 	int ret = 0;
2442 
2443 	/*
2444 	 * We ignore failures and try to destroy as many CPUs as possible.
2445 	 * At the same time we must not free the assigned resources when
2446 	 * this fails, as the ultravisor has still access to that memory.
2447 	 * So kvm_s390_pv_destroy_cpu can leave a "wanted" memory leak
2448 	 * behind.
2449 	 * We want to return the first failure rc and rrc, though.
2450 	 */
2451 	kvm_for_each_vcpu(i, vcpu, kvm) {
2452 		mutex_lock(&vcpu->mutex);
2453 		if (kvm_s390_pv_destroy_cpu(vcpu, &_rc, &_rrc) && !ret) {
2454 			*rc = _rc;
2455 			*rrc = _rrc;
2456 			ret = -EIO;
2457 		}
2458 		mutex_unlock(&vcpu->mutex);
2459 	}
2460 	/* Ensure that we re-enable gisa if the non-PV guest used it but the PV guest did not. */
2461 	if (use_gisa)
2462 		kvm_s390_gisa_enable(kvm);
2463 	return ret;
2464 }
2465 
2466 /**
2467  * kvm_s390_cpus_to_pv - Convert all non-protected vCPUs in a protected VM
2468  * to protected.
2469  * @kvm: the VM whose protected vCPUs are to be converted
2470  * @rc: return value for the RC field of the UVC (in case of error)
2471  * @rrc: return value for the RRC field of the UVC (in case of error)
2472  *
2473  * Tries to undo the conversion in case of error.
2474  *
2475  * Return: 0 in case of success, otherwise -EIO
2476  */
2477 static int kvm_s390_cpus_to_pv(struct kvm *kvm, u16 *rc, u16 *rrc)
2478 {
2479 	unsigned long i;
2480 	int r = 0;
2481 	u16 dummy;
2482 
2483 	struct kvm_vcpu *vcpu;
2484 
2485 	/* Disable the GISA if the ultravisor does not support AIV. */
2486 	if (!uv_has_feature(BIT_UV_FEAT_AIV))
2487 		kvm_s390_gisa_disable(kvm);
2488 
2489 	kvm_for_each_vcpu(i, vcpu, kvm) {
2490 		mutex_lock(&vcpu->mutex);
2491 		r = kvm_s390_pv_create_cpu(vcpu, rc, rrc);
2492 		mutex_unlock(&vcpu->mutex);
2493 		if (r)
2494 			break;
2495 	}
2496 	if (r)
2497 		kvm_s390_cpus_from_pv(kvm, &dummy, &dummy);
2498 	return r;
2499 }
2500 
2501 /*
2502  * Here we provide user space with a direct interface to query UV
2503  * related data like UV maxima and available features as well as
2504  * feature specific data.
2505  *
2506  * To facilitate future extension of the data structures we'll try to
2507  * write data up to the maximum requested length.
2508  */
2509 static ssize_t kvm_s390_handle_pv_info(struct kvm_s390_pv_info *info)
2510 {
2511 	ssize_t len_min;
2512 
2513 	switch (info->header.id) {
2514 	case KVM_PV_INFO_VM: {
2515 		len_min =  sizeof(info->header) + sizeof(info->vm);
2516 
2517 		if (info->header.len_max < len_min)
2518 			return -EINVAL;
2519 
2520 		memcpy(info->vm.inst_calls_list,
2521 		       uv_info.inst_calls_list,
2522 		       sizeof(uv_info.inst_calls_list));
2523 
2524 		/* It's max cpuid not max cpus, so it's off by one */
2525 		info->vm.max_cpus = uv_info.max_guest_cpu_id + 1;
2526 		info->vm.max_guests = uv_info.max_num_sec_conf;
2527 		info->vm.max_guest_addr = uv_info.max_sec_stor_addr;
2528 		info->vm.feature_indication = uv_info.uv_feature_indications;
2529 
2530 		return len_min;
2531 	}
2532 	case KVM_PV_INFO_DUMP: {
2533 		len_min =  sizeof(info->header) + sizeof(info->dump);
2534 
2535 		if (info->header.len_max < len_min)
2536 			return -EINVAL;
2537 
2538 		info->dump.dump_cpu_buffer_len = uv_info.guest_cpu_stor_len;
2539 		info->dump.dump_config_mem_buffer_per_1m = uv_info.conf_dump_storage_state_len;
2540 		info->dump.dump_config_finalize_len = uv_info.conf_dump_finalize_len;
2541 		return len_min;
2542 	}
2543 	default:
2544 		return -EINVAL;
2545 	}
2546 }
2547 
2548 static int kvm_s390_pv_dmp(struct kvm *kvm, struct kvm_pv_cmd *cmd,
2549 			   struct kvm_s390_pv_dmp dmp)
2550 {
2551 	int r = -EINVAL;
2552 	void __user *result_buff = (void __user *)dmp.buff_addr;
2553 
2554 	switch (dmp.subcmd) {
2555 	case KVM_PV_DUMP_INIT: {
2556 		if (kvm->arch.pv.dumping)
2557 			break;
2558 
2559 		/*
2560 		 * Block SIE entry as concurrent dump UVCs could lead
2561 		 * to validities.
2562 		 */
2563 		kvm_s390_vcpu_block_all(kvm);
2564 
2565 		r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2566 				  UVC_CMD_DUMP_INIT, &cmd->rc, &cmd->rrc);
2567 		KVM_UV_EVENT(kvm, 3, "PROTVIRT DUMP INIT: rc %x rrc %x",
2568 			     cmd->rc, cmd->rrc);
2569 		if (!r) {
2570 			kvm->arch.pv.dumping = true;
2571 		} else {
2572 			kvm_s390_vcpu_unblock_all(kvm);
2573 			r = -EINVAL;
2574 		}
2575 		break;
2576 	}
2577 	case KVM_PV_DUMP_CONFIG_STOR_STATE: {
2578 		if (!kvm->arch.pv.dumping)
2579 			break;
2580 
2581 		/*
2582 		 * gaddr is an output parameter since we might stop
2583 		 * early. As dmp will be copied back in our caller, we
2584 		 * don't need to do it ourselves.
2585 		 */
2586 		r = kvm_s390_pv_dump_stor_state(kvm, result_buff, &dmp.gaddr, dmp.buff_len,
2587 						&cmd->rc, &cmd->rrc);
2588 		break;
2589 	}
2590 	case KVM_PV_DUMP_COMPLETE: {
2591 		if (!kvm->arch.pv.dumping)
2592 			break;
2593 
2594 		r = -EINVAL;
2595 		if (dmp.buff_len < uv_info.conf_dump_finalize_len)
2596 			break;
2597 
2598 		r = kvm_s390_pv_dump_complete(kvm, result_buff,
2599 					      &cmd->rc, &cmd->rrc);
2600 		break;
2601 	}
2602 	default:
2603 		r = -ENOTTY;
2604 		break;
2605 	}
2606 
2607 	return r;
2608 }
2609 
2610 static int kvm_s390_handle_pv(struct kvm *kvm, struct kvm_pv_cmd *cmd)
2611 {
2612 	const bool need_lock = (cmd->cmd != KVM_PV_ASYNC_CLEANUP_PERFORM);
2613 	void __user *argp = (void __user *)cmd->data;
2614 	int r = 0;
2615 	u16 dummy;
2616 
2617 	if (need_lock)
2618 		mutex_lock(&kvm->lock);
2619 
2620 	switch (cmd->cmd) {
2621 	case KVM_PV_ENABLE: {
2622 		r = -EINVAL;
2623 		if (kvm_s390_pv_is_protected(kvm))
2624 			break;
2625 
2626 		/*
2627 		 *  FMT 4 SIE needs esca. As we never switch back to bsca from
2628 		 *  esca, we need no cleanup in the error cases below
2629 		 */
2630 		r = sca_switch_to_extended(kvm);
2631 		if (r)
2632 			break;
2633 
2634 		mmap_write_lock(current->mm);
2635 		r = gmap_mark_unmergeable();
2636 		mmap_write_unlock(current->mm);
2637 		if (r)
2638 			break;
2639 
2640 		r = kvm_s390_pv_init_vm(kvm, &cmd->rc, &cmd->rrc);
2641 		if (r)
2642 			break;
2643 
2644 		r = kvm_s390_cpus_to_pv(kvm, &cmd->rc, &cmd->rrc);
2645 		if (r)
2646 			kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy);
2647 
2648 		/* we need to block service interrupts from now on */
2649 		set_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
2650 		break;
2651 	}
2652 	case KVM_PV_ASYNC_CLEANUP_PREPARE:
2653 		r = -EINVAL;
2654 		if (!kvm_s390_pv_is_protected(kvm) || !async_destroy)
2655 			break;
2656 
2657 		r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc);
2658 		/*
2659 		 * If a CPU could not be destroyed, destroy VM will also fail.
2660 		 * There is no point in trying to destroy it. Instead return
2661 		 * the rc and rrc from the first CPU that failed destroying.
2662 		 */
2663 		if (r)
2664 			break;
2665 		r = kvm_s390_pv_set_aside(kvm, &cmd->rc, &cmd->rrc);
2666 
2667 		/* no need to block service interrupts any more */
2668 		clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
2669 		break;
2670 	case KVM_PV_ASYNC_CLEANUP_PERFORM:
2671 		r = -EINVAL;
2672 		if (!async_destroy)
2673 			break;
2674 		/* kvm->lock must not be held; this is asserted inside the function. */
2675 		r = kvm_s390_pv_deinit_aside_vm(kvm, &cmd->rc, &cmd->rrc);
2676 		break;
2677 	case KVM_PV_DISABLE: {
2678 		r = -EINVAL;
2679 		if (!kvm_s390_pv_is_protected(kvm))
2680 			break;
2681 
2682 		r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc);
2683 		/*
2684 		 * If a CPU could not be destroyed, destroy VM will also fail.
2685 		 * There is no point in trying to destroy it. Instead return
2686 		 * the rc and rrc from the first CPU that failed destroying.
2687 		 */
2688 		if (r)
2689 			break;
2690 		r = kvm_s390_pv_deinit_cleanup_all(kvm, &cmd->rc, &cmd->rrc);
2691 
2692 		/* no need to block service interrupts any more */
2693 		clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
2694 		break;
2695 	}
2696 	case KVM_PV_SET_SEC_PARMS: {
2697 		struct kvm_s390_pv_sec_parm parms = {};
2698 		void *hdr;
2699 
2700 		r = -EINVAL;
2701 		if (!kvm_s390_pv_is_protected(kvm))
2702 			break;
2703 
2704 		r = -EFAULT;
2705 		if (copy_from_user(&parms, argp, sizeof(parms)))
2706 			break;
2707 
2708 		/* Currently restricted to 8KB */
2709 		r = -EINVAL;
2710 		if (parms.length > PAGE_SIZE * 2)
2711 			break;
2712 
2713 		r = -ENOMEM;
2714 		hdr = vmalloc(parms.length);
2715 		if (!hdr)
2716 			break;
2717 
2718 		r = -EFAULT;
2719 		if (!copy_from_user(hdr, (void __user *)parms.origin,
2720 				    parms.length))
2721 			r = kvm_s390_pv_set_sec_parms(kvm, hdr, parms.length,
2722 						      &cmd->rc, &cmd->rrc);
2723 
2724 		vfree(hdr);
2725 		break;
2726 	}
2727 	case KVM_PV_UNPACK: {
2728 		struct kvm_s390_pv_unp unp = {};
2729 
2730 		r = -EINVAL;
2731 		if (!kvm_s390_pv_is_protected(kvm) || !mm_is_protected(kvm->mm))
2732 			break;
2733 
2734 		r = -EFAULT;
2735 		if (copy_from_user(&unp, argp, sizeof(unp)))
2736 			break;
2737 
2738 		r = kvm_s390_pv_unpack(kvm, unp.addr, unp.size, unp.tweak,
2739 				       &cmd->rc, &cmd->rrc);
2740 		break;
2741 	}
2742 	case KVM_PV_VERIFY: {
2743 		r = -EINVAL;
2744 		if (!kvm_s390_pv_is_protected(kvm))
2745 			break;
2746 
2747 		r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2748 				  UVC_CMD_VERIFY_IMG, &cmd->rc, &cmd->rrc);
2749 		KVM_UV_EVENT(kvm, 3, "PROTVIRT VERIFY: rc %x rrc %x", cmd->rc,
2750 			     cmd->rrc);
2751 		break;
2752 	}
2753 	case KVM_PV_PREP_RESET: {
2754 		r = -EINVAL;
2755 		if (!kvm_s390_pv_is_protected(kvm))
2756 			break;
2757 
2758 		r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2759 				  UVC_CMD_PREPARE_RESET, &cmd->rc, &cmd->rrc);
2760 		KVM_UV_EVENT(kvm, 3, "PROTVIRT PREP RESET: rc %x rrc %x",
2761 			     cmd->rc, cmd->rrc);
2762 		break;
2763 	}
2764 	case KVM_PV_UNSHARE_ALL: {
2765 		r = -EINVAL;
2766 		if (!kvm_s390_pv_is_protected(kvm))
2767 			break;
2768 
2769 		r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2770 				  UVC_CMD_SET_UNSHARE_ALL, &cmd->rc, &cmd->rrc);
2771 		KVM_UV_EVENT(kvm, 3, "PROTVIRT UNSHARE: rc %x rrc %x",
2772 			     cmd->rc, cmd->rrc);
2773 		break;
2774 	}
2775 	case KVM_PV_INFO: {
2776 		struct kvm_s390_pv_info info = {};
2777 		ssize_t data_len;
2778 
2779 		/*
2780 		 * No need to check the VM protection here.
2781 		 *
2782 		 * Maybe user space wants to query some of the data
2783 		 * when the VM is still unprotected. If we see the
2784 		 * need to fence a new data command we can still
2785 		 * return an error in the info handler.
2786 		 */
2787 
2788 		r = -EFAULT;
2789 		if (copy_from_user(&info, argp, sizeof(info.header)))
2790 			break;
2791 
2792 		r = -EINVAL;
2793 		if (info.header.len_max < sizeof(info.header))
2794 			break;
2795 
2796 		data_len = kvm_s390_handle_pv_info(&info);
2797 		if (data_len < 0) {
2798 			r = data_len;
2799 			break;
2800 		}
2801 		/*
2802 		 * If a data command struct is extended (multiple
2803 		 * times) this can be used to determine how much of it
2804 		 * is valid.
2805 		 */
2806 		info.header.len_written = data_len;
2807 
2808 		r = -EFAULT;
2809 		if (copy_to_user(argp, &info, data_len))
2810 			break;
2811 
2812 		r = 0;
2813 		break;
2814 	}
2815 	case KVM_PV_DUMP: {
2816 		struct kvm_s390_pv_dmp dmp;
2817 
2818 		r = -EINVAL;
2819 		if (!kvm_s390_pv_is_protected(kvm))
2820 			break;
2821 
2822 		r = -EFAULT;
2823 		if (copy_from_user(&dmp, argp, sizeof(dmp)))
2824 			break;
2825 
2826 		r = kvm_s390_pv_dmp(kvm, cmd, dmp);
2827 		if (r)
2828 			break;
2829 
2830 		if (copy_to_user(argp, &dmp, sizeof(dmp))) {
2831 			r = -EFAULT;
2832 			break;
2833 		}
2834 
2835 		break;
2836 	}
2837 	default:
2838 		r = -ENOTTY;
2839 	}
2840 	if (need_lock)
2841 		mutex_unlock(&kvm->lock);
2842 
2843 	return r;
2844 }
2845 
2846 static int mem_op_validate_common(struct kvm_s390_mem_op *mop, u64 supported_flags)
2847 {
2848 	if (mop->flags & ~supported_flags || !mop->size)
2849 		return -EINVAL;
2850 	if (mop->size > MEM_OP_MAX_SIZE)
2851 		return -E2BIG;
2852 	if (mop->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION) {
2853 		if (mop->key > 0xf)
2854 			return -EINVAL;
2855 	} else {
2856 		mop->key = 0;
2857 	}
2858 	return 0;
2859 }
2860 
2861 static int kvm_s390_vm_mem_op_abs(struct kvm *kvm, struct kvm_s390_mem_op *mop)
2862 {
2863 	void __user *uaddr = (void __user *)mop->buf;
2864 	enum gacc_mode acc_mode;
2865 	void *tmpbuf = NULL;
2866 	int r, srcu_idx;
2867 
2868 	r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION |
2869 					KVM_S390_MEMOP_F_CHECK_ONLY);
2870 	if (r)
2871 		return r;
2872 
2873 	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
2874 		tmpbuf = vmalloc(mop->size);
2875 		if (!tmpbuf)
2876 			return -ENOMEM;
2877 	}
2878 
2879 	srcu_idx = srcu_read_lock(&kvm->srcu);
2880 
2881 	if (!kvm_is_gpa_in_memslot(kvm, mop->gaddr)) {
2882 		r = PGM_ADDRESSING;
2883 		goto out_unlock;
2884 	}
2885 
2886 	acc_mode = mop->op == KVM_S390_MEMOP_ABSOLUTE_READ ? GACC_FETCH : GACC_STORE;
2887 	if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2888 		r = check_gpa_range(kvm, mop->gaddr, mop->size, acc_mode, mop->key);
2889 		goto out_unlock;
2890 	}
2891 	if (acc_mode == GACC_FETCH) {
2892 		r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf,
2893 					      mop->size, GACC_FETCH, mop->key);
2894 		if (r)
2895 			goto out_unlock;
2896 		if (copy_to_user(uaddr, tmpbuf, mop->size))
2897 			r = -EFAULT;
2898 	} else {
2899 		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
2900 			r = -EFAULT;
2901 			goto out_unlock;
2902 		}
2903 		r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf,
2904 					      mop->size, GACC_STORE, mop->key);
2905 	}
2906 
2907 out_unlock:
2908 	srcu_read_unlock(&kvm->srcu, srcu_idx);
2909 
2910 	vfree(tmpbuf);
2911 	return r;
2912 }
2913 
2914 static int kvm_s390_vm_mem_op_cmpxchg(struct kvm *kvm, struct kvm_s390_mem_op *mop)
2915 {
2916 	void __user *uaddr = (void __user *)mop->buf;
2917 	void __user *old_addr = (void __user *)mop->old_addr;
2918 	union {
2919 		__uint128_t quad;
2920 		char raw[sizeof(__uint128_t)];
2921 	} old = { .quad = 0}, new = { .quad = 0 };
2922 	unsigned int off_in_quad = sizeof(new) - mop->size;
2923 	int r, srcu_idx;
2924 	bool success;
2925 
2926 	r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION);
2927 	if (r)
2928 		return r;
2929 	/*
2930 	 * This validates off_in_quad. Checking that size is a power
2931 	 * of two is not necessary, as cmpxchg_guest_abs_with_key
2932 	 * takes care of that
2933 	 */
2934 	if (mop->size > sizeof(new))
2935 		return -EINVAL;
2936 	if (copy_from_user(&new.raw[off_in_quad], uaddr, mop->size))
2937 		return -EFAULT;
2938 	if (copy_from_user(&old.raw[off_in_quad], old_addr, mop->size))
2939 		return -EFAULT;
2940 
2941 	srcu_idx = srcu_read_lock(&kvm->srcu);
2942 
2943 	if (!kvm_is_gpa_in_memslot(kvm, mop->gaddr)) {
2944 		r = PGM_ADDRESSING;
2945 		goto out_unlock;
2946 	}
2947 
2948 	r = cmpxchg_guest_abs_with_key(kvm, mop->gaddr, mop->size, &old.quad,
2949 				       new.quad, mop->key, &success);
2950 	if (!success && copy_to_user(old_addr, &old.raw[off_in_quad], mop->size))
2951 		r = -EFAULT;
2952 
2953 out_unlock:
2954 	srcu_read_unlock(&kvm->srcu, srcu_idx);
2955 	return r;
2956 }
2957 
2958 static int kvm_s390_vm_mem_op(struct kvm *kvm, struct kvm_s390_mem_op *mop)
2959 {
2960 	/*
2961 	 * This is technically a heuristic only, if the kvm->lock is not
2962 	 * taken, it is not guaranteed that the vm is/remains non-protected.
2963 	 * This is ok from a kernel perspective, wrongdoing is detected
2964 	 * on the access, -EFAULT is returned and the vm may crash the
2965 	 * next time it accesses the memory in question.
2966 	 * There is no sane usecase to do switching and a memop on two
2967 	 * different CPUs at the same time.
2968 	 */
2969 	if (kvm_s390_pv_get_handle(kvm))
2970 		return -EINVAL;
2971 
2972 	switch (mop->op) {
2973 	case KVM_S390_MEMOP_ABSOLUTE_READ:
2974 	case KVM_S390_MEMOP_ABSOLUTE_WRITE:
2975 		return kvm_s390_vm_mem_op_abs(kvm, mop);
2976 	case KVM_S390_MEMOP_ABSOLUTE_CMPXCHG:
2977 		return kvm_s390_vm_mem_op_cmpxchg(kvm, mop);
2978 	default:
2979 		return -EINVAL;
2980 	}
2981 }
2982 
2983 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
2984 {
2985 	struct kvm *kvm = filp->private_data;
2986 	void __user *argp = (void __user *)arg;
2987 	struct kvm_device_attr attr;
2988 	int r;
2989 
2990 	switch (ioctl) {
2991 	case KVM_S390_INTERRUPT: {
2992 		struct kvm_s390_interrupt s390int;
2993 
2994 		r = -EFAULT;
2995 		if (copy_from_user(&s390int, argp, sizeof(s390int)))
2996 			break;
2997 		r = kvm_s390_inject_vm(kvm, &s390int);
2998 		break;
2999 	}
3000 	case KVM_CREATE_IRQCHIP: {
3001 		struct kvm_irq_routing_entry routing;
3002 
3003 		r = -EINVAL;
3004 		if (kvm->arch.use_irqchip) {
3005 			/* Set up dummy routing. */
3006 			memset(&routing, 0, sizeof(routing));
3007 			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
3008 		}
3009 		break;
3010 	}
3011 	case KVM_SET_DEVICE_ATTR: {
3012 		r = -EFAULT;
3013 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3014 			break;
3015 		r = kvm_s390_vm_set_attr(kvm, &attr);
3016 		break;
3017 	}
3018 	case KVM_GET_DEVICE_ATTR: {
3019 		r = -EFAULT;
3020 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3021 			break;
3022 		r = kvm_s390_vm_get_attr(kvm, &attr);
3023 		break;
3024 	}
3025 	case KVM_HAS_DEVICE_ATTR: {
3026 		r = -EFAULT;
3027 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3028 			break;
3029 		r = kvm_s390_vm_has_attr(kvm, &attr);
3030 		break;
3031 	}
3032 	case KVM_S390_GET_SKEYS: {
3033 		struct kvm_s390_skeys args;
3034 
3035 		r = -EFAULT;
3036 		if (copy_from_user(&args, argp,
3037 				   sizeof(struct kvm_s390_skeys)))
3038 			break;
3039 		r = kvm_s390_get_skeys(kvm, &args);
3040 		break;
3041 	}
3042 	case KVM_S390_SET_SKEYS: {
3043 		struct kvm_s390_skeys args;
3044 
3045 		r = -EFAULT;
3046 		if (copy_from_user(&args, argp,
3047 				   sizeof(struct kvm_s390_skeys)))
3048 			break;
3049 		r = kvm_s390_set_skeys(kvm, &args);
3050 		break;
3051 	}
3052 	case KVM_S390_GET_CMMA_BITS: {
3053 		struct kvm_s390_cmma_log args;
3054 
3055 		r = -EFAULT;
3056 		if (copy_from_user(&args, argp, sizeof(args)))
3057 			break;
3058 		mutex_lock(&kvm->slots_lock);
3059 		r = kvm_s390_get_cmma_bits(kvm, &args);
3060 		mutex_unlock(&kvm->slots_lock);
3061 		if (!r) {
3062 			r = copy_to_user(argp, &args, sizeof(args));
3063 			if (r)
3064 				r = -EFAULT;
3065 		}
3066 		break;
3067 	}
3068 	case KVM_S390_SET_CMMA_BITS: {
3069 		struct kvm_s390_cmma_log args;
3070 
3071 		r = -EFAULT;
3072 		if (copy_from_user(&args, argp, sizeof(args)))
3073 			break;
3074 		mutex_lock(&kvm->slots_lock);
3075 		r = kvm_s390_set_cmma_bits(kvm, &args);
3076 		mutex_unlock(&kvm->slots_lock);
3077 		break;
3078 	}
3079 	case KVM_S390_PV_COMMAND: {
3080 		struct kvm_pv_cmd args;
3081 
3082 		/* protvirt means user cpu state */
3083 		kvm_s390_set_user_cpu_state_ctrl(kvm);
3084 		r = 0;
3085 		if (!is_prot_virt_host()) {
3086 			r = -EINVAL;
3087 			break;
3088 		}
3089 		if (copy_from_user(&args, argp, sizeof(args))) {
3090 			r = -EFAULT;
3091 			break;
3092 		}
3093 		if (args.flags) {
3094 			r = -EINVAL;
3095 			break;
3096 		}
3097 		/* must be called without kvm->lock */
3098 		r = kvm_s390_handle_pv(kvm, &args);
3099 		if (copy_to_user(argp, &args, sizeof(args))) {
3100 			r = -EFAULT;
3101 			break;
3102 		}
3103 		break;
3104 	}
3105 	case KVM_S390_MEM_OP: {
3106 		struct kvm_s390_mem_op mem_op;
3107 
3108 		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
3109 			r = kvm_s390_vm_mem_op(kvm, &mem_op);
3110 		else
3111 			r = -EFAULT;
3112 		break;
3113 	}
3114 	case KVM_S390_ZPCI_OP: {
3115 		struct kvm_s390_zpci_op args;
3116 
3117 		r = -EINVAL;
3118 		if (!IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
3119 			break;
3120 		if (copy_from_user(&args, argp, sizeof(args))) {
3121 			r = -EFAULT;
3122 			break;
3123 		}
3124 		r = kvm_s390_pci_zpci_op(kvm, &args);
3125 		break;
3126 	}
3127 	default:
3128 		r = -ENOTTY;
3129 	}
3130 
3131 	return r;
3132 }
3133 
3134 static int kvm_s390_apxa_installed(void)
3135 {
3136 	struct ap_config_info info;
3137 
3138 	if (ap_instructions_available()) {
3139 		if (ap_qci(&info) == 0)
3140 			return info.apxa;
3141 	}
3142 
3143 	return 0;
3144 }
3145 
3146 /*
3147  * The format of the crypto control block (CRYCB) is specified in the 3 low
3148  * order bits of the CRYCB designation (CRYCBD) field as follows:
3149  * Format 0: Neither the message security assist extension 3 (MSAX3) nor the
3150  *	     AP extended addressing (APXA) facility are installed.
3151  * Format 1: The APXA facility is not installed but the MSAX3 facility is.
3152  * Format 2: Both the APXA and MSAX3 facilities are installed
3153  */
3154 static void kvm_s390_set_crycb_format(struct kvm *kvm)
3155 {
3156 	kvm->arch.crypto.crycbd = virt_to_phys(kvm->arch.crypto.crycb);
3157 
3158 	/* Clear the CRYCB format bits - i.e., set format 0 by default */
3159 	kvm->arch.crypto.crycbd &= ~(CRYCB_FORMAT_MASK);
3160 
3161 	/* Check whether MSAX3 is installed */
3162 	if (!test_kvm_facility(kvm, 76))
3163 		return;
3164 
3165 	if (kvm_s390_apxa_installed())
3166 		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
3167 	else
3168 		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
3169 }
3170 
3171 /*
3172  * kvm_arch_crypto_set_masks
3173  *
3174  * @kvm: pointer to the target guest's KVM struct containing the crypto masks
3175  *	 to be set.
3176  * @apm: the mask identifying the accessible AP adapters
3177  * @aqm: the mask identifying the accessible AP domains
3178  * @adm: the mask identifying the accessible AP control domains
3179  *
3180  * Set the masks that identify the adapters, domains and control domains to
3181  * which the KVM guest is granted access.
3182  *
3183  * Note: The kvm->lock mutex must be locked by the caller before invoking this
3184  *	 function.
3185  */
3186 void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm,
3187 			       unsigned long *aqm, unsigned long *adm)
3188 {
3189 	struct kvm_s390_crypto_cb *crycb = kvm->arch.crypto.crycb;
3190 
3191 	kvm_s390_vcpu_block_all(kvm);
3192 
3193 	switch (kvm->arch.crypto.crycbd & CRYCB_FORMAT_MASK) {
3194 	case CRYCB_FORMAT2: /* APCB1 use 256 bits */
3195 		memcpy(crycb->apcb1.apm, apm, 32);
3196 		VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx %016lx %016lx %016lx",
3197 			 apm[0], apm[1], apm[2], apm[3]);
3198 		memcpy(crycb->apcb1.aqm, aqm, 32);
3199 		VM_EVENT(kvm, 3, "SET CRYCB: aqm %016lx %016lx %016lx %016lx",
3200 			 aqm[0], aqm[1], aqm[2], aqm[3]);
3201 		memcpy(crycb->apcb1.adm, adm, 32);
3202 		VM_EVENT(kvm, 3, "SET CRYCB: adm %016lx %016lx %016lx %016lx",
3203 			 adm[0], adm[1], adm[2], adm[3]);
3204 		break;
3205 	case CRYCB_FORMAT1:
3206 	case CRYCB_FORMAT0: /* Fall through both use APCB0 */
3207 		memcpy(crycb->apcb0.apm, apm, 8);
3208 		memcpy(crycb->apcb0.aqm, aqm, 2);
3209 		memcpy(crycb->apcb0.adm, adm, 2);
3210 		VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx aqm %04x adm %04x",
3211 			 apm[0], *((unsigned short *)aqm),
3212 			 *((unsigned short *)adm));
3213 		break;
3214 	default:	/* Can not happen */
3215 		break;
3216 	}
3217 
3218 	/* recreate the shadow crycb for each vcpu */
3219 	kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART);
3220 	kvm_s390_vcpu_unblock_all(kvm);
3221 }
3222 EXPORT_SYMBOL_GPL(kvm_arch_crypto_set_masks);
3223 
3224 /*
3225  * kvm_arch_crypto_clear_masks
3226  *
3227  * @kvm: pointer to the target guest's KVM struct containing the crypto masks
3228  *	 to be cleared.
3229  *
3230  * Clear the masks that identify the adapters, domains and control domains to
3231  * which the KVM guest is granted access.
3232  *
3233  * Note: The kvm->lock mutex must be locked by the caller before invoking this
3234  *	 function.
3235  */
3236 void kvm_arch_crypto_clear_masks(struct kvm *kvm)
3237 {
3238 	kvm_s390_vcpu_block_all(kvm);
3239 
3240 	memset(&kvm->arch.crypto.crycb->apcb0, 0,
3241 	       sizeof(kvm->arch.crypto.crycb->apcb0));
3242 	memset(&kvm->arch.crypto.crycb->apcb1, 0,
3243 	       sizeof(kvm->arch.crypto.crycb->apcb1));
3244 
3245 	VM_EVENT(kvm, 3, "%s", "CLR CRYCB:");
3246 	/* recreate the shadow crycb for each vcpu */
3247 	kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART);
3248 	kvm_s390_vcpu_unblock_all(kvm);
3249 }
3250 EXPORT_SYMBOL_GPL(kvm_arch_crypto_clear_masks);
3251 
3252 static u64 kvm_s390_get_initial_cpuid(void)
3253 {
3254 	struct cpuid cpuid;
3255 
3256 	get_cpu_id(&cpuid);
3257 	cpuid.version = 0xff;
3258 	return *((u64 *) &cpuid);
3259 }
3260 
3261 static void kvm_s390_crypto_init(struct kvm *kvm)
3262 {
3263 	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
3264 	kvm_s390_set_crycb_format(kvm);
3265 	init_rwsem(&kvm->arch.crypto.pqap_hook_rwsem);
3266 
3267 	if (!test_kvm_facility(kvm, 76))
3268 		return;
3269 
3270 	/* Enable AES/DEA protected key functions by default */
3271 	kvm->arch.crypto.aes_kw = 1;
3272 	kvm->arch.crypto.dea_kw = 1;
3273 	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
3274 			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
3275 	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
3276 			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
3277 }
3278 
3279 static void sca_dispose(struct kvm *kvm)
3280 {
3281 	if (kvm->arch.use_esca)
3282 		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
3283 	else
3284 		free_page((unsigned long)(kvm->arch.sca));
3285 	kvm->arch.sca = NULL;
3286 }
3287 
3288 void kvm_arch_free_vm(struct kvm *kvm)
3289 {
3290 	if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
3291 		kvm_s390_pci_clear_list(kvm);
3292 
3293 	__kvm_arch_free_vm(kvm);
3294 }
3295 
3296 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
3297 {
3298 	gfp_t alloc_flags = GFP_KERNEL_ACCOUNT;
3299 	int i, rc;
3300 	char debug_name[16];
3301 	static unsigned long sca_offset;
3302 
3303 	rc = -EINVAL;
3304 #ifdef CONFIG_KVM_S390_UCONTROL
3305 	if (type & ~KVM_VM_S390_UCONTROL)
3306 		goto out_err;
3307 	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
3308 		goto out_err;
3309 #else
3310 	if (type)
3311 		goto out_err;
3312 #endif
3313 
3314 	rc = s390_enable_sie();
3315 	if (rc)
3316 		goto out_err;
3317 
3318 	rc = -ENOMEM;
3319 
3320 	if (!sclp.has_64bscao)
3321 		alloc_flags |= GFP_DMA;
3322 	rwlock_init(&kvm->arch.sca_lock);
3323 	/* start with basic SCA */
3324 	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
3325 	if (!kvm->arch.sca)
3326 		goto out_err;
3327 	mutex_lock(&kvm_lock);
3328 	sca_offset += 16;
3329 	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
3330 		sca_offset = 0;
3331 	kvm->arch.sca = (struct bsca_block *)
3332 			((char *) kvm->arch.sca + sca_offset);
3333 	mutex_unlock(&kvm_lock);
3334 
3335 	sprintf(debug_name, "kvm-%u", current->pid);
3336 
3337 	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
3338 	if (!kvm->arch.dbf)
3339 		goto out_err;
3340 
3341 	BUILD_BUG_ON(sizeof(struct sie_page2) != 4096);
3342 	kvm->arch.sie_page2 =
3343 	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA);
3344 	if (!kvm->arch.sie_page2)
3345 		goto out_err;
3346 
3347 	kvm->arch.sie_page2->kvm = kvm;
3348 	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
3349 
3350 	for (i = 0; i < kvm_s390_fac_size(); i++) {
3351 		kvm->arch.model.fac_mask[i] = stfle_fac_list[i] &
3352 					      (kvm_s390_fac_base[i] |
3353 					       kvm_s390_fac_ext[i]);
3354 		kvm->arch.model.fac_list[i] = stfle_fac_list[i] &
3355 					      kvm_s390_fac_base[i];
3356 	}
3357 	kvm->arch.model.subfuncs = kvm_s390_available_subfunc;
3358 
3359 	/* we are always in czam mode - even on pre z14 machines */
3360 	set_kvm_facility(kvm->arch.model.fac_mask, 138);
3361 	set_kvm_facility(kvm->arch.model.fac_list, 138);
3362 	/* we emulate STHYI in kvm */
3363 	set_kvm_facility(kvm->arch.model.fac_mask, 74);
3364 	set_kvm_facility(kvm->arch.model.fac_list, 74);
3365 	if (MACHINE_HAS_TLB_GUEST) {
3366 		set_kvm_facility(kvm->arch.model.fac_mask, 147);
3367 		set_kvm_facility(kvm->arch.model.fac_list, 147);
3368 	}
3369 
3370 	if (css_general_characteristics.aiv && test_facility(65))
3371 		set_kvm_facility(kvm->arch.model.fac_mask, 65);
3372 
3373 	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
3374 	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
3375 
3376 	kvm->arch.model.uv_feat_guest.feat = 0;
3377 
3378 	kvm_s390_crypto_init(kvm);
3379 
3380 	if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) {
3381 		mutex_lock(&kvm->lock);
3382 		kvm_s390_pci_init_list(kvm);
3383 		kvm_s390_vcpu_pci_enable_interp(kvm);
3384 		mutex_unlock(&kvm->lock);
3385 	}
3386 
3387 	mutex_init(&kvm->arch.float_int.ais_lock);
3388 	spin_lock_init(&kvm->arch.float_int.lock);
3389 	for (i = 0; i < FIRQ_LIST_COUNT; i++)
3390 		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
3391 	init_waitqueue_head(&kvm->arch.ipte_wq);
3392 	mutex_init(&kvm->arch.ipte_mutex);
3393 
3394 	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
3395 	VM_EVENT(kvm, 3, "vm created with type %lu", type);
3396 
3397 	if (type & KVM_VM_S390_UCONTROL) {
3398 		kvm->arch.gmap = NULL;
3399 		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
3400 	} else {
3401 		if (sclp.hamax == U64_MAX)
3402 			kvm->arch.mem_limit = TASK_SIZE_MAX;
3403 		else
3404 			kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX,
3405 						    sclp.hamax + 1);
3406 		kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
3407 		if (!kvm->arch.gmap)
3408 			goto out_err;
3409 		kvm->arch.gmap->private = kvm;
3410 		kvm->arch.gmap->pfault_enabled = 0;
3411 	}
3412 
3413 	kvm->arch.use_pfmfi = sclp.has_pfmfi;
3414 	kvm->arch.use_skf = sclp.has_skey;
3415 	spin_lock_init(&kvm->arch.start_stop_lock);
3416 	kvm_s390_vsie_init(kvm);
3417 	if (use_gisa)
3418 		kvm_s390_gisa_init(kvm);
3419 	INIT_LIST_HEAD(&kvm->arch.pv.need_cleanup);
3420 	kvm->arch.pv.set_aside = NULL;
3421 	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
3422 
3423 	return 0;
3424 out_err:
3425 	free_page((unsigned long)kvm->arch.sie_page2);
3426 	debug_unregister(kvm->arch.dbf);
3427 	sca_dispose(kvm);
3428 	KVM_EVENT(3, "creation of vm failed: %d", rc);
3429 	return rc;
3430 }
3431 
3432 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3433 {
3434 	u16 rc, rrc;
3435 
3436 	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
3437 	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
3438 	kvm_s390_clear_local_irqs(vcpu);
3439 	kvm_clear_async_pf_completion_queue(vcpu);
3440 	if (!kvm_is_ucontrol(vcpu->kvm))
3441 		sca_del_vcpu(vcpu);
3442 	kvm_s390_update_topology_change_report(vcpu->kvm, 1);
3443 
3444 	if (kvm_is_ucontrol(vcpu->kvm))
3445 		gmap_remove(vcpu->arch.gmap);
3446 
3447 	if (vcpu->kvm->arch.use_cmma)
3448 		kvm_s390_vcpu_unsetup_cmma(vcpu);
3449 	/* We can not hold the vcpu mutex here, we are already dying */
3450 	if (kvm_s390_pv_cpu_get_handle(vcpu))
3451 		kvm_s390_pv_destroy_cpu(vcpu, &rc, &rrc);
3452 	free_page((unsigned long)(vcpu->arch.sie_block));
3453 }
3454 
3455 void kvm_arch_destroy_vm(struct kvm *kvm)
3456 {
3457 	u16 rc, rrc;
3458 
3459 	kvm_destroy_vcpus(kvm);
3460 	sca_dispose(kvm);
3461 	kvm_s390_gisa_destroy(kvm);
3462 	/*
3463 	 * We are already at the end of life and kvm->lock is not taken.
3464 	 * This is ok as the file descriptor is closed by now and nobody
3465 	 * can mess with the pv state.
3466 	 */
3467 	kvm_s390_pv_deinit_cleanup_all(kvm, &rc, &rrc);
3468 	/*
3469 	 * Remove the mmu notifier only when the whole KVM VM is torn down,
3470 	 * and only if one was registered to begin with. If the VM is
3471 	 * currently not protected, but has been previously been protected,
3472 	 * then it's possible that the notifier is still registered.
3473 	 */
3474 	if (kvm->arch.pv.mmu_notifier.ops)
3475 		mmu_notifier_unregister(&kvm->arch.pv.mmu_notifier, kvm->mm);
3476 
3477 	debug_unregister(kvm->arch.dbf);
3478 	free_page((unsigned long)kvm->arch.sie_page2);
3479 	if (!kvm_is_ucontrol(kvm))
3480 		gmap_remove(kvm->arch.gmap);
3481 	kvm_s390_destroy_adapters(kvm);
3482 	kvm_s390_clear_float_irqs(kvm);
3483 	kvm_s390_vsie_destroy(kvm);
3484 	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
3485 }
3486 
3487 /* Section: vcpu related */
3488 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
3489 {
3490 	vcpu->arch.gmap = gmap_create(current->mm, -1UL);
3491 	if (!vcpu->arch.gmap)
3492 		return -ENOMEM;
3493 	vcpu->arch.gmap->private = vcpu->kvm;
3494 
3495 	return 0;
3496 }
3497 
3498 static void sca_del_vcpu(struct kvm_vcpu *vcpu)
3499 {
3500 	if (!kvm_s390_use_sca_entries())
3501 		return;
3502 	read_lock(&vcpu->kvm->arch.sca_lock);
3503 	if (vcpu->kvm->arch.use_esca) {
3504 		struct esca_block *sca = vcpu->kvm->arch.sca;
3505 
3506 		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
3507 		sca->cpu[vcpu->vcpu_id].sda = 0;
3508 	} else {
3509 		struct bsca_block *sca = vcpu->kvm->arch.sca;
3510 
3511 		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
3512 		sca->cpu[vcpu->vcpu_id].sda = 0;
3513 	}
3514 	read_unlock(&vcpu->kvm->arch.sca_lock);
3515 }
3516 
3517 static void sca_add_vcpu(struct kvm_vcpu *vcpu)
3518 {
3519 	if (!kvm_s390_use_sca_entries()) {
3520 		phys_addr_t sca_phys = virt_to_phys(vcpu->kvm->arch.sca);
3521 
3522 		/* we still need the basic sca for the ipte control */
3523 		vcpu->arch.sie_block->scaoh = sca_phys >> 32;
3524 		vcpu->arch.sie_block->scaol = sca_phys;
3525 		return;
3526 	}
3527 	read_lock(&vcpu->kvm->arch.sca_lock);
3528 	if (vcpu->kvm->arch.use_esca) {
3529 		struct esca_block *sca = vcpu->kvm->arch.sca;
3530 		phys_addr_t sca_phys = virt_to_phys(sca);
3531 
3532 		sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block);
3533 		vcpu->arch.sie_block->scaoh = sca_phys >> 32;
3534 		vcpu->arch.sie_block->scaol = sca_phys & ESCA_SCAOL_MASK;
3535 		vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
3536 		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
3537 	} else {
3538 		struct bsca_block *sca = vcpu->kvm->arch.sca;
3539 		phys_addr_t sca_phys = virt_to_phys(sca);
3540 
3541 		sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block);
3542 		vcpu->arch.sie_block->scaoh = sca_phys >> 32;
3543 		vcpu->arch.sie_block->scaol = sca_phys;
3544 		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
3545 	}
3546 	read_unlock(&vcpu->kvm->arch.sca_lock);
3547 }
3548 
3549 /* Basic SCA to Extended SCA data copy routines */
3550 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
3551 {
3552 	d->sda = s->sda;
3553 	d->sigp_ctrl.c = s->sigp_ctrl.c;
3554 	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
3555 }
3556 
3557 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
3558 {
3559 	int i;
3560 
3561 	d->ipte_control = s->ipte_control;
3562 	d->mcn[0] = s->mcn;
3563 	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
3564 		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
3565 }
3566 
3567 static int sca_switch_to_extended(struct kvm *kvm)
3568 {
3569 	struct bsca_block *old_sca = kvm->arch.sca;
3570 	struct esca_block *new_sca;
3571 	struct kvm_vcpu *vcpu;
3572 	unsigned long vcpu_idx;
3573 	u32 scaol, scaoh;
3574 	phys_addr_t new_sca_phys;
3575 
3576 	if (kvm->arch.use_esca)
3577 		return 0;
3578 
3579 	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3580 	if (!new_sca)
3581 		return -ENOMEM;
3582 
3583 	new_sca_phys = virt_to_phys(new_sca);
3584 	scaoh = new_sca_phys >> 32;
3585 	scaol = new_sca_phys & ESCA_SCAOL_MASK;
3586 
3587 	kvm_s390_vcpu_block_all(kvm);
3588 	write_lock(&kvm->arch.sca_lock);
3589 
3590 	sca_copy_b_to_e(new_sca, old_sca);
3591 
3592 	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
3593 		vcpu->arch.sie_block->scaoh = scaoh;
3594 		vcpu->arch.sie_block->scaol = scaol;
3595 		vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
3596 	}
3597 	kvm->arch.sca = new_sca;
3598 	kvm->arch.use_esca = 1;
3599 
3600 	write_unlock(&kvm->arch.sca_lock);
3601 	kvm_s390_vcpu_unblock_all(kvm);
3602 
3603 	free_page((unsigned long)old_sca);
3604 
3605 	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
3606 		 old_sca, kvm->arch.sca);
3607 	return 0;
3608 }
3609 
3610 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
3611 {
3612 	int rc;
3613 
3614 	if (!kvm_s390_use_sca_entries()) {
3615 		if (id < KVM_MAX_VCPUS)
3616 			return true;
3617 		return false;
3618 	}
3619 	if (id < KVM_S390_BSCA_CPU_SLOTS)
3620 		return true;
3621 	if (!sclp.has_esca || !sclp.has_64bscao)
3622 		return false;
3623 
3624 	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
3625 
3626 	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
3627 }
3628 
3629 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
3630 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3631 {
3632 	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
3633 	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
3634 	vcpu->arch.cputm_start = get_tod_clock_fast();
3635 	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
3636 }
3637 
3638 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
3639 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3640 {
3641 	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
3642 	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
3643 	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
3644 	vcpu->arch.cputm_start = 0;
3645 	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
3646 }
3647 
3648 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
3649 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3650 {
3651 	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
3652 	vcpu->arch.cputm_enabled = true;
3653 	__start_cpu_timer_accounting(vcpu);
3654 }
3655 
3656 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
3657 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3658 {
3659 	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
3660 	__stop_cpu_timer_accounting(vcpu);
3661 	vcpu->arch.cputm_enabled = false;
3662 }
3663 
3664 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3665 {
3666 	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3667 	__enable_cpu_timer_accounting(vcpu);
3668 	preempt_enable();
3669 }
3670 
3671 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3672 {
3673 	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3674 	__disable_cpu_timer_accounting(vcpu);
3675 	preempt_enable();
3676 }
3677 
3678 /* set the cpu timer - may only be called from the VCPU thread itself */
3679 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
3680 {
3681 	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3682 	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
3683 	if (vcpu->arch.cputm_enabled)
3684 		vcpu->arch.cputm_start = get_tod_clock_fast();
3685 	vcpu->arch.sie_block->cputm = cputm;
3686 	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
3687 	preempt_enable();
3688 }
3689 
3690 /* update and get the cpu timer - can also be called from other VCPU threads */
3691 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
3692 {
3693 	unsigned int seq;
3694 	__u64 value;
3695 
3696 	if (unlikely(!vcpu->arch.cputm_enabled))
3697 		return vcpu->arch.sie_block->cputm;
3698 
3699 	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3700 	do {
3701 		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
3702 		/*
3703 		 * If the writer would ever execute a read in the critical
3704 		 * section, e.g. in irq context, we have a deadlock.
3705 		 */
3706 		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
3707 		value = vcpu->arch.sie_block->cputm;
3708 		/* if cputm_start is 0, accounting is being started/stopped */
3709 		if (likely(vcpu->arch.cputm_start))
3710 			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
3711 	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
3712 	preempt_enable();
3713 	return value;
3714 }
3715 
3716 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3717 {
3718 
3719 	gmap_enable(vcpu->arch.enabled_gmap);
3720 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING);
3721 	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
3722 		__start_cpu_timer_accounting(vcpu);
3723 	vcpu->cpu = cpu;
3724 }
3725 
3726 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3727 {
3728 	vcpu->cpu = -1;
3729 	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
3730 		__stop_cpu_timer_accounting(vcpu);
3731 	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING);
3732 	vcpu->arch.enabled_gmap = gmap_get_enabled();
3733 	gmap_disable(vcpu->arch.enabled_gmap);
3734 
3735 }
3736 
3737 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
3738 {
3739 	mutex_lock(&vcpu->kvm->lock);
3740 	preempt_disable();
3741 	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
3742 	vcpu->arch.sie_block->epdx = vcpu->kvm->arch.epdx;
3743 	preempt_enable();
3744 	mutex_unlock(&vcpu->kvm->lock);
3745 	if (!kvm_is_ucontrol(vcpu->kvm)) {
3746 		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
3747 		sca_add_vcpu(vcpu);
3748 	}
3749 	if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0)
3750 		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
3751 	/* make vcpu_load load the right gmap on the first trigger */
3752 	vcpu->arch.enabled_gmap = vcpu->arch.gmap;
3753 }
3754 
3755 static bool kvm_has_pckmo_subfunc(struct kvm *kvm, unsigned long nr)
3756 {
3757 	if (test_bit_inv(nr, (unsigned long *)&kvm->arch.model.subfuncs.pckmo) &&
3758 	    test_bit_inv(nr, (unsigned long *)&kvm_s390_available_subfunc.pckmo))
3759 		return true;
3760 	return false;
3761 }
3762 
3763 static bool kvm_has_pckmo_ecc(struct kvm *kvm)
3764 {
3765 	/* At least one ECC subfunction must be present */
3766 	return kvm_has_pckmo_subfunc(kvm, 32) ||
3767 	       kvm_has_pckmo_subfunc(kvm, 33) ||
3768 	       kvm_has_pckmo_subfunc(kvm, 34) ||
3769 	       kvm_has_pckmo_subfunc(kvm, 40) ||
3770 	       kvm_has_pckmo_subfunc(kvm, 41);
3771 
3772 }
3773 
3774 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
3775 {
3776 	/*
3777 	 * If the AP instructions are not being interpreted and the MSAX3
3778 	 * facility is not configured for the guest, there is nothing to set up.
3779 	 */
3780 	if (!vcpu->kvm->arch.crypto.apie && !test_kvm_facility(vcpu->kvm, 76))
3781 		return;
3782 
3783 	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
3784 	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);
3785 	vcpu->arch.sie_block->eca &= ~ECA_APIE;
3786 	vcpu->arch.sie_block->ecd &= ~ECD_ECC;
3787 
3788 	if (vcpu->kvm->arch.crypto.apie)
3789 		vcpu->arch.sie_block->eca |= ECA_APIE;
3790 
3791 	/* Set up protected key support */
3792 	if (vcpu->kvm->arch.crypto.aes_kw) {
3793 		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
3794 		/* ecc is also wrapped with AES key */
3795 		if (kvm_has_pckmo_ecc(vcpu->kvm))
3796 			vcpu->arch.sie_block->ecd |= ECD_ECC;
3797 	}
3798 
3799 	if (vcpu->kvm->arch.crypto.dea_kw)
3800 		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;
3801 }
3802 
3803 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
3804 {
3805 	free_page((unsigned long)phys_to_virt(vcpu->arch.sie_block->cbrlo));
3806 	vcpu->arch.sie_block->cbrlo = 0;
3807 }
3808 
3809 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
3810 {
3811 	void *cbrlo_page = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3812 
3813 	if (!cbrlo_page)
3814 		return -ENOMEM;
3815 
3816 	vcpu->arch.sie_block->cbrlo = virt_to_phys(cbrlo_page);
3817 	return 0;
3818 }
3819 
3820 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
3821 {
3822 	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;
3823 
3824 	vcpu->arch.sie_block->ibc = model->ibc;
3825 	if (test_kvm_facility(vcpu->kvm, 7))
3826 		vcpu->arch.sie_block->fac = virt_to_phys(model->fac_list);
3827 }
3828 
3829 static int kvm_s390_vcpu_setup(struct kvm_vcpu *vcpu)
3830 {
3831 	int rc = 0;
3832 	u16 uvrc, uvrrc;
3833 
3834 	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
3835 						    CPUSTAT_SM |
3836 						    CPUSTAT_STOPPED);
3837 
3838 	if (test_kvm_facility(vcpu->kvm, 78))
3839 		kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2);
3840 	else if (test_kvm_facility(vcpu->kvm, 8))
3841 		kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED);
3842 
3843 	kvm_s390_vcpu_setup_model(vcpu);
3844 
3845 	/* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
3846 	if (MACHINE_HAS_ESOP)
3847 		vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT;
3848 	if (test_kvm_facility(vcpu->kvm, 9))
3849 		vcpu->arch.sie_block->ecb |= ECB_SRSI;
3850 	if (test_kvm_facility(vcpu->kvm, 11))
3851 		vcpu->arch.sie_block->ecb |= ECB_PTF;
3852 	if (test_kvm_facility(vcpu->kvm, 73))
3853 		vcpu->arch.sie_block->ecb |= ECB_TE;
3854 	if (!kvm_is_ucontrol(vcpu->kvm))
3855 		vcpu->arch.sie_block->ecb |= ECB_SPECI;
3856 
3857 	if (test_kvm_facility(vcpu->kvm, 8) && vcpu->kvm->arch.use_pfmfi)
3858 		vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI;
3859 	if (test_kvm_facility(vcpu->kvm, 130))
3860 		vcpu->arch.sie_block->ecb2 |= ECB2_IEP;
3861 	vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI;
3862 	if (sclp.has_cei)
3863 		vcpu->arch.sie_block->eca |= ECA_CEI;
3864 	if (sclp.has_ib)
3865 		vcpu->arch.sie_block->eca |= ECA_IB;
3866 	if (sclp.has_siif)
3867 		vcpu->arch.sie_block->eca |= ECA_SII;
3868 	if (sclp.has_sigpif)
3869 		vcpu->arch.sie_block->eca |= ECA_SIGPI;
3870 	if (test_kvm_facility(vcpu->kvm, 129)) {
3871 		vcpu->arch.sie_block->eca |= ECA_VX;
3872 		vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
3873 	}
3874 	if (test_kvm_facility(vcpu->kvm, 139))
3875 		vcpu->arch.sie_block->ecd |= ECD_MEF;
3876 	if (test_kvm_facility(vcpu->kvm, 156))
3877 		vcpu->arch.sie_block->ecd |= ECD_ETOKENF;
3878 	if (vcpu->arch.sie_block->gd) {
3879 		vcpu->arch.sie_block->eca |= ECA_AIV;
3880 		VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u",
3881 			   vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id);
3882 	}
3883 	vcpu->arch.sie_block->sdnxo = virt_to_phys(&vcpu->run->s.regs.sdnx) | SDNXC;
3884 	vcpu->arch.sie_block->riccbd = virt_to_phys(&vcpu->run->s.regs.riccb);
3885 
3886 	if (sclp.has_kss)
3887 		kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS);
3888 	else
3889 		vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
3890 
3891 	if (vcpu->kvm->arch.use_cmma) {
3892 		rc = kvm_s390_vcpu_setup_cmma(vcpu);
3893 		if (rc)
3894 			return rc;
3895 	}
3896 	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3897 	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
3898 
3899 	vcpu->arch.sie_block->hpid = HPID_KVM;
3900 
3901 	kvm_s390_vcpu_crypto_setup(vcpu);
3902 
3903 	kvm_s390_vcpu_pci_setup(vcpu);
3904 
3905 	mutex_lock(&vcpu->kvm->lock);
3906 	if (kvm_s390_pv_is_protected(vcpu->kvm)) {
3907 		rc = kvm_s390_pv_create_cpu(vcpu, &uvrc, &uvrrc);
3908 		if (rc)
3909 			kvm_s390_vcpu_unsetup_cmma(vcpu);
3910 	}
3911 	mutex_unlock(&vcpu->kvm->lock);
3912 
3913 	return rc;
3914 }
3915 
3916 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
3917 {
3918 	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
3919 		return -EINVAL;
3920 	return 0;
3921 }
3922 
3923 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
3924 {
3925 	struct sie_page *sie_page;
3926 	int rc;
3927 
3928 	BUILD_BUG_ON(sizeof(struct sie_page) != 4096);
3929 	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL_ACCOUNT);
3930 	if (!sie_page)
3931 		return -ENOMEM;
3932 
3933 	vcpu->arch.sie_block = &sie_page->sie_block;
3934 	vcpu->arch.sie_block->itdba = virt_to_phys(&sie_page->itdb);
3935 
3936 	/* the real guest size will always be smaller than msl */
3937 	vcpu->arch.sie_block->mso = 0;
3938 	vcpu->arch.sie_block->msl = sclp.hamax;
3939 
3940 	vcpu->arch.sie_block->icpua = vcpu->vcpu_id;
3941 	spin_lock_init(&vcpu->arch.local_int.lock);
3942 	vcpu->arch.sie_block->gd = kvm_s390_get_gisa_desc(vcpu->kvm);
3943 	seqcount_init(&vcpu->arch.cputm_seqcount);
3944 
3945 	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
3946 	kvm_clear_async_pf_completion_queue(vcpu);
3947 	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
3948 				    KVM_SYNC_GPRS |
3949 				    KVM_SYNC_ACRS |
3950 				    KVM_SYNC_CRS |
3951 				    KVM_SYNC_ARCH0 |
3952 				    KVM_SYNC_PFAULT |
3953 				    KVM_SYNC_DIAG318;
3954 	vcpu->arch.acrs_loaded = false;
3955 	kvm_s390_set_prefix(vcpu, 0);
3956 	if (test_kvm_facility(vcpu->kvm, 64))
3957 		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
3958 	if (test_kvm_facility(vcpu->kvm, 82))
3959 		vcpu->run->kvm_valid_regs |= KVM_SYNC_BPBC;
3960 	if (test_kvm_facility(vcpu->kvm, 133))
3961 		vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB;
3962 	if (test_kvm_facility(vcpu->kvm, 156))
3963 		vcpu->run->kvm_valid_regs |= KVM_SYNC_ETOKEN;
3964 	/* fprs can be synchronized via vrs, even if the guest has no vx. With
3965 	 * cpu_has_vx(), (load|store)_fpu_regs() will work with vrs format.
3966 	 */
3967 	if (cpu_has_vx())
3968 		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
3969 	else
3970 		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
3971 
3972 	if (kvm_is_ucontrol(vcpu->kvm)) {
3973 		rc = __kvm_ucontrol_vcpu_init(vcpu);
3974 		if (rc)
3975 			goto out_free_sie_block;
3976 	}
3977 
3978 	VM_EVENT(vcpu->kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK",
3979 		 vcpu->vcpu_id, vcpu, vcpu->arch.sie_block);
3980 	trace_kvm_s390_create_vcpu(vcpu->vcpu_id, vcpu, vcpu->arch.sie_block);
3981 
3982 	rc = kvm_s390_vcpu_setup(vcpu);
3983 	if (rc)
3984 		goto out_ucontrol_uninit;
3985 
3986 	kvm_s390_update_topology_change_report(vcpu->kvm, 1);
3987 	return 0;
3988 
3989 out_ucontrol_uninit:
3990 	if (kvm_is_ucontrol(vcpu->kvm))
3991 		gmap_remove(vcpu->arch.gmap);
3992 out_free_sie_block:
3993 	free_page((unsigned long)(vcpu->arch.sie_block));
3994 	return rc;
3995 }
3996 
3997 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
3998 {
3999 	clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask);
4000 	return kvm_s390_vcpu_has_irq(vcpu, 0);
4001 }
4002 
4003 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
4004 {
4005 	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE);
4006 }
4007 
4008 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
4009 {
4010 	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
4011 	exit_sie(vcpu);
4012 }
4013 
4014 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
4015 {
4016 	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
4017 }
4018 
4019 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
4020 {
4021 	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
4022 	exit_sie(vcpu);
4023 }
4024 
4025 bool kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu *vcpu)
4026 {
4027 	return atomic_read(&vcpu->arch.sie_block->prog20) &
4028 	       (PROG_BLOCK_SIE | PROG_REQUEST);
4029 }
4030 
4031 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
4032 {
4033 	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
4034 }
4035 
4036 /*
4037  * Kick a guest cpu out of (v)SIE and wait until (v)SIE is not running.
4038  * If the CPU is not running (e.g. waiting as idle) the function will
4039  * return immediately. */
4040 void exit_sie(struct kvm_vcpu *vcpu)
4041 {
4042 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
4043 	kvm_s390_vsie_kick(vcpu);
4044 	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
4045 		cpu_relax();
4046 }
4047 
4048 /* Kick a guest cpu out of SIE to process a request synchronously */
4049 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
4050 {
4051 	__kvm_make_request(req, vcpu);
4052 	kvm_s390_vcpu_request(vcpu);
4053 }
4054 
4055 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
4056 			      unsigned long end)
4057 {
4058 	struct kvm *kvm = gmap->private;
4059 	struct kvm_vcpu *vcpu;
4060 	unsigned long prefix;
4061 	unsigned long i;
4062 
4063 	trace_kvm_s390_gmap_notifier(start, end, gmap_is_shadow(gmap));
4064 
4065 	if (gmap_is_shadow(gmap))
4066 		return;
4067 	if (start >= 1UL << 31)
4068 		/* We are only interested in prefix pages */
4069 		return;
4070 	kvm_for_each_vcpu(i, vcpu, kvm) {
4071 		/* match against both prefix pages */
4072 		prefix = kvm_s390_get_prefix(vcpu);
4073 		if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
4074 			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
4075 				   start, end);
4076 			kvm_s390_sync_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu);
4077 		}
4078 	}
4079 }
4080 
4081 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
4082 {
4083 	/* do not poll with more than halt_poll_max_steal percent of steal time */
4084 	if (S390_lowcore.avg_steal_timer * 100 / (TICK_USEC << 12) >=
4085 	    READ_ONCE(halt_poll_max_steal)) {
4086 		vcpu->stat.halt_no_poll_steal++;
4087 		return true;
4088 	}
4089 	return false;
4090 }
4091 
4092 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
4093 {
4094 	/* kvm common code refers to this, but never calls it */
4095 	BUG();
4096 	return 0;
4097 }
4098 
4099 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
4100 					   struct kvm_one_reg *reg)
4101 {
4102 	int r = -EINVAL;
4103 
4104 	switch (reg->id) {
4105 	case KVM_REG_S390_TODPR:
4106 		r = put_user(vcpu->arch.sie_block->todpr,
4107 			     (u32 __user *)reg->addr);
4108 		break;
4109 	case KVM_REG_S390_EPOCHDIFF:
4110 		r = put_user(vcpu->arch.sie_block->epoch,
4111 			     (u64 __user *)reg->addr);
4112 		break;
4113 	case KVM_REG_S390_CPU_TIMER:
4114 		r = put_user(kvm_s390_get_cpu_timer(vcpu),
4115 			     (u64 __user *)reg->addr);
4116 		break;
4117 	case KVM_REG_S390_CLOCK_COMP:
4118 		r = put_user(vcpu->arch.sie_block->ckc,
4119 			     (u64 __user *)reg->addr);
4120 		break;
4121 	case KVM_REG_S390_PFTOKEN:
4122 		r = put_user(vcpu->arch.pfault_token,
4123 			     (u64 __user *)reg->addr);
4124 		break;
4125 	case KVM_REG_S390_PFCOMPARE:
4126 		r = put_user(vcpu->arch.pfault_compare,
4127 			     (u64 __user *)reg->addr);
4128 		break;
4129 	case KVM_REG_S390_PFSELECT:
4130 		r = put_user(vcpu->arch.pfault_select,
4131 			     (u64 __user *)reg->addr);
4132 		break;
4133 	case KVM_REG_S390_PP:
4134 		r = put_user(vcpu->arch.sie_block->pp,
4135 			     (u64 __user *)reg->addr);
4136 		break;
4137 	case KVM_REG_S390_GBEA:
4138 		r = put_user(vcpu->arch.sie_block->gbea,
4139 			     (u64 __user *)reg->addr);
4140 		break;
4141 	default:
4142 		break;
4143 	}
4144 
4145 	return r;
4146 }
4147 
4148 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
4149 					   struct kvm_one_reg *reg)
4150 {
4151 	int r = -EINVAL;
4152 	__u64 val;
4153 
4154 	switch (reg->id) {
4155 	case KVM_REG_S390_TODPR:
4156 		r = get_user(vcpu->arch.sie_block->todpr,
4157 			     (u32 __user *)reg->addr);
4158 		break;
4159 	case KVM_REG_S390_EPOCHDIFF:
4160 		r = get_user(vcpu->arch.sie_block->epoch,
4161 			     (u64 __user *)reg->addr);
4162 		break;
4163 	case KVM_REG_S390_CPU_TIMER:
4164 		r = get_user(val, (u64 __user *)reg->addr);
4165 		if (!r)
4166 			kvm_s390_set_cpu_timer(vcpu, val);
4167 		break;
4168 	case KVM_REG_S390_CLOCK_COMP:
4169 		r = get_user(vcpu->arch.sie_block->ckc,
4170 			     (u64 __user *)reg->addr);
4171 		break;
4172 	case KVM_REG_S390_PFTOKEN:
4173 		r = get_user(vcpu->arch.pfault_token,
4174 			     (u64 __user *)reg->addr);
4175 		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
4176 			kvm_clear_async_pf_completion_queue(vcpu);
4177 		break;
4178 	case KVM_REG_S390_PFCOMPARE:
4179 		r = get_user(vcpu->arch.pfault_compare,
4180 			     (u64 __user *)reg->addr);
4181 		break;
4182 	case KVM_REG_S390_PFSELECT:
4183 		r = get_user(vcpu->arch.pfault_select,
4184 			     (u64 __user *)reg->addr);
4185 		break;
4186 	case KVM_REG_S390_PP:
4187 		r = get_user(vcpu->arch.sie_block->pp,
4188 			     (u64 __user *)reg->addr);
4189 		break;
4190 	case KVM_REG_S390_GBEA:
4191 		r = get_user(vcpu->arch.sie_block->gbea,
4192 			     (u64 __user *)reg->addr);
4193 		break;
4194 	default:
4195 		break;
4196 	}
4197 
4198 	return r;
4199 }
4200 
4201 static void kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu *vcpu)
4202 {
4203 	vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_RI;
4204 	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
4205 	memset(vcpu->run->s.regs.riccb, 0, sizeof(vcpu->run->s.regs.riccb));
4206 
4207 	kvm_clear_async_pf_completion_queue(vcpu);
4208 	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
4209 		kvm_s390_vcpu_stop(vcpu);
4210 	kvm_s390_clear_local_irqs(vcpu);
4211 }
4212 
4213 static void kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
4214 {
4215 	/* Initial reset is a superset of the normal reset */
4216 	kvm_arch_vcpu_ioctl_normal_reset(vcpu);
4217 
4218 	/*
4219 	 * This equals initial cpu reset in pop, but we don't switch to ESA.
4220 	 * We do not only reset the internal data, but also ...
4221 	 */
4222 	vcpu->arch.sie_block->gpsw.mask = 0;
4223 	vcpu->arch.sie_block->gpsw.addr = 0;
4224 	kvm_s390_set_prefix(vcpu, 0);
4225 	kvm_s390_set_cpu_timer(vcpu, 0);
4226 	vcpu->arch.sie_block->ckc = 0;
4227 	memset(vcpu->arch.sie_block->gcr, 0, sizeof(vcpu->arch.sie_block->gcr));
4228 	vcpu->arch.sie_block->gcr[0] = CR0_INITIAL_MASK;
4229 	vcpu->arch.sie_block->gcr[14] = CR14_INITIAL_MASK;
4230 
4231 	/* ... the data in sync regs */
4232 	memset(vcpu->run->s.regs.crs, 0, sizeof(vcpu->run->s.regs.crs));
4233 	vcpu->run->s.regs.ckc = 0;
4234 	vcpu->run->s.regs.crs[0] = CR0_INITIAL_MASK;
4235 	vcpu->run->s.regs.crs[14] = CR14_INITIAL_MASK;
4236 	vcpu->run->psw_addr = 0;
4237 	vcpu->run->psw_mask = 0;
4238 	vcpu->run->s.regs.todpr = 0;
4239 	vcpu->run->s.regs.cputm = 0;
4240 	vcpu->run->s.regs.ckc = 0;
4241 	vcpu->run->s.regs.pp = 0;
4242 	vcpu->run->s.regs.gbea = 1;
4243 	vcpu->run->s.regs.fpc = 0;
4244 	/*
4245 	 * Do not reset these registers in the protected case, as some of
4246 	 * them are overlaid and they are not accessible in this case
4247 	 * anyway.
4248 	 */
4249 	if (!kvm_s390_pv_cpu_is_protected(vcpu)) {
4250 		vcpu->arch.sie_block->gbea = 1;
4251 		vcpu->arch.sie_block->pp = 0;
4252 		vcpu->arch.sie_block->fpf &= ~FPF_BPBC;
4253 		vcpu->arch.sie_block->todpr = 0;
4254 	}
4255 }
4256 
4257 static void kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu *vcpu)
4258 {
4259 	struct kvm_sync_regs *regs = &vcpu->run->s.regs;
4260 
4261 	/* Clear reset is a superset of the initial reset */
4262 	kvm_arch_vcpu_ioctl_initial_reset(vcpu);
4263 
4264 	memset(&regs->gprs, 0, sizeof(regs->gprs));
4265 	memset(&regs->vrs, 0, sizeof(regs->vrs));
4266 	memset(&regs->acrs, 0, sizeof(regs->acrs));
4267 	memset(&regs->gscb, 0, sizeof(regs->gscb));
4268 
4269 	regs->etoken = 0;
4270 	regs->etoken_extension = 0;
4271 }
4272 
4273 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4274 {
4275 	vcpu_load(vcpu);
4276 	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
4277 	vcpu_put(vcpu);
4278 	return 0;
4279 }
4280 
4281 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4282 {
4283 	vcpu_load(vcpu);
4284 	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
4285 	vcpu_put(vcpu);
4286 	return 0;
4287 }
4288 
4289 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4290 				  struct kvm_sregs *sregs)
4291 {
4292 	vcpu_load(vcpu);
4293 
4294 	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
4295 	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
4296 
4297 	vcpu_put(vcpu);
4298 	return 0;
4299 }
4300 
4301 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4302 				  struct kvm_sregs *sregs)
4303 {
4304 	vcpu_load(vcpu);
4305 
4306 	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
4307 	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
4308 
4309 	vcpu_put(vcpu);
4310 	return 0;
4311 }
4312 
4313 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4314 {
4315 	int ret = 0;
4316 
4317 	vcpu_load(vcpu);
4318 
4319 	vcpu->run->s.regs.fpc = fpu->fpc;
4320 	if (cpu_has_vx())
4321 		convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs,
4322 				 (freg_t *) fpu->fprs);
4323 	else
4324 		memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs));
4325 
4326 	vcpu_put(vcpu);
4327 	return ret;
4328 }
4329 
4330 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4331 {
4332 	vcpu_load(vcpu);
4333 
4334 	if (cpu_has_vx())
4335 		convert_vx_to_fp((freg_t *) fpu->fprs,
4336 				 (__vector128 *) vcpu->run->s.regs.vrs);
4337 	else
4338 		memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs));
4339 	fpu->fpc = vcpu->run->s.regs.fpc;
4340 
4341 	vcpu_put(vcpu);
4342 	return 0;
4343 }
4344 
4345 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
4346 {
4347 	int rc = 0;
4348 
4349 	if (!is_vcpu_stopped(vcpu))
4350 		rc = -EBUSY;
4351 	else {
4352 		vcpu->run->psw_mask = psw.mask;
4353 		vcpu->run->psw_addr = psw.addr;
4354 	}
4355 	return rc;
4356 }
4357 
4358 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4359 				  struct kvm_translation *tr)
4360 {
4361 	return -EINVAL; /* not implemented yet */
4362 }
4363 
4364 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
4365 			      KVM_GUESTDBG_USE_HW_BP | \
4366 			      KVM_GUESTDBG_ENABLE)
4367 
4368 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4369 					struct kvm_guest_debug *dbg)
4370 {
4371 	int rc = 0;
4372 
4373 	vcpu_load(vcpu);
4374 
4375 	vcpu->guest_debug = 0;
4376 	kvm_s390_clear_bp_data(vcpu);
4377 
4378 	if (dbg->control & ~VALID_GUESTDBG_FLAGS) {
4379 		rc = -EINVAL;
4380 		goto out;
4381 	}
4382 	if (!sclp.has_gpere) {
4383 		rc = -EINVAL;
4384 		goto out;
4385 	}
4386 
4387 	if (dbg->control & KVM_GUESTDBG_ENABLE) {
4388 		vcpu->guest_debug = dbg->control;
4389 		/* enforce guest PER */
4390 		kvm_s390_set_cpuflags(vcpu, CPUSTAT_P);
4391 
4392 		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
4393 			rc = kvm_s390_import_bp_data(vcpu, dbg);
4394 	} else {
4395 		kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P);
4396 		vcpu->arch.guestdbg.last_bp = 0;
4397 	}
4398 
4399 	if (rc) {
4400 		vcpu->guest_debug = 0;
4401 		kvm_s390_clear_bp_data(vcpu);
4402 		kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P);
4403 	}
4404 
4405 out:
4406 	vcpu_put(vcpu);
4407 	return rc;
4408 }
4409 
4410 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4411 				    struct kvm_mp_state *mp_state)
4412 {
4413 	int ret;
4414 
4415 	vcpu_load(vcpu);
4416 
4417 	/* CHECK_STOP and LOAD are not supported yet */
4418 	ret = is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
4419 				      KVM_MP_STATE_OPERATING;
4420 
4421 	vcpu_put(vcpu);
4422 	return ret;
4423 }
4424 
4425 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4426 				    struct kvm_mp_state *mp_state)
4427 {
4428 	int rc = 0;
4429 
4430 	vcpu_load(vcpu);
4431 
4432 	/* user space knows about this interface - let it control the state */
4433 	kvm_s390_set_user_cpu_state_ctrl(vcpu->kvm);
4434 
4435 	switch (mp_state->mp_state) {
4436 	case KVM_MP_STATE_STOPPED:
4437 		rc = kvm_s390_vcpu_stop(vcpu);
4438 		break;
4439 	case KVM_MP_STATE_OPERATING:
4440 		rc = kvm_s390_vcpu_start(vcpu);
4441 		break;
4442 	case KVM_MP_STATE_LOAD:
4443 		if (!kvm_s390_pv_cpu_is_protected(vcpu)) {
4444 			rc = -ENXIO;
4445 			break;
4446 		}
4447 		rc = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR_LOAD);
4448 		break;
4449 	case KVM_MP_STATE_CHECK_STOP:
4450 		fallthrough;	/* CHECK_STOP and LOAD are not supported yet */
4451 	default:
4452 		rc = -ENXIO;
4453 	}
4454 
4455 	vcpu_put(vcpu);
4456 	return rc;
4457 }
4458 
4459 static bool ibs_enabled(struct kvm_vcpu *vcpu)
4460 {
4461 	return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS);
4462 }
4463 
4464 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
4465 {
4466 retry:
4467 	kvm_s390_vcpu_request_handled(vcpu);
4468 	if (!kvm_request_pending(vcpu))
4469 		return 0;
4470 	/*
4471 	 * If the guest prefix changed, re-arm the ipte notifier for the
4472 	 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
4473 	 * This ensures that the ipte instruction for this request has
4474 	 * already finished. We might race against a second unmapper that
4475 	 * wants to set the blocking bit. Lets just retry the request loop.
4476 	 */
4477 	if (kvm_check_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu)) {
4478 		int rc;
4479 		rc = gmap_mprotect_notify(vcpu->arch.gmap,
4480 					  kvm_s390_get_prefix(vcpu),
4481 					  PAGE_SIZE * 2, PROT_WRITE);
4482 		if (rc) {
4483 			kvm_make_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu);
4484 			return rc;
4485 		}
4486 		goto retry;
4487 	}
4488 
4489 	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
4490 		vcpu->arch.sie_block->ihcpu = 0xffff;
4491 		goto retry;
4492 	}
4493 
4494 	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
4495 		if (!ibs_enabled(vcpu)) {
4496 			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
4497 			kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS);
4498 		}
4499 		goto retry;
4500 	}
4501 
4502 	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
4503 		if (ibs_enabled(vcpu)) {
4504 			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
4505 			kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS);
4506 		}
4507 		goto retry;
4508 	}
4509 
4510 	if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) {
4511 		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
4512 		goto retry;
4513 	}
4514 
4515 	if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) {
4516 		/*
4517 		 * Disable CMM virtualization; we will emulate the ESSA
4518 		 * instruction manually, in order to provide additional
4519 		 * functionalities needed for live migration.
4520 		 */
4521 		vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA;
4522 		goto retry;
4523 	}
4524 
4525 	if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) {
4526 		/*
4527 		 * Re-enable CMM virtualization if CMMA is available and
4528 		 * CMM has been used.
4529 		 */
4530 		if ((vcpu->kvm->arch.use_cmma) &&
4531 		    (vcpu->kvm->mm->context.uses_cmm))
4532 			vcpu->arch.sie_block->ecb2 |= ECB2_CMMA;
4533 		goto retry;
4534 	}
4535 
4536 	/* we left the vsie handler, nothing to do, just clear the request */
4537 	kvm_clear_request(KVM_REQ_VSIE_RESTART, vcpu);
4538 
4539 	return 0;
4540 }
4541 
4542 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod)
4543 {
4544 	struct kvm_vcpu *vcpu;
4545 	union tod_clock clk;
4546 	unsigned long i;
4547 
4548 	preempt_disable();
4549 
4550 	store_tod_clock_ext(&clk);
4551 
4552 	kvm->arch.epoch = gtod->tod - clk.tod;
4553 	kvm->arch.epdx = 0;
4554 	if (test_kvm_facility(kvm, 139)) {
4555 		kvm->arch.epdx = gtod->epoch_idx - clk.ei;
4556 		if (kvm->arch.epoch > gtod->tod)
4557 			kvm->arch.epdx -= 1;
4558 	}
4559 
4560 	kvm_s390_vcpu_block_all(kvm);
4561 	kvm_for_each_vcpu(i, vcpu, kvm) {
4562 		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
4563 		vcpu->arch.sie_block->epdx  = kvm->arch.epdx;
4564 	}
4565 
4566 	kvm_s390_vcpu_unblock_all(kvm);
4567 	preempt_enable();
4568 }
4569 
4570 int kvm_s390_try_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod)
4571 {
4572 	if (!mutex_trylock(&kvm->lock))
4573 		return 0;
4574 	__kvm_s390_set_tod_clock(kvm, gtod);
4575 	mutex_unlock(&kvm->lock);
4576 	return 1;
4577 }
4578 
4579 /**
4580  * kvm_arch_fault_in_page - fault-in guest page if necessary
4581  * @vcpu: The corresponding virtual cpu
4582  * @gpa: Guest physical address
4583  * @writable: Whether the page should be writable or not
4584  *
4585  * Make sure that a guest page has been faulted-in on the host.
4586  *
4587  * Return: Zero on success, negative error code otherwise.
4588  */
4589 long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
4590 {
4591 	return gmap_fault(vcpu->arch.gmap, gpa,
4592 			  writable ? FAULT_FLAG_WRITE : 0);
4593 }
4594 
4595 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
4596 				      unsigned long token)
4597 {
4598 	struct kvm_s390_interrupt inti;
4599 	struct kvm_s390_irq irq;
4600 
4601 	if (start_token) {
4602 		irq.u.ext.ext_params2 = token;
4603 		irq.type = KVM_S390_INT_PFAULT_INIT;
4604 		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
4605 	} else {
4606 		inti.type = KVM_S390_INT_PFAULT_DONE;
4607 		inti.parm64 = token;
4608 		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
4609 	}
4610 }
4611 
4612 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
4613 				     struct kvm_async_pf *work)
4614 {
4615 	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
4616 	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
4617 
4618 	return true;
4619 }
4620 
4621 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
4622 				 struct kvm_async_pf *work)
4623 {
4624 	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
4625 	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
4626 }
4627 
4628 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
4629 			       struct kvm_async_pf *work)
4630 {
4631 	/* s390 will always inject the page directly */
4632 }
4633 
4634 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
4635 {
4636 	/*
4637 	 * s390 will always inject the page directly,
4638 	 * but we still want check_async_completion to cleanup
4639 	 */
4640 	return true;
4641 }
4642 
4643 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
4644 {
4645 	hva_t hva;
4646 	struct kvm_arch_async_pf arch;
4647 
4648 	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
4649 		return false;
4650 	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
4651 	    vcpu->arch.pfault_compare)
4652 		return false;
4653 	if (psw_extint_disabled(vcpu))
4654 		return false;
4655 	if (kvm_s390_vcpu_has_irq(vcpu, 0))
4656 		return false;
4657 	if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK))
4658 		return false;
4659 	if (!vcpu->arch.gmap->pfault_enabled)
4660 		return false;
4661 
4662 	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
4663 	hva += current->thread.gmap_addr & ~PAGE_MASK;
4664 	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
4665 		return false;
4666 
4667 	return kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
4668 }
4669 
4670 static int vcpu_pre_run(struct kvm_vcpu *vcpu)
4671 {
4672 	int rc, cpuflags;
4673 
4674 	/*
4675 	 * On s390 notifications for arriving pages will be delivered directly
4676 	 * to the guest but the house keeping for completed pfaults is
4677 	 * handled outside the worker.
4678 	 */
4679 	kvm_check_async_pf_completion(vcpu);
4680 
4681 	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
4682 	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
4683 
4684 	if (need_resched())
4685 		schedule();
4686 
4687 	if (!kvm_is_ucontrol(vcpu->kvm)) {
4688 		rc = kvm_s390_deliver_pending_interrupts(vcpu);
4689 		if (rc || guestdbg_exit_pending(vcpu))
4690 			return rc;
4691 	}
4692 
4693 	rc = kvm_s390_handle_requests(vcpu);
4694 	if (rc)
4695 		return rc;
4696 
4697 	if (guestdbg_enabled(vcpu)) {
4698 		kvm_s390_backup_guest_per_regs(vcpu);
4699 		kvm_s390_patch_guest_per_regs(vcpu);
4700 	}
4701 
4702 	clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask);
4703 
4704 	vcpu->arch.sie_block->icptcode = 0;
4705 	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
4706 	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
4707 	trace_kvm_s390_sie_enter(vcpu, cpuflags);
4708 
4709 	return 0;
4710 }
4711 
4712 static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
4713 {
4714 	struct kvm_s390_pgm_info pgm_info = {
4715 		.code = PGM_ADDRESSING,
4716 	};
4717 	u8 opcode, ilen;
4718 	int rc;
4719 
4720 	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
4721 	trace_kvm_s390_sie_fault(vcpu);
4722 
4723 	/*
4724 	 * We want to inject an addressing exception, which is defined as a
4725 	 * suppressing or terminating exception. However, since we came here
4726 	 * by a DAT access exception, the PSW still points to the faulting
4727 	 * instruction since DAT exceptions are nullifying. So we've got
4728 	 * to look up the current opcode to get the length of the instruction
4729 	 * to be able to forward the PSW.
4730 	 */
4731 	rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1);
4732 	ilen = insn_length(opcode);
4733 	if (rc < 0) {
4734 		return rc;
4735 	} else if (rc) {
4736 		/* Instruction-Fetching Exceptions - we can't detect the ilen.
4737 		 * Forward by arbitrary ilc, injection will take care of
4738 		 * nullification if necessary.
4739 		 */
4740 		pgm_info = vcpu->arch.pgm;
4741 		ilen = 4;
4742 	}
4743 	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
4744 	kvm_s390_forward_psw(vcpu, ilen);
4745 	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
4746 }
4747 
4748 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
4749 {
4750 	struct mcck_volatile_info *mcck_info;
4751 	struct sie_page *sie_page;
4752 
4753 	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
4754 		   vcpu->arch.sie_block->icptcode);
4755 	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);
4756 
4757 	if (guestdbg_enabled(vcpu))
4758 		kvm_s390_restore_guest_per_regs(vcpu);
4759 
4760 	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
4761 	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
4762 
4763 	if (exit_reason == -EINTR) {
4764 		VCPU_EVENT(vcpu, 3, "%s", "machine check");
4765 		sie_page = container_of(vcpu->arch.sie_block,
4766 					struct sie_page, sie_block);
4767 		mcck_info = &sie_page->mcck_info;
4768 		kvm_s390_reinject_machine_check(vcpu, mcck_info);
4769 		return 0;
4770 	}
4771 
4772 	if (vcpu->arch.sie_block->icptcode > 0) {
4773 		int rc = kvm_handle_sie_intercept(vcpu);
4774 
4775 		if (rc != -EOPNOTSUPP)
4776 			return rc;
4777 		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
4778 		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
4779 		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
4780 		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
4781 		return -EREMOTE;
4782 	} else if (exit_reason != -EFAULT) {
4783 		vcpu->stat.exit_null++;
4784 		return 0;
4785 	} else if (kvm_is_ucontrol(vcpu->kvm)) {
4786 		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
4787 		vcpu->run->s390_ucontrol.trans_exc_code =
4788 						current->thread.gmap_addr;
4789 		vcpu->run->s390_ucontrol.pgm_code = 0x10;
4790 		return -EREMOTE;
4791 	} else if (current->thread.gmap_pfault) {
4792 		trace_kvm_s390_major_guest_pfault(vcpu);
4793 		current->thread.gmap_pfault = 0;
4794 		if (kvm_arch_setup_async_pf(vcpu))
4795 			return 0;
4796 		vcpu->stat.pfault_sync++;
4797 		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
4798 	}
4799 	return vcpu_post_run_fault_in_sie(vcpu);
4800 }
4801 
4802 #define PSW_INT_MASK (PSW_MASK_EXT | PSW_MASK_IO | PSW_MASK_MCHECK)
4803 static int __vcpu_run(struct kvm_vcpu *vcpu)
4804 {
4805 	int rc, exit_reason;
4806 	struct sie_page *sie_page = (struct sie_page *)vcpu->arch.sie_block;
4807 
4808 	/*
4809 	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
4810 	 * ning the guest), so that memslots (and other stuff) are protected
4811 	 */
4812 	kvm_vcpu_srcu_read_lock(vcpu);
4813 
4814 	do {
4815 		rc = vcpu_pre_run(vcpu);
4816 		if (rc || guestdbg_exit_pending(vcpu))
4817 			break;
4818 
4819 		kvm_vcpu_srcu_read_unlock(vcpu);
4820 		/*
4821 		 * As PF_VCPU will be used in fault handler, between
4822 		 * guest_enter and guest_exit should be no uaccess.
4823 		 */
4824 		local_irq_disable();
4825 		guest_enter_irqoff();
4826 		__disable_cpu_timer_accounting(vcpu);
4827 		local_irq_enable();
4828 		if (kvm_s390_pv_cpu_is_protected(vcpu)) {
4829 			memcpy(sie_page->pv_grregs,
4830 			       vcpu->run->s.regs.gprs,
4831 			       sizeof(sie_page->pv_grregs));
4832 		}
4833 		exit_reason = sie64a(vcpu->arch.sie_block,
4834 				     vcpu->run->s.regs.gprs);
4835 		if (kvm_s390_pv_cpu_is_protected(vcpu)) {
4836 			memcpy(vcpu->run->s.regs.gprs,
4837 			       sie_page->pv_grregs,
4838 			       sizeof(sie_page->pv_grregs));
4839 			/*
4840 			 * We're not allowed to inject interrupts on intercepts
4841 			 * that leave the guest state in an "in-between" state
4842 			 * where the next SIE entry will do a continuation.
4843 			 * Fence interrupts in our "internal" PSW.
4844 			 */
4845 			if (vcpu->arch.sie_block->icptcode == ICPT_PV_INSTR ||
4846 			    vcpu->arch.sie_block->icptcode == ICPT_PV_PREF) {
4847 				vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK;
4848 			}
4849 		}
4850 		local_irq_disable();
4851 		__enable_cpu_timer_accounting(vcpu);
4852 		guest_exit_irqoff();
4853 		local_irq_enable();
4854 		kvm_vcpu_srcu_read_lock(vcpu);
4855 
4856 		rc = vcpu_post_run(vcpu, exit_reason);
4857 	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
4858 
4859 	kvm_vcpu_srcu_read_unlock(vcpu);
4860 	return rc;
4861 }
4862 
4863 static void sync_regs_fmt2(struct kvm_vcpu *vcpu)
4864 {
4865 	struct kvm_run *kvm_run = vcpu->run;
4866 	struct runtime_instr_cb *riccb;
4867 	struct gs_cb *gscb;
4868 
4869 	riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb;
4870 	gscb = (struct gs_cb *) &kvm_run->s.regs.gscb;
4871 	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
4872 	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
4873 	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
4874 		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
4875 		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
4876 		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
4877 	}
4878 	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
4879 		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
4880 		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
4881 		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
4882 		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
4883 			kvm_clear_async_pf_completion_queue(vcpu);
4884 	}
4885 	if (kvm_run->kvm_dirty_regs & KVM_SYNC_DIAG318) {
4886 		vcpu->arch.diag318_info.val = kvm_run->s.regs.diag318;
4887 		vcpu->arch.sie_block->cpnc = vcpu->arch.diag318_info.cpnc;
4888 		VCPU_EVENT(vcpu, 3, "setting cpnc to %d", vcpu->arch.diag318_info.cpnc);
4889 	}
4890 	/*
4891 	 * If userspace sets the riccb (e.g. after migration) to a valid state,
4892 	 * we should enable RI here instead of doing the lazy enablement.
4893 	 */
4894 	if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) &&
4895 	    test_kvm_facility(vcpu->kvm, 64) &&
4896 	    riccb->v &&
4897 	    !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) {
4898 		VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)");
4899 		vcpu->arch.sie_block->ecb3 |= ECB3_RI;
4900 	}
4901 	/*
4902 	 * If userspace sets the gscb (e.g. after migration) to non-zero,
4903 	 * we should enable GS here instead of doing the lazy enablement.
4904 	 */
4905 	if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) &&
4906 	    test_kvm_facility(vcpu->kvm, 133) &&
4907 	    gscb->gssm &&
4908 	    !vcpu->arch.gs_enabled) {
4909 		VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)");
4910 		vcpu->arch.sie_block->ecb |= ECB_GS;
4911 		vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
4912 		vcpu->arch.gs_enabled = 1;
4913 	}
4914 	if ((kvm_run->kvm_dirty_regs & KVM_SYNC_BPBC) &&
4915 	    test_kvm_facility(vcpu->kvm, 82)) {
4916 		vcpu->arch.sie_block->fpf &= ~FPF_BPBC;
4917 		vcpu->arch.sie_block->fpf |= kvm_run->s.regs.bpbc ? FPF_BPBC : 0;
4918 	}
4919 	if (MACHINE_HAS_GS) {
4920 		preempt_disable();
4921 		local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT);
4922 		if (current->thread.gs_cb) {
4923 			vcpu->arch.host_gscb = current->thread.gs_cb;
4924 			save_gs_cb(vcpu->arch.host_gscb);
4925 		}
4926 		if (vcpu->arch.gs_enabled) {
4927 			current->thread.gs_cb = (struct gs_cb *)
4928 						&vcpu->run->s.regs.gscb;
4929 			restore_gs_cb(current->thread.gs_cb);
4930 		}
4931 		preempt_enable();
4932 	}
4933 	/* SIE will load etoken directly from SDNX and therefore kvm_run */
4934 }
4935 
4936 static void sync_regs(struct kvm_vcpu *vcpu)
4937 {
4938 	struct kvm_run *kvm_run = vcpu->run;
4939 
4940 	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
4941 		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
4942 	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
4943 		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
4944 		/* some control register changes require a tlb flush */
4945 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4946 	}
4947 	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
4948 		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
4949 		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
4950 	}
4951 	save_access_regs(vcpu->arch.host_acrs);
4952 	restore_access_regs(vcpu->run->s.regs.acrs);
4953 	vcpu->arch.acrs_loaded = true;
4954 	kvm_s390_fpu_load(vcpu->run);
4955 	/* Sync fmt2 only data */
4956 	if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) {
4957 		sync_regs_fmt2(vcpu);
4958 	} else {
4959 		/*
4960 		 * In several places we have to modify our internal view to
4961 		 * not do things that are disallowed by the ultravisor. For
4962 		 * example we must not inject interrupts after specific exits
4963 		 * (e.g. 112 prefix page not secure). We do this by turning
4964 		 * off the machine check, external and I/O interrupt bits
4965 		 * of our PSW copy. To avoid getting validity intercepts, we
4966 		 * do only accept the condition code from userspace.
4967 		 */
4968 		vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_CC;
4969 		vcpu->arch.sie_block->gpsw.mask |= kvm_run->psw_mask &
4970 						   PSW_MASK_CC;
4971 	}
4972 
4973 	kvm_run->kvm_dirty_regs = 0;
4974 }
4975 
4976 static void store_regs_fmt2(struct kvm_vcpu *vcpu)
4977 {
4978 	struct kvm_run *kvm_run = vcpu->run;
4979 
4980 	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
4981 	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
4982 	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
4983 	kvm_run->s.regs.bpbc = (vcpu->arch.sie_block->fpf & FPF_BPBC) == FPF_BPBC;
4984 	kvm_run->s.regs.diag318 = vcpu->arch.diag318_info.val;
4985 	if (MACHINE_HAS_GS) {
4986 		preempt_disable();
4987 		local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT);
4988 		if (vcpu->arch.gs_enabled)
4989 			save_gs_cb(current->thread.gs_cb);
4990 		current->thread.gs_cb = vcpu->arch.host_gscb;
4991 		restore_gs_cb(vcpu->arch.host_gscb);
4992 		if (!vcpu->arch.host_gscb)
4993 			local_ctl_clear_bit(2, CR2_GUARDED_STORAGE_BIT);
4994 		vcpu->arch.host_gscb = NULL;
4995 		preempt_enable();
4996 	}
4997 	/* SIE will save etoken directly into SDNX and therefore kvm_run */
4998 }
4999 
5000 static void store_regs(struct kvm_vcpu *vcpu)
5001 {
5002 	struct kvm_run *kvm_run = vcpu->run;
5003 
5004 	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
5005 	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
5006 	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
5007 	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
5008 	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
5009 	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
5010 	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
5011 	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
5012 	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
5013 	save_access_regs(vcpu->run->s.regs.acrs);
5014 	restore_access_regs(vcpu->arch.host_acrs);
5015 	vcpu->arch.acrs_loaded = false;
5016 	kvm_s390_fpu_store(vcpu->run);
5017 	if (likely(!kvm_s390_pv_cpu_is_protected(vcpu)))
5018 		store_regs_fmt2(vcpu);
5019 }
5020 
5021 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
5022 {
5023 	struct kvm_run *kvm_run = vcpu->run;
5024 	DECLARE_KERNEL_FPU_ONSTACK32(fpu);
5025 	int rc;
5026 
5027 	/*
5028 	 * Running a VM while dumping always has the potential to
5029 	 * produce inconsistent dump data. But for PV vcpus a SIE
5030 	 * entry while dumping could also lead to a fatal validity
5031 	 * intercept which we absolutely want to avoid.
5032 	 */
5033 	if (vcpu->kvm->arch.pv.dumping)
5034 		return -EINVAL;
5035 
5036 	if (kvm_run->immediate_exit)
5037 		return -EINTR;
5038 
5039 	if (kvm_run->kvm_valid_regs & ~KVM_SYNC_S390_VALID_FIELDS ||
5040 	    kvm_run->kvm_dirty_regs & ~KVM_SYNC_S390_VALID_FIELDS)
5041 		return -EINVAL;
5042 
5043 	vcpu_load(vcpu);
5044 
5045 	if (guestdbg_exit_pending(vcpu)) {
5046 		kvm_s390_prepare_debug_exit(vcpu);
5047 		rc = 0;
5048 		goto out;
5049 	}
5050 
5051 	kvm_sigset_activate(vcpu);
5052 
5053 	/*
5054 	 * no need to check the return value of vcpu_start as it can only have
5055 	 * an error for protvirt, but protvirt means user cpu state
5056 	 */
5057 	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
5058 		kvm_s390_vcpu_start(vcpu);
5059 	} else if (is_vcpu_stopped(vcpu)) {
5060 		pr_err_ratelimited("can't run stopped vcpu %d\n",
5061 				   vcpu->vcpu_id);
5062 		rc = -EINVAL;
5063 		goto out;
5064 	}
5065 
5066 	kernel_fpu_begin(&fpu, KERNEL_FPC | KERNEL_VXR);
5067 	sync_regs(vcpu);
5068 	enable_cpu_timer_accounting(vcpu);
5069 
5070 	might_fault();
5071 	rc = __vcpu_run(vcpu);
5072 
5073 	if (signal_pending(current) && !rc) {
5074 		kvm_run->exit_reason = KVM_EXIT_INTR;
5075 		rc = -EINTR;
5076 	}
5077 
5078 	if (guestdbg_exit_pending(vcpu) && !rc)  {
5079 		kvm_s390_prepare_debug_exit(vcpu);
5080 		rc = 0;
5081 	}
5082 
5083 	if (rc == -EREMOTE) {
5084 		/* userspace support is needed, kvm_run has been prepared */
5085 		rc = 0;
5086 	}
5087 
5088 	disable_cpu_timer_accounting(vcpu);
5089 	store_regs(vcpu);
5090 	kernel_fpu_end(&fpu, KERNEL_FPC | KERNEL_VXR);
5091 
5092 	kvm_sigset_deactivate(vcpu);
5093 
5094 	vcpu->stat.exit_userspace++;
5095 out:
5096 	vcpu_put(vcpu);
5097 	return rc;
5098 }
5099 
5100 /*
5101  * store status at address
5102  * we use have two special cases:
5103  * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
5104  * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
5105  */
5106 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
5107 {
5108 	unsigned char archmode = 1;
5109 	freg_t fprs[NUM_FPRS];
5110 	unsigned int px;
5111 	u64 clkcomp, cputm;
5112 	int rc;
5113 
5114 	px = kvm_s390_get_prefix(vcpu);
5115 	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
5116 		if (write_guest_abs(vcpu, 163, &archmode, 1))
5117 			return -EFAULT;
5118 		gpa = 0;
5119 	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
5120 		if (write_guest_real(vcpu, 163, &archmode, 1))
5121 			return -EFAULT;
5122 		gpa = px;
5123 	} else
5124 		gpa -= __LC_FPREGS_SAVE_AREA;
5125 
5126 	/* manually convert vector registers if necessary */
5127 	if (cpu_has_vx()) {
5128 		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
5129 		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
5130 				     fprs, 128);
5131 	} else {
5132 		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
5133 				     vcpu->run->s.regs.fprs, 128);
5134 	}
5135 	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
5136 			      vcpu->run->s.regs.gprs, 128);
5137 	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
5138 			      &vcpu->arch.sie_block->gpsw, 16);
5139 	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
5140 			      &px, 4);
5141 	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
5142 			      &vcpu->run->s.regs.fpc, 4);
5143 	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
5144 			      &vcpu->arch.sie_block->todpr, 4);
5145 	cputm = kvm_s390_get_cpu_timer(vcpu);
5146 	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
5147 			      &cputm, 8);
5148 	clkcomp = vcpu->arch.sie_block->ckc >> 8;
5149 	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
5150 			      &clkcomp, 8);
5151 	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
5152 			      &vcpu->run->s.regs.acrs, 64);
5153 	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
5154 			      &vcpu->arch.sie_block->gcr, 128);
5155 	return rc ? -EFAULT : 0;
5156 }
5157 
5158 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
5159 {
5160 	/*
5161 	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
5162 	 * switch in the run ioctl. Let's update our copies before we save
5163 	 * it into the save area
5164 	 */
5165 	kvm_s390_fpu_store(vcpu->run);
5166 	save_access_regs(vcpu->run->s.regs.acrs);
5167 
5168 	return kvm_s390_store_status_unloaded(vcpu, addr);
5169 }
5170 
5171 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
5172 {
5173 	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
5174 	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
5175 }
5176 
5177 static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
5178 {
5179 	unsigned long i;
5180 	struct kvm_vcpu *vcpu;
5181 
5182 	kvm_for_each_vcpu(i, vcpu, kvm) {
5183 		__disable_ibs_on_vcpu(vcpu);
5184 	}
5185 }
5186 
5187 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
5188 {
5189 	if (!sclp.has_ibs)
5190 		return;
5191 	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
5192 	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
5193 }
5194 
5195 int kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
5196 {
5197 	int i, online_vcpus, r = 0, started_vcpus = 0;
5198 
5199 	if (!is_vcpu_stopped(vcpu))
5200 		return 0;
5201 
5202 	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
5203 	/* Only one cpu at a time may enter/leave the STOPPED state. */
5204 	spin_lock(&vcpu->kvm->arch.start_stop_lock);
5205 	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
5206 
5207 	/* Let's tell the UV that we want to change into the operating state */
5208 	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5209 		r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR);
5210 		if (r) {
5211 			spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5212 			return r;
5213 		}
5214 	}
5215 
5216 	for (i = 0; i < online_vcpus; i++) {
5217 		if (!is_vcpu_stopped(kvm_get_vcpu(vcpu->kvm, i)))
5218 			started_vcpus++;
5219 	}
5220 
5221 	if (started_vcpus == 0) {
5222 		/* we're the only active VCPU -> speed it up */
5223 		__enable_ibs_on_vcpu(vcpu);
5224 	} else if (started_vcpus == 1) {
5225 		/*
5226 		 * As we are starting a second VCPU, we have to disable
5227 		 * the IBS facility on all VCPUs to remove potentially
5228 		 * outstanding ENABLE requests.
5229 		 */
5230 		__disable_ibs_on_all_vcpus(vcpu->kvm);
5231 	}
5232 
5233 	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED);
5234 	/*
5235 	 * The real PSW might have changed due to a RESTART interpreted by the
5236 	 * ultravisor. We block all interrupts and let the next sie exit
5237 	 * refresh our view.
5238 	 */
5239 	if (kvm_s390_pv_cpu_is_protected(vcpu))
5240 		vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK;
5241 	/*
5242 	 * Another VCPU might have used IBS while we were offline.
5243 	 * Let's play safe and flush the VCPU at startup.
5244 	 */
5245 	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5246 	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5247 	return 0;
5248 }
5249 
5250 int kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
5251 {
5252 	int i, online_vcpus, r = 0, started_vcpus = 0;
5253 	struct kvm_vcpu *started_vcpu = NULL;
5254 
5255 	if (is_vcpu_stopped(vcpu))
5256 		return 0;
5257 
5258 	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
5259 	/* Only one cpu at a time may enter/leave the STOPPED state. */
5260 	spin_lock(&vcpu->kvm->arch.start_stop_lock);
5261 	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
5262 
5263 	/* Let's tell the UV that we want to change into the stopped state */
5264 	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5265 		r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_STP);
5266 		if (r) {
5267 			spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5268 			return r;
5269 		}
5270 	}
5271 
5272 	/*
5273 	 * Set the VCPU to STOPPED and THEN clear the interrupt flag,
5274 	 * now that the SIGP STOP and SIGP STOP AND STORE STATUS orders
5275 	 * have been fully processed. This will ensure that the VCPU
5276 	 * is kept BUSY if another VCPU is inquiring with SIGP SENSE.
5277 	 */
5278 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED);
5279 	kvm_s390_clear_stop_irq(vcpu);
5280 
5281 	__disable_ibs_on_vcpu(vcpu);
5282 
5283 	for (i = 0; i < online_vcpus; i++) {
5284 		struct kvm_vcpu *tmp = kvm_get_vcpu(vcpu->kvm, i);
5285 
5286 		if (!is_vcpu_stopped(tmp)) {
5287 			started_vcpus++;
5288 			started_vcpu = tmp;
5289 		}
5290 	}
5291 
5292 	if (started_vcpus == 1) {
5293 		/*
5294 		 * As we only have one VCPU left, we want to enable the
5295 		 * IBS facility for that VCPU to speed it up.
5296 		 */
5297 		__enable_ibs_on_vcpu(started_vcpu);
5298 	}
5299 
5300 	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5301 	return 0;
5302 }
5303 
5304 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5305 				     struct kvm_enable_cap *cap)
5306 {
5307 	int r;
5308 
5309 	if (cap->flags)
5310 		return -EINVAL;
5311 
5312 	switch (cap->cap) {
5313 	case KVM_CAP_S390_CSS_SUPPORT:
5314 		if (!vcpu->kvm->arch.css_support) {
5315 			vcpu->kvm->arch.css_support = 1;
5316 			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
5317 			trace_kvm_s390_enable_css(vcpu->kvm);
5318 		}
5319 		r = 0;
5320 		break;
5321 	default:
5322 		r = -EINVAL;
5323 		break;
5324 	}
5325 	return r;
5326 }
5327 
5328 static long kvm_s390_vcpu_sida_op(struct kvm_vcpu *vcpu,
5329 				  struct kvm_s390_mem_op *mop)
5330 {
5331 	void __user *uaddr = (void __user *)mop->buf;
5332 	void *sida_addr;
5333 	int r = 0;
5334 
5335 	if (mop->flags || !mop->size)
5336 		return -EINVAL;
5337 	if (mop->size + mop->sida_offset < mop->size)
5338 		return -EINVAL;
5339 	if (mop->size + mop->sida_offset > sida_size(vcpu->arch.sie_block))
5340 		return -E2BIG;
5341 	if (!kvm_s390_pv_cpu_is_protected(vcpu))
5342 		return -EINVAL;
5343 
5344 	sida_addr = (char *)sida_addr(vcpu->arch.sie_block) + mop->sida_offset;
5345 
5346 	switch (mop->op) {
5347 	case KVM_S390_MEMOP_SIDA_READ:
5348 		if (copy_to_user(uaddr, sida_addr, mop->size))
5349 			r = -EFAULT;
5350 
5351 		break;
5352 	case KVM_S390_MEMOP_SIDA_WRITE:
5353 		if (copy_from_user(sida_addr, uaddr, mop->size))
5354 			r = -EFAULT;
5355 		break;
5356 	}
5357 	return r;
5358 }
5359 
5360 static long kvm_s390_vcpu_mem_op(struct kvm_vcpu *vcpu,
5361 				 struct kvm_s390_mem_op *mop)
5362 {
5363 	void __user *uaddr = (void __user *)mop->buf;
5364 	enum gacc_mode acc_mode;
5365 	void *tmpbuf = NULL;
5366 	int r;
5367 
5368 	r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_INJECT_EXCEPTION |
5369 					KVM_S390_MEMOP_F_CHECK_ONLY |
5370 					KVM_S390_MEMOP_F_SKEY_PROTECTION);
5371 	if (r)
5372 		return r;
5373 	if (mop->ar >= NUM_ACRS)
5374 		return -EINVAL;
5375 	if (kvm_s390_pv_cpu_is_protected(vcpu))
5376 		return -EINVAL;
5377 	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
5378 		tmpbuf = vmalloc(mop->size);
5379 		if (!tmpbuf)
5380 			return -ENOMEM;
5381 	}
5382 
5383 	acc_mode = mop->op == KVM_S390_MEMOP_LOGICAL_READ ? GACC_FETCH : GACC_STORE;
5384 	if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
5385 		r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size,
5386 				    acc_mode, mop->key);
5387 		goto out_inject;
5388 	}
5389 	if (acc_mode == GACC_FETCH) {
5390 		r = read_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf,
5391 					mop->size, mop->key);
5392 		if (r)
5393 			goto out_inject;
5394 		if (copy_to_user(uaddr, tmpbuf, mop->size)) {
5395 			r = -EFAULT;
5396 			goto out_free;
5397 		}
5398 	} else {
5399 		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
5400 			r = -EFAULT;
5401 			goto out_free;
5402 		}
5403 		r = write_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf,
5404 					 mop->size, mop->key);
5405 	}
5406 
5407 out_inject:
5408 	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
5409 		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);
5410 
5411 out_free:
5412 	vfree(tmpbuf);
5413 	return r;
5414 }
5415 
5416 static long kvm_s390_vcpu_memsida_op(struct kvm_vcpu *vcpu,
5417 				     struct kvm_s390_mem_op *mop)
5418 {
5419 	int r, srcu_idx;
5420 
5421 	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5422 
5423 	switch (mop->op) {
5424 	case KVM_S390_MEMOP_LOGICAL_READ:
5425 	case KVM_S390_MEMOP_LOGICAL_WRITE:
5426 		r = kvm_s390_vcpu_mem_op(vcpu, mop);
5427 		break;
5428 	case KVM_S390_MEMOP_SIDA_READ:
5429 	case KVM_S390_MEMOP_SIDA_WRITE:
5430 		/* we are locked against sida going away by the vcpu->mutex */
5431 		r = kvm_s390_vcpu_sida_op(vcpu, mop);
5432 		break;
5433 	default:
5434 		r = -EINVAL;
5435 	}
5436 
5437 	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
5438 	return r;
5439 }
5440 
5441 long kvm_arch_vcpu_async_ioctl(struct file *filp,
5442 			       unsigned int ioctl, unsigned long arg)
5443 {
5444 	struct kvm_vcpu *vcpu = filp->private_data;
5445 	void __user *argp = (void __user *)arg;
5446 	int rc;
5447 
5448 	switch (ioctl) {
5449 	case KVM_S390_IRQ: {
5450 		struct kvm_s390_irq s390irq;
5451 
5452 		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
5453 			return -EFAULT;
5454 		rc = kvm_s390_inject_vcpu(vcpu, &s390irq);
5455 		break;
5456 	}
5457 	case KVM_S390_INTERRUPT: {
5458 		struct kvm_s390_interrupt s390int;
5459 		struct kvm_s390_irq s390irq = {};
5460 
5461 		if (copy_from_user(&s390int, argp, sizeof(s390int)))
5462 			return -EFAULT;
5463 		if (s390int_to_s390irq(&s390int, &s390irq))
5464 			return -EINVAL;
5465 		rc = kvm_s390_inject_vcpu(vcpu, &s390irq);
5466 		break;
5467 	}
5468 	default:
5469 		rc = -ENOIOCTLCMD;
5470 		break;
5471 	}
5472 
5473 	/*
5474 	 * To simplify single stepping of userspace-emulated instructions,
5475 	 * KVM_EXIT_S390_SIEIC exit sets KVM_GUESTDBG_EXIT_PENDING (see
5476 	 * should_handle_per_ifetch()). However, if userspace emulation injects
5477 	 * an interrupt, it needs to be cleared, so that KVM_EXIT_DEBUG happens
5478 	 * after (and not before) the interrupt delivery.
5479 	 */
5480 	if (!rc)
5481 		vcpu->guest_debug &= ~KVM_GUESTDBG_EXIT_PENDING;
5482 
5483 	return rc;
5484 }
5485 
5486 static int kvm_s390_handle_pv_vcpu_dump(struct kvm_vcpu *vcpu,
5487 					struct kvm_pv_cmd *cmd)
5488 {
5489 	struct kvm_s390_pv_dmp dmp;
5490 	void *data;
5491 	int ret;
5492 
5493 	/* Dump initialization is a prerequisite */
5494 	if (!vcpu->kvm->arch.pv.dumping)
5495 		return -EINVAL;
5496 
5497 	if (copy_from_user(&dmp, (__u8 __user *)cmd->data, sizeof(dmp)))
5498 		return -EFAULT;
5499 
5500 	/* We only handle this subcmd right now */
5501 	if (dmp.subcmd != KVM_PV_DUMP_CPU)
5502 		return -EINVAL;
5503 
5504 	/* CPU dump length is the same as create cpu storage donation. */
5505 	if (dmp.buff_len != uv_info.guest_cpu_stor_len)
5506 		return -EINVAL;
5507 
5508 	data = kvzalloc(uv_info.guest_cpu_stor_len, GFP_KERNEL);
5509 	if (!data)
5510 		return -ENOMEM;
5511 
5512 	ret = kvm_s390_pv_dump_cpu(vcpu, data, &cmd->rc, &cmd->rrc);
5513 
5514 	VCPU_EVENT(vcpu, 3, "PROTVIRT DUMP CPU %d rc %x rrc %x",
5515 		   vcpu->vcpu_id, cmd->rc, cmd->rrc);
5516 
5517 	if (ret)
5518 		ret = -EINVAL;
5519 
5520 	/* On success copy over the dump data */
5521 	if (!ret && copy_to_user((__u8 __user *)dmp.buff_addr, data, uv_info.guest_cpu_stor_len))
5522 		ret = -EFAULT;
5523 
5524 	kvfree(data);
5525 	return ret;
5526 }
5527 
5528 long kvm_arch_vcpu_ioctl(struct file *filp,
5529 			 unsigned int ioctl, unsigned long arg)
5530 {
5531 	struct kvm_vcpu *vcpu = filp->private_data;
5532 	void __user *argp = (void __user *)arg;
5533 	int idx;
5534 	long r;
5535 	u16 rc, rrc;
5536 
5537 	vcpu_load(vcpu);
5538 
5539 	switch (ioctl) {
5540 	case KVM_S390_STORE_STATUS:
5541 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5542 		r = kvm_s390_store_status_unloaded(vcpu, arg);
5543 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5544 		break;
5545 	case KVM_S390_SET_INITIAL_PSW: {
5546 		psw_t psw;
5547 
5548 		r = -EFAULT;
5549 		if (copy_from_user(&psw, argp, sizeof(psw)))
5550 			break;
5551 		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
5552 		break;
5553 	}
5554 	case KVM_S390_CLEAR_RESET:
5555 		r = 0;
5556 		kvm_arch_vcpu_ioctl_clear_reset(vcpu);
5557 		if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5558 			r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
5559 					  UVC_CMD_CPU_RESET_CLEAR, &rc, &rrc);
5560 			VCPU_EVENT(vcpu, 3, "PROTVIRT RESET CLEAR VCPU: rc %x rrc %x",
5561 				   rc, rrc);
5562 		}
5563 		break;
5564 	case KVM_S390_INITIAL_RESET:
5565 		r = 0;
5566 		kvm_arch_vcpu_ioctl_initial_reset(vcpu);
5567 		if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5568 			r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
5569 					  UVC_CMD_CPU_RESET_INITIAL,
5570 					  &rc, &rrc);
5571 			VCPU_EVENT(vcpu, 3, "PROTVIRT RESET INITIAL VCPU: rc %x rrc %x",
5572 				   rc, rrc);
5573 		}
5574 		break;
5575 	case KVM_S390_NORMAL_RESET:
5576 		r = 0;
5577 		kvm_arch_vcpu_ioctl_normal_reset(vcpu);
5578 		if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5579 			r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
5580 					  UVC_CMD_CPU_RESET, &rc, &rrc);
5581 			VCPU_EVENT(vcpu, 3, "PROTVIRT RESET NORMAL VCPU: rc %x rrc %x",
5582 				   rc, rrc);
5583 		}
5584 		break;
5585 	case KVM_SET_ONE_REG:
5586 	case KVM_GET_ONE_REG: {
5587 		struct kvm_one_reg reg;
5588 		r = -EINVAL;
5589 		if (kvm_s390_pv_cpu_is_protected(vcpu))
5590 			break;
5591 		r = -EFAULT;
5592 		if (copy_from_user(&reg, argp, sizeof(reg)))
5593 			break;
5594 		if (ioctl == KVM_SET_ONE_REG)
5595 			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
5596 		else
5597 			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
5598 		break;
5599 	}
5600 #ifdef CONFIG_KVM_S390_UCONTROL
5601 	case KVM_S390_UCAS_MAP: {
5602 		struct kvm_s390_ucas_mapping ucasmap;
5603 
5604 		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
5605 			r = -EFAULT;
5606 			break;
5607 		}
5608 
5609 		if (!kvm_is_ucontrol(vcpu->kvm)) {
5610 			r = -EINVAL;
5611 			break;
5612 		}
5613 
5614 		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
5615 				     ucasmap.vcpu_addr, ucasmap.length);
5616 		break;
5617 	}
5618 	case KVM_S390_UCAS_UNMAP: {
5619 		struct kvm_s390_ucas_mapping ucasmap;
5620 
5621 		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
5622 			r = -EFAULT;
5623 			break;
5624 		}
5625 
5626 		if (!kvm_is_ucontrol(vcpu->kvm)) {
5627 			r = -EINVAL;
5628 			break;
5629 		}
5630 
5631 		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
5632 			ucasmap.length);
5633 		break;
5634 	}
5635 #endif
5636 	case KVM_S390_VCPU_FAULT: {
5637 		r = gmap_fault(vcpu->arch.gmap, arg, 0);
5638 		break;
5639 	}
5640 	case KVM_ENABLE_CAP:
5641 	{
5642 		struct kvm_enable_cap cap;
5643 		r = -EFAULT;
5644 		if (copy_from_user(&cap, argp, sizeof(cap)))
5645 			break;
5646 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5647 		break;
5648 	}
5649 	case KVM_S390_MEM_OP: {
5650 		struct kvm_s390_mem_op mem_op;
5651 
5652 		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
5653 			r = kvm_s390_vcpu_memsida_op(vcpu, &mem_op);
5654 		else
5655 			r = -EFAULT;
5656 		break;
5657 	}
5658 	case KVM_S390_SET_IRQ_STATE: {
5659 		struct kvm_s390_irq_state irq_state;
5660 
5661 		r = -EFAULT;
5662 		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
5663 			break;
5664 		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
5665 		    irq_state.len == 0 ||
5666 		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
5667 			r = -EINVAL;
5668 			break;
5669 		}
5670 		/* do not use irq_state.flags, it will break old QEMUs */
5671 		r = kvm_s390_set_irq_state(vcpu,
5672 					   (void __user *) irq_state.buf,
5673 					   irq_state.len);
5674 		break;
5675 	}
5676 	case KVM_S390_GET_IRQ_STATE: {
5677 		struct kvm_s390_irq_state irq_state;
5678 
5679 		r = -EFAULT;
5680 		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
5681 			break;
5682 		if (irq_state.len == 0) {
5683 			r = -EINVAL;
5684 			break;
5685 		}
5686 		/* do not use irq_state.flags, it will break old QEMUs */
5687 		r = kvm_s390_get_irq_state(vcpu,
5688 					   (__u8 __user *)  irq_state.buf,
5689 					   irq_state.len);
5690 		break;
5691 	}
5692 	case KVM_S390_PV_CPU_COMMAND: {
5693 		struct kvm_pv_cmd cmd;
5694 
5695 		r = -EINVAL;
5696 		if (!is_prot_virt_host())
5697 			break;
5698 
5699 		r = -EFAULT;
5700 		if (copy_from_user(&cmd, argp, sizeof(cmd)))
5701 			break;
5702 
5703 		r = -EINVAL;
5704 		if (cmd.flags)
5705 			break;
5706 
5707 		/* We only handle this cmd right now */
5708 		if (cmd.cmd != KVM_PV_DUMP)
5709 			break;
5710 
5711 		r = kvm_s390_handle_pv_vcpu_dump(vcpu, &cmd);
5712 
5713 		/* Always copy over UV rc / rrc data */
5714 		if (copy_to_user((__u8 __user *)argp, &cmd.rc,
5715 				 sizeof(cmd.rc) + sizeof(cmd.rrc)))
5716 			r = -EFAULT;
5717 		break;
5718 	}
5719 	default:
5720 		r = -ENOTTY;
5721 	}
5722 
5723 	vcpu_put(vcpu);
5724 	return r;
5725 }
5726 
5727 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5728 {
5729 #ifdef CONFIG_KVM_S390_UCONTROL
5730 	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
5731 		 && (kvm_is_ucontrol(vcpu->kvm))) {
5732 		vmf->page = virt_to_page(vcpu->arch.sie_block);
5733 		get_page(vmf->page);
5734 		return 0;
5735 	}
5736 #endif
5737 	return VM_FAULT_SIGBUS;
5738 }
5739 
5740 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
5741 {
5742 	return true;
5743 }
5744 
5745 /* Section: memory related */
5746 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5747 				   const struct kvm_memory_slot *old,
5748 				   struct kvm_memory_slot *new,
5749 				   enum kvm_mr_change change)
5750 {
5751 	gpa_t size;
5752 
5753 	/* When we are protected, we should not change the memory slots */
5754 	if (kvm_s390_pv_get_handle(kvm))
5755 		return -EINVAL;
5756 
5757 	if (change != KVM_MR_DELETE && change != KVM_MR_FLAGS_ONLY) {
5758 		/*
5759 		 * A few sanity checks. We can have memory slots which have to be
5760 		 * located/ended at a segment boundary (1MB). The memory in userland is
5761 		 * ok to be fragmented into various different vmas. It is okay to mmap()
5762 		 * and munmap() stuff in this slot after doing this call at any time
5763 		 */
5764 
5765 		if (new->userspace_addr & 0xffffful)
5766 			return -EINVAL;
5767 
5768 		size = new->npages * PAGE_SIZE;
5769 		if (size & 0xffffful)
5770 			return -EINVAL;
5771 
5772 		if ((new->base_gfn * PAGE_SIZE) + size > kvm->arch.mem_limit)
5773 			return -EINVAL;
5774 	}
5775 
5776 	if (!kvm->arch.migration_mode)
5777 		return 0;
5778 
5779 	/*
5780 	 * Turn off migration mode when:
5781 	 * - userspace creates a new memslot with dirty logging off,
5782 	 * - userspace modifies an existing memslot (MOVE or FLAGS_ONLY) and
5783 	 *   dirty logging is turned off.
5784 	 * Migration mode expects dirty page logging being enabled to store
5785 	 * its dirty bitmap.
5786 	 */
5787 	if (change != KVM_MR_DELETE &&
5788 	    !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
5789 		WARN(kvm_s390_vm_stop_migration(kvm),
5790 		     "Failed to stop migration mode");
5791 
5792 	return 0;
5793 }
5794 
5795 void kvm_arch_commit_memory_region(struct kvm *kvm,
5796 				struct kvm_memory_slot *old,
5797 				const struct kvm_memory_slot *new,
5798 				enum kvm_mr_change change)
5799 {
5800 	int rc = 0;
5801 
5802 	switch (change) {
5803 	case KVM_MR_DELETE:
5804 		rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE,
5805 					old->npages * PAGE_SIZE);
5806 		break;
5807 	case KVM_MR_MOVE:
5808 		rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE,
5809 					old->npages * PAGE_SIZE);
5810 		if (rc)
5811 			break;
5812 		fallthrough;
5813 	case KVM_MR_CREATE:
5814 		rc = gmap_map_segment(kvm->arch.gmap, new->userspace_addr,
5815 				      new->base_gfn * PAGE_SIZE,
5816 				      new->npages * PAGE_SIZE);
5817 		break;
5818 	case KVM_MR_FLAGS_ONLY:
5819 		break;
5820 	default:
5821 		WARN(1, "Unknown KVM MR CHANGE: %d\n", change);
5822 	}
5823 	if (rc)
5824 		pr_warn("failed to commit memory region\n");
5825 	return;
5826 }
5827 
5828 static inline unsigned long nonhyp_mask(int i)
5829 {
5830 	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;
5831 
5832 	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
5833 }
5834 
5835 static int __init kvm_s390_init(void)
5836 {
5837 	int i, r;
5838 
5839 	if (!sclp.has_sief2) {
5840 		pr_info("SIE is not available\n");
5841 		return -ENODEV;
5842 	}
5843 
5844 	if (nested && hpage) {
5845 		pr_info("A KVM host that supports nesting cannot back its KVM guests with huge pages\n");
5846 		return -EINVAL;
5847 	}
5848 
5849 	for (i = 0; i < 16; i++)
5850 		kvm_s390_fac_base[i] |=
5851 			stfle_fac_list[i] & nonhyp_mask(i);
5852 
5853 	r = __kvm_s390_init();
5854 	if (r)
5855 		return r;
5856 
5857 	r = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
5858 	if (r) {
5859 		__kvm_s390_exit();
5860 		return r;
5861 	}
5862 	return 0;
5863 }
5864 
5865 static void __exit kvm_s390_exit(void)
5866 {
5867 	kvm_exit();
5868 
5869 	__kvm_s390_exit();
5870 }
5871 
5872 module_init(kvm_s390_init);
5873 module_exit(kvm_s390_exit);
5874 
5875 /*
5876  * Enable autoloading of the kvm module.
5877  * Note that we add the module alias here instead of virt/kvm/kvm_main.c
5878  * since x86 takes a different approach.
5879  */
5880 #include <linux/miscdevice.h>
5881 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5882 MODULE_ALIAS("devname:kvm");
5883