xref: /linux/arch/sparc/include/asm/hypervisor.h (revision 2da68a77)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _SPARC64_HYPERVISOR_H
3 #define _SPARC64_HYPERVISOR_H
4 
5 /* Sun4v hypervisor interfaces and defines.
6  *
7  * Hypervisor calls are made via traps to software traps number 0x80
8  * and above.  Registers %o0 to %o5 serve as argument, status, and
9  * return value registers.
10  *
11  * There are two kinds of these traps.  First there are the normal
12  * "fast traps" which use software trap 0x80 and encode the function
13  * to invoke by number in register %o5.  Argument and return value
14  * handling is as follows:
15  *
16  * -----------------------------------------------
17  * |  %o5  | function number |     undefined     |
18  * |  %o0  |   argument 0    |   return status   |
19  * |  %o1  |   argument 1    |   return value 1  |
20  * |  %o2  |   argument 2    |   return value 2  |
21  * |  %o3  |   argument 3    |   return value 3  |
22  * |  %o4  |   argument 4    |   return value 4  |
23  * -----------------------------------------------
24  *
25  * The second type are "hyper-fast traps" which encode the function
26  * number in the software trap number itself.  So these use trap
27  * numbers > 0x80.  The register usage for hyper-fast traps is as
28  * follows:
29  *
30  * -----------------------------------------------
31  * |  %o0  |   argument 0    |   return status   |
32  * |  %o1  |   argument 1    |   return value 1  |
33  * |  %o2  |   argument 2    |   return value 2  |
34  * |  %o3  |   argument 3    |   return value 3  |
35  * |  %o4  |   argument 4    |   return value 4  |
36  * -----------------------------------------------
37  *
38  * Registers providing explicit arguments to the hypervisor calls
39  * are volatile across the call.  Upon return their values are
40  * undefined unless explicitly specified as containing a particular
41  * return value by the specific call.  The return status is always
42  * returned in register %o0, zero indicates a successful execution of
43  * the hypervisor call and other values indicate an error status as
44  * defined below.  So, for example, if a hyper-fast trap takes
45  * arguments 0, 1, and 2, then %o0, %o1, and %o2 are volatile across
46  * the call and %o3, %o4, and %o5 would be preserved.
47  *
48  * If the hypervisor trap is invalid, or the fast trap function number
49  * is invalid, HV_EBADTRAP will be returned in %o0.  Also, all 64-bits
50  * of the argument and return values are significant.
51  */
52 
53 /* Trap numbers.  */
54 #define HV_FAST_TRAP		0x80
55 #define HV_MMU_MAP_ADDR_TRAP	0x83
56 #define HV_MMU_UNMAP_ADDR_TRAP	0x84
57 #define HV_TTRACE_ADDENTRY_TRAP	0x85
58 #define HV_CORE_TRAP		0xff
59 
60 /* Error codes.  */
61 #define HV_EOK				0  /* Successful return            */
62 #define HV_ENOCPU			1  /* Invalid CPU id               */
63 #define HV_ENORADDR			2  /* Invalid real address         */
64 #define HV_ENOINTR			3  /* Invalid interrupt id         */
65 #define HV_EBADPGSZ			4  /* Invalid pagesize encoding    */
66 #define HV_EBADTSB			5  /* Invalid TSB description      */
67 #define HV_EINVAL			6  /* Invalid argument             */
68 #define HV_EBADTRAP			7  /* Invalid function number      */
69 #define HV_EBADALIGN			8  /* Invalid address alignment    */
70 #define HV_EWOULDBLOCK			9  /* Cannot complete w/o blocking */
71 #define HV_ENOACCESS			10 /* No access to resource        */
72 #define HV_EIO				11 /* I/O error                    */
73 #define HV_ECPUERROR			12 /* CPU in error state           */
74 #define HV_ENOTSUPPORTED		13 /* Function not supported       */
75 #define HV_ENOMAP			14 /* No mapping found             */
76 #define HV_ETOOMANY			15 /* Too many items specified     */
77 #define HV_ECHANNEL			16 /* Invalid LDC channel          */
78 #define HV_EBUSY			17 /* Resource busy                */
79 #define HV_EUNAVAILABLE			23 /* Resource or operation not
80 					    * currently available, but may
81 					    * become available in the future
82 					    */
83 
84 /* mach_exit()
85  * TRAP:	HV_FAST_TRAP
86  * FUNCTION:	HV_FAST_MACH_EXIT
87  * ARG0:	exit code
88  * ERRORS:	This service does not return.
89  *
90  * Stop all CPUs in the virtual domain and place them into the stopped
91  * state.  The 64-bit exit code may be passed to a service entity as
92  * the domain's exit status.  On systems without a service entity, the
93  * domain will undergo a reset, and the boot firmware will be
94  * reloaded.
95  *
96  * This function will never return to the guest that invokes it.
97  *
98  * Note: By convention an exit code of zero denotes a successful exit by
99  *       the guest code.  A non-zero exit code denotes a guest specific
100  *       error indication.
101  *
102  */
103 #define HV_FAST_MACH_EXIT		0x00
104 
105 #ifndef __ASSEMBLY__
106 void sun4v_mach_exit(unsigned long exit_code);
107 #endif
108 
109 /* Domain services.  */
110 
111 /* mach_desc()
112  * TRAP:	HV_FAST_TRAP
113  * FUNCTION:	HV_FAST_MACH_DESC
114  * ARG0:	buffer
115  * ARG1:	length
116  * RET0:	status
117  * RET1:	length
118  * ERRORS:	HV_EBADALIGN	Buffer is badly aligned
119  *		HV_ENORADDR	Buffer is to an illegal real address.
120  *		HV_EINVAL	Buffer length is too small for complete
121  *				machine description.
122  *
123  * Copy the most current machine description into the buffer indicated
124  * by the real address in ARG0.  The buffer provided must be 16 byte
125  * aligned.  Upon success or HV_EINVAL, this service returns the
126  * actual size of the machine description in the RET1 return value.
127  *
128  * Note: A method of determining the appropriate buffer size for the
129  *       machine description is to first call this service with a buffer
130  *       length of 0 bytes.
131  */
132 #define HV_FAST_MACH_DESC		0x01
133 
134 #ifndef __ASSEMBLY__
135 unsigned long sun4v_mach_desc(unsigned long buffer_pa,
136 			      unsigned long buf_len,
137 			      unsigned long *real_buf_len);
138 #endif
139 
140 /* mach_sir()
141  * TRAP:	HV_FAST_TRAP
142  * FUNCTION:	HV_FAST_MACH_SIR
143  * ERRORS:	This service does not return.
144  *
145  * Perform a software initiated reset of the virtual machine domain.
146  * All CPUs are captured as soon as possible, all hardware devices are
147  * returned to the entry default state, and the domain is restarted at
148  * the SIR (trap type 0x04) real trap table (RTBA) entry point on one
149  * of the CPUs.  The single CPU restarted is selected as determined by
150  * platform specific policy.  Memory is preserved across this
151  * operation.
152  */
153 #define HV_FAST_MACH_SIR		0x02
154 
155 #ifndef __ASSEMBLY__
156 void sun4v_mach_sir(void);
157 #endif
158 
159 /* mach_set_watchdog()
160  * TRAP:	HV_FAST_TRAP
161  * FUNCTION:	HV_FAST_MACH_SET_WATCHDOG
162  * ARG0:	timeout in milliseconds
163  * RET0:	status
164  * RET1:	time remaining in milliseconds
165  *
166  * A guest uses this API to set a watchdog timer.  Once the gues has set
167  * the timer, it must call the timer service again either to disable or
168  * postpone the expiration.  If the timer expires before being reset or
169  * disabled, then the hypervisor take a platform specific action leading
170  * to guest termination within a bounded time period.  The platform action
171  * may include recovery actions such as reporting the expiration to a
172  * Service Processor, and/or automatically restarting the gues.
173  *
174  * The 'timeout' parameter is specified in milliseconds, however the
175  * implementated granularity is given by the 'watchdog-resolution'
176  * property in the 'platform' node of the guest's machine description.
177  * The largest allowed timeout value is specified by the
178  * 'watchdog-max-timeout' property of the 'platform' node.
179  *
180  * If the 'timeout' argument is not zero, the watchdog timer is set to
181  * expire after a minimum of 'timeout' milliseconds.
182  *
183  * If the 'timeout' argument is zero, the watchdog timer is disabled.
184  *
185  * If the 'timeout' value exceeds the value of the 'max-watchdog-timeout'
186  * property, the hypervisor leaves the watchdog timer state unchanged,
187  * and returns a status of EINVAL.
188  *
189  * The 'time remaining' return value is valid regardless of whether the
190  * return status is EOK or EINVAL.  A non-zero return value indicates the
191  * number of milliseconds that were remaining until the timer was to expire.
192  * If less than one millisecond remains, the return value is '1'.  If the
193  * watchdog timer was disabled at the time of the call, the return value is
194  * zero.
195  *
196  * If the hypervisor cannot support the exact timeout value requested, but
197  * can support a larger timeout value, the hypervisor may round the actual
198  * timeout to a value larger than the requested timeout, consequently the
199  * 'time remaining' return value may be larger than the previously requested
200  * timeout value.
201  *
202  * Any guest OS debugger should be aware that the watchdog service may be in
203  * use.  Consequently, it is recommended that the watchdog service is
204  * disabled upon debugger entry (e.g. reaching a breakpoint), and then
205  * re-enabled upon returning to normal execution.  The API has been designed
206  * with this in mind, and the 'time remaining' result of the disable call may
207  * be used directly as the timeout argument of the re-enable call.
208  */
209 #define HV_FAST_MACH_SET_WATCHDOG	0x05
210 
211 #ifndef __ASSEMBLY__
212 unsigned long sun4v_mach_set_watchdog(unsigned long timeout,
213 				      unsigned long *orig_timeout);
214 #endif
215 
216 /* CPU services.
217  *
218  * CPUs represent devices that can execute software threads.  A single
219  * chip that contains multiple cores or strands is represented as
220  * multiple CPUs with unique CPU identifiers.  CPUs are exported to
221  * OBP via the machine description (and to the OS via the OBP device
222  * tree).  CPUs are always in one of three states: stopped, running,
223  * or error.
224  *
225  * A CPU ID is a pre-assigned 16-bit value that uniquely identifies a
226  * CPU within a logical domain.  Operations that are to be performed
227  * on multiple CPUs specify them via a CPU list.  A CPU list is an
228  * array in real memory, of which each 16-bit word is a CPU ID.  CPU
229  * lists are passed through the API as two arguments.  The first is
230  * the number of entries (16-bit words) in the CPU list, and the
231  * second is the (real address) pointer to the CPU ID list.
232  */
233 
234 /* cpu_start()
235  * TRAP:	HV_FAST_TRAP
236  * FUNCTION:	HV_FAST_CPU_START
237  * ARG0:	CPU ID
238  * ARG1:	PC
239  * ARG2:	RTBA
240  * ARG3:	target ARG0
241  * RET0:	status
242  * ERRORS:	ENOCPU		Invalid CPU ID
243  *		EINVAL		Target CPU ID is not in the stopped state
244  *		ENORADDR	Invalid PC or RTBA real address
245  *		EBADALIGN	Unaligned PC or unaligned RTBA
246  *		EWOULDBLOCK	Starting resources are not available
247  *
248  * Start CPU with given CPU ID with PC in %pc and with a real trap
249  * base address value of RTBA.  The indicated CPU must be in the
250  * stopped state.  The supplied RTBA must be aligned on a 256 byte
251  * boundary.  On successful completion, the specified CPU will be in
252  * the running state and will be supplied with "target ARG0" in %o0
253  * and RTBA in %tba.
254  */
255 #define HV_FAST_CPU_START		0x10
256 
257 #ifndef __ASSEMBLY__
258 unsigned long sun4v_cpu_start(unsigned long cpuid,
259 			      unsigned long pc,
260 			      unsigned long rtba,
261 			      unsigned long arg0);
262 #endif
263 
264 /* cpu_stop()
265  * TRAP:	HV_FAST_TRAP
266  * FUNCTION:	HV_FAST_CPU_STOP
267  * ARG0:	CPU ID
268  * RET0:	status
269  * ERRORS:	ENOCPU		Invalid CPU ID
270  *		EINVAL		Target CPU ID is the current cpu
271  *		EINVAL		Target CPU ID is not in the running state
272  *		EWOULDBLOCK	Stopping resources are not available
273  *		ENOTSUPPORTED	Not supported on this platform
274  *
275  * The specified CPU is stopped.  The indicated CPU must be in the
276  * running state.  On completion, it will be in the stopped state.  It
277  * is not legal to stop the current CPU.
278  *
279  * Note: As this service cannot be used to stop the current cpu, this service
280  *       may not be used to stop the last running CPU in a domain.  To stop
281  *       and exit a running domain, a guest must use the mach_exit() service.
282  */
283 #define HV_FAST_CPU_STOP		0x11
284 
285 #ifndef __ASSEMBLY__
286 unsigned long sun4v_cpu_stop(unsigned long cpuid);
287 #endif
288 
289 /* cpu_yield()
290  * TRAP:	HV_FAST_TRAP
291  * FUNCTION:	HV_FAST_CPU_YIELD
292  * RET0:	status
293  * ERRORS:	No possible error.
294  *
295  * Suspend execution on the current CPU.  Execution will resume when
296  * an interrupt (device, %stick_compare, or cross-call) is targeted to
297  * the CPU.  On some CPUs, this API may be used by the hypervisor to
298  * save power by disabling hardware strands.
299  */
300 #define HV_FAST_CPU_YIELD		0x12
301 
302 #ifndef __ASSEMBLY__
303 unsigned long sun4v_cpu_yield(void);
304 #endif
305 
306 /* cpu_poke()
307  * TRAP:	HV_FAST_TRAP
308  * FUNCTION:	HV_FAST_CPU_POKE
309  * RET0:	status
310  * ERRORS:	ENOCPU		cpuid refers to a CPU that does not exist
311  *		EINVAL		cpuid is current CPU
312  *
313  * Poke CPU cpuid. If the target CPU is currently suspended having
314  * invoked the cpu-yield service, that vCPU will be resumed.
315  * Poke interrupts may only be sent to valid, non-local CPUs.
316  * It is not legal to poke the current vCPU.
317  */
318 #define HV_FAST_CPU_POKE                0x13
319 
320 #ifndef __ASSEMBLY__
321 unsigned long sun4v_cpu_poke(unsigned long cpuid);
322 #endif
323 
324 /* cpu_qconf()
325  * TRAP:	HV_FAST_TRAP
326  * FUNCTION:	HV_FAST_CPU_QCONF
327  * ARG0:	queue
328  * ARG1:	base real address
329  * ARG2:	number of entries
330  * RET0:	status
331  * ERRORS:	ENORADDR	Invalid base real address
332  *		EINVAL		Invalid queue or number of entries is less
333  *				than 2 or too large.
334  *		EBADALIGN	Base real address is not correctly aligned
335  *				for size.
336  *
337  * Configure the given queue to be placed at the given base real
338  * address, with the given number of entries.  The number of entries
339  * must be a power of 2.  The base real address must be aligned
340  * exactly to match the queue size.  Each queue entry is 64 bytes
341  * long, so for example a 32 entry queue must be aligned on a 2048
342  * byte real address boundary.
343  *
344  * The specified queue is unconfigured if the number of entries is given
345  * as zero.
346  *
347  * For the current version of this API service, the argument queue is defined
348  * as follows:
349  *
350  *	queue		description
351  *	-----		-------------------------
352  *	0x3c		cpu mondo queue
353  *	0x3d		device mondo queue
354  *	0x3e		resumable error queue
355  *	0x3f		non-resumable error queue
356  *
357  * Note: The maximum number of entries for each queue for a specific cpu may
358  *       be determined from the machine description.
359  */
360 #define HV_FAST_CPU_QCONF		0x14
361 #define  HV_CPU_QUEUE_CPU_MONDO		 0x3c
362 #define  HV_CPU_QUEUE_DEVICE_MONDO	 0x3d
363 #define  HV_CPU_QUEUE_RES_ERROR		 0x3e
364 #define  HV_CPU_QUEUE_NONRES_ERROR	 0x3f
365 
366 #ifndef __ASSEMBLY__
367 unsigned long sun4v_cpu_qconf(unsigned long type,
368 			      unsigned long queue_paddr,
369 			      unsigned long num_queue_entries);
370 #endif
371 
372 /* cpu_qinfo()
373  * TRAP:	HV_FAST_TRAP
374  * FUNCTION:	HV_FAST_CPU_QINFO
375  * ARG0:	queue
376  * RET0:	status
377  * RET1:	base real address
378  * RET1:	number of entries
379  * ERRORS:	EINVAL		Invalid queue
380  *
381  * Return the configuration info for the given queue.  The base real
382  * address and number of entries of the defined queue are returned.
383  * The queue argument values are the same as for cpu_qconf() above.
384  *
385  * If the specified queue is a valid queue number, but no queue has
386  * been defined, the number of entries will be set to zero and the
387  * base real address returned is undefined.
388  */
389 #define HV_FAST_CPU_QINFO		0x15
390 
391 /* cpu_mondo_send()
392  * TRAP:	HV_FAST_TRAP
393  * FUNCTION:	HV_FAST_CPU_MONDO_SEND
394  * ARG0-1:	CPU list
395  * ARG2:	data real address
396  * RET0:	status
397  * ERRORS:	EBADALIGN	Mondo data is not 64-byte aligned or CPU list
398  *				is not 2-byte aligned.
399  *		ENORADDR	Invalid data mondo address, or invalid cpu list
400  *				address.
401  *		ENOCPU		Invalid cpu in CPU list
402  *		EWOULDBLOCK	Some or all of the listed CPUs did not receive
403  *				the mondo
404  *		ECPUERROR	One or more of the listed CPUs are in error
405  *				state, use HV_FAST_CPU_STATE to see which ones
406  *		EINVAL		CPU list includes caller's CPU ID
407  *
408  * Send a mondo interrupt to the CPUs in the given CPU list with the
409  * 64-bytes at the given data real address.  The data must be 64-byte
410  * aligned.  The mondo data will be delivered to the cpu_mondo queues
411  * of the recipient CPUs.
412  *
413  * In all cases, error or not, the CPUs in the CPU list to which the
414  * mondo has been successfully delivered will be indicated by having
415  * their entry in CPU list updated with the value 0xffff.
416  */
417 #define HV_FAST_CPU_MONDO_SEND		0x42
418 
419 #ifndef __ASSEMBLY__
420 unsigned long sun4v_cpu_mondo_send(unsigned long cpu_count,
421 				   unsigned long cpu_list_pa,
422 				   unsigned long mondo_block_pa);
423 #endif
424 
425 /* cpu_myid()
426  * TRAP:	HV_FAST_TRAP
427  * FUNCTION:	HV_FAST_CPU_MYID
428  * RET0:	status
429  * RET1:	CPU ID
430  * ERRORS:	No errors defined.
431  *
432  * Return the hypervisor ID handle for the current CPU.  Use by a
433  * virtual CPU to discover it's own identity.
434  */
435 #define HV_FAST_CPU_MYID		0x16
436 
437 /* cpu_state()
438  * TRAP:	HV_FAST_TRAP
439  * FUNCTION:	HV_FAST_CPU_STATE
440  * ARG0:	CPU ID
441  * RET0:	status
442  * RET1:	state
443  * ERRORS:	ENOCPU		Invalid CPU ID
444  *
445  * Retrieve the current state of the CPU with the given CPU ID.
446  */
447 #define HV_FAST_CPU_STATE		0x17
448 #define  HV_CPU_STATE_STOPPED		 0x01
449 #define  HV_CPU_STATE_RUNNING		 0x02
450 #define  HV_CPU_STATE_ERROR		 0x03
451 
452 #ifndef __ASSEMBLY__
453 long sun4v_cpu_state(unsigned long cpuid);
454 #endif
455 
456 /* cpu_set_rtba()
457  * TRAP:	HV_FAST_TRAP
458  * FUNCTION:	HV_FAST_CPU_SET_RTBA
459  * ARG0:	RTBA
460  * RET0:	status
461  * RET1:	previous RTBA
462  * ERRORS:	ENORADDR	Invalid RTBA real address
463  *		EBADALIGN	RTBA is incorrectly aligned for a trap table
464  *
465  * Set the real trap base address of the local cpu to the given RTBA.
466  * The supplied RTBA must be aligned on a 256 byte boundary.  Upon
467  * success the previous value of the RTBA is returned in RET1.
468  *
469  * Note: This service does not affect %tba
470  */
471 #define HV_FAST_CPU_SET_RTBA		0x18
472 
473 /* cpu_set_rtba()
474  * TRAP:	HV_FAST_TRAP
475  * FUNCTION:	HV_FAST_CPU_GET_RTBA
476  * RET0:	status
477  * RET1:	previous RTBA
478  * ERRORS:	No possible error.
479  *
480  * Returns the current value of RTBA in RET1.
481  */
482 #define HV_FAST_CPU_GET_RTBA		0x19
483 
484 /* MMU services.
485  *
486  * Layout of a TSB description for mmu_tsb_ctx{,non}0() calls.
487  */
488 #ifndef __ASSEMBLY__
489 struct hv_tsb_descr {
490 	unsigned short		pgsz_idx;
491 	unsigned short		assoc;
492 	unsigned int		num_ttes;	/* in TTEs */
493 	unsigned int		ctx_idx;
494 	unsigned int		pgsz_mask;
495 	unsigned long		tsb_base;
496 	unsigned long		resv;
497 };
498 #endif
499 #define HV_TSB_DESCR_PGSZ_IDX_OFFSET	0x00
500 #define HV_TSB_DESCR_ASSOC_OFFSET	0x02
501 #define HV_TSB_DESCR_NUM_TTES_OFFSET	0x04
502 #define HV_TSB_DESCR_CTX_IDX_OFFSET	0x08
503 #define HV_TSB_DESCR_PGSZ_MASK_OFFSET	0x0c
504 #define HV_TSB_DESCR_TSB_BASE_OFFSET	0x10
505 #define HV_TSB_DESCR_RESV_OFFSET	0x18
506 
507 /* Page size bitmask.  */
508 #define HV_PGSZ_MASK_8K			(1 << 0)
509 #define HV_PGSZ_MASK_64K		(1 << 1)
510 #define HV_PGSZ_MASK_512K		(1 << 2)
511 #define HV_PGSZ_MASK_4MB		(1 << 3)
512 #define HV_PGSZ_MASK_32MB		(1 << 4)
513 #define HV_PGSZ_MASK_256MB		(1 << 5)
514 #define HV_PGSZ_MASK_2GB		(1 << 6)
515 #define HV_PGSZ_MASK_16GB		(1 << 7)
516 
517 /* Page size index.  The value given in the TSB descriptor must correspond
518  * to the smallest page size specified in the pgsz_mask page size bitmask.
519  */
520 #define HV_PGSZ_IDX_8K			0
521 #define HV_PGSZ_IDX_64K			1
522 #define HV_PGSZ_IDX_512K		2
523 #define HV_PGSZ_IDX_4MB			3
524 #define HV_PGSZ_IDX_32MB		4
525 #define HV_PGSZ_IDX_256MB		5
526 #define HV_PGSZ_IDX_2GB			6
527 #define HV_PGSZ_IDX_16GB		7
528 
529 /* MMU fault status area.
530  *
531  * MMU related faults have their status and fault address information
532  * placed into a memory region made available by privileged code.  Each
533  * virtual processor must make a mmu_fault_area_conf() call to tell the
534  * hypervisor where that processor's fault status should be stored.
535  *
536  * The fault status block is a multiple of 64-bytes and must be aligned
537  * on a 64-byte boundary.
538  */
539 #ifndef __ASSEMBLY__
540 struct hv_fault_status {
541 	unsigned long		i_fault_type;
542 	unsigned long		i_fault_addr;
543 	unsigned long		i_fault_ctx;
544 	unsigned long		i_reserved[5];
545 	unsigned long		d_fault_type;
546 	unsigned long		d_fault_addr;
547 	unsigned long		d_fault_ctx;
548 	unsigned long		d_reserved[5];
549 };
550 #endif
551 #define HV_FAULT_I_TYPE_OFFSET	0x00
552 #define HV_FAULT_I_ADDR_OFFSET	0x08
553 #define HV_FAULT_I_CTX_OFFSET	0x10
554 #define HV_FAULT_D_TYPE_OFFSET	0x40
555 #define HV_FAULT_D_ADDR_OFFSET	0x48
556 #define HV_FAULT_D_CTX_OFFSET	0x50
557 
558 #define HV_FAULT_TYPE_FAST_MISS	1
559 #define HV_FAULT_TYPE_FAST_PROT	2
560 #define HV_FAULT_TYPE_MMU_MISS	3
561 #define HV_FAULT_TYPE_INV_RA	4
562 #define HV_FAULT_TYPE_PRIV_VIOL	5
563 #define HV_FAULT_TYPE_PROT_VIOL	6
564 #define HV_FAULT_TYPE_NFO	7
565 #define HV_FAULT_TYPE_NFO_SEFF	8
566 #define HV_FAULT_TYPE_INV_VA	9
567 #define HV_FAULT_TYPE_INV_ASI	10
568 #define HV_FAULT_TYPE_NC_ATOMIC	11
569 #define HV_FAULT_TYPE_PRIV_ACT	12
570 #define HV_FAULT_TYPE_RESV1	13
571 #define HV_FAULT_TYPE_UNALIGNED	14
572 #define HV_FAULT_TYPE_INV_PGSZ	15
573 #define HV_FAULT_TYPE_MCD	17
574 #define HV_FAULT_TYPE_MCD_DIS	18
575 /* Values 16 --> -2 are reserved.  */
576 #define HV_FAULT_TYPE_MULTIPLE	-1
577 
578 /* Flags argument for mmu_{map,unmap}_addr(), mmu_demap_{page,context,all}(),
579  * and mmu_{map,unmap}_perm_addr().
580  */
581 #define HV_MMU_DMMU			0x01
582 #define HV_MMU_IMMU			0x02
583 #define HV_MMU_ALL			(HV_MMU_DMMU | HV_MMU_IMMU)
584 
585 /* mmu_map_addr()
586  * TRAP:	HV_MMU_MAP_ADDR_TRAP
587  * ARG0:	virtual address
588  * ARG1:	mmu context
589  * ARG2:	TTE
590  * ARG3:	flags (HV_MMU_{IMMU,DMMU})
591  * ERRORS:	EINVAL		Invalid virtual address, mmu context, or flags
592  *		EBADPGSZ	Invalid page size value
593  *		ENORADDR	Invalid real address in TTE
594  *
595  * Create a non-permanent mapping using the given TTE, virtual
596  * address, and mmu context.  The flags argument determines which
597  * (data, or instruction, or both) TLB the mapping gets loaded into.
598  *
599  * The behavior is undefined if the valid bit is clear in the TTE.
600  *
601  * Note: This API call is for privileged code to specify temporary translation
602  *       mappings without the need to create and manage a TSB.
603  */
604 
605 /* mmu_unmap_addr()
606  * TRAP:	HV_MMU_UNMAP_ADDR_TRAP
607  * ARG0:	virtual address
608  * ARG1:	mmu context
609  * ARG2:	flags (HV_MMU_{IMMU,DMMU})
610  * ERRORS:	EINVAL		Invalid virtual address, mmu context, or flags
611  *
612  * Demaps the given virtual address in the given mmu context on this
613  * CPU.  This function is intended to be used to demap pages mapped
614  * with mmu_map_addr.  This service is equivalent to invoking
615  * mmu_demap_page() with only the current CPU in the CPU list. The
616  * flags argument determines which (data, or instruction, or both) TLB
617  * the mapping gets unmapped from.
618  *
619  * Attempting to perform an unmap operation for a previously defined
620  * permanent mapping will have undefined results.
621  */
622 
623 /* mmu_tsb_ctx0()
624  * TRAP:	HV_FAST_TRAP
625  * FUNCTION:	HV_FAST_MMU_TSB_CTX0
626  * ARG0:	number of TSB descriptions
627  * ARG1:	TSB descriptions pointer
628  * RET0:	status
629  * ERRORS:	ENORADDR		Invalid TSB descriptions pointer or
630  *					TSB base within a descriptor
631  *		EBADALIGN		TSB descriptions pointer is not aligned
632  *					to an 8-byte boundary, or TSB base
633  *					within a descriptor is not aligned for
634  *					the given TSB size
635  *		EBADPGSZ		Invalid page size in a TSB descriptor
636  *		EBADTSB			Invalid associativity or size in a TSB
637  *					descriptor
638  *		EINVAL			Invalid number of TSB descriptions, or
639  *					invalid context index in a TSB
640  *					descriptor, or index page size not
641  *					equal to smallest page size in page
642  *					size bitmask field.
643  *
644  * Configures the TSBs for the current CPU for virtual addresses with
645  * context zero.  The TSB descriptions pointer is a pointer to an
646  * array of the given number of TSB descriptions.
647  *
648  * Note: The maximum number of TSBs available to a virtual CPU is given by the
649  *       mmu-max-#tsbs property of the cpu's corresponding "cpu" node in the
650  *       machine description.
651  */
652 #define HV_FAST_MMU_TSB_CTX0		0x20
653 
654 #ifndef __ASSEMBLY__
655 unsigned long sun4v_mmu_tsb_ctx0(unsigned long num_descriptions,
656 				 unsigned long tsb_desc_ra);
657 #endif
658 
659 /* mmu_tsb_ctxnon0()
660  * TRAP:	HV_FAST_TRAP
661  * FUNCTION:	HV_FAST_MMU_TSB_CTXNON0
662  * ARG0:	number of TSB descriptions
663  * ARG1:	TSB descriptions pointer
664  * RET0:	status
665  * ERRORS:	Same as for mmu_tsb_ctx0() above.
666  *
667  * Configures the TSBs for the current CPU for virtual addresses with
668  * non-zero contexts.  The TSB descriptions pointer is a pointer to an
669  * array of the given number of TSB descriptions.
670  *
671  * Note: A maximum of 16 TSBs may be specified in the TSB description list.
672  */
673 #define HV_FAST_MMU_TSB_CTXNON0		0x21
674 
675 /* mmu_demap_page()
676  * TRAP:	HV_FAST_TRAP
677  * FUNCTION:	HV_FAST_MMU_DEMAP_PAGE
678  * ARG0:	reserved, must be zero
679  * ARG1:	reserved, must be zero
680  * ARG2:	virtual address
681  * ARG3:	mmu context
682  * ARG4:	flags (HV_MMU_{IMMU,DMMU})
683  * RET0:	status
684  * ERRORS:	EINVAL			Invalid virtual address, context, or
685  *					flags value
686  *		ENOTSUPPORTED		ARG0 or ARG1 is non-zero
687  *
688  * Demaps any page mapping of the given virtual address in the given
689  * mmu context for the current virtual CPU.  Any virtually tagged
690  * caches are guaranteed to be kept consistent.  The flags argument
691  * determines which TLB (instruction, or data, or both) participate in
692  * the operation.
693  *
694  * ARG0 and ARG1 are both reserved and must be set to zero.
695  */
696 #define HV_FAST_MMU_DEMAP_PAGE		0x22
697 
698 /* mmu_demap_ctx()
699  * TRAP:	HV_FAST_TRAP
700  * FUNCTION:	HV_FAST_MMU_DEMAP_CTX
701  * ARG0:	reserved, must be zero
702  * ARG1:	reserved, must be zero
703  * ARG2:	mmu context
704  * ARG3:	flags (HV_MMU_{IMMU,DMMU})
705  * RET0:	status
706  * ERRORS:	EINVAL			Invalid context or flags value
707  *		ENOTSUPPORTED		ARG0 or ARG1 is non-zero
708  *
709  * Demaps all non-permanent virtual page mappings previously specified
710  * for the given context for the current virtual CPU.  Any virtual
711  * tagged caches are guaranteed to be kept consistent.  The flags
712  * argument determines which TLB (instruction, or data, or both)
713  * participate in the operation.
714  *
715  * ARG0 and ARG1 are both reserved and must be set to zero.
716  */
717 #define HV_FAST_MMU_DEMAP_CTX		0x23
718 
719 /* mmu_demap_all()
720  * TRAP:	HV_FAST_TRAP
721  * FUNCTION:	HV_FAST_MMU_DEMAP_ALL
722  * ARG0:	reserved, must be zero
723  * ARG1:	reserved, must be zero
724  * ARG2:	flags (HV_MMU_{IMMU,DMMU})
725  * RET0:	status
726  * ERRORS:	EINVAL			Invalid flags value
727  *		ENOTSUPPORTED		ARG0 or ARG1 is non-zero
728  *
729  * Demaps all non-permanent virtual page mappings previously specified
730  * for the current virtual CPU.  Any virtual tagged caches are
731  * guaranteed to be kept consistent.  The flags argument determines
732  * which TLB (instruction, or data, or both) participate in the
733  * operation.
734  *
735  * ARG0 and ARG1 are both reserved and must be set to zero.
736  */
737 #define HV_FAST_MMU_DEMAP_ALL		0x24
738 
739 #ifndef __ASSEMBLY__
740 void sun4v_mmu_demap_all(void);
741 #endif
742 
743 /* mmu_map_perm_addr()
744  * TRAP:	HV_FAST_TRAP
745  * FUNCTION:	HV_FAST_MMU_MAP_PERM_ADDR
746  * ARG0:	virtual address
747  * ARG1:	reserved, must be zero
748  * ARG2:	TTE
749  * ARG3:	flags (HV_MMU_{IMMU,DMMU})
750  * RET0:	status
751  * ERRORS:	EINVAL			Invalid virtual address or flags value
752  *		EBADPGSZ		Invalid page size value
753  *		ENORADDR		Invalid real address in TTE
754  *		ETOOMANY		Too many mappings (max of 8 reached)
755  *
756  * Create a permanent mapping using the given TTE and virtual address
757  * for context 0 on the calling virtual CPU.  A maximum of 8 such
758  * permanent mappings may be specified by privileged code.  Mappings
759  * may be removed with mmu_unmap_perm_addr().
760  *
761  * The behavior is undefined if a TTE with the valid bit clear is given.
762  *
763  * Note: This call is used to specify address space mappings for which
764  *       privileged code does not expect to receive misses.  For example,
765  *       this mechanism can be used to map kernel nucleus code and data.
766  */
767 #define HV_FAST_MMU_MAP_PERM_ADDR	0x25
768 
769 #ifndef __ASSEMBLY__
770 unsigned long sun4v_mmu_map_perm_addr(unsigned long vaddr,
771 				      unsigned long set_to_zero,
772 				      unsigned long tte,
773 				      unsigned long flags);
774 #endif
775 
776 /* mmu_fault_area_conf()
777  * TRAP:	HV_FAST_TRAP
778  * FUNCTION:	HV_FAST_MMU_FAULT_AREA_CONF
779  * ARG0:	real address
780  * RET0:	status
781  * RET1:	previous mmu fault area real address
782  * ERRORS:	ENORADDR		Invalid real address
783  *		EBADALIGN		Invalid alignment for fault area
784  *
785  * Configure the MMU fault status area for the calling CPU.  A 64-byte
786  * aligned real address specifies where MMU fault status information
787  * is placed.  The return value is the previously specified area, or 0
788  * for the first invocation.  Specifying a fault area at real address
789  * 0 is not allowed.
790  */
791 #define HV_FAST_MMU_FAULT_AREA_CONF	0x26
792 
793 /* mmu_enable()
794  * TRAP:	HV_FAST_TRAP
795  * FUNCTION:	HV_FAST_MMU_ENABLE
796  * ARG0:	enable flag
797  * ARG1:	return target address
798  * RET0:	status
799  * ERRORS:	ENORADDR		Invalid real address when disabling
800  *					translation.
801  *		EBADALIGN		The return target address is not
802  *					aligned to an instruction.
803  *		EINVAL			The enable flag request the current
804  *					operating mode (e.g. disable if already
805  *					disabled)
806  *
807  * Enable or disable virtual address translation for the calling CPU
808  * within the virtual machine domain.  If the enable flag is zero,
809  * translation is disabled, any non-zero value will enable
810  * translation.
811  *
812  * When this function returns, the newly selected translation mode
813  * will be active.  If the mmu is being enabled, then the return
814  * target address is a virtual address else it is a real address.
815  *
816  * Upon successful completion, control will be returned to the given
817  * return target address (ie. the cpu will jump to that address).  On
818  * failure, the previous mmu mode remains and the trap simply returns
819  * as normal with the appropriate error code in RET0.
820  */
821 #define HV_FAST_MMU_ENABLE		0x27
822 
823 /* mmu_unmap_perm_addr()
824  * TRAP:	HV_FAST_TRAP
825  * FUNCTION:	HV_FAST_MMU_UNMAP_PERM_ADDR
826  * ARG0:	virtual address
827  * ARG1:	reserved, must be zero
828  * ARG2:	flags (HV_MMU_{IMMU,DMMU})
829  * RET0:	status
830  * ERRORS:	EINVAL			Invalid virtual address or flags value
831  *		ENOMAP			Specified mapping was not found
832  *
833  * Demaps any permanent page mapping (established via
834  * mmu_map_perm_addr()) at the given virtual address for context 0 on
835  * the current virtual CPU.  Any virtual tagged caches are guaranteed
836  * to be kept consistent.
837  */
838 #define HV_FAST_MMU_UNMAP_PERM_ADDR	0x28
839 
840 /* mmu_tsb_ctx0_info()
841  * TRAP:	HV_FAST_TRAP
842  * FUNCTION:	HV_FAST_MMU_TSB_CTX0_INFO
843  * ARG0:	max TSBs
844  * ARG1:	buffer pointer
845  * RET0:	status
846  * RET1:	number of TSBs
847  * ERRORS:	EINVAL			Supplied buffer is too small
848  *		EBADALIGN		The buffer pointer is badly aligned
849  *		ENORADDR		Invalid real address for buffer pointer
850  *
851  * Return the TSB configuration as previous defined by mmu_tsb_ctx0()
852  * into the provided buffer.  The size of the buffer is given in ARG1
853  * in terms of the number of TSB description entries.
854  *
855  * Upon return, RET1 always contains the number of TSB descriptions
856  * previously configured.  If zero TSBs were configured, EOK is
857  * returned with RET1 containing 0.
858  */
859 #define HV_FAST_MMU_TSB_CTX0_INFO	0x29
860 
861 /* mmu_tsb_ctxnon0_info()
862  * TRAP:	HV_FAST_TRAP
863  * FUNCTION:	HV_FAST_MMU_TSB_CTXNON0_INFO
864  * ARG0:	max TSBs
865  * ARG1:	buffer pointer
866  * RET0:	status
867  * RET1:	number of TSBs
868  * ERRORS:	EINVAL			Supplied buffer is too small
869  *		EBADALIGN		The buffer pointer is badly aligned
870  *		ENORADDR		Invalid real address for buffer pointer
871  *
872  * Return the TSB configuration as previous defined by
873  * mmu_tsb_ctxnon0() into the provided buffer.  The size of the buffer
874  * is given in ARG1 in terms of the number of TSB description entries.
875  *
876  * Upon return, RET1 always contains the number of TSB descriptions
877  * previously configured.  If zero TSBs were configured, EOK is
878  * returned with RET1 containing 0.
879  */
880 #define HV_FAST_MMU_TSB_CTXNON0_INFO	0x2a
881 
882 /* mmu_fault_area_info()
883  * TRAP:	HV_FAST_TRAP
884  * FUNCTION:	HV_FAST_MMU_FAULT_AREA_INFO
885  * RET0:	status
886  * RET1:	fault area real address
887  * ERRORS:	No errors defined.
888  *
889  * Return the currently defined MMU fault status area for the current
890  * CPU.  The real address of the fault status area is returned in
891  * RET1, or 0 is returned in RET1 if no fault status area is defined.
892  *
893  * Note: mmu_fault_area_conf() may be called with the return value (RET1)
894  *       from this service if there is a need to save and restore the fault
895  *	 area for a cpu.
896  */
897 #define HV_FAST_MMU_FAULT_AREA_INFO	0x2b
898 
899 /* Cache and Memory services. */
900 
901 /* mem_scrub()
902  * TRAP:	HV_FAST_TRAP
903  * FUNCTION:	HV_FAST_MEM_SCRUB
904  * ARG0:	real address
905  * ARG1:	length
906  * RET0:	status
907  * RET1:	length scrubbed
908  * ERRORS:	ENORADDR	Invalid real address
909  *		EBADALIGN	Start address or length are not correctly
910  *				aligned
911  *		EINVAL		Length is zero
912  *
913  * Zero the memory contents in the range real address to real address
914  * plus length minus 1.  Also, valid ECC will be generated for that
915  * memory address range.  Scrubbing is started at the given real
916  * address, but may not scrub the entire given length.  The actual
917  * length scrubbed will be returned in RET1.
918  *
919  * The real address and length must be aligned on an 8K boundary, or
920  * contain the start address and length from a sun4v error report.
921  *
922  * Note: There are two uses for this function.  The first use is to block clear
923  *       and initialize memory and the second is to scrub an u ncorrectable
924  *       error reported via a resumable or non-resumable trap.  The second
925  *       use requires the arguments to be equal to the real address and length
926  *       provided in a sun4v memory error report.
927  */
928 #define HV_FAST_MEM_SCRUB		0x31
929 
930 /* mem_sync()
931  * TRAP:	HV_FAST_TRAP
932  * FUNCTION:	HV_FAST_MEM_SYNC
933  * ARG0:	real address
934  * ARG1:	length
935  * RET0:	status
936  * RET1:	length synced
937  * ERRORS:	ENORADDR	Invalid real address
938  *		EBADALIGN	Start address or length are not correctly
939  *				aligned
940  *		EINVAL		Length is zero
941  *
942  * Force the next access within the real address to real address plus
943  * length minus 1 to be fetches from main system memory.  Less than
944  * the given length may be synced, the actual amount synced is
945  * returned in RET1.  The real address and length must be aligned on
946  * an 8K boundary.
947  */
948 #define HV_FAST_MEM_SYNC		0x32
949 
950 /* Coprocessor services
951  *
952  * M7 and later processors provide an on-chip coprocessor which
953  * accelerates database operations, and is known internally as
954  * DAX.
955  */
956 
957 /* ccb_submit()
958  * TRAP:	HV_FAST_TRAP
959  * FUNCTION:	HV_CCB_SUBMIT
960  * ARG0:	address of CCB array
961  * ARG1:	size (in bytes) of CCB array being submitted
962  * ARG2:	flags
963  * ARG3:	reserved
964  * RET0:	status (success or error code)
965  * RET1:	size (in bytes) of CCB array that was accepted (might be less
966  *		than arg1)
967  * RET2:	status data
968  *		if status == ENOMAP or ENOACCESS, identifies the VA in question
969  *		if status == EUNAVAILBLE, unavailable code
970  * RET3:	reserved
971  *
972  * ERRORS:	EOK		successful submission (check size)
973  *		EWOULDBLOCK	could not finish submissions, try again
974  *		EBADALIGN	array not 64B aligned or size not 64B multiple
975  *		ENORADDR	invalid RA for array or in CCB
976  *		ENOMAP		could not translate address (see status data)
977  *		EINVAL		invalid ccb or arguments
978  *		ETOOMANY	too many ccbs with all-or-nothing flag
979  *		ENOACCESS	guest has no access to submit ccbs or address
980  *				in CCB does not have correct permissions (check
981  *				status data)
982  *		EUNAVAILABLE	ccb operation could not be performed at this
983  *				time (check status data)
984  *				Status data codes:
985  *					0 - exact CCB could not be executed
986  *					1 - CCB opcode cannot be executed
987  *					2 - CCB version cannot be executed
988  *					3 - vcpu cannot execute CCBs
989  *					4 - no CCBs can be executed
990  */
991 
992 #define HV_CCB_SUBMIT               0x34
993 #ifndef __ASSEMBLY__
994 unsigned long sun4v_ccb_submit(unsigned long ccb_buf,
995 			       unsigned long len,
996 			       unsigned long flags,
997 			       unsigned long reserved,
998 			       void *submitted_len,
999 			       void *status_data);
1000 #endif
1001 
1002 /* flags (ARG2) */
1003 #define HV_CCB_QUERY_CMD		BIT(1)
1004 #define HV_CCB_ARG0_TYPE_REAL		0UL
1005 #define HV_CCB_ARG0_TYPE_PRIMARY	BIT(4)
1006 #define HV_CCB_ARG0_TYPE_SECONDARY	BIT(5)
1007 #define HV_CCB_ARG0_TYPE_NUCLEUS	GENMASK(5, 4)
1008 #define HV_CCB_ARG0_PRIVILEGED		BIT(6)
1009 #define HV_CCB_ALL_OR_NOTHING		BIT(7)
1010 #define HV_CCB_QUEUE_INFO		BIT(8)
1011 #define HV_CCB_VA_REJECT		0UL
1012 #define HV_CCB_VA_SECONDARY		BIT(13)
1013 #define HV_CCB_VA_NUCLEUS		GENMASK(13, 12)
1014 #define HV_CCB_VA_PRIVILEGED		BIT(14)
1015 #define HV_CCB_VA_READ_ADI_DISABLE	BIT(15)	/* DAX2 only */
1016 
1017 /* ccb_info()
1018  * TRAP:	HV_FAST_TRAP
1019  * FUNCTION:	HV_CCB_INFO
1020  * ARG0:	real address of CCB completion area
1021  * RET0:	status (success or error code)
1022  * RET1:	info array
1023  *			- RET1[0]: CCB state
1024  *			- RET1[1]: dax unit
1025  *			- RET1[2]: queue number
1026  *			- RET1[3]: queue position
1027  *
1028  * ERRORS:	EOK		operation successful
1029  *		EBADALIGN	address not 64B aligned
1030  *		ENORADDR	RA in address not valid
1031  *		EINVAL		CA not valid
1032  *		EWOULDBLOCK	info not available for this CCB currently, try
1033  *				again
1034  *		ENOACCESS	guest cannot use dax
1035  */
1036 
1037 #define HV_CCB_INFO                 0x35
1038 #ifndef __ASSEMBLY__
1039 unsigned long sun4v_ccb_info(unsigned long ca,
1040 			     void *info_arr);
1041 #endif
1042 
1043 /* info array byte offsets (RET1) */
1044 #define CCB_INFO_OFFSET_CCB_STATE	0
1045 #define CCB_INFO_OFFSET_DAX_UNIT	2
1046 #define CCB_INFO_OFFSET_QUEUE_NUM	4
1047 #define CCB_INFO_OFFSET_QUEUE_POS	6
1048 
1049 /* CCB state (RET1[0]) */
1050 #define HV_CCB_STATE_COMPLETED      0
1051 #define HV_CCB_STATE_ENQUEUED       1
1052 #define HV_CCB_STATE_INPROGRESS     2
1053 #define HV_CCB_STATE_NOTFOUND       3
1054 
1055 /* ccb_kill()
1056  * TRAP:	HV_FAST_TRAP
1057  * FUNCTION:	HV_CCB_KILL
1058  * ARG0:	real address of CCB completion area
1059  * RET0:	status (success or error code)
1060  * RET1:	CCB kill status
1061  *
1062  * ERRORS:	EOK		operation successful
1063  *		EBADALIGN	address not 64B aligned
1064  *		ENORADDR	RA in address not valid
1065  *		EINVAL		CA not valid
1066  *		EWOULDBLOCK	kill not available for this CCB currently, try
1067  *				again
1068  *		ENOACCESS	guest cannot use dax
1069  */
1070 
1071 #define HV_CCB_KILL                 0x36
1072 #ifndef __ASSEMBLY__
1073 unsigned long sun4v_ccb_kill(unsigned long ca,
1074 			     void *kill_status);
1075 #endif
1076 
1077 /* CCB kill status (RET1) */
1078 #define HV_CCB_KILL_COMPLETED       0
1079 #define HV_CCB_KILL_DEQUEUED        1
1080 #define HV_CCB_KILL_KILLED          2
1081 #define HV_CCB_KILL_NOTFOUND        3
1082 
1083 /* Time of day services.
1084  *
1085  * The hypervisor maintains the time of day on a per-domain basis.
1086  * Changing the time of day in one domain does not affect the time of
1087  * day on any other domain.
1088  *
1089  * Time is described by a single unsigned 64-bit word which is the
1090  * number of seconds since the UNIX Epoch (00:00:00 UTC, January 1,
1091  * 1970).
1092  */
1093 
1094 /* tod_get()
1095  * TRAP:	HV_FAST_TRAP
1096  * FUNCTION:	HV_FAST_TOD_GET
1097  * RET0:	status
1098  * RET1:	TOD
1099  * ERRORS:	EWOULDBLOCK	TOD resource is temporarily unavailable
1100  *		ENOTSUPPORTED	If TOD not supported on this platform
1101  *
1102  * Return the current time of day.  May block if TOD access is
1103  * temporarily not possible.
1104  */
1105 #define HV_FAST_TOD_GET			0x50
1106 
1107 #ifndef __ASSEMBLY__
1108 unsigned long sun4v_tod_get(unsigned long *time);
1109 #endif
1110 
1111 /* tod_set()
1112  * TRAP:	HV_FAST_TRAP
1113  * FUNCTION:	HV_FAST_TOD_SET
1114  * ARG0:	TOD
1115  * RET0:	status
1116  * ERRORS:	EWOULDBLOCK	TOD resource is temporarily unavailable
1117  *		ENOTSUPPORTED	If TOD not supported on this platform
1118  *
1119  * The current time of day is set to the value specified in ARG0.  May
1120  * block if TOD access is temporarily not possible.
1121  */
1122 #define HV_FAST_TOD_SET			0x51
1123 
1124 #ifndef __ASSEMBLY__
1125 unsigned long sun4v_tod_set(unsigned long time);
1126 #endif
1127 
1128 /* Console services */
1129 
1130 /* con_getchar()
1131  * TRAP:	HV_FAST_TRAP
1132  * FUNCTION:	HV_FAST_CONS_GETCHAR
1133  * RET0:	status
1134  * RET1:	character
1135  * ERRORS:	EWOULDBLOCK	No character available.
1136  *
1137  * Returns a character from the console device.  If no character is
1138  * available then an EWOULDBLOCK error is returned.  If a character is
1139  * available, then the returned status is EOK and the character value
1140  * is in RET1.
1141  *
1142  * A virtual BREAK is represented by the 64-bit value -1.
1143  *
1144  * A virtual HUP signal is represented by the 64-bit value -2.
1145  */
1146 #define HV_FAST_CONS_GETCHAR		0x60
1147 
1148 /* con_putchar()
1149  * TRAP:	HV_FAST_TRAP
1150  * FUNCTION:	HV_FAST_CONS_PUTCHAR
1151  * ARG0:	character
1152  * RET0:	status
1153  * ERRORS:	EINVAL		Illegal character
1154  *		EWOULDBLOCK	Output buffer currently full, would block
1155  *
1156  * Send a character to the console device.  Only character values
1157  * between 0 and 255 may be used.  Values outside this range are
1158  * invalid except for the 64-bit value -1 which is used to send a
1159  * virtual BREAK.
1160  */
1161 #define HV_FAST_CONS_PUTCHAR		0x61
1162 
1163 /* con_read()
1164  * TRAP:	HV_FAST_TRAP
1165  * FUNCTION:	HV_FAST_CONS_READ
1166  * ARG0:	buffer real address
1167  * ARG1:	buffer size in bytes
1168  * RET0:	status
1169  * RET1:	bytes read or BREAK or HUP
1170  * ERRORS:	EWOULDBLOCK	No character available.
1171  *
1172  * Reads characters into a buffer from the console device.  If no
1173  * character is available then an EWOULDBLOCK error is returned.
1174  * If a character is available, then the returned status is EOK
1175  * and the number of bytes read into the given buffer is provided
1176  * in RET1.
1177  *
1178  * A virtual BREAK is represented by the 64-bit RET1 value -1.
1179  *
1180  * A virtual HUP signal is represented by the 64-bit RET1 value -2.
1181  *
1182  * If BREAK or HUP are indicated, no bytes were read into buffer.
1183  */
1184 #define HV_FAST_CONS_READ		0x62
1185 
1186 /* con_write()
1187  * TRAP:	HV_FAST_TRAP
1188  * FUNCTION:	HV_FAST_CONS_WRITE
1189  * ARG0:	buffer real address
1190  * ARG1:	buffer size in bytes
1191  * RET0:	status
1192  * RET1:	bytes written
1193  * ERRORS:	EWOULDBLOCK	Output buffer currently full, would block
1194  *
1195  * Send a characters in buffer to the console device.  Breaks must be
1196  * sent using con_putchar().
1197  */
1198 #define HV_FAST_CONS_WRITE		0x63
1199 
1200 #ifndef __ASSEMBLY__
1201 long sun4v_con_getchar(long *status);
1202 long sun4v_con_putchar(long c);
1203 long sun4v_con_read(unsigned long buffer,
1204 		    unsigned long size,
1205 		    unsigned long *bytes_read);
1206 unsigned long sun4v_con_write(unsigned long buffer,
1207 			      unsigned long size,
1208 			      unsigned long *bytes_written);
1209 #endif
1210 
1211 /* mach_set_soft_state()
1212  * TRAP:	HV_FAST_TRAP
1213  * FUNCTION:	HV_FAST_MACH_SET_SOFT_STATE
1214  * ARG0:	software state
1215  * ARG1:	software state description pointer
1216  * RET0:	status
1217  * ERRORS:	EINVAL		software state not valid or software state
1218  *				description is not NULL terminated
1219  *		ENORADDR	software state description pointer is not a
1220  *				valid real address
1221  *		EBADALIGNED	software state description is not correctly
1222  *				aligned
1223  *
1224  * This allows the guest to report it's soft state to the hypervisor.  There
1225  * are two primary components to this state.  The first part states whether
1226  * the guest software is running or not.  The second containts optional
1227  * details specific to the software.
1228  *
1229  * The software state argument is defined below in HV_SOFT_STATE_*, and
1230  * indicates whether the guest is operating normally or in a transitional
1231  * state.
1232  *
1233  * The software state description argument is a real address of a data buffer
1234  * of size 32-bytes aligned on a 32-byte boundary.  It is treated as a NULL
1235  * terminated 7-bit ASCII string of up to 31 characters not including the
1236  * NULL termination.
1237  */
1238 #define HV_FAST_MACH_SET_SOFT_STATE	0x70
1239 #define  HV_SOFT_STATE_NORMAL		 0x01
1240 #define  HV_SOFT_STATE_TRANSITION	 0x02
1241 
1242 #ifndef __ASSEMBLY__
1243 unsigned long sun4v_mach_set_soft_state(unsigned long soft_state,
1244 				        unsigned long msg_string_ra);
1245 #endif
1246 
1247 /* mach_get_soft_state()
1248  * TRAP:	HV_FAST_TRAP
1249  * FUNCTION:	HV_FAST_MACH_GET_SOFT_STATE
1250  * ARG0:	software state description pointer
1251  * RET0:	status
1252  * RET1:	software state
1253  * ERRORS:	ENORADDR	software state description pointer is not a
1254  *				valid real address
1255  *		EBADALIGNED	software state description is not correctly
1256  *				aligned
1257  *
1258  * Retrieve the current value of the guest's software state.  The rules
1259  * for the software state pointer are the same as for mach_set_soft_state()
1260  * above.
1261  */
1262 #define HV_FAST_MACH_GET_SOFT_STATE	0x71
1263 
1264 /* svc_send()
1265  * TRAP:	HV_FAST_TRAP
1266  * FUNCTION:	HV_FAST_SVC_SEND
1267  * ARG0:	service ID
1268  * ARG1:	buffer real address
1269  * ARG2:	buffer size
1270  * RET0:	STATUS
1271  * RET1:	sent_bytes
1272  *
1273  * Be careful, all output registers are clobbered by this operation,
1274  * so for example it is not possible to save away a value in %o4
1275  * across the trap.
1276  */
1277 #define HV_FAST_SVC_SEND		0x80
1278 
1279 /* svc_recv()
1280  * TRAP:	HV_FAST_TRAP
1281  * FUNCTION:	HV_FAST_SVC_RECV
1282  * ARG0:	service ID
1283  * ARG1:	buffer real address
1284  * ARG2:	buffer size
1285  * RET0:	STATUS
1286  * RET1:	recv_bytes
1287  *
1288  * Be careful, all output registers are clobbered by this operation,
1289  * so for example it is not possible to save away a value in %o4
1290  * across the trap.
1291  */
1292 #define HV_FAST_SVC_RECV		0x81
1293 
1294 /* svc_getstatus()
1295  * TRAP:	HV_FAST_TRAP
1296  * FUNCTION:	HV_FAST_SVC_GETSTATUS
1297  * ARG0:	service ID
1298  * RET0:	STATUS
1299  * RET1:	status bits
1300  */
1301 #define HV_FAST_SVC_GETSTATUS		0x82
1302 
1303 /* svc_setstatus()
1304  * TRAP:	HV_FAST_TRAP
1305  * FUNCTION:	HV_FAST_SVC_SETSTATUS
1306  * ARG0:	service ID
1307  * ARG1:	bits to set
1308  * RET0:	STATUS
1309  */
1310 #define HV_FAST_SVC_SETSTATUS		0x83
1311 
1312 /* svc_clrstatus()
1313  * TRAP:	HV_FAST_TRAP
1314  * FUNCTION:	HV_FAST_SVC_CLRSTATUS
1315  * ARG0:	service ID
1316  * ARG1:	bits to clear
1317  * RET0:	STATUS
1318  */
1319 #define HV_FAST_SVC_CLRSTATUS		0x84
1320 
1321 #ifndef __ASSEMBLY__
1322 unsigned long sun4v_svc_send(unsigned long svc_id,
1323 			     unsigned long buffer,
1324 			     unsigned long buffer_size,
1325 			     unsigned long *sent_bytes);
1326 unsigned long sun4v_svc_recv(unsigned long svc_id,
1327 			     unsigned long buffer,
1328 			     unsigned long buffer_size,
1329 			     unsigned long *recv_bytes);
1330 unsigned long sun4v_svc_getstatus(unsigned long svc_id,
1331 				  unsigned long *status_bits);
1332 unsigned long sun4v_svc_setstatus(unsigned long svc_id,
1333 				  unsigned long status_bits);
1334 unsigned long sun4v_svc_clrstatus(unsigned long svc_id,
1335 				  unsigned long status_bits);
1336 #endif
1337 
1338 /* Trap trace services.
1339  *
1340  * The hypervisor provides a trap tracing capability for privileged
1341  * code running on each virtual CPU.  Privileged code provides a
1342  * round-robin trap trace queue within which the hypervisor writes
1343  * 64-byte entries detailing hyperprivileged traps taken n behalf of
1344  * privileged code.  This is provided as a debugging capability for
1345  * privileged code.
1346  *
1347  * The trap trace control structure is 64-bytes long and placed at the
1348  * start (offset 0) of the trap trace buffer, and is described as
1349  * follows:
1350  */
1351 #ifndef __ASSEMBLY__
1352 struct hv_trap_trace_control {
1353 	unsigned long		head_offset;
1354 	unsigned long		tail_offset;
1355 	unsigned long		__reserved[0x30 / sizeof(unsigned long)];
1356 };
1357 #endif
1358 #define HV_TRAP_TRACE_CTRL_HEAD_OFFSET	0x00
1359 #define HV_TRAP_TRACE_CTRL_TAIL_OFFSET	0x08
1360 
1361 /* The head offset is the offset of the most recently completed entry
1362  * in the trap-trace buffer.  The tail offset is the offset of the
1363  * next entry to be written.  The control structure is owned and
1364  * modified by the hypervisor.  A guest may not modify the control
1365  * structure contents.  Attempts to do so will result in undefined
1366  * behavior for the guest.
1367  *
1368  * Each trap trace buffer entry is laid out as follows:
1369  */
1370 #ifndef __ASSEMBLY__
1371 struct hv_trap_trace_entry {
1372 	unsigned char	type;		/* Hypervisor or guest entry?	*/
1373 	unsigned char	hpstate;	/* Hyper-privileged state	*/
1374 	unsigned char	tl;		/* Trap level			*/
1375 	unsigned char	gl;		/* Global register level	*/
1376 	unsigned short	tt;		/* Trap type			*/
1377 	unsigned short	tag;		/* Extended trap identifier	*/
1378 	unsigned long	tstate;		/* Trap state			*/
1379 	unsigned long	tick;		/* Tick				*/
1380 	unsigned long	tpc;		/* Trap PC			*/
1381 	unsigned long	f1;		/* Entry specific		*/
1382 	unsigned long	f2;		/* Entry specific		*/
1383 	unsigned long	f3;		/* Entry specific		*/
1384 	unsigned long	f4;		/* Entry specific		*/
1385 };
1386 #endif
1387 #define HV_TRAP_TRACE_ENTRY_TYPE	0x00
1388 #define HV_TRAP_TRACE_ENTRY_HPSTATE	0x01
1389 #define HV_TRAP_TRACE_ENTRY_TL		0x02
1390 #define HV_TRAP_TRACE_ENTRY_GL		0x03
1391 #define HV_TRAP_TRACE_ENTRY_TT		0x04
1392 #define HV_TRAP_TRACE_ENTRY_TAG		0x06
1393 #define HV_TRAP_TRACE_ENTRY_TSTATE	0x08
1394 #define HV_TRAP_TRACE_ENTRY_TICK	0x10
1395 #define HV_TRAP_TRACE_ENTRY_TPC		0x18
1396 #define HV_TRAP_TRACE_ENTRY_F1		0x20
1397 #define HV_TRAP_TRACE_ENTRY_F2		0x28
1398 #define HV_TRAP_TRACE_ENTRY_F3		0x30
1399 #define HV_TRAP_TRACE_ENTRY_F4		0x38
1400 
1401 /* The type field is encoded as follows.  */
1402 #define HV_TRAP_TYPE_UNDEF		0x00 /* Entry content undefined     */
1403 #define HV_TRAP_TYPE_HV			0x01 /* Hypervisor trap entry       */
1404 #define HV_TRAP_TYPE_GUEST		0xff /* Added via ttrace_addentry() */
1405 
1406 /* ttrace_buf_conf()
1407  * TRAP:	HV_FAST_TRAP
1408  * FUNCTION:	HV_FAST_TTRACE_BUF_CONF
1409  * ARG0:	real address
1410  * ARG1:	number of entries
1411  * RET0:	status
1412  * RET1:	number of entries
1413  * ERRORS:	ENORADDR	Invalid real address
1414  *		EINVAL		Size is too small
1415  *		EBADALIGN	Real address not aligned on 64-byte boundary
1416  *
1417  * Requests hypervisor trap tracing and declares a virtual CPU's trap
1418  * trace buffer to the hypervisor.  The real address supplies the real
1419  * base address of the trap trace queue and must be 64-byte aligned.
1420  * Specifying a value of 0 for the number of entries disables trap
1421  * tracing for the calling virtual CPU.  The buffer allocated must be
1422  * sized for a power of two number of 64-byte trap trace entries plus
1423  * an initial 64-byte control structure.
1424  *
1425  * This may be invoked any number of times so that a virtual CPU may
1426  * relocate a trap trace buffer or create "snapshots" of information.
1427  *
1428  * If the real address is illegal or badly aligned, then trap tracing
1429  * is disabled and an error is returned.
1430  *
1431  * Upon failure with EINVAL, this service call returns in RET1 the
1432  * minimum number of buffer entries required.  Upon other failures
1433  * RET1 is undefined.
1434  */
1435 #define HV_FAST_TTRACE_BUF_CONF		0x90
1436 
1437 /* ttrace_buf_info()
1438  * TRAP:	HV_FAST_TRAP
1439  * FUNCTION:	HV_FAST_TTRACE_BUF_INFO
1440  * RET0:	status
1441  * RET1:	real address
1442  * RET2:	size
1443  * ERRORS:	None defined.
1444  *
1445  * Returns the size and location of the previously declared trap-trace
1446  * buffer.  In the event that no buffer was previously defined, or the
1447  * buffer is disabled, this call will return a size of zero bytes.
1448  */
1449 #define HV_FAST_TTRACE_BUF_INFO		0x91
1450 
1451 /* ttrace_enable()
1452  * TRAP:	HV_FAST_TRAP
1453  * FUNCTION:	HV_FAST_TTRACE_ENABLE
1454  * ARG0:	enable
1455  * RET0:	status
1456  * RET1:	previous enable state
1457  * ERRORS:	EINVAL		No trap trace buffer currently defined
1458  *
1459  * Enable or disable trap tracing, and return the previous enabled
1460  * state in RET1.  Future systems may define various flags for the
1461  * enable argument (ARG0), for the moment a guest should pass
1462  * "(uint64_t) -1" to enable, and "(uint64_t) 0" to disable all
1463  * tracing - which will ensure future compatibility.
1464  */
1465 #define HV_FAST_TTRACE_ENABLE		0x92
1466 
1467 /* ttrace_freeze()
1468  * TRAP:	HV_FAST_TRAP
1469  * FUNCTION:	HV_FAST_TTRACE_FREEZE
1470  * ARG0:	freeze
1471  * RET0:	status
1472  * RET1:	previous freeze state
1473  * ERRORS:	EINVAL		No trap trace buffer currently defined
1474  *
1475  * Freeze or unfreeze trap tracing, returning the previous freeze
1476  * state in RET1.  A guest should pass a non-zero value to freeze and
1477  * a zero value to unfreeze all tracing.  The returned previous state
1478  * is 0 for not frozen and 1 for frozen.
1479  */
1480 #define HV_FAST_TTRACE_FREEZE		0x93
1481 
1482 /* ttrace_addentry()
1483  * TRAP:	HV_TTRACE_ADDENTRY_TRAP
1484  * ARG0:	tag (16-bits)
1485  * ARG1:	data word 0
1486  * ARG2:	data word 1
1487  * ARG3:	data word 2
1488  * ARG4:	data word 3
1489  * RET0:	status
1490  * ERRORS:	EINVAL		No trap trace buffer currently defined
1491  *
1492  * Add an entry to the trap trace buffer.  Upon return only ARG0/RET0
1493  * is modified - none of the other registers holding arguments are
1494  * volatile across this hypervisor service.
1495  */
1496 
1497 /* Core dump services.
1498  *
1499  * Since the hypervisor viraulizes and thus obscures a lot of the
1500  * physical machine layout and state, traditional OS crash dumps can
1501  * be difficult to diagnose especially when the problem is a
1502  * configuration error of some sort.
1503  *
1504  * The dump services provide an opaque buffer into which the
1505  * hypervisor can place it's internal state in order to assist in
1506  * debugging such situations.  The contents are opaque and extremely
1507  * platform and hypervisor implementation specific.  The guest, during
1508  * a core dump, requests that the hypervisor update any information in
1509  * the dump buffer in preparation to being dumped as part of the
1510  * domain's memory image.
1511  */
1512 
1513 /* dump_buf_update()
1514  * TRAP:	HV_FAST_TRAP
1515  * FUNCTION:	HV_FAST_DUMP_BUF_UPDATE
1516  * ARG0:	real address
1517  * ARG1:	size
1518  * RET0:	status
1519  * RET1:	required size of dump buffer
1520  * ERRORS:	ENORADDR	Invalid real address
1521  *		EBADALIGN	Real address is not aligned on a 64-byte
1522  *				boundary
1523  *		EINVAL		Size is non-zero but less than minimum size
1524  *				required
1525  *		ENOTSUPPORTED	Operation not supported on current logical
1526  *				domain
1527  *
1528  * Declare a domain dump buffer to the hypervisor.  The real address
1529  * provided for the domain dump buffer must be 64-byte aligned.  The
1530  * size specifies the size of the dump buffer and may be larger than
1531  * the minimum size specified in the machine description.  The
1532  * hypervisor will fill the dump buffer with opaque data.
1533  *
1534  * Note: A guest may elect to include dump buffer contents as part of a crash
1535  *       dump to assist with debugging.  This function may be called any number
1536  *       of times so that a guest may relocate a dump buffer, or create
1537  *       "snapshots" of any dump-buffer information.  Each call to
1538  *       dump_buf_update() atomically declares the new dump buffer to the
1539  *       hypervisor.
1540  *
1541  * A specified size of 0 unconfigures the dump buffer.  If the real
1542  * address is illegal or badly aligned, then any currently active dump
1543  * buffer is disabled and an error is returned.
1544  *
1545  * In the event that the call fails with EINVAL, RET1 contains the
1546  * minimum size requires by the hypervisor for a valid dump buffer.
1547  */
1548 #define HV_FAST_DUMP_BUF_UPDATE		0x94
1549 
1550 /* dump_buf_info()
1551  * TRAP:	HV_FAST_TRAP
1552  * FUNCTION:	HV_FAST_DUMP_BUF_INFO
1553  * RET0:	status
1554  * RET1:	real address of current dump buffer
1555  * RET2:	size of current dump buffer
1556  * ERRORS:	No errors defined.
1557  *
1558  * Return the currently configures dump buffer description.  A
1559  * returned size of 0 bytes indicates an undefined dump buffer.  In
1560  * this case the return address in RET1 is undefined.
1561  */
1562 #define HV_FAST_DUMP_BUF_INFO		0x95
1563 
1564 /* Device interrupt services.
1565  *
1566  * Device interrupts are allocated to system bus bridges by the hypervisor,
1567  * and described to OBP in the machine description.  OBP then describes
1568  * these interrupts to the OS via properties in the device tree.
1569  *
1570  * Terminology:
1571  *
1572  *	cpuid		Unique opaque value which represents a target cpu.
1573  *
1574  *	devhandle	Device handle.  It uniquely identifies a device, and
1575  *			consistes of the lower 28-bits of the hi-cell of the
1576  *			first entry of the device's "reg" property in the
1577  *			OBP device tree.
1578  *
1579  *	devino		Device interrupt number.  Specifies the relative
1580  *			interrupt number within the device.  The unique
1581  *			combination of devhandle and devino are used to
1582  *			identify a specific device interrupt.
1583  *
1584  *			Note: The devino value is the same as the values in the
1585  *			      "interrupts" property or "interrupt-map" property
1586  *			      in the OBP device tree for that device.
1587  *
1588  *	sysino		System interrupt number.  A 64-bit unsigned interger
1589  *			representing a unique interrupt within a virtual
1590  *			machine.
1591  *
1592  *	intr_state	A flag representing the interrupt state for a given
1593  *			sysino.  The state values are defined below.
1594  *
1595  *	intr_enabled	A flag representing the 'enabled' state for a given
1596  *			sysino.  The enable values are defined below.
1597  */
1598 
1599 #define HV_INTR_STATE_IDLE		0 /* Nothing pending */
1600 #define HV_INTR_STATE_RECEIVED		1 /* Interrupt received by hardware */
1601 #define HV_INTR_STATE_DELIVERED		2 /* Interrupt delivered to queue */
1602 
1603 #define HV_INTR_DISABLED		0 /* sysino not enabled */
1604 #define HV_INTR_ENABLED			1 /* sysino enabled */
1605 
1606 /* intr_devino_to_sysino()
1607  * TRAP:	HV_FAST_TRAP
1608  * FUNCTION:	HV_FAST_INTR_DEVINO2SYSINO
1609  * ARG0:	devhandle
1610  * ARG1:	devino
1611  * RET0:	status
1612  * RET1:	sysino
1613  * ERRORS:	EINVAL		Invalid devhandle/devino
1614  *
1615  * Converts a device specific interrupt number of the given
1616  * devhandle/devino into a system specific ino (sysino).
1617  */
1618 #define HV_FAST_INTR_DEVINO2SYSINO	0xa0
1619 
1620 #ifndef __ASSEMBLY__
1621 unsigned long sun4v_devino_to_sysino(unsigned long devhandle,
1622 				     unsigned long devino);
1623 #endif
1624 
1625 /* intr_getenabled()
1626  * TRAP:	HV_FAST_TRAP
1627  * FUNCTION:	HV_FAST_INTR_GETENABLED
1628  * ARG0:	sysino
1629  * RET0:	status
1630  * RET1:	intr_enabled (HV_INTR_{DISABLED,ENABLED})
1631  * ERRORS:	EINVAL		Invalid sysino
1632  *
1633  * Returns interrupt enabled state in RET1 for the interrupt defined
1634  * by the given sysino.
1635  */
1636 #define HV_FAST_INTR_GETENABLED		0xa1
1637 
1638 #ifndef __ASSEMBLY__
1639 unsigned long sun4v_intr_getenabled(unsigned long sysino);
1640 #endif
1641 
1642 /* intr_setenabled()
1643  * TRAP:	HV_FAST_TRAP
1644  * FUNCTION:	HV_FAST_INTR_SETENABLED
1645  * ARG0:	sysino
1646  * ARG1:	intr_enabled (HV_INTR_{DISABLED,ENABLED})
1647  * RET0:	status
1648  * ERRORS:	EINVAL		Invalid sysino or intr_enabled value
1649  *
1650  * Set the 'enabled' state of the interrupt sysino.
1651  */
1652 #define HV_FAST_INTR_SETENABLED		0xa2
1653 
1654 #ifndef __ASSEMBLY__
1655 unsigned long sun4v_intr_setenabled(unsigned long sysino,
1656 				    unsigned long intr_enabled);
1657 #endif
1658 
1659 /* intr_getstate()
1660  * TRAP:	HV_FAST_TRAP
1661  * FUNCTION:	HV_FAST_INTR_GETSTATE
1662  * ARG0:	sysino
1663  * RET0:	status
1664  * RET1:	intr_state (HV_INTR_STATE_*)
1665  * ERRORS:	EINVAL		Invalid sysino
1666  *
1667  * Returns current state of the interrupt defined by the given sysino.
1668  */
1669 #define HV_FAST_INTR_GETSTATE		0xa3
1670 
1671 #ifndef __ASSEMBLY__
1672 unsigned long sun4v_intr_getstate(unsigned long sysino);
1673 #endif
1674 
1675 /* intr_setstate()
1676  * TRAP:	HV_FAST_TRAP
1677  * FUNCTION:	HV_FAST_INTR_SETSTATE
1678  * ARG0:	sysino
1679  * ARG1:	intr_state (HV_INTR_STATE_*)
1680  * RET0:	status
1681  * ERRORS:	EINVAL		Invalid sysino or intr_state value
1682  *
1683  * Sets the current state of the interrupt described by the given sysino
1684  * value.
1685  *
1686  * Note: Setting the state to HV_INTR_STATE_IDLE clears any pending
1687  *       interrupt for sysino.
1688  */
1689 #define HV_FAST_INTR_SETSTATE		0xa4
1690 
1691 #ifndef __ASSEMBLY__
1692 unsigned long sun4v_intr_setstate(unsigned long sysino, unsigned long intr_state);
1693 #endif
1694 
1695 /* intr_gettarget()
1696  * TRAP:	HV_FAST_TRAP
1697  * FUNCTION:	HV_FAST_INTR_GETTARGET
1698  * ARG0:	sysino
1699  * RET0:	status
1700  * RET1:	cpuid
1701  * ERRORS:	EINVAL		Invalid sysino
1702  *
1703  * Returns CPU that is the current target of the interrupt defined by
1704  * the given sysino.  The CPU value returned is undefined if the target
1705  * has not been set via intr_settarget().
1706  */
1707 #define HV_FAST_INTR_GETTARGET		0xa5
1708 
1709 #ifndef __ASSEMBLY__
1710 unsigned long sun4v_intr_gettarget(unsigned long sysino);
1711 #endif
1712 
1713 /* intr_settarget()
1714  * TRAP:	HV_FAST_TRAP
1715  * FUNCTION:	HV_FAST_INTR_SETTARGET
1716  * ARG0:	sysino
1717  * ARG1:	cpuid
1718  * RET0:	status
1719  * ERRORS:	EINVAL		Invalid sysino
1720  *		ENOCPU		Invalid cpuid
1721  *
1722  * Set the target CPU for the interrupt defined by the given sysino.
1723  */
1724 #define HV_FAST_INTR_SETTARGET		0xa6
1725 
1726 #ifndef __ASSEMBLY__
1727 unsigned long sun4v_intr_settarget(unsigned long sysino, unsigned long cpuid);
1728 #endif
1729 
1730 /* vintr_get_cookie()
1731  * TRAP:	HV_FAST_TRAP
1732  * FUNCTION:	HV_FAST_VINTR_GET_COOKIE
1733  * ARG0:	device handle
1734  * ARG1:	device ino
1735  * RET0:	status
1736  * RET1:	cookie
1737  */
1738 #define HV_FAST_VINTR_GET_COOKIE	0xa7
1739 
1740 /* vintr_set_cookie()
1741  * TRAP:	HV_FAST_TRAP
1742  * FUNCTION:	HV_FAST_VINTR_SET_COOKIE
1743  * ARG0:	device handle
1744  * ARG1:	device ino
1745  * ARG2:	cookie
1746  * RET0:	status
1747  */
1748 #define HV_FAST_VINTR_SET_COOKIE	0xa8
1749 
1750 /* vintr_get_valid()
1751  * TRAP:	HV_FAST_TRAP
1752  * FUNCTION:	HV_FAST_VINTR_GET_VALID
1753  * ARG0:	device handle
1754  * ARG1:	device ino
1755  * RET0:	status
1756  * RET1:	valid state
1757  */
1758 #define HV_FAST_VINTR_GET_VALID		0xa9
1759 
1760 /* vintr_set_valid()
1761  * TRAP:	HV_FAST_TRAP
1762  * FUNCTION:	HV_FAST_VINTR_SET_VALID
1763  * ARG0:	device handle
1764  * ARG1:	device ino
1765  * ARG2:	valid state
1766  * RET0:	status
1767  */
1768 #define HV_FAST_VINTR_SET_VALID		0xaa
1769 
1770 /* vintr_get_state()
1771  * TRAP:	HV_FAST_TRAP
1772  * FUNCTION:	HV_FAST_VINTR_GET_STATE
1773  * ARG0:	device handle
1774  * ARG1:	device ino
1775  * RET0:	status
1776  * RET1:	state
1777  */
1778 #define HV_FAST_VINTR_GET_STATE		0xab
1779 
1780 /* vintr_set_state()
1781  * TRAP:	HV_FAST_TRAP
1782  * FUNCTION:	HV_FAST_VINTR_SET_STATE
1783  * ARG0:	device handle
1784  * ARG1:	device ino
1785  * ARG2:	state
1786  * RET0:	status
1787  */
1788 #define HV_FAST_VINTR_SET_STATE		0xac
1789 
1790 /* vintr_get_target()
1791  * TRAP:	HV_FAST_TRAP
1792  * FUNCTION:	HV_FAST_VINTR_GET_TARGET
1793  * ARG0:	device handle
1794  * ARG1:	device ino
1795  * RET0:	status
1796  * RET1:	cpuid
1797  */
1798 #define HV_FAST_VINTR_GET_TARGET	0xad
1799 
1800 /* vintr_set_target()
1801  * TRAP:	HV_FAST_TRAP
1802  * FUNCTION:	HV_FAST_VINTR_SET_TARGET
1803  * ARG0:	device handle
1804  * ARG1:	device ino
1805  * ARG2:	cpuid
1806  * RET0:	status
1807  */
1808 #define HV_FAST_VINTR_SET_TARGET	0xae
1809 
1810 #ifndef __ASSEMBLY__
1811 unsigned long sun4v_vintr_get_cookie(unsigned long dev_handle,
1812 				     unsigned long dev_ino,
1813 				     unsigned long *cookie);
1814 unsigned long sun4v_vintr_set_cookie(unsigned long dev_handle,
1815 				     unsigned long dev_ino,
1816 				     unsigned long cookie);
1817 unsigned long sun4v_vintr_get_valid(unsigned long dev_handle,
1818 				    unsigned long dev_ino,
1819 				    unsigned long *valid);
1820 unsigned long sun4v_vintr_set_valid(unsigned long dev_handle,
1821 				    unsigned long dev_ino,
1822 				    unsigned long valid);
1823 unsigned long sun4v_vintr_get_state(unsigned long dev_handle,
1824 				    unsigned long dev_ino,
1825 				    unsigned long *state);
1826 unsigned long sun4v_vintr_set_state(unsigned long dev_handle,
1827 				    unsigned long dev_ino,
1828 				    unsigned long state);
1829 unsigned long sun4v_vintr_get_target(unsigned long dev_handle,
1830 				     unsigned long dev_ino,
1831 				     unsigned long *cpuid);
1832 unsigned long sun4v_vintr_set_target(unsigned long dev_handle,
1833 				     unsigned long dev_ino,
1834 				     unsigned long cpuid);
1835 #endif
1836 
1837 /* PCI IO services.
1838  *
1839  * See the terminology descriptions in the device interrupt services
1840  * section above as those apply here too.  Here are terminology
1841  * definitions specific to these PCI IO services:
1842  *
1843  *	tsbnum		TSB number.  Indentifies which io-tsb is used.
1844  *			For this version of the specification, tsbnum
1845  *			must be zero.
1846  *
1847  *	tsbindex	TSB index.  Identifies which entry in the TSB
1848  *			is used.  The first entry is zero.
1849  *
1850  *	tsbid		A 64-bit aligned data structure which contains
1851  *			a tsbnum and a tsbindex.  Bits 63:32 contain the
1852  *			tsbnum and bits 31:00 contain the tsbindex.
1853  *
1854  *			Use the HV_PCI_TSBID() macro to construct such
1855  * 			values.
1856  *
1857  *	io_attributes	IO attributes for IOMMU mappings.  One of more
1858  *			of the attritbute bits are stores in a 64-bit
1859  *			value.  The values are defined below.
1860  *
1861  *	r_addr		64-bit real address
1862  *
1863  *	pci_device	PCI device address.  A PCI device address identifies
1864  *			a specific device on a specific PCI bus segment.
1865  *			A PCI device address ia a 32-bit unsigned integer
1866  *			with the following format:
1867  *
1868  *				00000000.bbbbbbbb.dddddfff.00000000
1869  *
1870  *			Use the HV_PCI_DEVICE_BUILD() macro to construct
1871  *			such values.
1872  *
1873  *	pci_config_offset
1874  *			PCI configureation space offset.  For conventional
1875  *			PCI a value between 0 and 255.  For extended
1876  *			configuration space, a value between 0 and 4095.
1877  *
1878  *			Note: For PCI configuration space accesses, the offset
1879  *			      must be aligned to the access size.
1880  *
1881  *	error_flag	A return value which specifies if the action succeeded
1882  *			or failed.  0 means no error, non-0 means some error
1883  *			occurred while performing the service.
1884  *
1885  *	io_sync_direction
1886  *			Direction definition for pci_dma_sync(), defined
1887  *			below in HV_PCI_SYNC_*.
1888  *
1889  *	io_page_list	A list of io_page_addresses, an io_page_address is
1890  *			a real address.
1891  *
1892  *	io_page_list_p	A pointer to an io_page_list.
1893  *
1894  *	"size based byte swap" - Some functions do size based byte swapping
1895  *				 which allows sw to access pointers and
1896  *				 counters in native form when the processor
1897  *				 operates in a different endianness than the
1898  *				 IO bus.  Size-based byte swapping converts a
1899  *				 multi-byte field between big-endian and
1900  *				 little-endian format.
1901  */
1902 
1903 #define HV_PCI_MAP_ATTR_READ		0x01
1904 #define HV_PCI_MAP_ATTR_WRITE		0x02
1905 #define HV_PCI_MAP_ATTR_RELAXED_ORDER	0x04
1906 
1907 #define HV_PCI_DEVICE_BUILD(b,d,f)	\
1908 	((((b) & 0xff) << 16) | \
1909 	 (((d) & 0x1f) << 11) | \
1910 	 (((f) & 0x07) <<  8))
1911 
1912 #define HV_PCI_TSBID(__tsb_num, __tsb_index) \
1913 	((((u64)(__tsb_num)) << 32UL) | ((u64)(__tsb_index)))
1914 
1915 #define HV_PCI_SYNC_FOR_DEVICE		0x01
1916 #define HV_PCI_SYNC_FOR_CPU		0x02
1917 
1918 /* pci_iommu_map()
1919  * TRAP:	HV_FAST_TRAP
1920  * FUNCTION:	HV_FAST_PCI_IOMMU_MAP
1921  * ARG0:	devhandle
1922  * ARG1:	tsbid
1923  * ARG2:	#ttes
1924  * ARG3:	io_attributes
1925  * ARG4:	io_page_list_p
1926  * RET0:	status
1927  * RET1:	#ttes mapped
1928  * ERRORS:	EINVAL		Invalid devhandle/tsbnum/tsbindex/io_attributes
1929  *		EBADALIGN	Improperly aligned real address
1930  *		ENORADDR	Invalid real address
1931  *
1932  * Create IOMMU mappings in the sun4v device defined by the given
1933  * devhandle.  The mappings are created in the TSB defined by the
1934  * tsbnum component of the given tsbid.  The first mapping is created
1935  * in the TSB i ndex defined by the tsbindex component of the given tsbid.
1936  * The call creates up to #ttes mappings, the first one at tsbnum, tsbindex,
1937  * the second at tsbnum, tsbindex + 1, etc.
1938  *
1939  * All mappings are created with the attributes defined by the io_attributes
1940  * argument.  The page mapping addresses are described in the io_page_list
1941  * defined by the given io_page_list_p, which is a pointer to the io_page_list.
1942  * The first entry in the io_page_list is the address for the first iotte, the
1943  * 2nd for the 2nd iotte, and so on.
1944  *
1945  * Each io_page_address in the io_page_list must be appropriately aligned.
1946  * #ttes must be greater than zero.  For this version of the spec, the tsbnum
1947  * component of the given tsbid must be zero.
1948  *
1949  * Returns the actual number of mappings creates, which may be less than
1950  * or equal to the argument #ttes.  If the function returns a value which
1951  * is less than the #ttes, the caller may continus to call the function with
1952  * an updated tsbid, #ttes, io_page_list_p arguments until all pages are
1953  * mapped.
1954  *
1955  * Note: This function does not imply an iotte cache flush.  The guest must
1956  *       demap an entry before re-mapping it.
1957  */
1958 #define HV_FAST_PCI_IOMMU_MAP		0xb0
1959 
1960 /* pci_iommu_demap()
1961  * TRAP:	HV_FAST_TRAP
1962  * FUNCTION:	HV_FAST_PCI_IOMMU_DEMAP
1963  * ARG0:	devhandle
1964  * ARG1:	tsbid
1965  * ARG2:	#ttes
1966  * RET0:	status
1967  * RET1:	#ttes demapped
1968  * ERRORS:	EINVAL		Invalid devhandle/tsbnum/tsbindex
1969  *
1970  * Demap and flush IOMMU mappings in the device defined by the given
1971  * devhandle.  Demaps up to #ttes entries in the TSB defined by the tsbnum
1972  * component of the given tsbid, starting at the TSB index defined by the
1973  * tsbindex component of the given tsbid.
1974  *
1975  * For this version of the spec, the tsbnum of the given tsbid must be zero.
1976  * #ttes must be greater than zero.
1977  *
1978  * Returns the actual number of ttes demapped, which may be less than or equal
1979  * to the argument #ttes.  If #ttes demapped is less than #ttes, the caller
1980  * may continue to call this function with updated tsbid and #ttes arguments
1981  * until all pages are demapped.
1982  *
1983  * Note: Entries do not have to be mapped to be demapped.  A demap of an
1984  *       unmapped page will flush the entry from the tte cache.
1985  */
1986 #define HV_FAST_PCI_IOMMU_DEMAP		0xb1
1987 
1988 /* pci_iommu_getmap()
1989  * TRAP:	HV_FAST_TRAP
1990  * FUNCTION:	HV_FAST_PCI_IOMMU_GETMAP
1991  * ARG0:	devhandle
1992  * ARG1:	tsbid
1993  * RET0:	status
1994  * RET1:	io_attributes
1995  * RET2:	real address
1996  * ERRORS:	EINVAL		Invalid devhandle/tsbnum/tsbindex
1997  *		ENOMAP		Mapping is not valid, no translation exists
1998  *
1999  * Read and return the mapping in the device described by the given devhandle
2000  * and tsbid.  If successful, the io_attributes shall be returned in RET1
2001  * and the page address of the mapping shall be returned in RET2.
2002  *
2003  * For this version of the spec, the tsbnum component of the given tsbid
2004  * must be zero.
2005  */
2006 #define HV_FAST_PCI_IOMMU_GETMAP	0xb2
2007 
2008 /* pci_iommu_getbypass()
2009  * TRAP:	HV_FAST_TRAP
2010  * FUNCTION:	HV_FAST_PCI_IOMMU_GETBYPASS
2011  * ARG0:	devhandle
2012  * ARG1:	real address
2013  * ARG2:	io_attributes
2014  * RET0:	status
2015  * RET1:	io_addr
2016  * ERRORS:	EINVAL		Invalid devhandle/io_attributes
2017  *		ENORADDR	Invalid real address
2018  *		ENOTSUPPORTED	Function not supported in this implementation.
2019  *
2020  * Create a "special" mapping in the device described by the given devhandle,
2021  * for the given real address and attributes.  Return the IO address in RET1
2022  * if successful.
2023  */
2024 #define HV_FAST_PCI_IOMMU_GETBYPASS	0xb3
2025 
2026 /* pci_config_get()
2027  * TRAP:	HV_FAST_TRAP
2028  * FUNCTION:	HV_FAST_PCI_CONFIG_GET
2029  * ARG0:	devhandle
2030  * ARG1:	pci_device
2031  * ARG2:	pci_config_offset
2032  * ARG3:	size
2033  * RET0:	status
2034  * RET1:	error_flag
2035  * RET2:	data
2036  * ERRORS:	EINVAL		Invalid devhandle/pci_device/offset/size
2037  *		EBADALIGN	pci_config_offset not size aligned
2038  *		ENOACCESS	Access to this offset is not permitted
2039  *
2040  * Read PCI configuration space for the adapter described by the given
2041  * devhandle.  Read size (1, 2, or 4) bytes of data from the given
2042  * pci_device, at pci_config_offset from the beginning of the device's
2043  * configuration space.  If there was no error, RET1 is set to zero and
2044  * RET2 is set to the data read.  Insignificant bits in RET2 are not
2045  * guaranteed to have any specific value and therefore must be ignored.
2046  *
2047  * The data returned in RET2 is size based byte swapped.
2048  *
2049  * If an error occurs during the read, set RET1 to a non-zero value.  The
2050  * given pci_config_offset must be 'size' aligned.
2051  */
2052 #define HV_FAST_PCI_CONFIG_GET		0xb4
2053 
2054 /* pci_config_put()
2055  * TRAP:	HV_FAST_TRAP
2056  * FUNCTION:	HV_FAST_PCI_CONFIG_PUT
2057  * ARG0:	devhandle
2058  * ARG1:	pci_device
2059  * ARG2:	pci_config_offset
2060  * ARG3:	size
2061  * ARG4:	data
2062  * RET0:	status
2063  * RET1:	error_flag
2064  * ERRORS:	EINVAL		Invalid devhandle/pci_device/offset/size
2065  *		EBADALIGN	pci_config_offset not size aligned
2066  *		ENOACCESS	Access to this offset is not permitted
2067  *
2068  * Write PCI configuration space for the adapter described by the given
2069  * devhandle.  Write size (1, 2, or 4) bytes of data in a single operation,
2070  * at pci_config_offset from the beginning of the device's configuration
2071  * space.  The data argument contains the data to be written to configuration
2072  * space.  Prior to writing, the data is size based byte swapped.
2073  *
2074  * If an error occurs during the write access, do not generate an error
2075  * report, do set RET1 to a non-zero value.  Otherwise RET1 is zero.
2076  * The given pci_config_offset must be 'size' aligned.
2077  *
2078  * This function is permitted to read from offset zero in the configuration
2079  * space described by the given pci_device if necessary to ensure that the
2080  * write access to config space completes.
2081  */
2082 #define HV_FAST_PCI_CONFIG_PUT		0xb5
2083 
2084 /* pci_peek()
2085  * TRAP:	HV_FAST_TRAP
2086  * FUNCTION:	HV_FAST_PCI_PEEK
2087  * ARG0:	devhandle
2088  * ARG1:	real address
2089  * ARG2:	size
2090  * RET0:	status
2091  * RET1:	error_flag
2092  * RET2:	data
2093  * ERRORS:	EINVAL		Invalid devhandle or size
2094  *		EBADALIGN	Improperly aligned real address
2095  *		ENORADDR	Bad real address
2096  *		ENOACCESS	Guest access prohibited
2097  *
2098  * Attempt to read the IO address given by the given devhandle, real address,
2099  * and size.  Size must be 1, 2, 4, or 8.  The read is performed as a single
2100  * access operation using the given size.  If an error occurs when reading
2101  * from the given location, do not generate an error report, but return a
2102  * non-zero value in RET1.  If the read was successful, return zero in RET1
2103  * and return the actual data read in RET2.  The data returned is size based
2104  * byte swapped.
2105  *
2106  * Non-significant bits in RET2 are not guaranteed to have any specific value
2107  * and therefore must be ignored.  If RET1 is returned as non-zero, the data
2108  * value is not guaranteed to have any specific value and should be ignored.
2109  *
2110  * The caller must have permission to read from the given devhandle, real
2111  * address, which must be an IO address.  The argument real address must be a
2112  * size aligned address.
2113  *
2114  * The hypervisor implementation of this function must block access to any
2115  * IO address that the guest does not have explicit permission to access.
2116  */
2117 #define HV_FAST_PCI_PEEK		0xb6
2118 
2119 /* pci_poke()
2120  * TRAP:	HV_FAST_TRAP
2121  * FUNCTION:	HV_FAST_PCI_POKE
2122  * ARG0:	devhandle
2123  * ARG1:	real address
2124  * ARG2:	size
2125  * ARG3:	data
2126  * ARG4:	pci_device
2127  * RET0:	status
2128  * RET1:	error_flag
2129  * ERRORS:	EINVAL		Invalid devhandle, size, or pci_device
2130  *		EBADALIGN	Improperly aligned real address
2131  *		ENORADDR	Bad real address
2132  *		ENOACCESS	Guest access prohibited
2133  *		ENOTSUPPORTED	Function is not supported by implementation
2134  *
2135  * Attempt to write data to the IO address given by the given devhandle,
2136  * real address, and size.  Size must be 1, 2, 4, or 8.  The write is
2137  * performed as a single access operation using the given size. Prior to
2138  * writing the data is size based swapped.
2139  *
2140  * If an error occurs when writing to the given location, do not generate an
2141  * error report, but return a non-zero value in RET1.  If the write was
2142  * successful, return zero in RET1.
2143  *
2144  * pci_device describes the configuration address of the device being
2145  * written to.  The implementation may safely read from offset 0 with
2146  * the configuration space of the device described by devhandle and
2147  * pci_device in order to guarantee that the write portion of the operation
2148  * completes
2149  *
2150  * Any error that occurs due to the read shall be reported using the normal
2151  * error reporting mechanisms .. the read error is not suppressed.
2152  *
2153  * The caller must have permission to write to the given devhandle, real
2154  * address, which must be an IO address.  The argument real address must be a
2155  * size aligned address.  The caller must have permission to read from
2156  * the given devhandle, pci_device cofiguration space offset 0.
2157  *
2158  * The hypervisor implementation of this function must block access to any
2159  * IO address that the guest does not have explicit permission to access.
2160  */
2161 #define HV_FAST_PCI_POKE		0xb7
2162 
2163 /* pci_dma_sync()
2164  * TRAP:	HV_FAST_TRAP
2165  * FUNCTION:	HV_FAST_PCI_DMA_SYNC
2166  * ARG0:	devhandle
2167  * ARG1:	real address
2168  * ARG2:	size
2169  * ARG3:	io_sync_direction
2170  * RET0:	status
2171  * RET1:	#synced
2172  * ERRORS:	EINVAL		Invalid devhandle or io_sync_direction
2173  *		ENORADDR	Bad real address
2174  *
2175  * Synchronize a memory region described by the given real address and size,
2176  * for the device defined by the given devhandle using the direction(s)
2177  * defined by the given io_sync_direction.  The argument size is the size of
2178  * the memory region in bytes.
2179  *
2180  * Return the actual number of bytes synchronized in the return value #synced,
2181  * which may be less than or equal to the argument size.  If the return
2182  * value #synced is less than size, the caller must continue to call this
2183  * function with updated real address and size arguments until the entire
2184  * memory region is synchronized.
2185  */
2186 #define HV_FAST_PCI_DMA_SYNC		0xb8
2187 
2188 /* PCI MSI services.  */
2189 
2190 #define HV_MSITYPE_MSI32		0x00
2191 #define HV_MSITYPE_MSI64		0x01
2192 
2193 #define HV_MSIQSTATE_IDLE		0x00
2194 #define HV_MSIQSTATE_ERROR		0x01
2195 
2196 #define HV_MSIQ_INVALID			0x00
2197 #define HV_MSIQ_VALID			0x01
2198 
2199 #define HV_MSISTATE_IDLE		0x00
2200 #define HV_MSISTATE_DELIVERED		0x01
2201 
2202 #define HV_MSIVALID_INVALID		0x00
2203 #define HV_MSIVALID_VALID		0x01
2204 
2205 #define HV_PCIE_MSGTYPE_PME_MSG		0x18
2206 #define HV_PCIE_MSGTYPE_PME_ACK_MSG	0x1b
2207 #define HV_PCIE_MSGTYPE_CORR_MSG	0x30
2208 #define HV_PCIE_MSGTYPE_NONFATAL_MSG	0x31
2209 #define HV_PCIE_MSGTYPE_FATAL_MSG	0x33
2210 
2211 #define HV_MSG_INVALID			0x00
2212 #define HV_MSG_VALID			0x01
2213 
2214 /* pci_msiq_conf()
2215  * TRAP:	HV_FAST_TRAP
2216  * FUNCTION:	HV_FAST_PCI_MSIQ_CONF
2217  * ARG0:	devhandle
2218  * ARG1:	msiqid
2219  * ARG2:	real address
2220  * ARG3:	number of entries
2221  * RET0:	status
2222  * ERRORS:	EINVAL		Invalid devhandle, msiqid or nentries
2223  *		EBADALIGN	Improperly aligned real address
2224  *		ENORADDR	Bad real address
2225  *
2226  * Configure the MSI queue given by the devhandle and msiqid arguments,
2227  * and to be placed at the given real address and be of the given
2228  * number of entries.  The real address must be aligned exactly to match
2229  * the queue size.  Each queue entry is 64-bytes long, so f.e. a 32 entry
2230  * queue must be aligned on a 2048 byte real address boundary.  The MSI-EQ
2231  * Head and Tail are initialized so that the MSI-EQ is 'empty'.
2232  *
2233  * Implementation Note: Certain implementations have fixed sized queues.  In
2234  *                      that case, number of entries must contain the correct
2235  *                      value.
2236  */
2237 #define HV_FAST_PCI_MSIQ_CONF		0xc0
2238 
2239 /* pci_msiq_info()
2240  * TRAP:	HV_FAST_TRAP
2241  * FUNCTION:	HV_FAST_PCI_MSIQ_INFO
2242  * ARG0:	devhandle
2243  * ARG1:	msiqid
2244  * RET0:	status
2245  * RET1:	real address
2246  * RET2:	number of entries
2247  * ERRORS:	EINVAL		Invalid devhandle or msiqid
2248  *
2249  * Return the configuration information for the MSI queue described
2250  * by the given devhandle and msiqid.  The base address of the queue
2251  * is returned in ARG1 and the number of entries is returned in ARG2.
2252  * If the queue is unconfigured, the real address is undefined and the
2253  * number of entries will be returned as zero.
2254  */
2255 #define HV_FAST_PCI_MSIQ_INFO		0xc1
2256 
2257 /* pci_msiq_getvalid()
2258  * TRAP:	HV_FAST_TRAP
2259  * FUNCTION:	HV_FAST_PCI_MSIQ_GETVALID
2260  * ARG0:	devhandle
2261  * ARG1:	msiqid
2262  * RET0:	status
2263  * RET1:	msiqvalid	(HV_MSIQ_VALID or HV_MSIQ_INVALID)
2264  * ERRORS:	EINVAL		Invalid devhandle or msiqid
2265  *
2266  * Get the valid state of the MSI-EQ described by the given devhandle and
2267  * msiqid.
2268  */
2269 #define HV_FAST_PCI_MSIQ_GETVALID	0xc2
2270 
2271 /* pci_msiq_setvalid()
2272  * TRAP:	HV_FAST_TRAP
2273  * FUNCTION:	HV_FAST_PCI_MSIQ_SETVALID
2274  * ARG0:	devhandle
2275  * ARG1:	msiqid
2276  * ARG2:	msiqvalid	(HV_MSIQ_VALID or HV_MSIQ_INVALID)
2277  * RET0:	status
2278  * ERRORS:	EINVAL		Invalid devhandle or msiqid or msiqvalid
2279  *				value or MSI EQ is uninitialized
2280  *
2281  * Set the valid state of the MSI-EQ described by the given devhandle and
2282  * msiqid to the given msiqvalid.
2283  */
2284 #define HV_FAST_PCI_MSIQ_SETVALID	0xc3
2285 
2286 /* pci_msiq_getstate()
2287  * TRAP:	HV_FAST_TRAP
2288  * FUNCTION:	HV_FAST_PCI_MSIQ_GETSTATE
2289  * ARG0:	devhandle
2290  * ARG1:	msiqid
2291  * RET0:	status
2292  * RET1:	msiqstate	(HV_MSIQSTATE_IDLE or HV_MSIQSTATE_ERROR)
2293  * ERRORS:	EINVAL		Invalid devhandle or msiqid
2294  *
2295  * Get the state of the MSI-EQ described by the given devhandle and
2296  * msiqid.
2297  */
2298 #define HV_FAST_PCI_MSIQ_GETSTATE	0xc4
2299 
2300 /* pci_msiq_getvalid()
2301  * TRAP:	HV_FAST_TRAP
2302  * FUNCTION:	HV_FAST_PCI_MSIQ_GETVALID
2303  * ARG0:	devhandle
2304  * ARG1:	msiqid
2305  * ARG2:	msiqstate	(HV_MSIQSTATE_IDLE or HV_MSIQSTATE_ERROR)
2306  * RET0:	status
2307  * ERRORS:	EINVAL		Invalid devhandle or msiqid or msiqstate
2308  *				value or MSI EQ is uninitialized
2309  *
2310  * Set the state of the MSI-EQ described by the given devhandle and
2311  * msiqid to the given msiqvalid.
2312  */
2313 #define HV_FAST_PCI_MSIQ_SETSTATE	0xc5
2314 
2315 /* pci_msiq_gethead()
2316  * TRAP:	HV_FAST_TRAP
2317  * FUNCTION:	HV_FAST_PCI_MSIQ_GETHEAD
2318  * ARG0:	devhandle
2319  * ARG1:	msiqid
2320  * RET0:	status
2321  * RET1:	msiqhead
2322  * ERRORS:	EINVAL		Invalid devhandle or msiqid
2323  *
2324  * Get the current MSI EQ queue head for the MSI-EQ described by the
2325  * given devhandle and msiqid.
2326  */
2327 #define HV_FAST_PCI_MSIQ_GETHEAD	0xc6
2328 
2329 /* pci_msiq_sethead()
2330  * TRAP:	HV_FAST_TRAP
2331  * FUNCTION:	HV_FAST_PCI_MSIQ_SETHEAD
2332  * ARG0:	devhandle
2333  * ARG1:	msiqid
2334  * ARG2:	msiqhead
2335  * RET0:	status
2336  * ERRORS:	EINVAL		Invalid devhandle or msiqid or msiqhead,
2337  *				or MSI EQ is uninitialized
2338  *
2339  * Set the current MSI EQ queue head for the MSI-EQ described by the
2340  * given devhandle and msiqid.
2341  */
2342 #define HV_FAST_PCI_MSIQ_SETHEAD	0xc7
2343 
2344 /* pci_msiq_gettail()
2345  * TRAP:	HV_FAST_TRAP
2346  * FUNCTION:	HV_FAST_PCI_MSIQ_GETTAIL
2347  * ARG0:	devhandle
2348  * ARG1:	msiqid
2349  * RET0:	status
2350  * RET1:	msiqtail
2351  * ERRORS:	EINVAL		Invalid devhandle or msiqid
2352  *
2353  * Get the current MSI EQ queue tail for the MSI-EQ described by the
2354  * given devhandle and msiqid.
2355  */
2356 #define HV_FAST_PCI_MSIQ_GETTAIL	0xc8
2357 
2358 /* pci_msi_getvalid()
2359  * TRAP:	HV_FAST_TRAP
2360  * FUNCTION:	HV_FAST_PCI_MSI_GETVALID
2361  * ARG0:	devhandle
2362  * ARG1:	msinum
2363  * RET0:	status
2364  * RET1:	msivalidstate
2365  * ERRORS:	EINVAL		Invalid devhandle or msinum
2366  *
2367  * Get the current valid/enabled state for the MSI defined by the
2368  * given devhandle and msinum.
2369  */
2370 #define HV_FAST_PCI_MSI_GETVALID	0xc9
2371 
2372 /* pci_msi_setvalid()
2373  * TRAP:	HV_FAST_TRAP
2374  * FUNCTION:	HV_FAST_PCI_MSI_SETVALID
2375  * ARG0:	devhandle
2376  * ARG1:	msinum
2377  * ARG2:	msivalidstate
2378  * RET0:	status
2379  * ERRORS:	EINVAL		Invalid devhandle or msinum or msivalidstate
2380  *
2381  * Set the current valid/enabled state for the MSI defined by the
2382  * given devhandle and msinum.
2383  */
2384 #define HV_FAST_PCI_MSI_SETVALID	0xca
2385 
2386 /* pci_msi_getmsiq()
2387  * TRAP:	HV_FAST_TRAP
2388  * FUNCTION:	HV_FAST_PCI_MSI_GETMSIQ
2389  * ARG0:	devhandle
2390  * ARG1:	msinum
2391  * RET0:	status
2392  * RET1:	msiqid
2393  * ERRORS:	EINVAL		Invalid devhandle or msinum or MSI is unbound
2394  *
2395  * Get the MSI EQ that the MSI defined by the given devhandle and
2396  * msinum is bound to.
2397  */
2398 #define HV_FAST_PCI_MSI_GETMSIQ		0xcb
2399 
2400 /* pci_msi_setmsiq()
2401  * TRAP:	HV_FAST_TRAP
2402  * FUNCTION:	HV_FAST_PCI_MSI_SETMSIQ
2403  * ARG0:	devhandle
2404  * ARG1:	msinum
2405  * ARG2:	msitype
2406  * ARG3:	msiqid
2407  * RET0:	status
2408  * ERRORS:	EINVAL		Invalid devhandle or msinum or msiqid
2409  *
2410  * Set the MSI EQ that the MSI defined by the given devhandle and
2411  * msinum is bound to.
2412  */
2413 #define HV_FAST_PCI_MSI_SETMSIQ		0xcc
2414 
2415 /* pci_msi_getstate()
2416  * TRAP:	HV_FAST_TRAP
2417  * FUNCTION:	HV_FAST_PCI_MSI_GETSTATE
2418  * ARG0:	devhandle
2419  * ARG1:	msinum
2420  * RET0:	status
2421  * RET1:	msistate
2422  * ERRORS:	EINVAL		Invalid devhandle or msinum
2423  *
2424  * Get the state of the MSI defined by the given devhandle and msinum.
2425  * If not initialized, return HV_MSISTATE_IDLE.
2426  */
2427 #define HV_FAST_PCI_MSI_GETSTATE	0xcd
2428 
2429 /* pci_msi_setstate()
2430  * TRAP:	HV_FAST_TRAP
2431  * FUNCTION:	HV_FAST_PCI_MSI_SETSTATE
2432  * ARG0:	devhandle
2433  * ARG1:	msinum
2434  * ARG2:	msistate
2435  * RET0:	status
2436  * ERRORS:	EINVAL		Invalid devhandle or msinum or msistate
2437  *
2438  * Set the state of the MSI defined by the given devhandle and msinum.
2439  */
2440 #define HV_FAST_PCI_MSI_SETSTATE	0xce
2441 
2442 /* pci_msg_getmsiq()
2443  * TRAP:	HV_FAST_TRAP
2444  * FUNCTION:	HV_FAST_PCI_MSG_GETMSIQ
2445  * ARG0:	devhandle
2446  * ARG1:	msgtype
2447  * RET0:	status
2448  * RET1:	msiqid
2449  * ERRORS:	EINVAL		Invalid devhandle or msgtype
2450  *
2451  * Get the MSI EQ of the MSG defined by the given devhandle and msgtype.
2452  */
2453 #define HV_FAST_PCI_MSG_GETMSIQ		0xd0
2454 
2455 /* pci_msg_setmsiq()
2456  * TRAP:	HV_FAST_TRAP
2457  * FUNCTION:	HV_FAST_PCI_MSG_SETMSIQ
2458  * ARG0:	devhandle
2459  * ARG1:	msgtype
2460  * ARG2:	msiqid
2461  * RET0:	status
2462  * ERRORS:	EINVAL		Invalid devhandle, msgtype, or msiqid
2463  *
2464  * Set the MSI EQ of the MSG defined by the given devhandle and msgtype.
2465  */
2466 #define HV_FAST_PCI_MSG_SETMSIQ		0xd1
2467 
2468 /* pci_msg_getvalid()
2469  * TRAP:	HV_FAST_TRAP
2470  * FUNCTION:	HV_FAST_PCI_MSG_GETVALID
2471  * ARG0:	devhandle
2472  * ARG1:	msgtype
2473  * RET0:	status
2474  * RET1:	msgvalidstate
2475  * ERRORS:	EINVAL		Invalid devhandle or msgtype
2476  *
2477  * Get the valid/enabled state of the MSG defined by the given
2478  * devhandle and msgtype.
2479  */
2480 #define HV_FAST_PCI_MSG_GETVALID	0xd2
2481 
2482 /* pci_msg_setvalid()
2483  * TRAP:	HV_FAST_TRAP
2484  * FUNCTION:	HV_FAST_PCI_MSG_SETVALID
2485  * ARG0:	devhandle
2486  * ARG1:	msgtype
2487  * ARG2:	msgvalidstate
2488  * RET0:	status
2489  * ERRORS:	EINVAL		Invalid devhandle or msgtype or msgvalidstate
2490  *
2491  * Set the valid/enabled state of the MSG defined by the given
2492  * devhandle and msgtype.
2493  */
2494 #define HV_FAST_PCI_MSG_SETVALID	0xd3
2495 
2496 /* PCI IOMMU v2 definitions and services
2497  *
2498  * While the PCI IO definitions above is valid IOMMU v2 adds new PCI IO
2499  * definitions and services.
2500  *
2501  *	CTE		Clump Table Entry. First level table entry in the ATU.
2502  *
2503  *	pci_device_list
2504  *			A 32-bit aligned list of pci_devices.
2505  *
2506  *	pci_device_listp
2507  *			real address of a pci_device_list. 32-bit aligned.
2508  *
2509  *	iotte		IOMMU translation table entry.
2510  *
2511  *	iotte_attributes
2512  *			IO Attributes for IOMMU v2 mappings. In addition to
2513  *			read, write IOMMU v2 supports relax ordering
2514  *
2515  *	io_page_list	A 64-bit aligned list of real addresses. Each real
2516  *			address in an io_page_list must be properly aligned
2517  *			to the pagesize of the given IOTSB.
2518  *
2519  *	io_page_list_p	Real address of an io_page_list, 64-bit aligned.
2520  *
2521  *	IOTSB		IO Translation Storage Buffer. An aligned table of
2522  *			IOTTEs. Each IOTSB has a pagesize, table size, and
2523  *			virtual address associated with it that must match
2524  *			a pagesize and table size supported by the un-derlying
2525  *			hardware implementation. The alignment requirements
2526  *			for an IOTSB depend on the pagesize used for that IOTSB.
2527  *			Each IOTTE in an IOTSB maps one pagesize-sized page.
2528  *			The size of the IOTSB dictates how large of a virtual
2529  *			address space the IOTSB is capable of mapping.
2530  *
2531  *	iotsb_handle	An opaque identifier for an IOTSB. A devhandle plus
2532  *			iotsb_handle represents a binding of an IOTSB to a
2533  *			PCI root complex.
2534  *
2535  *	iotsb_index	Zero-based IOTTE number within an IOTSB.
2536  */
2537 
2538 /* The index_count argument consists of two fields:
2539  * bits 63:48 #iottes and bits 47:0 iotsb_index
2540  */
2541 #define HV_PCI_IOTSB_INDEX_COUNT(__iottes, __iotsb_index) \
2542 	(((u64)(__iottes) << 48UL) | ((u64)(__iotsb_index)))
2543 
2544 /* pci_iotsb_conf()
2545  * TRAP:	HV_FAST_TRAP
2546  * FUNCTION:	HV_FAST_PCI_IOTSB_CONF
2547  * ARG0:	devhandle
2548  * ARG1:	r_addr
2549  * ARG2:	size
2550  * ARG3:	pagesize
2551  * ARG4:	iova
2552  * RET0:	status
2553  * RET1:	iotsb_handle
2554  * ERRORS:	EINVAL		Invalid devhandle, size, iova, or pagesize
2555  *		EBADALIGN	r_addr is not properly aligned
2556  *		ENORADDR	r_addr is not a valid real address
2557  *		ETOOMANY	No further IOTSBs may be configured
2558  *		EBUSY		Duplicate devhandle, raddir, iova combination
2559  *
2560  * Create an IOTSB suitable for the PCI root complex identified by devhandle,
2561  * for the DMA virtual address defined by the argument iova.
2562  *
2563  * r_addr is the properly aligned base address of the IOTSB and size is the
2564  * IOTSB (table) size in bytes.The IOTSB is required to be zeroed prior to
2565  * being configured. If it contains any values other than zeros then the
2566  * behavior is undefined.
2567  *
2568  * pagesize is the size of each page in the IOTSB. Note that the combination of
2569  * size (table size) and pagesize must be valid.
2570  *
2571  * virt is the DMA virtual address this IOTSB will map.
2572  *
2573  * If successful, the opaque 64-bit handle iotsb_handle is returned in ret1.
2574  * Once configured, privileged access to the IOTSB memory is prohibited and
2575  * creates undefined behavior. The only permitted access is indirect via these
2576  * services.
2577  */
2578 #define HV_FAST_PCI_IOTSB_CONF		0x190
2579 
2580 /* pci_iotsb_info()
2581  * TRAP:	HV_FAST_TRAP
2582  * FUNCTION:	HV_FAST_PCI_IOTSB_INFO
2583  * ARG0:	devhandle
2584  * ARG1:	iotsb_handle
2585  * RET0:	status
2586  * RET1:	r_addr
2587  * RET2:	size
2588  * RET3:	pagesize
2589  * RET4:	iova
2590  * RET5:	#bound
2591  * ERRORS:	EINVAL	Invalid devhandle or iotsb_handle
2592  *
2593  * This service returns configuration information about an IOTSB previously
2594  * created with pci_iotsb_conf.
2595  *
2596  * iotsb_handle value 0 may be used with this service to inquire about the
2597  * legacy IOTSB that may or may not exist. If the service succeeds, the return
2598  * values describe the legacy IOTSB and I/O virtual addresses mapped by that
2599  * table. However, the table base address r_addr may contain the value -1 which
2600  * indicates a memory range that cannot be accessed or be reclaimed.
2601  *
2602  * The return value #bound contains the number of PCI devices that iotsb_handle
2603  * is currently bound to.
2604  */
2605 #define HV_FAST_PCI_IOTSB_INFO		0x191
2606 
2607 /* pci_iotsb_unconf()
2608  * TRAP:	HV_FAST_TRAP
2609  * FUNCTION:	HV_FAST_PCI_IOTSB_UNCONF
2610  * ARG0:	devhandle
2611  * ARG1:	iotsb_handle
2612  * RET0:	status
2613  * ERRORS:	EINVAL	Invalid devhandle or iotsb_handle
2614  *		EBUSY	The IOTSB is bound and may not be unconfigured
2615  *
2616  * This service unconfigures the IOTSB identified by the devhandle and
2617  * iotsb_handle arguments, previously created with pci_iotsb_conf.
2618  * The IOTSB must not be currently bound to any device or the service will fail
2619  *
2620  * If the call succeeds, iotsb_handle is no longer valid.
2621  */
2622 #define HV_FAST_PCI_IOTSB_UNCONF	0x192
2623 
2624 /* pci_iotsb_bind()
2625  * TRAP:	HV_FAST_TRAP
2626  * FUNCTION:	HV_FAST_PCI_IOTSB_BIND
2627  * ARG0:	devhandle
2628  * ARG1:	iotsb_handle
2629  * ARG2:	pci_device
2630  * RET0:	status
2631  * ERRORS:	EINVAL	Invalid devhandle, iotsb_handle, or pci_device
2632  *		EBUSY	A PCI function is already bound to an IOTSB at the same
2633  *			address range as specified by devhandle, iotsb_handle.
2634  *
2635  * This service binds the PCI function specified by the argument pci_device to
2636  * the IOTSB specified by the arguments devhandle and iotsb_handle.
2637  *
2638  * The PCI device function is bound to the specified IOTSB with the IOVA range
2639  * specified when the IOTSB was configured via pci_iotsb_conf. If the function
2640  * is already bound then it is unbound first.
2641  */
2642 #define HV_FAST_PCI_IOTSB_BIND		0x193
2643 
2644 /* pci_iotsb_unbind()
2645  * TRAP:	HV_FAST_TRAP
2646  * FUNCTION:	HV_FAST_PCI_IOTSB_UNBIND
2647  * ARG0:	devhandle
2648  * ARG1:	iotsb_handle
2649  * ARG2:	pci_device
2650  * RET0:	status
2651  * ERRORS:	EINVAL	Invalid devhandle, iotsb_handle, or pci_device
2652  *		ENOMAP	The PCI function was not bound to the specified IOTSB
2653  *
2654  * This service unbinds the PCI device specified by the argument pci_device
2655  * from the IOTSB identified  * by the arguments devhandle and iotsb_handle.
2656  *
2657  * If the PCI device is not bound to the specified IOTSB then this service will
2658  * fail with status ENOMAP
2659  */
2660 #define HV_FAST_PCI_IOTSB_UNBIND	0x194
2661 
2662 /* pci_iotsb_get_binding()
2663  * TRAP:	HV_FAST_TRAP
2664  * FUNCTION:	HV_FAST_PCI_IOTSB_GET_BINDING
2665  * ARG0:	devhandle
2666  * ARG1:	iotsb_handle
2667  * ARG2:	iova
2668  * RET0:	status
2669  * RET1:	iotsb_handle
2670  * ERRORS:	EINVAL	Invalid devhandle, pci_device, or iova
2671  *		ENOMAP	The PCI function is not bound to an IOTSB at iova
2672  *
2673  * This service returns the IOTSB binding, iotsb_handle, for a given pci_device
2674  * and DMA virtual address, iova.
2675  *
2676  * iova must be the base address of a DMA virtual address range as defined by
2677  * the iommu-address-ranges property in the root complex device node defined
2678  * by the argument devhandle.
2679  */
2680 #define HV_FAST_PCI_IOTSB_GET_BINDING	0x195
2681 
2682 /* pci_iotsb_map()
2683  * TRAP:	HV_FAST_TRAP
2684  * FUNCTION:	HV_FAST_PCI_IOTSB_MAP
2685  * ARG0:	devhandle
2686  * ARG1:	iotsb_handle
2687  * ARG2:	index_count
2688  * ARG3:	iotte_attributes
2689  * ARG4:	io_page_list_p
2690  * RET0:	status
2691  * RET1:	#mapped
2692  * ERRORS:	EINVAL		Invalid devhandle, iotsb_handle, #iottes,
2693  *				iotsb_index or iotte_attributes
2694  *		EBADALIGN	Improperly aligned io_page_list_p or I/O page
2695  *				address in the I/O page list.
2696  *		ENORADDR	Invalid io_page_list_p or I/O page address in
2697  *				the I/O page list.
2698  *
2699  * This service creates and flushes mappings in the IOTSB defined by the
2700  * arguments devhandle, iotsb.
2701  *
2702  * The index_count argument consists of two fields. Bits 63:48 contain #iotte
2703  * and bits 47:0 contain iotsb_index
2704  *
2705  * The first mapping is created in the IOTSB index specified by iotsb_index.
2706  * Subsequent mappings are  created at iotsb_index+1 and so on.
2707  *
2708  * The attributes of each mapping are defined by the argument iotte_attributes.
2709  *
2710  * The io_page_list_p specifies the real address of the 64-bit-aligned list of
2711  * #iottes I/O page addresses. Each page address must be a properly aligned
2712  * real address of a page to be mapped in the IOTSB. The first entry in the I/O
2713  * page list contains the real address of the first page, the 2nd entry for the
2714  * 2nd page, and so on.
2715  *
2716  * #iottes must be greater than zero.
2717  *
2718  * The return value #mapped is the actual number of mappings created, which may
2719  * be less than or equal to the argument #iottes. If the function returns
2720  * successfully with a #mapped value less than the requested #iottes then the
2721  * caller should continue to invoke the service with updated iotsb_index,
2722  * #iottes, and io_page_list_p arguments until all pages are mapped.
2723  *
2724  * This service must not be used to demap a mapping. In other words, all
2725  * mappings must be valid and have  one or both of the RW attribute bits set.
2726  *
2727  * Note:
2728  * It is implementation-defined whether I/O page real address validity checking
2729  * is done at time mappings are established or deferred until they are
2730  * accessed.
2731  */
2732 #define HV_FAST_PCI_IOTSB_MAP		0x196
2733 
2734 /* pci_iotsb_map_one()
2735  * TRAP:	HV_FAST_TRAP
2736  * FUNCTION:	HV_FAST_PCI_IOTSB_MAP_ONE
2737  * ARG0:	devhandle
2738  * ARG1:	iotsb_handle
2739  * ARG2:	iotsb_index
2740  * ARG3:	iotte_attributes
2741  * ARG4:	r_addr
2742  * RET0:	status
2743  * ERRORS:	EINVAL		Invalid devhandle,iotsb_handle, iotsb_index
2744  *				or iotte_attributes
2745  *		EBADALIGN	Improperly aligned r_addr
2746  *		ENORADDR	Invalid r_addr
2747  *
2748  * This service creates and flushes a single mapping in the IOTSB defined by the
2749  * arguments devhandle, iotsb.
2750  *
2751  * The mapping for the page at r_addr is created at the IOTSB index specified by
2752  * iotsb_index with  the attributes iotte_attributes.
2753  *
2754  * This service must not be used to demap a mapping. In other words, the mapping
2755  * must be valid and have one or both of the RW attribute bits set.
2756  *
2757  * Note:
2758  * It is implementation-defined whether I/O page real address validity checking
2759  * is done at time mappings are established or deferred until they are
2760  * accessed.
2761  */
2762 #define HV_FAST_PCI_IOTSB_MAP_ONE	0x197
2763 
2764 /* pci_iotsb_demap()
2765  * TRAP:	HV_FAST_TRAP
2766  * FUNCTION:	HV_FAST_PCI_IOTSB_DEMAP
2767  * ARG0:	devhandle
2768  * ARG1:	iotsb_handle
2769  * ARG2:	iotsb_index
2770  * ARG3:	#iottes
2771  * RET0:	status
2772  * RET1:	#unmapped
2773  * ERRORS:	EINVAL	Invalid devhandle, iotsb_handle, iotsb_index or #iottes
2774  *
2775  * This service unmaps and flushes up to #iottes mappings starting at index
2776  * iotsb_index from the IOTSB defined by the arguments devhandle, iotsb.
2777  *
2778  * #iottes must be greater than zero.
2779  *
2780  * The actual number of IOTTEs unmapped is returned in #unmapped and may be less
2781  * than or equal to the requested number of IOTTEs, #iottes.
2782  *
2783  * If #unmapped is less than #iottes, the caller should continue to invoke this
2784  * service with updated iotsb_index and #iottes arguments until all pages are
2785  * demapped.
2786  */
2787 #define HV_FAST_PCI_IOTSB_DEMAP		0x198
2788 
2789 /* pci_iotsb_getmap()
2790  * TRAP:	HV_FAST_TRAP
2791  * FUNCTION:	HV_FAST_PCI_IOTSB_GETMAP
2792  * ARG0:	devhandle
2793  * ARG1:	iotsb_handle
2794  * ARG2:	iotsb_index
2795  * RET0:	status
2796  * RET1:	r_addr
2797  * RET2:	iotte_attributes
2798  * ERRORS:	EINVAL	Invalid devhandle, iotsb_handle, or iotsb_index
2799  *		ENOMAP	No mapping was found
2800  *
2801  * This service returns the mapping specified by index iotsb_index from the
2802  * IOTSB defined by the arguments devhandle, iotsb.
2803  *
2804  * Upon success, the real address of the mapping shall be returned in
2805  * r_addr and thethe IOTTE mapping attributes shall be returned in
2806  * iotte_attributes.
2807  *
2808  * The return value iotte_attributes may not include optional features used in
2809  * the call to create the  mapping.
2810  */
2811 #define HV_FAST_PCI_IOTSB_GETMAP	0x199
2812 
2813 /* pci_iotsb_sync_mappings()
2814  * TRAP:	HV_FAST_TRAP
2815  * FUNCTION:	HV_FAST_PCI_IOTSB_SYNC_MAPPINGS
2816  * ARG0:	devhandle
2817  * ARG1:	iotsb_handle
2818  * ARG2:	iotsb_index
2819  * ARG3:	#iottes
2820  * RET0:	status
2821  * RET1:	#synced
2822  * ERROS:	EINVAL	Invalid devhandle, iotsb_handle, iotsb_index, or #iottes
2823  *
2824  * This service synchronizes #iottes mappings starting at index iotsb_index in
2825  * the IOTSB defined by the arguments devhandle, iotsb.
2826  *
2827  * #iottes must be greater than zero.
2828  *
2829  * The actual number of IOTTEs synchronized is returned in #synced, which may
2830  * be less than or equal to the requested number, #iottes.
2831  *
2832  * Upon a successful return, #synced is less than #iottes, the caller should
2833  * continue to invoke this service with updated iotsb_index and #iottes
2834  * arguments until all pages are synchronized.
2835  */
2836 #define HV_FAST_PCI_IOTSB_SYNC_MAPPINGS	0x19a
2837 
2838 /* Logical Domain Channel services.  */
2839 
2840 #define LDC_CHANNEL_DOWN		0
2841 #define LDC_CHANNEL_UP			1
2842 #define LDC_CHANNEL_RESETTING		2
2843 
2844 /* ldc_tx_qconf()
2845  * TRAP:	HV_FAST_TRAP
2846  * FUNCTION:	HV_FAST_LDC_TX_QCONF
2847  * ARG0:	channel ID
2848  * ARG1:	real address base of queue
2849  * ARG2:	num entries in queue
2850  * RET0:	status
2851  *
2852  * Configure transmit queue for the LDC endpoint specified by the
2853  * given channel ID, to be placed at the given real address, and
2854  * be of the given num entries.  Num entries must be a power of two.
2855  * The real address base of the queue must be aligned on the queue
2856  * size.  Each queue entry is 64-bytes, so for example, a 32 entry
2857  * queue must be aligned on a 2048 byte real address boundary.
2858  *
2859  * Upon configuration of a valid transmit queue the head and tail
2860  * pointers are set to a hypervisor specific identical value indicating
2861  * that the queue initially is empty.
2862  *
2863  * The endpoint's transmit queue is un-configured if num entries is zero.
2864  *
2865  * The maximum number of entries for each queue for a specific cpu may be
2866  * determined from the machine description.  A transmit queue may be
2867  * specified even in the event that the LDC is down (peer endpoint has no
2868  * receive queue specified).  Transmission will begin as soon as the peer
2869  * endpoint defines a receive queue.
2870  *
2871  * It is recommended that a guest wait for a transmit queue to empty prior
2872  * to reconfiguring it, or un-configuring it.  Re or un-configuring of a
2873  * non-empty transmit queue behaves exactly as defined above, however it
2874  * is undefined as to how many of the pending entries in the original queue
2875  * will be delivered prior to the re-configuration taking effect.
2876  * Furthermore, as the queue configuration causes a reset of the head and
2877  * tail pointers there is no way for a guest to determine how many entries
2878  * have been sent after the configuration operation.
2879  */
2880 #define HV_FAST_LDC_TX_QCONF		0xe0
2881 
2882 /* ldc_tx_qinfo()
2883  * TRAP:	HV_FAST_TRAP
2884  * FUNCTION:	HV_FAST_LDC_TX_QINFO
2885  * ARG0:	channel ID
2886  * RET0:	status
2887  * RET1:	real address base of queue
2888  * RET2:	num entries in queue
2889  *
2890  * Return the configuration info for the transmit queue of LDC endpoint
2891  * defined by the given channel ID.  The real address is the currently
2892  * defined real address base of the defined queue, and num entries is the
2893  * size of the queue in terms of number of entries.
2894  *
2895  * If the specified channel ID is a valid endpoint number, but no transmit
2896  * queue has been defined this service will return success, but with num
2897  * entries set to zero and the real address will have an undefined value.
2898  */
2899 #define HV_FAST_LDC_TX_QINFO		0xe1
2900 
2901 /* ldc_tx_get_state()
2902  * TRAP:	HV_FAST_TRAP
2903  * FUNCTION:	HV_FAST_LDC_TX_GET_STATE
2904  * ARG0:	channel ID
2905  * RET0:	status
2906  * RET1:	head offset
2907  * RET2:	tail offset
2908  * RET3:	channel state
2909  *
2910  * Return the transmit state, and the head and tail queue pointers, for
2911  * the transmit queue of the LDC endpoint defined by the given channel ID.
2912  * The head and tail values are the byte offset of the head and tail
2913  * positions of the transmit queue for the specified endpoint.
2914  */
2915 #define HV_FAST_LDC_TX_GET_STATE	0xe2
2916 
2917 /* ldc_tx_set_qtail()
2918  * TRAP:	HV_FAST_TRAP
2919  * FUNCTION:	HV_FAST_LDC_TX_SET_QTAIL
2920  * ARG0:	channel ID
2921  * ARG1:	tail offset
2922  * RET0:	status
2923  *
2924  * Update the tail pointer for the transmit queue associated with the LDC
2925  * endpoint defined by the given channel ID.  The tail offset specified
2926  * must be aligned on a 64 byte boundary, and calculated so as to increase
2927  * the number of pending entries on the transmit queue.  Any attempt to
2928  * decrease the number of pending transmit queue entires is considered
2929  * an invalid tail offset and will result in an EINVAL error.
2930  *
2931  * Since the tail of the transmit queue may not be moved backwards, the
2932  * transmit queue may be flushed by configuring a new transmit queue,
2933  * whereupon the hypervisor will configure the initial transmit head and
2934  * tail pointers to be equal.
2935  */
2936 #define HV_FAST_LDC_TX_SET_QTAIL	0xe3
2937 
2938 /* ldc_rx_qconf()
2939  * TRAP:	HV_FAST_TRAP
2940  * FUNCTION:	HV_FAST_LDC_RX_QCONF
2941  * ARG0:	channel ID
2942  * ARG1:	real address base of queue
2943  * ARG2:	num entries in queue
2944  * RET0:	status
2945  *
2946  * Configure receive queue for the LDC endpoint specified by the
2947  * given channel ID, to be placed at the given real address, and
2948  * be of the given num entries.  Num entries must be a power of two.
2949  * The real address base of the queue must be aligned on the queue
2950  * size.  Each queue entry is 64-bytes, so for example, a 32 entry
2951  * queue must be aligned on a 2048 byte real address boundary.
2952  *
2953  * The endpoint's transmit queue is un-configured if num entries is zero.
2954  *
2955  * If a valid receive queue is specified for a local endpoint the LDC is
2956  * in the up state for the purpose of transmission to this endpoint.
2957  *
2958  * The maximum number of entries for each queue for a specific cpu may be
2959  * determined from the machine description.
2960  *
2961  * As receive queue configuration causes a reset of the queue's head and
2962  * tail pointers there is no way for a gues to determine how many entries
2963  * have been received between a preceding ldc_get_rx_state() API call
2964  * and the completion of the configuration operation.  It should be noted
2965  * that datagram delivery is not guaranteed via domain channels anyway,
2966  * and therefore any higher protocol should be resilient to datagram
2967  * loss if necessary.  However, to overcome this specific race potential
2968  * it is recommended, for example, that a higher level protocol be employed
2969  * to ensure either retransmission, or ensure that no datagrams are pending
2970  * on the peer endpoint's transmit queue prior to the configuration process.
2971  */
2972 #define HV_FAST_LDC_RX_QCONF		0xe4
2973 
2974 /* ldc_rx_qinfo()
2975  * TRAP:	HV_FAST_TRAP
2976  * FUNCTION:	HV_FAST_LDC_RX_QINFO
2977  * ARG0:	channel ID
2978  * RET0:	status
2979  * RET1:	real address base of queue
2980  * RET2:	num entries in queue
2981  *
2982  * Return the configuration info for the receive queue of LDC endpoint
2983  * defined by the given channel ID.  The real address is the currently
2984  * defined real address base of the defined queue, and num entries is the
2985  * size of the queue in terms of number of entries.
2986  *
2987  * If the specified channel ID is a valid endpoint number, but no receive
2988  * queue has been defined this service will return success, but with num
2989  * entries set to zero and the real address will have an undefined value.
2990  */
2991 #define HV_FAST_LDC_RX_QINFO		0xe5
2992 
2993 /* ldc_rx_get_state()
2994  * TRAP:	HV_FAST_TRAP
2995  * FUNCTION:	HV_FAST_LDC_RX_GET_STATE
2996  * ARG0:	channel ID
2997  * RET0:	status
2998  * RET1:	head offset
2999  * RET2:	tail offset
3000  * RET3:	channel state
3001  *
3002  * Return the receive state, and the head and tail queue pointers, for
3003  * the receive queue of the LDC endpoint defined by the given channel ID.
3004  * The head and tail values are the byte offset of the head and tail
3005  * positions of the receive queue for the specified endpoint.
3006  */
3007 #define HV_FAST_LDC_RX_GET_STATE	0xe6
3008 
3009 /* ldc_rx_set_qhead()
3010  * TRAP:	HV_FAST_TRAP
3011  * FUNCTION:	HV_FAST_LDC_RX_SET_QHEAD
3012  * ARG0:	channel ID
3013  * ARG1:	head offset
3014  * RET0:	status
3015  *
3016  * Update the head pointer for the receive queue associated with the LDC
3017  * endpoint defined by the given channel ID.  The head offset specified
3018  * must be aligned on a 64 byte boundary, and calculated so as to decrease
3019  * the number of pending entries on the receive queue.  Any attempt to
3020  * increase the number of pending receive queue entires is considered
3021  * an invalid head offset and will result in an EINVAL error.
3022  *
3023  * The receive queue may be flushed by setting the head offset equal
3024  * to the current tail offset.
3025  */
3026 #define HV_FAST_LDC_RX_SET_QHEAD	0xe7
3027 
3028 /* LDC Map Table Entry.  Each slot is defined by a translation table
3029  * entry, as specified by the LDC_MTE_* bits below, and a 64-bit
3030  * hypervisor invalidation cookie.
3031  */
3032 #define LDC_MTE_PADDR	0x0fffffffffffe000 /* pa[55:13]          */
3033 #define LDC_MTE_COPY_W	0x0000000000000400 /* copy write access  */
3034 #define LDC_MTE_COPY_R	0x0000000000000200 /* copy read access   */
3035 #define LDC_MTE_IOMMU_W	0x0000000000000100 /* IOMMU write access */
3036 #define LDC_MTE_IOMMU_R	0x0000000000000080 /* IOMMU read access  */
3037 #define LDC_MTE_EXEC	0x0000000000000040 /* execute            */
3038 #define LDC_MTE_WRITE	0x0000000000000020 /* read               */
3039 #define LDC_MTE_READ	0x0000000000000010 /* write              */
3040 #define LDC_MTE_SZALL	0x000000000000000f /* page size bits     */
3041 #define LDC_MTE_SZ16GB	0x0000000000000007 /* 16GB page          */
3042 #define LDC_MTE_SZ2GB	0x0000000000000006 /* 2GB page           */
3043 #define LDC_MTE_SZ256MB	0x0000000000000005 /* 256MB page         */
3044 #define LDC_MTE_SZ32MB	0x0000000000000004 /* 32MB page          */
3045 #define LDC_MTE_SZ4MB	0x0000000000000003 /* 4MB page           */
3046 #define LDC_MTE_SZ512K	0x0000000000000002 /* 512K page          */
3047 #define LDC_MTE_SZ64K	0x0000000000000001 /* 64K page           */
3048 #define LDC_MTE_SZ8K	0x0000000000000000 /* 8K page            */
3049 
3050 #ifndef __ASSEMBLY__
3051 struct ldc_mtable_entry {
3052 	unsigned long	mte;
3053 	unsigned long	cookie;
3054 };
3055 #endif
3056 
3057 /* ldc_set_map_table()
3058  * TRAP:	HV_FAST_TRAP
3059  * FUNCTION:	HV_FAST_LDC_SET_MAP_TABLE
3060  * ARG0:	channel ID
3061  * ARG1:	table real address
3062  * ARG2:	num entries
3063  * RET0:	status
3064  *
3065  * Register the MTE table at the given table real address, with the
3066  * specified num entries, for the LDC indicated by the given channel
3067  * ID.
3068  */
3069 #define HV_FAST_LDC_SET_MAP_TABLE	0xea
3070 
3071 /* ldc_get_map_table()
3072  * TRAP:	HV_FAST_TRAP
3073  * FUNCTION:	HV_FAST_LDC_GET_MAP_TABLE
3074  * ARG0:	channel ID
3075  * RET0:	status
3076  * RET1:	table real address
3077  * RET2:	num entries
3078  *
3079  * Return the configuration of the current mapping table registered
3080  * for the given channel ID.
3081  */
3082 #define HV_FAST_LDC_GET_MAP_TABLE	0xeb
3083 
3084 #define LDC_COPY_IN	0
3085 #define LDC_COPY_OUT	1
3086 
3087 /* ldc_copy()
3088  * TRAP:	HV_FAST_TRAP
3089  * FUNCTION:	HV_FAST_LDC_COPY
3090  * ARG0:	channel ID
3091  * ARG1:	LDC_COPY_* direction code
3092  * ARG2:	target real address
3093  * ARG3:	local real address
3094  * ARG4:	length in bytes
3095  * RET0:	status
3096  * RET1:	actual length in bytes
3097  */
3098 #define HV_FAST_LDC_COPY		0xec
3099 
3100 #define LDC_MEM_READ	1
3101 #define LDC_MEM_WRITE	2
3102 #define LDC_MEM_EXEC	4
3103 
3104 /* ldc_mapin()
3105  * TRAP:	HV_FAST_TRAP
3106  * FUNCTION:	HV_FAST_LDC_MAPIN
3107  * ARG0:	channel ID
3108  * ARG1:	cookie
3109  * RET0:	status
3110  * RET1:	real address
3111  * RET2:	LDC_MEM_* permissions
3112  */
3113 #define HV_FAST_LDC_MAPIN		0xed
3114 
3115 /* ldc_unmap()
3116  * TRAP:	HV_FAST_TRAP
3117  * FUNCTION:	HV_FAST_LDC_UNMAP
3118  * ARG0:	real address
3119  * RET0:	status
3120  */
3121 #define HV_FAST_LDC_UNMAP		0xee
3122 
3123 /* ldc_revoke()
3124  * TRAP:	HV_FAST_TRAP
3125  * FUNCTION:	HV_FAST_LDC_REVOKE
3126  * ARG0:	channel ID
3127  * ARG1:	cookie
3128  * ARG2:	ldc_mtable_entry cookie
3129  * RET0:	status
3130  */
3131 #define HV_FAST_LDC_REVOKE		0xef
3132 
3133 #ifndef __ASSEMBLY__
3134 unsigned long sun4v_ldc_tx_qconf(unsigned long channel,
3135 				 unsigned long ra,
3136 				 unsigned long num_entries);
3137 unsigned long sun4v_ldc_tx_qinfo(unsigned long channel,
3138 				 unsigned long *ra,
3139 				 unsigned long *num_entries);
3140 unsigned long sun4v_ldc_tx_get_state(unsigned long channel,
3141 				     unsigned long *head_off,
3142 				     unsigned long *tail_off,
3143 				     unsigned long *chan_state);
3144 unsigned long sun4v_ldc_tx_set_qtail(unsigned long channel,
3145 				     unsigned long tail_off);
3146 unsigned long sun4v_ldc_rx_qconf(unsigned long channel,
3147 				 unsigned long ra,
3148 				 unsigned long num_entries);
3149 unsigned long sun4v_ldc_rx_qinfo(unsigned long channel,
3150 				 unsigned long *ra,
3151 				 unsigned long *num_entries);
3152 unsigned long sun4v_ldc_rx_get_state(unsigned long channel,
3153 				     unsigned long *head_off,
3154 				     unsigned long *tail_off,
3155 				     unsigned long *chan_state);
3156 unsigned long sun4v_ldc_rx_set_qhead(unsigned long channel,
3157 				     unsigned long head_off);
3158 unsigned long sun4v_ldc_set_map_table(unsigned long channel,
3159 				      unsigned long ra,
3160 				      unsigned long num_entries);
3161 unsigned long sun4v_ldc_get_map_table(unsigned long channel,
3162 				      unsigned long *ra,
3163 				      unsigned long *num_entries);
3164 unsigned long sun4v_ldc_copy(unsigned long channel,
3165 			     unsigned long dir_code,
3166 			     unsigned long tgt_raddr,
3167 			     unsigned long lcl_raddr,
3168 			     unsigned long len,
3169 			     unsigned long *actual_len);
3170 unsigned long sun4v_ldc_mapin(unsigned long channel,
3171 			      unsigned long cookie,
3172 			      unsigned long *ra,
3173 			      unsigned long *perm);
3174 unsigned long sun4v_ldc_unmap(unsigned long ra);
3175 unsigned long sun4v_ldc_revoke(unsigned long channel,
3176 			       unsigned long cookie,
3177 			       unsigned long mte_cookie);
3178 #endif
3179 
3180 /* Performance counter services.  */
3181 
3182 #define HV_PERF_JBUS_PERF_CTRL_REG	0x00
3183 #define HV_PERF_JBUS_PERF_CNT_REG	0x01
3184 #define HV_PERF_DRAM_PERF_CTRL_REG_0	0x02
3185 #define HV_PERF_DRAM_PERF_CNT_REG_0	0x03
3186 #define HV_PERF_DRAM_PERF_CTRL_REG_1	0x04
3187 #define HV_PERF_DRAM_PERF_CNT_REG_1	0x05
3188 #define HV_PERF_DRAM_PERF_CTRL_REG_2	0x06
3189 #define HV_PERF_DRAM_PERF_CNT_REG_2	0x07
3190 #define HV_PERF_DRAM_PERF_CTRL_REG_3	0x08
3191 #define HV_PERF_DRAM_PERF_CNT_REG_3	0x09
3192 
3193 /* get_perfreg()
3194  * TRAP:	HV_FAST_TRAP
3195  * FUNCTION:	HV_FAST_GET_PERFREG
3196  * ARG0:	performance reg number
3197  * RET0:	status
3198  * RET1:	performance reg value
3199  * ERRORS:	EINVAL		Invalid performance register number
3200  *		ENOACCESS	No access allowed to performance counters
3201  *
3202  * Read the value of the given DRAM/JBUS performance counter/control register.
3203  */
3204 #define HV_FAST_GET_PERFREG		0x100
3205 
3206 /* set_perfreg()
3207  * TRAP:	HV_FAST_TRAP
3208  * FUNCTION:	HV_FAST_SET_PERFREG
3209  * ARG0:	performance reg number
3210  * ARG1:	performance reg value
3211  * RET0:	status
3212  * ERRORS:	EINVAL		Invalid performance register number
3213  *		ENOACCESS	No access allowed to performance counters
3214  *
3215  * Write the given performance reg value to the given DRAM/JBUS
3216  * performance counter/control register.
3217  */
3218 #define HV_FAST_SET_PERFREG		0x101
3219 
3220 #define HV_N2_PERF_SPARC_CTL		0x0
3221 #define HV_N2_PERF_DRAM_CTL0		0x1
3222 #define HV_N2_PERF_DRAM_CNT0		0x2
3223 #define HV_N2_PERF_DRAM_CTL1		0x3
3224 #define HV_N2_PERF_DRAM_CNT1		0x4
3225 #define HV_N2_PERF_DRAM_CTL2		0x5
3226 #define HV_N2_PERF_DRAM_CNT2		0x6
3227 #define HV_N2_PERF_DRAM_CTL3		0x7
3228 #define HV_N2_PERF_DRAM_CNT3		0x8
3229 
3230 #define HV_FAST_N2_GET_PERFREG		0x104
3231 #define HV_FAST_N2_SET_PERFREG		0x105
3232 
3233 #ifndef __ASSEMBLY__
3234 unsigned long sun4v_niagara_getperf(unsigned long reg,
3235 				    unsigned long *val);
3236 unsigned long sun4v_niagara_setperf(unsigned long reg,
3237 				    unsigned long val);
3238 unsigned long sun4v_niagara2_getperf(unsigned long reg,
3239 				     unsigned long *val);
3240 unsigned long sun4v_niagara2_setperf(unsigned long reg,
3241 				     unsigned long val);
3242 #endif
3243 
3244 /* MMU statistics services.
3245  *
3246  * The hypervisor maintains MMU statistics and privileged code provides
3247  * a buffer where these statistics can be collected.  It is continually
3248  * updated once configured.  The layout is as follows:
3249  */
3250 #ifndef __ASSEMBLY__
3251 struct hv_mmu_statistics {
3252 	unsigned long immu_tsb_hits_ctx0_8k_tte;
3253 	unsigned long immu_tsb_ticks_ctx0_8k_tte;
3254 	unsigned long immu_tsb_hits_ctx0_64k_tte;
3255 	unsigned long immu_tsb_ticks_ctx0_64k_tte;
3256 	unsigned long __reserved1[2];
3257 	unsigned long immu_tsb_hits_ctx0_4mb_tte;
3258 	unsigned long immu_tsb_ticks_ctx0_4mb_tte;
3259 	unsigned long __reserved2[2];
3260 	unsigned long immu_tsb_hits_ctx0_256mb_tte;
3261 	unsigned long immu_tsb_ticks_ctx0_256mb_tte;
3262 	unsigned long __reserved3[4];
3263 	unsigned long immu_tsb_hits_ctxnon0_8k_tte;
3264 	unsigned long immu_tsb_ticks_ctxnon0_8k_tte;
3265 	unsigned long immu_tsb_hits_ctxnon0_64k_tte;
3266 	unsigned long immu_tsb_ticks_ctxnon0_64k_tte;
3267 	unsigned long __reserved4[2];
3268 	unsigned long immu_tsb_hits_ctxnon0_4mb_tte;
3269 	unsigned long immu_tsb_ticks_ctxnon0_4mb_tte;
3270 	unsigned long __reserved5[2];
3271 	unsigned long immu_tsb_hits_ctxnon0_256mb_tte;
3272 	unsigned long immu_tsb_ticks_ctxnon0_256mb_tte;
3273 	unsigned long __reserved6[4];
3274 	unsigned long dmmu_tsb_hits_ctx0_8k_tte;
3275 	unsigned long dmmu_tsb_ticks_ctx0_8k_tte;
3276 	unsigned long dmmu_tsb_hits_ctx0_64k_tte;
3277 	unsigned long dmmu_tsb_ticks_ctx0_64k_tte;
3278 	unsigned long __reserved7[2];
3279 	unsigned long dmmu_tsb_hits_ctx0_4mb_tte;
3280 	unsigned long dmmu_tsb_ticks_ctx0_4mb_tte;
3281 	unsigned long __reserved8[2];
3282 	unsigned long dmmu_tsb_hits_ctx0_256mb_tte;
3283 	unsigned long dmmu_tsb_ticks_ctx0_256mb_tte;
3284 	unsigned long __reserved9[4];
3285 	unsigned long dmmu_tsb_hits_ctxnon0_8k_tte;
3286 	unsigned long dmmu_tsb_ticks_ctxnon0_8k_tte;
3287 	unsigned long dmmu_tsb_hits_ctxnon0_64k_tte;
3288 	unsigned long dmmu_tsb_ticks_ctxnon0_64k_tte;
3289 	unsigned long __reserved10[2];
3290 	unsigned long dmmu_tsb_hits_ctxnon0_4mb_tte;
3291 	unsigned long dmmu_tsb_ticks_ctxnon0_4mb_tte;
3292 	unsigned long __reserved11[2];
3293 	unsigned long dmmu_tsb_hits_ctxnon0_256mb_tte;
3294 	unsigned long dmmu_tsb_ticks_ctxnon0_256mb_tte;
3295 	unsigned long __reserved12[4];
3296 };
3297 #endif
3298 
3299 /* mmustat_conf()
3300  * TRAP:	HV_FAST_TRAP
3301  * FUNCTION:	HV_FAST_MMUSTAT_CONF
3302  * ARG0:	real address
3303  * RET0:	status
3304  * RET1:	real address
3305  * ERRORS:	ENORADDR	Invalid real address
3306  *		EBADALIGN	Real address not aligned on 64-byte boundary
3307  *		EBADTRAP	API not supported on this processor
3308  *
3309  * Enable MMU statistic gathering using the buffer at the given real
3310  * address on the current virtual CPU.  The new buffer real address
3311  * is given in ARG1, and the previously specified buffer real address
3312  * is returned in RET1, or is returned as zero for the first invocation.
3313  *
3314  * If the passed in real address argument is zero, this will disable
3315  * MMU statistic collection on the current virtual CPU.  If an error is
3316  * returned then no statistics are collected.
3317  *
3318  * The buffer contents should be initialized to all zeros before being
3319  * given to the hypervisor or else the statistics will be meaningless.
3320  */
3321 #define HV_FAST_MMUSTAT_CONF		0x102
3322 
3323 /* mmustat_info()
3324  * TRAP:	HV_FAST_TRAP
3325  * FUNCTION:	HV_FAST_MMUSTAT_INFO
3326  * RET0:	status
3327  * RET1:	real address
3328  * ERRORS:	EBADTRAP	API not supported on this processor
3329  *
3330  * Return the current state and real address of the currently configured
3331  * MMU statistics buffer on the current virtual CPU.
3332  */
3333 #define HV_FAST_MMUSTAT_INFO		0x103
3334 
3335 #ifndef __ASSEMBLY__
3336 unsigned long sun4v_mmustat_conf(unsigned long ra, unsigned long *orig_ra);
3337 unsigned long sun4v_mmustat_info(unsigned long *ra);
3338 #endif
3339 
3340 /* NCS crypto services  */
3341 
3342 /* ncs_request() sub-function numbers */
3343 #define HV_NCS_QCONF			0x01
3344 #define HV_NCS_QTAIL_UPDATE		0x02
3345 
3346 #ifndef __ASSEMBLY__
3347 struct hv_ncs_queue_entry {
3348 	/* MAU Control Register */
3349 	unsigned long	mau_control;
3350 #define MAU_CONTROL_INV_PARITY	0x0000000000002000
3351 #define MAU_CONTROL_STRAND	0x0000000000001800
3352 #define MAU_CONTROL_BUSY	0x0000000000000400
3353 #define MAU_CONTROL_INT		0x0000000000000200
3354 #define MAU_CONTROL_OP		0x00000000000001c0
3355 #define MAU_CONTROL_OP_SHIFT	6
3356 #define MAU_OP_LOAD_MA_MEMORY	0x0
3357 #define MAU_OP_STORE_MA_MEMORY	0x1
3358 #define MAU_OP_MODULAR_MULT	0x2
3359 #define MAU_OP_MODULAR_REDUCE	0x3
3360 #define MAU_OP_MODULAR_EXP_LOOP	0x4
3361 #define MAU_CONTROL_LEN		0x000000000000003f
3362 #define MAU_CONTROL_LEN_SHIFT	0
3363 
3364 	/* Real address of bytes to load or store bytes
3365 	 * into/out-of the MAU.
3366 	 */
3367 	unsigned long	mau_mpa;
3368 
3369 	/* Modular Arithmetic MA Offset Register.  */
3370 	unsigned long	mau_ma;
3371 
3372 	/* Modular Arithmetic N Prime Register.  */
3373 	unsigned long	mau_np;
3374 };
3375 
3376 struct hv_ncs_qconf_arg {
3377 	unsigned long	mid;      /* MAU ID, 1 per core on Niagara */
3378 	unsigned long	base;     /* Real address base of queue */
3379 	unsigned long	end;	  /* Real address end of queue */
3380 	unsigned long	num_ents; /* Number of entries in queue */
3381 };
3382 
3383 struct hv_ncs_qtail_update_arg {
3384 	unsigned long	mid;      /* MAU ID, 1 per core on Niagara */
3385 	unsigned long	tail;     /* New tail index to use */
3386 	unsigned long	syncflag; /* only SYNCFLAG_SYNC is implemented */
3387 #define HV_NCS_SYNCFLAG_SYNC	0x00
3388 #define HV_NCS_SYNCFLAG_ASYNC	0x01
3389 };
3390 #endif
3391 
3392 /* ncs_request()
3393  * TRAP:	HV_FAST_TRAP
3394  * FUNCTION:	HV_FAST_NCS_REQUEST
3395  * ARG0:	NCS sub-function
3396  * ARG1:	sub-function argument real address
3397  * ARG2:	size in bytes of sub-function argument
3398  * RET0:	status
3399  *
3400  * The MAU chip of the Niagara processor is not directly accessible
3401  * to privileged code, instead it is programmed indirectly via this
3402  * hypervisor API.
3403  *
3404  * The interfaces defines a queue of MAU operations to perform.
3405  * Privileged code registers a queue with the hypervisor by invoking
3406  * this HVAPI with the HV_NCS_QCONF sub-function, which defines the
3407  * base, end, and number of entries of the queue.  Each queue entry
3408  * contains a MAU register struct block.
3409  *
3410  * The privileged code then proceeds to add entries to the queue and
3411  * then invoke the HV_NCS_QTAIL_UPDATE sub-function.  Since only
3412  * synchronous operations are supported by the current hypervisor,
3413  * HV_NCS_QTAIL_UPDATE will run all the pending queue entries to
3414  * completion and return HV_EOK, or return an error code.
3415  *
3416  * The real address of the sub-function argument must be aligned on at
3417  * least an 8-byte boundary.
3418  *
3419  * The tail argument of HV_NCS_QTAIL_UPDATE is an index, not a byte
3420  * offset, into the queue and must be less than or equal the 'num_ents'
3421  * argument given in the HV_NCS_QCONF call.
3422  */
3423 #define HV_FAST_NCS_REQUEST		0x110
3424 
3425 #ifndef __ASSEMBLY__
3426 unsigned long sun4v_ncs_request(unsigned long request,
3427 			        unsigned long arg_ra,
3428 			        unsigned long arg_size);
3429 #endif
3430 
3431 #define HV_FAST_FIRE_GET_PERFREG	0x120
3432 #define HV_FAST_FIRE_SET_PERFREG	0x121
3433 
3434 #define HV_FAST_REBOOT_DATA_SET		0x172
3435 
3436 #ifndef __ASSEMBLY__
3437 unsigned long sun4v_reboot_data_set(unsigned long ra,
3438 				    unsigned long len);
3439 #endif
3440 
3441 #define HV_FAST_VT_GET_PERFREG		0x184
3442 #define HV_FAST_VT_SET_PERFREG		0x185
3443 
3444 #ifndef __ASSEMBLY__
3445 unsigned long sun4v_vt_get_perfreg(unsigned long reg_num,
3446 				   unsigned long *reg_val);
3447 unsigned long sun4v_vt_set_perfreg(unsigned long reg_num,
3448 				   unsigned long reg_val);
3449 #endif
3450 
3451 #define	HV_FAST_T5_GET_PERFREG		0x1a8
3452 #define	HV_FAST_T5_SET_PERFREG		0x1a9
3453 
3454 #ifndef	__ASSEMBLY__
3455 unsigned long sun4v_t5_get_perfreg(unsigned long reg_num,
3456 				   unsigned long *reg_val);
3457 unsigned long sun4v_t5_set_perfreg(unsigned long reg_num,
3458 				   unsigned long reg_val);
3459 #endif
3460 
3461 
3462 #define HV_FAST_M7_GET_PERFREG	0x43
3463 #define HV_FAST_M7_SET_PERFREG	0x44
3464 
3465 #ifndef	__ASSEMBLY__
3466 unsigned long sun4v_m7_get_perfreg(unsigned long reg_num,
3467 				      unsigned long *reg_val);
3468 unsigned long sun4v_m7_set_perfreg(unsigned long reg_num,
3469 				      unsigned long reg_val);
3470 #endif
3471 
3472 /* Function numbers for HV_CORE_TRAP.  */
3473 #define HV_CORE_SET_VER			0x00
3474 #define HV_CORE_PUTCHAR			0x01
3475 #define HV_CORE_EXIT			0x02
3476 #define HV_CORE_GET_VER			0x03
3477 
3478 /* Hypervisor API groups for use with HV_CORE_SET_VER and
3479  * HV_CORE_GET_VER.
3480  */
3481 #define HV_GRP_SUN4V			0x0000
3482 #define HV_GRP_CORE			0x0001
3483 #define HV_GRP_INTR			0x0002
3484 #define HV_GRP_SOFT_STATE		0x0003
3485 #define HV_GRP_TM			0x0080
3486 #define HV_GRP_PCI			0x0100
3487 #define HV_GRP_LDOM			0x0101
3488 #define HV_GRP_SVC_CHAN			0x0102
3489 #define HV_GRP_NCS			0x0103
3490 #define HV_GRP_RNG			0x0104
3491 #define HV_GRP_PBOOT			0x0105
3492 #define HV_GRP_TPM			0x0107
3493 #define HV_GRP_SDIO			0x0108
3494 #define HV_GRP_SDIO_ERR			0x0109
3495 #define HV_GRP_REBOOT_DATA		0x0110
3496 #define HV_GRP_ATU			0x0111
3497 #define HV_GRP_DAX			0x0113
3498 #define HV_GRP_M7_PERF			0x0114
3499 #define HV_GRP_NIAG_PERF		0x0200
3500 #define HV_GRP_FIRE_PERF		0x0201
3501 #define HV_GRP_N2_CPU			0x0202
3502 #define HV_GRP_NIU			0x0204
3503 #define HV_GRP_VF_CPU			0x0205
3504 #define HV_GRP_KT_CPU			0x0209
3505 #define HV_GRP_VT_CPU			0x020c
3506 #define HV_GRP_T5_CPU			0x0211
3507 #define HV_GRP_DIAG			0x0300
3508 
3509 #ifndef __ASSEMBLY__
3510 unsigned long sun4v_get_version(unsigned long group,
3511 			        unsigned long *major,
3512 			        unsigned long *minor);
3513 unsigned long sun4v_set_version(unsigned long group,
3514 			        unsigned long major,
3515 			        unsigned long minor,
3516 			        unsigned long *actual_minor);
3517 
3518 int sun4v_hvapi_register(unsigned long group, unsigned long major,
3519 			 unsigned long *minor);
3520 void sun4v_hvapi_unregister(unsigned long group);
3521 int sun4v_hvapi_get(unsigned long group,
3522 		    unsigned long *major,
3523 		    unsigned long *minor);
3524 void sun4v_hvapi_init(void);
3525 #endif
3526 
3527 #endif /* !(_SPARC64_HYPERVISOR_H) */
3528