xref: /linux/arch/sparc/kernel/sun4m_smp.c (revision c6fbb759)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  sun4m SMP support.
4  *
5  * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
6  */
7 
8 #include <linux/clockchips.h>
9 #include <linux/interrupt.h>
10 #include <linux/profile.h>
11 #include <linux/delay.h>
12 #include <linux/sched/mm.h>
13 #include <linux/cpu.h>
14 
15 #include <asm/cacheflush.h>
16 #include <asm/switch_to.h>
17 #include <asm/tlbflush.h>
18 #include <asm/timer.h>
19 #include <asm/oplib.h>
20 
21 #include "irq.h"
22 #include "kernel.h"
23 
24 #define IRQ_IPI_SINGLE		12
25 #define IRQ_IPI_MASK		13
26 #define IRQ_IPI_RESCHED		14
27 #define IRQ_CROSS_CALL		15
28 
29 static inline unsigned long
30 swap_ulong(volatile unsigned long *ptr, unsigned long val)
31 {
32 	__asm__ __volatile__("swap [%1], %0\n\t" :
33 			     "=&r" (val), "=&r" (ptr) :
34 			     "0" (val), "1" (ptr));
35 	return val;
36 }
37 
38 void sun4m_cpu_pre_starting(void *arg)
39 {
40 }
41 
42 void sun4m_cpu_pre_online(void *arg)
43 {
44 	int cpuid = hard_smp_processor_id();
45 
46 	/* Allow master to continue. The master will then give us the
47 	 * go-ahead by setting the smp_commenced_mask and will wait without
48 	 * timeouts until our setup is completed fully (signified by
49 	 * our bit being set in the cpu_online_mask).
50 	 */
51 	swap_ulong(&cpu_callin_map[cpuid], 1);
52 
53 	/* XXX: What's up with all the flushes? */
54 	local_ops->cache_all();
55 	local_ops->tlb_all();
56 
57 	/* Fix idle thread fields. */
58 	__asm__ __volatile__("ld [%0], %%g6\n\t"
59 			     : : "r" (&current_set[cpuid])
60 			     : "memory" /* paranoid */);
61 
62 	/* Attach to the address space of init_task. */
63 	mmgrab(&init_mm);
64 	current->active_mm = &init_mm;
65 
66 	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
67 		mb();
68 }
69 
70 /*
71  *	Cycle through the processors asking the PROM to start each one.
72  */
73 void __init smp4m_boot_cpus(void)
74 {
75 	sun4m_unmask_profile_irq();
76 	local_ops->cache_all();
77 }
78 
79 int smp4m_boot_one_cpu(int i, struct task_struct *idle)
80 {
81 	unsigned long *entry = &sun4m_cpu_startup;
82 	int timeout;
83 	int cpu_node;
84 
85 	cpu_find_by_mid(i, &cpu_node);
86 	current_set[i] = task_thread_info(idle);
87 
88 	/* See trampoline.S for details... */
89 	entry += ((i - 1) * 3);
90 
91 	/*
92 	 * Initialize the contexts table
93 	 * Since the call to prom_startcpu() trashes the structure,
94 	 * we need to re-initialize it for each cpu
95 	 */
96 	smp_penguin_ctable.which_io = 0;
97 	smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys;
98 	smp_penguin_ctable.reg_size = 0;
99 
100 	/* whirrr, whirrr, whirrrrrrrrr... */
101 	printk(KERN_INFO "Starting CPU %d at %p\n", i, entry);
102 	local_ops->cache_all();
103 	prom_startcpu(cpu_node, &smp_penguin_ctable, 0, (char *)entry);
104 
105 	/* wheee... it's going... */
106 	for (timeout = 0; timeout < 10000; timeout++) {
107 		if (cpu_callin_map[i])
108 			break;
109 		udelay(200);
110 	}
111 
112 	if (!(cpu_callin_map[i])) {
113 		printk(KERN_ERR "Processor %d is stuck.\n", i);
114 		return -ENODEV;
115 	}
116 
117 	local_ops->cache_all();
118 	return 0;
119 }
120 
121 void __init smp4m_smp_done(void)
122 {
123 	int i, first;
124 	int *prev;
125 
126 	/* setup cpu list for irq rotation */
127 	first = 0;
128 	prev = &first;
129 	for_each_online_cpu(i) {
130 		*prev = i;
131 		prev = &cpu_data(i).next;
132 	}
133 	*prev = first;
134 	local_ops->cache_all();
135 
136 	/* Ok, they are spinning and ready to go. */
137 }
138 
139 static void sun4m_send_ipi(int cpu, int level)
140 {
141 	sbus_writel(SUN4M_SOFT_INT(level), &sun4m_irq_percpu[cpu]->set);
142 }
143 
144 static void sun4m_ipi_resched(int cpu)
145 {
146 	sun4m_send_ipi(cpu, IRQ_IPI_RESCHED);
147 }
148 
149 static void sun4m_ipi_single(int cpu)
150 {
151 	sun4m_send_ipi(cpu, IRQ_IPI_SINGLE);
152 }
153 
154 static void sun4m_ipi_mask_one(int cpu)
155 {
156 	sun4m_send_ipi(cpu, IRQ_IPI_MASK);
157 }
158 
159 static struct smp_funcall {
160 	void *func;
161 	unsigned long arg1;
162 	unsigned long arg2;
163 	unsigned long arg3;
164 	unsigned long arg4;
165 	unsigned long arg5;
166 	unsigned long processors_in[SUN4M_NCPUS];  /* Set when ipi entered. */
167 	unsigned long processors_out[SUN4M_NCPUS]; /* Set when ipi exited. */
168 } ccall_info;
169 
170 static DEFINE_SPINLOCK(cross_call_lock);
171 
172 /* Cross calls must be serialized, at least currently. */
173 static void sun4m_cross_call(void *func, cpumask_t mask, unsigned long arg1,
174 			     unsigned long arg2, unsigned long arg3,
175 			     unsigned long arg4)
176 {
177 		register int ncpus = SUN4M_NCPUS;
178 		unsigned long flags;
179 
180 		spin_lock_irqsave(&cross_call_lock, flags);
181 
182 		/* Init function glue. */
183 		ccall_info.func = func;
184 		ccall_info.arg1 = arg1;
185 		ccall_info.arg2 = arg2;
186 		ccall_info.arg3 = arg3;
187 		ccall_info.arg4 = arg4;
188 		ccall_info.arg5 = 0;
189 
190 		/* Init receive/complete mapping, plus fire the IPI's off. */
191 		{
192 			register int i;
193 
194 			cpumask_clear_cpu(smp_processor_id(), &mask);
195 			cpumask_and(&mask, cpu_online_mask, &mask);
196 			for (i = 0; i < ncpus; i++) {
197 				if (cpumask_test_cpu(i, &mask)) {
198 					ccall_info.processors_in[i] = 0;
199 					ccall_info.processors_out[i] = 0;
200 					sun4m_send_ipi(i, IRQ_CROSS_CALL);
201 				} else {
202 					ccall_info.processors_in[i] = 1;
203 					ccall_info.processors_out[i] = 1;
204 				}
205 			}
206 		}
207 
208 		{
209 			register int i;
210 
211 			i = 0;
212 			do {
213 				if (!cpumask_test_cpu(i, &mask))
214 					continue;
215 				while (!ccall_info.processors_in[i])
216 					barrier();
217 			} while (++i < ncpus);
218 
219 			i = 0;
220 			do {
221 				if (!cpumask_test_cpu(i, &mask))
222 					continue;
223 				while (!ccall_info.processors_out[i])
224 					barrier();
225 			} while (++i < ncpus);
226 		}
227 		spin_unlock_irqrestore(&cross_call_lock, flags);
228 }
229 
230 /* Running cross calls. */
231 void smp4m_cross_call_irq(void)
232 {
233 	void (*func)(unsigned long, unsigned long, unsigned long, unsigned long,
234 		     unsigned long) = ccall_info.func;
235 	int i = smp_processor_id();
236 
237 	ccall_info.processors_in[i] = 1;
238 	func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3, ccall_info.arg4,
239 	     ccall_info.arg5);
240 	ccall_info.processors_out[i] = 1;
241 }
242 
243 void smp4m_percpu_timer_interrupt(struct pt_regs *regs)
244 {
245 	struct pt_regs *old_regs;
246 	struct clock_event_device *ce;
247 	int cpu = smp_processor_id();
248 
249 	old_regs = set_irq_regs(regs);
250 
251 	ce = &per_cpu(sparc32_clockevent, cpu);
252 
253 	if (clockevent_state_periodic(ce))
254 		sun4m_clear_profile_irq(cpu);
255 	else
256 		sparc_config.load_profile_irq(cpu, 0); /* Is this needless? */
257 
258 	irq_enter();
259 	ce->event_handler(ce);
260 	irq_exit();
261 
262 	set_irq_regs(old_regs);
263 }
264 
265 static const struct sparc32_ipi_ops sun4m_ipi_ops = {
266 	.cross_call = sun4m_cross_call,
267 	.resched    = sun4m_ipi_resched,
268 	.single     = sun4m_ipi_single,
269 	.mask_one   = sun4m_ipi_mask_one,
270 };
271 
272 void __init sun4m_init_smp(void)
273 {
274 	sparc32_ipi_ops = &sun4m_ipi_ops;
275 }
276