xref: /linux/arch/x86/events/intel/core.c (revision dd093fb0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17 #include <linux/kvm_host.h>
18 
19 #include <asm/cpufeature.h>
20 #include <asm/hardirq.h>
21 #include <asm/intel-family.h>
22 #include <asm/intel_pt.h>
23 #include <asm/apic.h>
24 #include <asm/cpu_device_id.h>
25 
26 #include "../perf_event.h"
27 
28 /*
29  * Intel PerfMon, used on Core and later.
30  */
31 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
32 {
33 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
34 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
35 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
36 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
37 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
38 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
39 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
40 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
41 };
42 
43 static struct event_constraint intel_core_event_constraints[] __read_mostly =
44 {
45 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
46 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
47 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
48 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
49 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
50 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
51 	EVENT_CONSTRAINT_END
52 };
53 
54 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
55 {
56 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
57 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
58 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
59 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
60 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
61 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
62 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
63 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
64 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
65 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
66 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
67 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
68 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
69 	EVENT_CONSTRAINT_END
70 };
71 
72 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
73 {
74 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
75 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
76 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
77 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
78 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
79 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
80 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
81 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
82 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
83 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
84 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
85 	EVENT_CONSTRAINT_END
86 };
87 
88 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
89 {
90 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
91 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
92 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
93 	EVENT_EXTRA_END
94 };
95 
96 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
97 {
98 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
99 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
100 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
101 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
102 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
103 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
104 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
105 	EVENT_CONSTRAINT_END
106 };
107 
108 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
109 {
110 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
111 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
112 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
113 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
114 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
115 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
116 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
117 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
118 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
119 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
120 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
121 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
122 
123 	/*
124 	 * When HT is off these events can only run on the bottom 4 counters
125 	 * When HT is on, they are impacted by the HT bug and require EXCL access
126 	 */
127 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
128 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
129 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
130 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
131 
132 	EVENT_CONSTRAINT_END
133 };
134 
135 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
136 {
137 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
138 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
139 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
140 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
141 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
142 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
143 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
144 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
145 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
146 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
147 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
148 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
149 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
150 
151 	/*
152 	 * When HT is off these events can only run on the bottom 4 counters
153 	 * When HT is on, they are impacted by the HT bug and require EXCL access
154 	 */
155 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
156 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
157 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
158 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
159 
160 	EVENT_CONSTRAINT_END
161 };
162 
163 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
164 {
165 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
166 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
167 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
168 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
169 	EVENT_EXTRA_END
170 };
171 
172 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
173 {
174 	EVENT_CONSTRAINT_END
175 };
176 
177 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
178 {
179 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
180 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
181 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
182 	EVENT_CONSTRAINT_END
183 };
184 
185 static struct event_constraint intel_v5_gen_event_constraints[] __read_mostly =
186 {
187 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
188 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
189 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
190 	FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
191 	FIXED_EVENT_CONSTRAINT(0x0500, 4),
192 	FIXED_EVENT_CONSTRAINT(0x0600, 5),
193 	FIXED_EVENT_CONSTRAINT(0x0700, 6),
194 	FIXED_EVENT_CONSTRAINT(0x0800, 7),
195 	FIXED_EVENT_CONSTRAINT(0x0900, 8),
196 	FIXED_EVENT_CONSTRAINT(0x0a00, 9),
197 	FIXED_EVENT_CONSTRAINT(0x0b00, 10),
198 	FIXED_EVENT_CONSTRAINT(0x0c00, 11),
199 	FIXED_EVENT_CONSTRAINT(0x0d00, 12),
200 	FIXED_EVENT_CONSTRAINT(0x0e00, 13),
201 	FIXED_EVENT_CONSTRAINT(0x0f00, 14),
202 	FIXED_EVENT_CONSTRAINT(0x1000, 15),
203 	EVENT_CONSTRAINT_END
204 };
205 
206 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
207 {
208 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
209 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
210 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
211 	EVENT_CONSTRAINT_END
212 };
213 
214 static struct event_constraint intel_skl_event_constraints[] = {
215 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
216 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
217 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
218 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
219 
220 	/*
221 	 * when HT is off, these can only run on the bottom 4 counters
222 	 */
223 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
224 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
225 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
226 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
227 	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */
228 
229 	EVENT_CONSTRAINT_END
230 };
231 
232 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
233 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
234 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
235 	EVENT_EXTRA_END
236 };
237 
238 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
239 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
240 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
241 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
242 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
243 	EVENT_EXTRA_END
244 };
245 
246 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
247 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
248 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
249 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
250 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
251 	EVENT_EXTRA_END
252 };
253 
254 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
255 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
256 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
257 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
258 	/*
259 	 * Note the low 8 bits eventsel code is not a continuous field, containing
260 	 * some #GPing bits. These are masked out.
261 	 */
262 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
263 	EVENT_EXTRA_END
264 };
265 
266 static struct event_constraint intel_icl_event_constraints[] = {
267 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
268 	FIXED_EVENT_CONSTRAINT(0x01c0, 0),	/* old INST_RETIRED.PREC_DIST */
269 	FIXED_EVENT_CONSTRAINT(0x0100, 0),	/* INST_RETIRED.PREC_DIST */
270 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
271 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
272 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
273 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
274 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
275 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
276 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
277 	INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
278 	INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
279 	INTEL_EVENT_CONSTRAINT(0x32, 0xf),	/* SW_PREFETCH_ACCESS.* */
280 	INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf),
281 	INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
282 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
283 	INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
284 	INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
285 	INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
286 	INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
287 	INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
288 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
289 	INTEL_EVENT_CONSTRAINT(0xef, 0xf),
290 	INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
291 	EVENT_CONSTRAINT_END
292 };
293 
294 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
295 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
296 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
297 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
298 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
299 	EVENT_EXTRA_END
300 };
301 
302 static struct extra_reg intel_spr_extra_regs[] __read_mostly = {
303 	INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
304 	INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
305 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
306 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
307 	INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
308 	INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
309 	EVENT_EXTRA_END
310 };
311 
312 static struct event_constraint intel_spr_event_constraints[] = {
313 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
314 	FIXED_EVENT_CONSTRAINT(0x0100, 0),	/* INST_RETIRED.PREC_DIST */
315 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
316 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
317 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
318 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
319 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
320 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
321 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
322 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
323 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
324 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
325 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
326 
327 	INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
328 	INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
329 	/*
330 	 * Generally event codes < 0x90 are restricted to counters 0-3.
331 	 * The 0x2E and 0x3C are exception, which has no restriction.
332 	 */
333 	INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
334 
335 	INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
336 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
337 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
338 	INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
339 	INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
340 	INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
341 	INTEL_EVENT_CONSTRAINT(0xce, 0x1),
342 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
343 	/*
344 	 * Generally event codes >= 0x90 are likely to have no restrictions.
345 	 * The exception are defined as above.
346 	 */
347 	INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
348 
349 	EVENT_CONSTRAINT_END
350 };
351 
352 
353 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
354 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
355 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
356 
357 static struct attribute *nhm_mem_events_attrs[] = {
358 	EVENT_PTR(mem_ld_nhm),
359 	NULL,
360 };
361 
362 /*
363  * topdown events for Intel Core CPUs.
364  *
365  * The events are all in slots, which is a free slot in a 4 wide
366  * pipeline. Some events are already reported in slots, for cycle
367  * events we multiply by the pipeline width (4).
368  *
369  * With Hyper Threading on, topdown metrics are either summed or averaged
370  * between the threads of a core: (count_t0 + count_t1).
371  *
372  * For the average case the metric is always scaled to pipeline width,
373  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
374  */
375 
376 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
377 	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
378 	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
379 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
380 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
381 	"event=0xe,umask=0x1");			/* uops_issued.any */
382 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
383 	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
384 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
385 	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
386 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
387 	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
388 	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
389 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
390 	"4", "2");
391 
392 EVENT_ATTR_STR(slots,			slots,			"event=0x00,umask=0x4");
393 EVENT_ATTR_STR(topdown-retiring,	td_retiring,		"event=0x00,umask=0x80");
394 EVENT_ATTR_STR(topdown-bad-spec,	td_bad_spec,		"event=0x00,umask=0x81");
395 EVENT_ATTR_STR(topdown-fe-bound,	td_fe_bound,		"event=0x00,umask=0x82");
396 EVENT_ATTR_STR(topdown-be-bound,	td_be_bound,		"event=0x00,umask=0x83");
397 EVENT_ATTR_STR(topdown-heavy-ops,	td_heavy_ops,		"event=0x00,umask=0x84");
398 EVENT_ATTR_STR(topdown-br-mispredict,	td_br_mispredict,	"event=0x00,umask=0x85");
399 EVENT_ATTR_STR(topdown-fetch-lat,	td_fetch_lat,		"event=0x00,umask=0x86");
400 EVENT_ATTR_STR(topdown-mem-bound,	td_mem_bound,		"event=0x00,umask=0x87");
401 
402 static struct attribute *snb_events_attrs[] = {
403 	EVENT_PTR(td_slots_issued),
404 	EVENT_PTR(td_slots_retired),
405 	EVENT_PTR(td_fetch_bubbles),
406 	EVENT_PTR(td_total_slots),
407 	EVENT_PTR(td_total_slots_scale),
408 	EVENT_PTR(td_recovery_bubbles),
409 	EVENT_PTR(td_recovery_bubbles_scale),
410 	NULL,
411 };
412 
413 static struct attribute *snb_mem_events_attrs[] = {
414 	EVENT_PTR(mem_ld_snb),
415 	EVENT_PTR(mem_st_snb),
416 	NULL,
417 };
418 
419 static struct event_constraint intel_hsw_event_constraints[] = {
420 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
421 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
422 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
423 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
424 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
425 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
426 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
427 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
428 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
429 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
430 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
431 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
432 
433 	/*
434 	 * When HT is off these events can only run on the bottom 4 counters
435 	 * When HT is on, they are impacted by the HT bug and require EXCL access
436 	 */
437 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
438 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
439 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
440 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
441 
442 	EVENT_CONSTRAINT_END
443 };
444 
445 static struct event_constraint intel_bdw_event_constraints[] = {
446 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
447 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
448 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
449 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
450 	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
451 	/*
452 	 * when HT is off, these can only run on the bottom 4 counters
453 	 */
454 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
455 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
456 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
457 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
458 	EVENT_CONSTRAINT_END
459 };
460 
461 static u64 intel_pmu_event_map(int hw_event)
462 {
463 	return intel_perfmon_event_map[hw_event];
464 }
465 
466 static __initconst const u64 spr_hw_cache_event_ids
467 				[PERF_COUNT_HW_CACHE_MAX]
468 				[PERF_COUNT_HW_CACHE_OP_MAX]
469 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
470 {
471  [ C(L1D ) ] = {
472 	[ C(OP_READ) ] = {
473 		[ C(RESULT_ACCESS) ] = 0x81d0,
474 		[ C(RESULT_MISS)   ] = 0xe124,
475 	},
476 	[ C(OP_WRITE) ] = {
477 		[ C(RESULT_ACCESS) ] = 0x82d0,
478 	},
479  },
480  [ C(L1I ) ] = {
481 	[ C(OP_READ) ] = {
482 		[ C(RESULT_MISS)   ] = 0xe424,
483 	},
484 	[ C(OP_WRITE) ] = {
485 		[ C(RESULT_ACCESS) ] = -1,
486 		[ C(RESULT_MISS)   ] = -1,
487 	},
488  },
489  [ C(LL  ) ] = {
490 	[ C(OP_READ) ] = {
491 		[ C(RESULT_ACCESS) ] = 0x12a,
492 		[ C(RESULT_MISS)   ] = 0x12a,
493 	},
494 	[ C(OP_WRITE) ] = {
495 		[ C(RESULT_ACCESS) ] = 0x12a,
496 		[ C(RESULT_MISS)   ] = 0x12a,
497 	},
498  },
499  [ C(DTLB) ] = {
500 	[ C(OP_READ) ] = {
501 		[ C(RESULT_ACCESS) ] = 0x81d0,
502 		[ C(RESULT_MISS)   ] = 0xe12,
503 	},
504 	[ C(OP_WRITE) ] = {
505 		[ C(RESULT_ACCESS) ] = 0x82d0,
506 		[ C(RESULT_MISS)   ] = 0xe13,
507 	},
508  },
509  [ C(ITLB) ] = {
510 	[ C(OP_READ) ] = {
511 		[ C(RESULT_ACCESS) ] = -1,
512 		[ C(RESULT_MISS)   ] = 0xe11,
513 	},
514 	[ C(OP_WRITE) ] = {
515 		[ C(RESULT_ACCESS) ] = -1,
516 		[ C(RESULT_MISS)   ] = -1,
517 	},
518 	[ C(OP_PREFETCH) ] = {
519 		[ C(RESULT_ACCESS) ] = -1,
520 		[ C(RESULT_MISS)   ] = -1,
521 	},
522  },
523  [ C(BPU ) ] = {
524 	[ C(OP_READ) ] = {
525 		[ C(RESULT_ACCESS) ] = 0x4c4,
526 		[ C(RESULT_MISS)   ] = 0x4c5,
527 	},
528 	[ C(OP_WRITE) ] = {
529 		[ C(RESULT_ACCESS) ] = -1,
530 		[ C(RESULT_MISS)   ] = -1,
531 	},
532 	[ C(OP_PREFETCH) ] = {
533 		[ C(RESULT_ACCESS) ] = -1,
534 		[ C(RESULT_MISS)   ] = -1,
535 	},
536  },
537  [ C(NODE) ] = {
538 	[ C(OP_READ) ] = {
539 		[ C(RESULT_ACCESS) ] = 0x12a,
540 		[ C(RESULT_MISS)   ] = 0x12a,
541 	},
542  },
543 };
544 
545 static __initconst const u64 spr_hw_cache_extra_regs
546 				[PERF_COUNT_HW_CACHE_MAX]
547 				[PERF_COUNT_HW_CACHE_OP_MAX]
548 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
549 {
550  [ C(LL  ) ] = {
551 	[ C(OP_READ) ] = {
552 		[ C(RESULT_ACCESS) ] = 0x10001,
553 		[ C(RESULT_MISS)   ] = 0x3fbfc00001,
554 	},
555 	[ C(OP_WRITE) ] = {
556 		[ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
557 		[ C(RESULT_MISS)   ] = 0x3f3fc00002,
558 	},
559  },
560  [ C(NODE) ] = {
561 	[ C(OP_READ) ] = {
562 		[ C(RESULT_ACCESS) ] = 0x10c000001,
563 		[ C(RESULT_MISS)   ] = 0x3fb3000001,
564 	},
565  },
566 };
567 
568 /*
569  * Notes on the events:
570  * - data reads do not include code reads (comparable to earlier tables)
571  * - data counts include speculative execution (except L1 write, dtlb, bpu)
572  * - remote node access includes remote memory, remote cache, remote mmio.
573  * - prefetches are not included in the counts.
574  * - icache miss does not include decoded icache
575  */
576 
577 #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
578 #define SKL_DEMAND_RFO			BIT_ULL(1)
579 #define SKL_ANY_RESPONSE		BIT_ULL(16)
580 #define SKL_SUPPLIER_NONE		BIT_ULL(17)
581 #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
582 #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
583 #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
584 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
585 #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
586 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
587 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
588 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
589 #define SKL_SPL_HIT			BIT_ULL(30)
590 #define SKL_SNOOP_NONE			BIT_ULL(31)
591 #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
592 #define SKL_SNOOP_MISS			BIT_ULL(33)
593 #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
594 #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
595 #define SKL_SNOOP_HITM			BIT_ULL(36)
596 #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
597 #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
598 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
599 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
600 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
601 #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
602 #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
603 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
604 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
605 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
606 #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
607 #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
608 #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
609 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
610 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
611 
612 static __initconst const u64 skl_hw_cache_event_ids
613 				[PERF_COUNT_HW_CACHE_MAX]
614 				[PERF_COUNT_HW_CACHE_OP_MAX]
615 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
616 {
617  [ C(L1D ) ] = {
618 	[ C(OP_READ) ] = {
619 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
620 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
621 	},
622 	[ C(OP_WRITE) ] = {
623 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
624 		[ C(RESULT_MISS)   ] = 0x0,
625 	},
626 	[ C(OP_PREFETCH) ] = {
627 		[ C(RESULT_ACCESS) ] = 0x0,
628 		[ C(RESULT_MISS)   ] = 0x0,
629 	},
630  },
631  [ C(L1I ) ] = {
632 	[ C(OP_READ) ] = {
633 		[ C(RESULT_ACCESS) ] = 0x0,
634 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
635 	},
636 	[ C(OP_WRITE) ] = {
637 		[ C(RESULT_ACCESS) ] = -1,
638 		[ C(RESULT_MISS)   ] = -1,
639 	},
640 	[ C(OP_PREFETCH) ] = {
641 		[ C(RESULT_ACCESS) ] = 0x0,
642 		[ C(RESULT_MISS)   ] = 0x0,
643 	},
644  },
645  [ C(LL  ) ] = {
646 	[ C(OP_READ) ] = {
647 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
648 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
649 	},
650 	[ C(OP_WRITE) ] = {
651 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
652 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
653 	},
654 	[ C(OP_PREFETCH) ] = {
655 		[ C(RESULT_ACCESS) ] = 0x0,
656 		[ C(RESULT_MISS)   ] = 0x0,
657 	},
658  },
659  [ C(DTLB) ] = {
660 	[ C(OP_READ) ] = {
661 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
662 		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
663 	},
664 	[ C(OP_WRITE) ] = {
665 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
666 		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
667 	},
668 	[ C(OP_PREFETCH) ] = {
669 		[ C(RESULT_ACCESS) ] = 0x0,
670 		[ C(RESULT_MISS)   ] = 0x0,
671 	},
672  },
673  [ C(ITLB) ] = {
674 	[ C(OP_READ) ] = {
675 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
676 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
677 	},
678 	[ C(OP_WRITE) ] = {
679 		[ C(RESULT_ACCESS) ] = -1,
680 		[ C(RESULT_MISS)   ] = -1,
681 	},
682 	[ C(OP_PREFETCH) ] = {
683 		[ C(RESULT_ACCESS) ] = -1,
684 		[ C(RESULT_MISS)   ] = -1,
685 	},
686  },
687  [ C(BPU ) ] = {
688 	[ C(OP_READ) ] = {
689 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
690 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
691 	},
692 	[ C(OP_WRITE) ] = {
693 		[ C(RESULT_ACCESS) ] = -1,
694 		[ C(RESULT_MISS)   ] = -1,
695 	},
696 	[ C(OP_PREFETCH) ] = {
697 		[ C(RESULT_ACCESS) ] = -1,
698 		[ C(RESULT_MISS)   ] = -1,
699 	},
700  },
701  [ C(NODE) ] = {
702 	[ C(OP_READ) ] = {
703 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
704 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
705 	},
706 	[ C(OP_WRITE) ] = {
707 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
708 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
709 	},
710 	[ C(OP_PREFETCH) ] = {
711 		[ C(RESULT_ACCESS) ] = 0x0,
712 		[ C(RESULT_MISS)   ] = 0x0,
713 	},
714  },
715 };
716 
717 static __initconst const u64 skl_hw_cache_extra_regs
718 				[PERF_COUNT_HW_CACHE_MAX]
719 				[PERF_COUNT_HW_CACHE_OP_MAX]
720 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
721 {
722  [ C(LL  ) ] = {
723 	[ C(OP_READ) ] = {
724 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
725 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
726 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
727 				       SKL_L3_MISS|SKL_ANY_SNOOP|
728 				       SKL_SUPPLIER_NONE,
729 	},
730 	[ C(OP_WRITE) ] = {
731 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
732 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
733 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
734 				       SKL_L3_MISS|SKL_ANY_SNOOP|
735 				       SKL_SUPPLIER_NONE,
736 	},
737 	[ C(OP_PREFETCH) ] = {
738 		[ C(RESULT_ACCESS) ] = 0x0,
739 		[ C(RESULT_MISS)   ] = 0x0,
740 	},
741  },
742  [ C(NODE) ] = {
743 	[ C(OP_READ) ] = {
744 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
745 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
746 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
747 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
748 	},
749 	[ C(OP_WRITE) ] = {
750 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
751 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
752 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
753 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
754 	},
755 	[ C(OP_PREFETCH) ] = {
756 		[ C(RESULT_ACCESS) ] = 0x0,
757 		[ C(RESULT_MISS)   ] = 0x0,
758 	},
759  },
760 };
761 
762 #define SNB_DMND_DATA_RD	(1ULL << 0)
763 #define SNB_DMND_RFO		(1ULL << 1)
764 #define SNB_DMND_IFETCH		(1ULL << 2)
765 #define SNB_DMND_WB		(1ULL << 3)
766 #define SNB_PF_DATA_RD		(1ULL << 4)
767 #define SNB_PF_RFO		(1ULL << 5)
768 #define SNB_PF_IFETCH		(1ULL << 6)
769 #define SNB_LLC_DATA_RD		(1ULL << 7)
770 #define SNB_LLC_RFO		(1ULL << 8)
771 #define SNB_LLC_IFETCH		(1ULL << 9)
772 #define SNB_BUS_LOCKS		(1ULL << 10)
773 #define SNB_STRM_ST		(1ULL << 11)
774 #define SNB_OTHER		(1ULL << 15)
775 #define SNB_RESP_ANY		(1ULL << 16)
776 #define SNB_NO_SUPP		(1ULL << 17)
777 #define SNB_LLC_HITM		(1ULL << 18)
778 #define SNB_LLC_HITE		(1ULL << 19)
779 #define SNB_LLC_HITS		(1ULL << 20)
780 #define SNB_LLC_HITF		(1ULL << 21)
781 #define SNB_LOCAL		(1ULL << 22)
782 #define SNB_REMOTE		(0xffULL << 23)
783 #define SNB_SNP_NONE		(1ULL << 31)
784 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
785 #define SNB_SNP_MISS		(1ULL << 33)
786 #define SNB_NO_FWD		(1ULL << 34)
787 #define SNB_SNP_FWD		(1ULL << 35)
788 #define SNB_HITM		(1ULL << 36)
789 #define SNB_NON_DRAM		(1ULL << 37)
790 
791 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
792 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
793 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
794 
795 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
796 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
797 				 SNB_HITM)
798 
799 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
800 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
801 
802 #define SNB_L3_ACCESS		SNB_RESP_ANY
803 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
804 
805 static __initconst const u64 snb_hw_cache_extra_regs
806 				[PERF_COUNT_HW_CACHE_MAX]
807 				[PERF_COUNT_HW_CACHE_OP_MAX]
808 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
809 {
810  [ C(LL  ) ] = {
811 	[ C(OP_READ) ] = {
812 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
813 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
814 	},
815 	[ C(OP_WRITE) ] = {
816 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
817 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
818 	},
819 	[ C(OP_PREFETCH) ] = {
820 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
821 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
822 	},
823  },
824  [ C(NODE) ] = {
825 	[ C(OP_READ) ] = {
826 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
827 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
828 	},
829 	[ C(OP_WRITE) ] = {
830 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
831 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
832 	},
833 	[ C(OP_PREFETCH) ] = {
834 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
835 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
836 	},
837  },
838 };
839 
840 static __initconst const u64 snb_hw_cache_event_ids
841 				[PERF_COUNT_HW_CACHE_MAX]
842 				[PERF_COUNT_HW_CACHE_OP_MAX]
843 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
844 {
845  [ C(L1D) ] = {
846 	[ C(OP_READ) ] = {
847 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
848 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
849 	},
850 	[ C(OP_WRITE) ] = {
851 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
852 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
853 	},
854 	[ C(OP_PREFETCH) ] = {
855 		[ C(RESULT_ACCESS) ] = 0x0,
856 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
857 	},
858  },
859  [ C(L1I ) ] = {
860 	[ C(OP_READ) ] = {
861 		[ C(RESULT_ACCESS) ] = 0x0,
862 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
863 	},
864 	[ C(OP_WRITE) ] = {
865 		[ C(RESULT_ACCESS) ] = -1,
866 		[ C(RESULT_MISS)   ] = -1,
867 	},
868 	[ C(OP_PREFETCH) ] = {
869 		[ C(RESULT_ACCESS) ] = 0x0,
870 		[ C(RESULT_MISS)   ] = 0x0,
871 	},
872  },
873  [ C(LL  ) ] = {
874 	[ C(OP_READ) ] = {
875 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
876 		[ C(RESULT_ACCESS) ] = 0x01b7,
877 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
878 		[ C(RESULT_MISS)   ] = 0x01b7,
879 	},
880 	[ C(OP_WRITE) ] = {
881 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
882 		[ C(RESULT_ACCESS) ] = 0x01b7,
883 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
884 		[ C(RESULT_MISS)   ] = 0x01b7,
885 	},
886 	[ C(OP_PREFETCH) ] = {
887 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
888 		[ C(RESULT_ACCESS) ] = 0x01b7,
889 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
890 		[ C(RESULT_MISS)   ] = 0x01b7,
891 	},
892  },
893  [ C(DTLB) ] = {
894 	[ C(OP_READ) ] = {
895 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
896 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
897 	},
898 	[ C(OP_WRITE) ] = {
899 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
900 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
901 	},
902 	[ C(OP_PREFETCH) ] = {
903 		[ C(RESULT_ACCESS) ] = 0x0,
904 		[ C(RESULT_MISS)   ] = 0x0,
905 	},
906  },
907  [ C(ITLB) ] = {
908 	[ C(OP_READ) ] = {
909 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
910 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
911 	},
912 	[ C(OP_WRITE) ] = {
913 		[ C(RESULT_ACCESS) ] = -1,
914 		[ C(RESULT_MISS)   ] = -1,
915 	},
916 	[ C(OP_PREFETCH) ] = {
917 		[ C(RESULT_ACCESS) ] = -1,
918 		[ C(RESULT_MISS)   ] = -1,
919 	},
920  },
921  [ C(BPU ) ] = {
922 	[ C(OP_READ) ] = {
923 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
924 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
925 	},
926 	[ C(OP_WRITE) ] = {
927 		[ C(RESULT_ACCESS) ] = -1,
928 		[ C(RESULT_MISS)   ] = -1,
929 	},
930 	[ C(OP_PREFETCH) ] = {
931 		[ C(RESULT_ACCESS) ] = -1,
932 		[ C(RESULT_MISS)   ] = -1,
933 	},
934  },
935  [ C(NODE) ] = {
936 	[ C(OP_READ) ] = {
937 		[ C(RESULT_ACCESS) ] = 0x01b7,
938 		[ C(RESULT_MISS)   ] = 0x01b7,
939 	},
940 	[ C(OP_WRITE) ] = {
941 		[ C(RESULT_ACCESS) ] = 0x01b7,
942 		[ C(RESULT_MISS)   ] = 0x01b7,
943 	},
944 	[ C(OP_PREFETCH) ] = {
945 		[ C(RESULT_ACCESS) ] = 0x01b7,
946 		[ C(RESULT_MISS)   ] = 0x01b7,
947 	},
948  },
949 
950 };
951 
952 /*
953  * Notes on the events:
954  * - data reads do not include code reads (comparable to earlier tables)
955  * - data counts include speculative execution (except L1 write, dtlb, bpu)
956  * - remote node access includes remote memory, remote cache, remote mmio.
957  * - prefetches are not included in the counts because they are not
958  *   reliably counted.
959  */
960 
961 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
962 #define HSW_DEMAND_RFO			BIT_ULL(1)
963 #define HSW_ANY_RESPONSE		BIT_ULL(16)
964 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
965 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
966 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
967 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
968 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
969 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
970 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
971 					 HSW_L3_MISS_REMOTE_HOP2P)
972 #define HSW_SNOOP_NONE			BIT_ULL(31)
973 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
974 #define HSW_SNOOP_MISS			BIT_ULL(33)
975 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
976 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
977 #define HSW_SNOOP_HITM			BIT_ULL(36)
978 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
979 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
980 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
981 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
982 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
983 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
984 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
985 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
986 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
987 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
988 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
989 
990 #define BDW_L3_MISS_LOCAL		BIT(26)
991 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
992 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
993 					 HSW_L3_MISS_REMOTE_HOP2P)
994 
995 
996 static __initconst const u64 hsw_hw_cache_event_ids
997 				[PERF_COUNT_HW_CACHE_MAX]
998 				[PERF_COUNT_HW_CACHE_OP_MAX]
999 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1000 {
1001  [ C(L1D ) ] = {
1002 	[ C(OP_READ) ] = {
1003 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1004 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
1005 	},
1006 	[ C(OP_WRITE) ] = {
1007 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1008 		[ C(RESULT_MISS)   ] = 0x0,
1009 	},
1010 	[ C(OP_PREFETCH) ] = {
1011 		[ C(RESULT_ACCESS) ] = 0x0,
1012 		[ C(RESULT_MISS)   ] = 0x0,
1013 	},
1014  },
1015  [ C(L1I ) ] = {
1016 	[ C(OP_READ) ] = {
1017 		[ C(RESULT_ACCESS) ] = 0x0,
1018 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
1019 	},
1020 	[ C(OP_WRITE) ] = {
1021 		[ C(RESULT_ACCESS) ] = -1,
1022 		[ C(RESULT_MISS)   ] = -1,
1023 	},
1024 	[ C(OP_PREFETCH) ] = {
1025 		[ C(RESULT_ACCESS) ] = 0x0,
1026 		[ C(RESULT_MISS)   ] = 0x0,
1027 	},
1028  },
1029  [ C(LL  ) ] = {
1030 	[ C(OP_READ) ] = {
1031 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1032 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1033 	},
1034 	[ C(OP_WRITE) ] = {
1035 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1036 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1037 	},
1038 	[ C(OP_PREFETCH) ] = {
1039 		[ C(RESULT_ACCESS) ] = 0x0,
1040 		[ C(RESULT_MISS)   ] = 0x0,
1041 	},
1042  },
1043  [ C(DTLB) ] = {
1044 	[ C(OP_READ) ] = {
1045 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1046 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1047 	},
1048 	[ C(OP_WRITE) ] = {
1049 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1050 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1051 	},
1052 	[ C(OP_PREFETCH) ] = {
1053 		[ C(RESULT_ACCESS) ] = 0x0,
1054 		[ C(RESULT_MISS)   ] = 0x0,
1055 	},
1056  },
1057  [ C(ITLB) ] = {
1058 	[ C(OP_READ) ] = {
1059 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
1060 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
1061 	},
1062 	[ C(OP_WRITE) ] = {
1063 		[ C(RESULT_ACCESS) ] = -1,
1064 		[ C(RESULT_MISS)   ] = -1,
1065 	},
1066 	[ C(OP_PREFETCH) ] = {
1067 		[ C(RESULT_ACCESS) ] = -1,
1068 		[ C(RESULT_MISS)   ] = -1,
1069 	},
1070  },
1071  [ C(BPU ) ] = {
1072 	[ C(OP_READ) ] = {
1073 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1074 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1075 	},
1076 	[ C(OP_WRITE) ] = {
1077 		[ C(RESULT_ACCESS) ] = -1,
1078 		[ C(RESULT_MISS)   ] = -1,
1079 	},
1080 	[ C(OP_PREFETCH) ] = {
1081 		[ C(RESULT_ACCESS) ] = -1,
1082 		[ C(RESULT_MISS)   ] = -1,
1083 	},
1084  },
1085  [ C(NODE) ] = {
1086 	[ C(OP_READ) ] = {
1087 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1088 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1089 	},
1090 	[ C(OP_WRITE) ] = {
1091 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1092 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1093 	},
1094 	[ C(OP_PREFETCH) ] = {
1095 		[ C(RESULT_ACCESS) ] = 0x0,
1096 		[ C(RESULT_MISS)   ] = 0x0,
1097 	},
1098  },
1099 };
1100 
1101 static __initconst const u64 hsw_hw_cache_extra_regs
1102 				[PERF_COUNT_HW_CACHE_MAX]
1103 				[PERF_COUNT_HW_CACHE_OP_MAX]
1104 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1105 {
1106  [ C(LL  ) ] = {
1107 	[ C(OP_READ) ] = {
1108 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1109 				       HSW_LLC_ACCESS,
1110 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1111 				       HSW_L3_MISS|HSW_ANY_SNOOP,
1112 	},
1113 	[ C(OP_WRITE) ] = {
1114 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1115 				       HSW_LLC_ACCESS,
1116 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1117 				       HSW_L3_MISS|HSW_ANY_SNOOP,
1118 	},
1119 	[ C(OP_PREFETCH) ] = {
1120 		[ C(RESULT_ACCESS) ] = 0x0,
1121 		[ C(RESULT_MISS)   ] = 0x0,
1122 	},
1123  },
1124  [ C(NODE) ] = {
1125 	[ C(OP_READ) ] = {
1126 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1127 				       HSW_L3_MISS_LOCAL_DRAM|
1128 				       HSW_SNOOP_DRAM,
1129 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1130 				       HSW_L3_MISS_REMOTE|
1131 				       HSW_SNOOP_DRAM,
1132 	},
1133 	[ C(OP_WRITE) ] = {
1134 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1135 				       HSW_L3_MISS_LOCAL_DRAM|
1136 				       HSW_SNOOP_DRAM,
1137 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1138 				       HSW_L3_MISS_REMOTE|
1139 				       HSW_SNOOP_DRAM,
1140 	},
1141 	[ C(OP_PREFETCH) ] = {
1142 		[ C(RESULT_ACCESS) ] = 0x0,
1143 		[ C(RESULT_MISS)   ] = 0x0,
1144 	},
1145  },
1146 };
1147 
1148 static __initconst const u64 westmere_hw_cache_event_ids
1149 				[PERF_COUNT_HW_CACHE_MAX]
1150 				[PERF_COUNT_HW_CACHE_OP_MAX]
1151 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1152 {
1153  [ C(L1D) ] = {
1154 	[ C(OP_READ) ] = {
1155 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1156 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1157 	},
1158 	[ C(OP_WRITE) ] = {
1159 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1160 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1161 	},
1162 	[ C(OP_PREFETCH) ] = {
1163 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1164 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1165 	},
1166  },
1167  [ C(L1I ) ] = {
1168 	[ C(OP_READ) ] = {
1169 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1170 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1171 	},
1172 	[ C(OP_WRITE) ] = {
1173 		[ C(RESULT_ACCESS) ] = -1,
1174 		[ C(RESULT_MISS)   ] = -1,
1175 	},
1176 	[ C(OP_PREFETCH) ] = {
1177 		[ C(RESULT_ACCESS) ] = 0x0,
1178 		[ C(RESULT_MISS)   ] = 0x0,
1179 	},
1180  },
1181  [ C(LL  ) ] = {
1182 	[ C(OP_READ) ] = {
1183 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1184 		[ C(RESULT_ACCESS) ] = 0x01b7,
1185 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1186 		[ C(RESULT_MISS)   ] = 0x01b7,
1187 	},
1188 	/*
1189 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1190 	 * on RFO.
1191 	 */
1192 	[ C(OP_WRITE) ] = {
1193 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1194 		[ C(RESULT_ACCESS) ] = 0x01b7,
1195 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1196 		[ C(RESULT_MISS)   ] = 0x01b7,
1197 	},
1198 	[ C(OP_PREFETCH) ] = {
1199 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1200 		[ C(RESULT_ACCESS) ] = 0x01b7,
1201 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1202 		[ C(RESULT_MISS)   ] = 0x01b7,
1203 	},
1204  },
1205  [ C(DTLB) ] = {
1206 	[ C(OP_READ) ] = {
1207 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1208 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1209 	},
1210 	[ C(OP_WRITE) ] = {
1211 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1212 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1213 	},
1214 	[ C(OP_PREFETCH) ] = {
1215 		[ C(RESULT_ACCESS) ] = 0x0,
1216 		[ C(RESULT_MISS)   ] = 0x0,
1217 	},
1218  },
1219  [ C(ITLB) ] = {
1220 	[ C(OP_READ) ] = {
1221 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1222 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1223 	},
1224 	[ C(OP_WRITE) ] = {
1225 		[ C(RESULT_ACCESS) ] = -1,
1226 		[ C(RESULT_MISS)   ] = -1,
1227 	},
1228 	[ C(OP_PREFETCH) ] = {
1229 		[ C(RESULT_ACCESS) ] = -1,
1230 		[ C(RESULT_MISS)   ] = -1,
1231 	},
1232  },
1233  [ C(BPU ) ] = {
1234 	[ C(OP_READ) ] = {
1235 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1236 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1237 	},
1238 	[ C(OP_WRITE) ] = {
1239 		[ C(RESULT_ACCESS) ] = -1,
1240 		[ C(RESULT_MISS)   ] = -1,
1241 	},
1242 	[ C(OP_PREFETCH) ] = {
1243 		[ C(RESULT_ACCESS) ] = -1,
1244 		[ C(RESULT_MISS)   ] = -1,
1245 	},
1246  },
1247  [ C(NODE) ] = {
1248 	[ C(OP_READ) ] = {
1249 		[ C(RESULT_ACCESS) ] = 0x01b7,
1250 		[ C(RESULT_MISS)   ] = 0x01b7,
1251 	},
1252 	[ C(OP_WRITE) ] = {
1253 		[ C(RESULT_ACCESS) ] = 0x01b7,
1254 		[ C(RESULT_MISS)   ] = 0x01b7,
1255 	},
1256 	[ C(OP_PREFETCH) ] = {
1257 		[ C(RESULT_ACCESS) ] = 0x01b7,
1258 		[ C(RESULT_MISS)   ] = 0x01b7,
1259 	},
1260  },
1261 };
1262 
1263 /*
1264  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1265  * See IA32 SDM Vol 3B 30.6.1.3
1266  */
1267 
1268 #define NHM_DMND_DATA_RD	(1 << 0)
1269 #define NHM_DMND_RFO		(1 << 1)
1270 #define NHM_DMND_IFETCH		(1 << 2)
1271 #define NHM_DMND_WB		(1 << 3)
1272 #define NHM_PF_DATA_RD		(1 << 4)
1273 #define NHM_PF_DATA_RFO		(1 << 5)
1274 #define NHM_PF_IFETCH		(1 << 6)
1275 #define NHM_OFFCORE_OTHER	(1 << 7)
1276 #define NHM_UNCORE_HIT		(1 << 8)
1277 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
1278 #define NHM_OTHER_CORE_HITM	(1 << 10)
1279         			/* reserved */
1280 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
1281 #define NHM_REMOTE_DRAM		(1 << 13)
1282 #define NHM_LOCAL_DRAM		(1 << 14)
1283 #define NHM_NON_DRAM		(1 << 15)
1284 
1285 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1286 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
1287 
1288 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
1289 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
1290 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1291 
1292 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1293 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1294 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1295 
1296 static __initconst const u64 nehalem_hw_cache_extra_regs
1297 				[PERF_COUNT_HW_CACHE_MAX]
1298 				[PERF_COUNT_HW_CACHE_OP_MAX]
1299 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1300 {
1301  [ C(LL  ) ] = {
1302 	[ C(OP_READ) ] = {
1303 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1304 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1305 	},
1306 	[ C(OP_WRITE) ] = {
1307 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1308 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1309 	},
1310 	[ C(OP_PREFETCH) ] = {
1311 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1312 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1313 	},
1314  },
1315  [ C(NODE) ] = {
1316 	[ C(OP_READ) ] = {
1317 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1318 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1319 	},
1320 	[ C(OP_WRITE) ] = {
1321 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1322 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1323 	},
1324 	[ C(OP_PREFETCH) ] = {
1325 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1326 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1327 	},
1328  },
1329 };
1330 
1331 static __initconst const u64 nehalem_hw_cache_event_ids
1332 				[PERF_COUNT_HW_CACHE_MAX]
1333 				[PERF_COUNT_HW_CACHE_OP_MAX]
1334 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1335 {
1336  [ C(L1D) ] = {
1337 	[ C(OP_READ) ] = {
1338 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1339 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1340 	},
1341 	[ C(OP_WRITE) ] = {
1342 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1343 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1344 	},
1345 	[ C(OP_PREFETCH) ] = {
1346 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1347 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1348 	},
1349  },
1350  [ C(L1I ) ] = {
1351 	[ C(OP_READ) ] = {
1352 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1353 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1354 	},
1355 	[ C(OP_WRITE) ] = {
1356 		[ C(RESULT_ACCESS) ] = -1,
1357 		[ C(RESULT_MISS)   ] = -1,
1358 	},
1359 	[ C(OP_PREFETCH) ] = {
1360 		[ C(RESULT_ACCESS) ] = 0x0,
1361 		[ C(RESULT_MISS)   ] = 0x0,
1362 	},
1363  },
1364  [ C(LL  ) ] = {
1365 	[ C(OP_READ) ] = {
1366 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1367 		[ C(RESULT_ACCESS) ] = 0x01b7,
1368 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1369 		[ C(RESULT_MISS)   ] = 0x01b7,
1370 	},
1371 	/*
1372 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1373 	 * on RFO.
1374 	 */
1375 	[ C(OP_WRITE) ] = {
1376 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1377 		[ C(RESULT_ACCESS) ] = 0x01b7,
1378 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1379 		[ C(RESULT_MISS)   ] = 0x01b7,
1380 	},
1381 	[ C(OP_PREFETCH) ] = {
1382 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1383 		[ C(RESULT_ACCESS) ] = 0x01b7,
1384 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1385 		[ C(RESULT_MISS)   ] = 0x01b7,
1386 	},
1387  },
1388  [ C(DTLB) ] = {
1389 	[ C(OP_READ) ] = {
1390 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1391 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1392 	},
1393 	[ C(OP_WRITE) ] = {
1394 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1395 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1396 	},
1397 	[ C(OP_PREFETCH) ] = {
1398 		[ C(RESULT_ACCESS) ] = 0x0,
1399 		[ C(RESULT_MISS)   ] = 0x0,
1400 	},
1401  },
1402  [ C(ITLB) ] = {
1403 	[ C(OP_READ) ] = {
1404 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1405 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1406 	},
1407 	[ C(OP_WRITE) ] = {
1408 		[ C(RESULT_ACCESS) ] = -1,
1409 		[ C(RESULT_MISS)   ] = -1,
1410 	},
1411 	[ C(OP_PREFETCH) ] = {
1412 		[ C(RESULT_ACCESS) ] = -1,
1413 		[ C(RESULT_MISS)   ] = -1,
1414 	},
1415  },
1416  [ C(BPU ) ] = {
1417 	[ C(OP_READ) ] = {
1418 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1419 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1420 	},
1421 	[ C(OP_WRITE) ] = {
1422 		[ C(RESULT_ACCESS) ] = -1,
1423 		[ C(RESULT_MISS)   ] = -1,
1424 	},
1425 	[ C(OP_PREFETCH) ] = {
1426 		[ C(RESULT_ACCESS) ] = -1,
1427 		[ C(RESULT_MISS)   ] = -1,
1428 	},
1429  },
1430  [ C(NODE) ] = {
1431 	[ C(OP_READ) ] = {
1432 		[ C(RESULT_ACCESS) ] = 0x01b7,
1433 		[ C(RESULT_MISS)   ] = 0x01b7,
1434 	},
1435 	[ C(OP_WRITE) ] = {
1436 		[ C(RESULT_ACCESS) ] = 0x01b7,
1437 		[ C(RESULT_MISS)   ] = 0x01b7,
1438 	},
1439 	[ C(OP_PREFETCH) ] = {
1440 		[ C(RESULT_ACCESS) ] = 0x01b7,
1441 		[ C(RESULT_MISS)   ] = 0x01b7,
1442 	},
1443  },
1444 };
1445 
1446 static __initconst const u64 core2_hw_cache_event_ids
1447 				[PERF_COUNT_HW_CACHE_MAX]
1448 				[PERF_COUNT_HW_CACHE_OP_MAX]
1449 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1450 {
1451  [ C(L1D) ] = {
1452 	[ C(OP_READ) ] = {
1453 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1454 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1455 	},
1456 	[ C(OP_WRITE) ] = {
1457 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1458 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1459 	},
1460 	[ C(OP_PREFETCH) ] = {
1461 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1462 		[ C(RESULT_MISS)   ] = 0,
1463 	},
1464  },
1465  [ C(L1I ) ] = {
1466 	[ C(OP_READ) ] = {
1467 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1468 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1469 	},
1470 	[ C(OP_WRITE) ] = {
1471 		[ C(RESULT_ACCESS) ] = -1,
1472 		[ C(RESULT_MISS)   ] = -1,
1473 	},
1474 	[ C(OP_PREFETCH) ] = {
1475 		[ C(RESULT_ACCESS) ] = 0,
1476 		[ C(RESULT_MISS)   ] = 0,
1477 	},
1478  },
1479  [ C(LL  ) ] = {
1480 	[ C(OP_READ) ] = {
1481 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1482 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1483 	},
1484 	[ C(OP_WRITE) ] = {
1485 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1486 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1487 	},
1488 	[ C(OP_PREFETCH) ] = {
1489 		[ C(RESULT_ACCESS) ] = 0,
1490 		[ C(RESULT_MISS)   ] = 0,
1491 	},
1492  },
1493  [ C(DTLB) ] = {
1494 	[ C(OP_READ) ] = {
1495 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1496 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1497 	},
1498 	[ C(OP_WRITE) ] = {
1499 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1500 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1501 	},
1502 	[ C(OP_PREFETCH) ] = {
1503 		[ C(RESULT_ACCESS) ] = 0,
1504 		[ C(RESULT_MISS)   ] = 0,
1505 	},
1506  },
1507  [ C(ITLB) ] = {
1508 	[ C(OP_READ) ] = {
1509 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1510 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1511 	},
1512 	[ C(OP_WRITE) ] = {
1513 		[ C(RESULT_ACCESS) ] = -1,
1514 		[ C(RESULT_MISS)   ] = -1,
1515 	},
1516 	[ C(OP_PREFETCH) ] = {
1517 		[ C(RESULT_ACCESS) ] = -1,
1518 		[ C(RESULT_MISS)   ] = -1,
1519 	},
1520  },
1521  [ C(BPU ) ] = {
1522 	[ C(OP_READ) ] = {
1523 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1524 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1525 	},
1526 	[ C(OP_WRITE) ] = {
1527 		[ C(RESULT_ACCESS) ] = -1,
1528 		[ C(RESULT_MISS)   ] = -1,
1529 	},
1530 	[ C(OP_PREFETCH) ] = {
1531 		[ C(RESULT_ACCESS) ] = -1,
1532 		[ C(RESULT_MISS)   ] = -1,
1533 	},
1534  },
1535 };
1536 
1537 static __initconst const u64 atom_hw_cache_event_ids
1538 				[PERF_COUNT_HW_CACHE_MAX]
1539 				[PERF_COUNT_HW_CACHE_OP_MAX]
1540 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1541 {
1542  [ C(L1D) ] = {
1543 	[ C(OP_READ) ] = {
1544 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1545 		[ C(RESULT_MISS)   ] = 0,
1546 	},
1547 	[ C(OP_WRITE) ] = {
1548 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1549 		[ C(RESULT_MISS)   ] = 0,
1550 	},
1551 	[ C(OP_PREFETCH) ] = {
1552 		[ C(RESULT_ACCESS) ] = 0x0,
1553 		[ C(RESULT_MISS)   ] = 0,
1554 	},
1555  },
1556  [ C(L1I ) ] = {
1557 	[ C(OP_READ) ] = {
1558 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1559 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1560 	},
1561 	[ C(OP_WRITE) ] = {
1562 		[ C(RESULT_ACCESS) ] = -1,
1563 		[ C(RESULT_MISS)   ] = -1,
1564 	},
1565 	[ C(OP_PREFETCH) ] = {
1566 		[ C(RESULT_ACCESS) ] = 0,
1567 		[ C(RESULT_MISS)   ] = 0,
1568 	},
1569  },
1570  [ C(LL  ) ] = {
1571 	[ C(OP_READ) ] = {
1572 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1573 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1574 	},
1575 	[ C(OP_WRITE) ] = {
1576 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1577 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1578 	},
1579 	[ C(OP_PREFETCH) ] = {
1580 		[ C(RESULT_ACCESS) ] = 0,
1581 		[ C(RESULT_MISS)   ] = 0,
1582 	},
1583  },
1584  [ C(DTLB) ] = {
1585 	[ C(OP_READ) ] = {
1586 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1587 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1588 	},
1589 	[ C(OP_WRITE) ] = {
1590 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1591 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1592 	},
1593 	[ C(OP_PREFETCH) ] = {
1594 		[ C(RESULT_ACCESS) ] = 0,
1595 		[ C(RESULT_MISS)   ] = 0,
1596 	},
1597  },
1598  [ C(ITLB) ] = {
1599 	[ C(OP_READ) ] = {
1600 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1601 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1602 	},
1603 	[ C(OP_WRITE) ] = {
1604 		[ C(RESULT_ACCESS) ] = -1,
1605 		[ C(RESULT_MISS)   ] = -1,
1606 	},
1607 	[ C(OP_PREFETCH) ] = {
1608 		[ C(RESULT_ACCESS) ] = -1,
1609 		[ C(RESULT_MISS)   ] = -1,
1610 	},
1611  },
1612  [ C(BPU ) ] = {
1613 	[ C(OP_READ) ] = {
1614 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1615 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1616 	},
1617 	[ C(OP_WRITE) ] = {
1618 		[ C(RESULT_ACCESS) ] = -1,
1619 		[ C(RESULT_MISS)   ] = -1,
1620 	},
1621 	[ C(OP_PREFETCH) ] = {
1622 		[ C(RESULT_ACCESS) ] = -1,
1623 		[ C(RESULT_MISS)   ] = -1,
1624 	},
1625  },
1626 };
1627 
1628 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1629 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1630 /* no_alloc_cycles.not_delivered */
1631 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1632 	       "event=0xca,umask=0x50");
1633 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1634 /* uops_retired.all */
1635 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1636 	       "event=0xc2,umask=0x10");
1637 /* uops_retired.all */
1638 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1639 	       "event=0xc2,umask=0x10");
1640 
1641 static struct attribute *slm_events_attrs[] = {
1642 	EVENT_PTR(td_total_slots_slm),
1643 	EVENT_PTR(td_total_slots_scale_slm),
1644 	EVENT_PTR(td_fetch_bubbles_slm),
1645 	EVENT_PTR(td_fetch_bubbles_scale_slm),
1646 	EVENT_PTR(td_slots_issued_slm),
1647 	EVENT_PTR(td_slots_retired_slm),
1648 	NULL
1649 };
1650 
1651 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1652 {
1653 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1654 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1655 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1656 	EVENT_EXTRA_END
1657 };
1658 
1659 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1660 #define SLM_DMND_WRITE		SNB_DMND_RFO
1661 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1662 
1663 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1664 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1665 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1666 
1667 static __initconst const u64 slm_hw_cache_extra_regs
1668 				[PERF_COUNT_HW_CACHE_MAX]
1669 				[PERF_COUNT_HW_CACHE_OP_MAX]
1670 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1671 {
1672  [ C(LL  ) ] = {
1673 	[ C(OP_READ) ] = {
1674 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1675 		[ C(RESULT_MISS)   ] = 0,
1676 	},
1677 	[ C(OP_WRITE) ] = {
1678 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1679 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1680 	},
1681 	[ C(OP_PREFETCH) ] = {
1682 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1683 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1684 	},
1685  },
1686 };
1687 
1688 static __initconst const u64 slm_hw_cache_event_ids
1689 				[PERF_COUNT_HW_CACHE_MAX]
1690 				[PERF_COUNT_HW_CACHE_OP_MAX]
1691 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1692 {
1693  [ C(L1D) ] = {
1694 	[ C(OP_READ) ] = {
1695 		[ C(RESULT_ACCESS) ] = 0,
1696 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1697 	},
1698 	[ C(OP_WRITE) ] = {
1699 		[ C(RESULT_ACCESS) ] = 0,
1700 		[ C(RESULT_MISS)   ] = 0,
1701 	},
1702 	[ C(OP_PREFETCH) ] = {
1703 		[ C(RESULT_ACCESS) ] = 0,
1704 		[ C(RESULT_MISS)   ] = 0,
1705 	},
1706  },
1707  [ C(L1I ) ] = {
1708 	[ C(OP_READ) ] = {
1709 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1710 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1711 	},
1712 	[ C(OP_WRITE) ] = {
1713 		[ C(RESULT_ACCESS) ] = -1,
1714 		[ C(RESULT_MISS)   ] = -1,
1715 	},
1716 	[ C(OP_PREFETCH) ] = {
1717 		[ C(RESULT_ACCESS) ] = 0,
1718 		[ C(RESULT_MISS)   ] = 0,
1719 	},
1720  },
1721  [ C(LL  ) ] = {
1722 	[ C(OP_READ) ] = {
1723 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1724 		[ C(RESULT_ACCESS) ] = 0x01b7,
1725 		[ C(RESULT_MISS)   ] = 0,
1726 	},
1727 	[ C(OP_WRITE) ] = {
1728 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1729 		[ C(RESULT_ACCESS) ] = 0x01b7,
1730 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1731 		[ C(RESULT_MISS)   ] = 0x01b7,
1732 	},
1733 	[ C(OP_PREFETCH) ] = {
1734 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1735 		[ C(RESULT_ACCESS) ] = 0x01b7,
1736 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1737 		[ C(RESULT_MISS)   ] = 0x01b7,
1738 	},
1739  },
1740  [ C(DTLB) ] = {
1741 	[ C(OP_READ) ] = {
1742 		[ C(RESULT_ACCESS) ] = 0,
1743 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1744 	},
1745 	[ C(OP_WRITE) ] = {
1746 		[ C(RESULT_ACCESS) ] = 0,
1747 		[ C(RESULT_MISS)   ] = 0,
1748 	},
1749 	[ C(OP_PREFETCH) ] = {
1750 		[ C(RESULT_ACCESS) ] = 0,
1751 		[ C(RESULT_MISS)   ] = 0,
1752 	},
1753  },
1754  [ C(ITLB) ] = {
1755 	[ C(OP_READ) ] = {
1756 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1757 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1758 	},
1759 	[ C(OP_WRITE) ] = {
1760 		[ C(RESULT_ACCESS) ] = -1,
1761 		[ C(RESULT_MISS)   ] = -1,
1762 	},
1763 	[ C(OP_PREFETCH) ] = {
1764 		[ C(RESULT_ACCESS) ] = -1,
1765 		[ C(RESULT_MISS)   ] = -1,
1766 	},
1767  },
1768  [ C(BPU ) ] = {
1769 	[ C(OP_READ) ] = {
1770 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1771 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1772 	},
1773 	[ C(OP_WRITE) ] = {
1774 		[ C(RESULT_ACCESS) ] = -1,
1775 		[ C(RESULT_MISS)   ] = -1,
1776 	},
1777 	[ C(OP_PREFETCH) ] = {
1778 		[ C(RESULT_ACCESS) ] = -1,
1779 		[ C(RESULT_MISS)   ] = -1,
1780 	},
1781  },
1782 };
1783 
1784 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1785 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1786 /* UOPS_NOT_DELIVERED.ANY */
1787 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1788 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1789 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1790 /* UOPS_RETIRED.ANY */
1791 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1792 /* UOPS_ISSUED.ANY */
1793 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1794 
1795 static struct attribute *glm_events_attrs[] = {
1796 	EVENT_PTR(td_total_slots_glm),
1797 	EVENT_PTR(td_total_slots_scale_glm),
1798 	EVENT_PTR(td_fetch_bubbles_glm),
1799 	EVENT_PTR(td_recovery_bubbles_glm),
1800 	EVENT_PTR(td_slots_issued_glm),
1801 	EVENT_PTR(td_slots_retired_glm),
1802 	NULL
1803 };
1804 
1805 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1806 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1807 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1808 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1809 	EVENT_EXTRA_END
1810 };
1811 
1812 #define GLM_DEMAND_DATA_RD		BIT_ULL(0)
1813 #define GLM_DEMAND_RFO			BIT_ULL(1)
1814 #define GLM_ANY_RESPONSE		BIT_ULL(16)
1815 #define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
1816 #define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
1817 #define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
1818 #define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
1819 #define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
1820 #define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1821 #define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)
1822 
1823 static __initconst const u64 glm_hw_cache_event_ids
1824 				[PERF_COUNT_HW_CACHE_MAX]
1825 				[PERF_COUNT_HW_CACHE_OP_MAX]
1826 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1827 	[C(L1D)] = {
1828 		[C(OP_READ)] = {
1829 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1830 			[C(RESULT_MISS)]	= 0x0,
1831 		},
1832 		[C(OP_WRITE)] = {
1833 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1834 			[C(RESULT_MISS)]	= 0x0,
1835 		},
1836 		[C(OP_PREFETCH)] = {
1837 			[C(RESULT_ACCESS)]	= 0x0,
1838 			[C(RESULT_MISS)]	= 0x0,
1839 		},
1840 	},
1841 	[C(L1I)] = {
1842 		[C(OP_READ)] = {
1843 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1844 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1845 		},
1846 		[C(OP_WRITE)] = {
1847 			[C(RESULT_ACCESS)]	= -1,
1848 			[C(RESULT_MISS)]	= -1,
1849 		},
1850 		[C(OP_PREFETCH)] = {
1851 			[C(RESULT_ACCESS)]	= 0x0,
1852 			[C(RESULT_MISS)]	= 0x0,
1853 		},
1854 	},
1855 	[C(LL)] = {
1856 		[C(OP_READ)] = {
1857 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1858 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1859 		},
1860 		[C(OP_WRITE)] = {
1861 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1862 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1863 		},
1864 		[C(OP_PREFETCH)] = {
1865 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1866 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1867 		},
1868 	},
1869 	[C(DTLB)] = {
1870 		[C(OP_READ)] = {
1871 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1872 			[C(RESULT_MISS)]	= 0x0,
1873 		},
1874 		[C(OP_WRITE)] = {
1875 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1876 			[C(RESULT_MISS)]	= 0x0,
1877 		},
1878 		[C(OP_PREFETCH)] = {
1879 			[C(RESULT_ACCESS)]	= 0x0,
1880 			[C(RESULT_MISS)]	= 0x0,
1881 		},
1882 	},
1883 	[C(ITLB)] = {
1884 		[C(OP_READ)] = {
1885 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1886 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1887 		},
1888 		[C(OP_WRITE)] = {
1889 			[C(RESULT_ACCESS)]	= -1,
1890 			[C(RESULT_MISS)]	= -1,
1891 		},
1892 		[C(OP_PREFETCH)] = {
1893 			[C(RESULT_ACCESS)]	= -1,
1894 			[C(RESULT_MISS)]	= -1,
1895 		},
1896 	},
1897 	[C(BPU)] = {
1898 		[C(OP_READ)] = {
1899 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1900 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1901 		},
1902 		[C(OP_WRITE)] = {
1903 			[C(RESULT_ACCESS)]	= -1,
1904 			[C(RESULT_MISS)]	= -1,
1905 		},
1906 		[C(OP_PREFETCH)] = {
1907 			[C(RESULT_ACCESS)]	= -1,
1908 			[C(RESULT_MISS)]	= -1,
1909 		},
1910 	},
1911 };
1912 
1913 static __initconst const u64 glm_hw_cache_extra_regs
1914 				[PERF_COUNT_HW_CACHE_MAX]
1915 				[PERF_COUNT_HW_CACHE_OP_MAX]
1916 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1917 	[C(LL)] = {
1918 		[C(OP_READ)] = {
1919 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1920 						  GLM_LLC_ACCESS,
1921 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1922 						  GLM_LLC_MISS,
1923 		},
1924 		[C(OP_WRITE)] = {
1925 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1926 						  GLM_LLC_ACCESS,
1927 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1928 						  GLM_LLC_MISS,
1929 		},
1930 		[C(OP_PREFETCH)] = {
1931 			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
1932 						  GLM_LLC_ACCESS,
1933 			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
1934 						  GLM_LLC_MISS,
1935 		},
1936 	},
1937 };
1938 
1939 static __initconst const u64 glp_hw_cache_event_ids
1940 				[PERF_COUNT_HW_CACHE_MAX]
1941 				[PERF_COUNT_HW_CACHE_OP_MAX]
1942 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1943 	[C(L1D)] = {
1944 		[C(OP_READ)] = {
1945 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1946 			[C(RESULT_MISS)]	= 0x0,
1947 		},
1948 		[C(OP_WRITE)] = {
1949 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1950 			[C(RESULT_MISS)]	= 0x0,
1951 		},
1952 		[C(OP_PREFETCH)] = {
1953 			[C(RESULT_ACCESS)]	= 0x0,
1954 			[C(RESULT_MISS)]	= 0x0,
1955 		},
1956 	},
1957 	[C(L1I)] = {
1958 		[C(OP_READ)] = {
1959 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1960 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1961 		},
1962 		[C(OP_WRITE)] = {
1963 			[C(RESULT_ACCESS)]	= -1,
1964 			[C(RESULT_MISS)]	= -1,
1965 		},
1966 		[C(OP_PREFETCH)] = {
1967 			[C(RESULT_ACCESS)]	= 0x0,
1968 			[C(RESULT_MISS)]	= 0x0,
1969 		},
1970 	},
1971 	[C(LL)] = {
1972 		[C(OP_READ)] = {
1973 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1974 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1975 		},
1976 		[C(OP_WRITE)] = {
1977 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1978 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1979 		},
1980 		[C(OP_PREFETCH)] = {
1981 			[C(RESULT_ACCESS)]	= 0x0,
1982 			[C(RESULT_MISS)]	= 0x0,
1983 		},
1984 	},
1985 	[C(DTLB)] = {
1986 		[C(OP_READ)] = {
1987 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1988 			[C(RESULT_MISS)]	= 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
1989 		},
1990 		[C(OP_WRITE)] = {
1991 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1992 			[C(RESULT_MISS)]	= 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
1993 		},
1994 		[C(OP_PREFETCH)] = {
1995 			[C(RESULT_ACCESS)]	= 0x0,
1996 			[C(RESULT_MISS)]	= 0x0,
1997 		},
1998 	},
1999 	[C(ITLB)] = {
2000 		[C(OP_READ)] = {
2001 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
2002 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
2003 		},
2004 		[C(OP_WRITE)] = {
2005 			[C(RESULT_ACCESS)]	= -1,
2006 			[C(RESULT_MISS)]	= -1,
2007 		},
2008 		[C(OP_PREFETCH)] = {
2009 			[C(RESULT_ACCESS)]	= -1,
2010 			[C(RESULT_MISS)]	= -1,
2011 		},
2012 	},
2013 	[C(BPU)] = {
2014 		[C(OP_READ)] = {
2015 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
2016 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
2017 		},
2018 		[C(OP_WRITE)] = {
2019 			[C(RESULT_ACCESS)]	= -1,
2020 			[C(RESULT_MISS)]	= -1,
2021 		},
2022 		[C(OP_PREFETCH)] = {
2023 			[C(RESULT_ACCESS)]	= -1,
2024 			[C(RESULT_MISS)]	= -1,
2025 		},
2026 	},
2027 };
2028 
2029 static __initconst const u64 glp_hw_cache_extra_regs
2030 				[PERF_COUNT_HW_CACHE_MAX]
2031 				[PERF_COUNT_HW_CACHE_OP_MAX]
2032 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2033 	[C(LL)] = {
2034 		[C(OP_READ)] = {
2035 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
2036 						  GLM_LLC_ACCESS,
2037 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
2038 						  GLM_LLC_MISS,
2039 		},
2040 		[C(OP_WRITE)] = {
2041 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
2042 						  GLM_LLC_ACCESS,
2043 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
2044 						  GLM_LLC_MISS,
2045 		},
2046 		[C(OP_PREFETCH)] = {
2047 			[C(RESULT_ACCESS)]	= 0x0,
2048 			[C(RESULT_MISS)]	= 0x0,
2049 		},
2050 	},
2051 };
2052 
2053 #define TNT_LOCAL_DRAM			BIT_ULL(26)
2054 #define TNT_DEMAND_READ			GLM_DEMAND_DATA_RD
2055 #define TNT_DEMAND_WRITE		GLM_DEMAND_RFO
2056 #define TNT_LLC_ACCESS			GLM_ANY_RESPONSE
2057 #define TNT_SNP_ANY			(SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2058 					 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2059 #define TNT_LLC_MISS			(TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2060 
2061 static __initconst const u64 tnt_hw_cache_extra_regs
2062 				[PERF_COUNT_HW_CACHE_MAX]
2063 				[PERF_COUNT_HW_CACHE_OP_MAX]
2064 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2065 	[C(LL)] = {
2066 		[C(OP_READ)] = {
2067 			[C(RESULT_ACCESS)]	= TNT_DEMAND_READ|
2068 						  TNT_LLC_ACCESS,
2069 			[C(RESULT_MISS)]	= TNT_DEMAND_READ|
2070 						  TNT_LLC_MISS,
2071 		},
2072 		[C(OP_WRITE)] = {
2073 			[C(RESULT_ACCESS)]	= TNT_DEMAND_WRITE|
2074 						  TNT_LLC_ACCESS,
2075 			[C(RESULT_MISS)]	= TNT_DEMAND_WRITE|
2076 						  TNT_LLC_MISS,
2077 		},
2078 		[C(OP_PREFETCH)] = {
2079 			[C(RESULT_ACCESS)]	= 0x0,
2080 			[C(RESULT_MISS)]	= 0x0,
2081 		},
2082 	},
2083 };
2084 
2085 EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
2086 EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
2087 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
2088 EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");
2089 
2090 static struct attribute *tnt_events_attrs[] = {
2091 	EVENT_PTR(td_fe_bound_tnt),
2092 	EVENT_PTR(td_retiring_tnt),
2093 	EVENT_PTR(td_bad_spec_tnt),
2094 	EVENT_PTR(td_be_bound_tnt),
2095 	NULL,
2096 };
2097 
2098 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2099 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2100 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2101 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2102 	EVENT_EXTRA_END
2103 };
2104 
2105 EVENT_ATTR_STR(mem-loads,	mem_ld_grt,	"event=0xd0,umask=0x5,ldlat=3");
2106 EVENT_ATTR_STR(mem-stores,	mem_st_grt,	"event=0xd0,umask=0x6");
2107 
2108 static struct attribute *grt_mem_attrs[] = {
2109 	EVENT_PTR(mem_ld_grt),
2110 	EVENT_PTR(mem_st_grt),
2111 	NULL
2112 };
2113 
2114 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2115 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2116 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2117 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2118 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2119 	EVENT_EXTRA_END
2120 };
2121 
2122 static struct extra_reg intel_cmt_extra_regs[] __read_mostly = {
2123 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2124 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff3ffffffffffull, RSP_0),
2125 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff3ffffffffffull, RSP_1),
2126 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2127 	INTEL_UEVENT_EXTRA_REG(0x0127, MSR_SNOOP_RSP_0, 0xffffffffffffffffull, SNOOP_0),
2128 	INTEL_UEVENT_EXTRA_REG(0x0227, MSR_SNOOP_RSP_1, 0xffffffffffffffffull, SNOOP_1),
2129 	EVENT_EXTRA_END
2130 };
2131 
2132 #define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
2133 #define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
2134 #define KNL_MCDRAM_LOCAL	BIT_ULL(21)
2135 #define KNL_MCDRAM_FAR		BIT_ULL(22)
2136 #define KNL_DDR_LOCAL		BIT_ULL(23)
2137 #define KNL_DDR_FAR		BIT_ULL(24)
2138 #define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2139 				    KNL_DDR_LOCAL | KNL_DDR_FAR)
2140 #define KNL_L2_READ		SLM_DMND_READ
2141 #define KNL_L2_WRITE		SLM_DMND_WRITE
2142 #define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
2143 #define KNL_L2_ACCESS		SLM_LLC_ACCESS
2144 #define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2145 				   KNL_DRAM_ANY | SNB_SNP_ANY | \
2146 						  SNB_NON_DRAM)
2147 
2148 static __initconst const u64 knl_hw_cache_extra_regs
2149 				[PERF_COUNT_HW_CACHE_MAX]
2150 				[PERF_COUNT_HW_CACHE_OP_MAX]
2151 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2152 	[C(LL)] = {
2153 		[C(OP_READ)] = {
2154 			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2155 			[C(RESULT_MISS)]   = 0,
2156 		},
2157 		[C(OP_WRITE)] = {
2158 			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2159 			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
2160 		},
2161 		[C(OP_PREFETCH)] = {
2162 			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2163 			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
2164 		},
2165 	},
2166 };
2167 
2168 /*
2169  * Used from PMIs where the LBRs are already disabled.
2170  *
2171  * This function could be called consecutively. It is required to remain in
2172  * disabled state if called consecutively.
2173  *
2174  * During consecutive calls, the same disable value will be written to related
2175  * registers, so the PMU state remains unchanged.
2176  *
2177  * intel_bts events don't coexist with intel PMU's BTS events because of
2178  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2179  * disabled around intel PMU's event batching etc, only inside the PMI handler.
2180  *
2181  * Avoid PEBS_ENABLE MSR access in PMIs.
2182  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2183  * It doesn't matter if the PEBS is enabled or not.
2184  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2185  * access PEBS_ENABLE MSR in disable_all()/enable_all().
2186  * However, there are some cases which may change PEBS status, e.g. PMI
2187  * throttle. The PEBS_ENABLE should be updated where the status changes.
2188  */
2189 static __always_inline void __intel_pmu_disable_all(bool bts)
2190 {
2191 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2192 
2193 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2194 
2195 	if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2196 		intel_pmu_disable_bts();
2197 }
2198 
2199 static __always_inline void intel_pmu_disable_all(void)
2200 {
2201 	__intel_pmu_disable_all(true);
2202 	intel_pmu_pebs_disable_all();
2203 	intel_pmu_lbr_disable_all();
2204 }
2205 
2206 static void __intel_pmu_enable_all(int added, bool pmi)
2207 {
2208 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2209 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2210 
2211 	intel_pmu_lbr_enable_all(pmi);
2212 
2213 	if (cpuc->fixed_ctrl_val != cpuc->active_fixed_ctrl_val) {
2214 		wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, cpuc->fixed_ctrl_val);
2215 		cpuc->active_fixed_ctrl_val = cpuc->fixed_ctrl_val;
2216 	}
2217 
2218 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2219 	       intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2220 
2221 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2222 		struct perf_event *event =
2223 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2224 
2225 		if (WARN_ON_ONCE(!event))
2226 			return;
2227 
2228 		intel_pmu_enable_bts(event->hw.config);
2229 	}
2230 }
2231 
2232 static void intel_pmu_enable_all(int added)
2233 {
2234 	intel_pmu_pebs_enable_all();
2235 	__intel_pmu_enable_all(added, false);
2236 }
2237 
2238 static noinline int
2239 __intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
2240 				  unsigned int cnt, unsigned long flags)
2241 {
2242 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2243 
2244 	intel_pmu_lbr_read();
2245 	cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);
2246 
2247 	memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
2248 	intel_pmu_enable_all(0);
2249 	local_irq_restore(flags);
2250 	return cnt;
2251 }
2252 
2253 static int
2254 intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2255 {
2256 	unsigned long flags;
2257 
2258 	/* must not have branches... */
2259 	local_irq_save(flags);
2260 	__intel_pmu_disable_all(false); /* we don't care about BTS */
2261 	__intel_pmu_lbr_disable();
2262 	/*            ... until here */
2263 	return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2264 }
2265 
2266 static int
2267 intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2268 {
2269 	unsigned long flags;
2270 
2271 	/* must not have branches... */
2272 	local_irq_save(flags);
2273 	__intel_pmu_disable_all(false); /* we don't care about BTS */
2274 	__intel_pmu_arch_lbr_disable();
2275 	/*            ... until here */
2276 	return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2277 }
2278 
2279 /*
2280  * Workaround for:
2281  *   Intel Errata AAK100 (model 26)
2282  *   Intel Errata AAP53  (model 30)
2283  *   Intel Errata BD53   (model 44)
2284  *
2285  * The official story:
2286  *   These chips need to be 'reset' when adding counters by programming the
2287  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2288  *   in sequence on the same PMC or on different PMCs.
2289  *
2290  * In practice it appears some of these events do in fact count, and
2291  * we need to program all 4 events.
2292  */
2293 static void intel_pmu_nhm_workaround(void)
2294 {
2295 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2296 	static const unsigned long nhm_magic[4] = {
2297 		0x4300B5,
2298 		0x4300D2,
2299 		0x4300B1,
2300 		0x4300B1
2301 	};
2302 	struct perf_event *event;
2303 	int i;
2304 
2305 	/*
2306 	 * The Errata requires below steps:
2307 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2308 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
2309 	 *    the corresponding PMCx;
2310 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2311 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2312 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2313 	 */
2314 
2315 	/*
2316 	 * The real steps we choose are a little different from above.
2317 	 * A) To reduce MSR operations, we don't run step 1) as they
2318 	 *    are already cleared before this function is called;
2319 	 * B) Call x86_perf_event_update to save PMCx before configuring
2320 	 *    PERFEVTSELx with magic number;
2321 	 * C) With step 5), we do clear only when the PERFEVTSELx is
2322 	 *    not used currently.
2323 	 * D) Call x86_perf_event_set_period to restore PMCx;
2324 	 */
2325 
2326 	/* We always operate 4 pairs of PERF Counters */
2327 	for (i = 0; i < 4; i++) {
2328 		event = cpuc->events[i];
2329 		if (event)
2330 			static_call(x86_pmu_update)(event);
2331 	}
2332 
2333 	for (i = 0; i < 4; i++) {
2334 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2335 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2336 	}
2337 
2338 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2339 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2340 
2341 	for (i = 0; i < 4; i++) {
2342 		event = cpuc->events[i];
2343 
2344 		if (event) {
2345 			static_call(x86_pmu_set_period)(event);
2346 			__x86_pmu_enable_event(&event->hw,
2347 					ARCH_PERFMON_EVENTSEL_ENABLE);
2348 		} else
2349 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2350 	}
2351 }
2352 
2353 static void intel_pmu_nhm_enable_all(int added)
2354 {
2355 	if (added)
2356 		intel_pmu_nhm_workaround();
2357 	intel_pmu_enable_all(added);
2358 }
2359 
2360 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2361 {
2362 	u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2363 
2364 	if (cpuc->tfa_shadow != val) {
2365 		cpuc->tfa_shadow = val;
2366 		wrmsrl(MSR_TSX_FORCE_ABORT, val);
2367 	}
2368 }
2369 
2370 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2371 {
2372 	/*
2373 	 * We're going to use PMC3, make sure TFA is set before we touch it.
2374 	 */
2375 	if (cntr == 3)
2376 		intel_set_tfa(cpuc, true);
2377 }
2378 
2379 static void intel_tfa_pmu_enable_all(int added)
2380 {
2381 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2382 
2383 	/*
2384 	 * If we find PMC3 is no longer used when we enable the PMU, we can
2385 	 * clear TFA.
2386 	 */
2387 	if (!test_bit(3, cpuc->active_mask))
2388 		intel_set_tfa(cpuc, false);
2389 
2390 	intel_pmu_enable_all(added);
2391 }
2392 
2393 static inline u64 intel_pmu_get_status(void)
2394 {
2395 	u64 status;
2396 
2397 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2398 
2399 	return status;
2400 }
2401 
2402 static inline void intel_pmu_ack_status(u64 ack)
2403 {
2404 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2405 }
2406 
2407 static inline bool event_is_checkpointed(struct perf_event *event)
2408 {
2409 	return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2410 }
2411 
2412 static inline void intel_set_masks(struct perf_event *event, int idx)
2413 {
2414 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2415 
2416 	if (event->attr.exclude_host)
2417 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2418 	if (event->attr.exclude_guest)
2419 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2420 	if (event_is_checkpointed(event))
2421 		__set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2422 }
2423 
2424 static inline void intel_clear_masks(struct perf_event *event, int idx)
2425 {
2426 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2427 
2428 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2429 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2430 	__clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2431 }
2432 
2433 static void intel_pmu_disable_fixed(struct perf_event *event)
2434 {
2435 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2436 	struct hw_perf_event *hwc = &event->hw;
2437 	int idx = hwc->idx;
2438 	u64 mask;
2439 
2440 	if (is_topdown_idx(idx)) {
2441 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2442 
2443 		/*
2444 		 * When there are other active TopDown events,
2445 		 * don't disable the fixed counter 3.
2446 		 */
2447 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2448 			return;
2449 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
2450 	}
2451 
2452 	intel_clear_masks(event, idx);
2453 
2454 	mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
2455 	cpuc->fixed_ctrl_val &= ~mask;
2456 }
2457 
2458 static void intel_pmu_disable_event(struct perf_event *event)
2459 {
2460 	struct hw_perf_event *hwc = &event->hw;
2461 	int idx = hwc->idx;
2462 
2463 	switch (idx) {
2464 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2465 		intel_clear_masks(event, idx);
2466 		x86_pmu_disable_event(event);
2467 		break;
2468 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2469 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2470 		intel_pmu_disable_fixed(event);
2471 		break;
2472 	case INTEL_PMC_IDX_FIXED_BTS:
2473 		intel_pmu_disable_bts();
2474 		intel_pmu_drain_bts_buffer();
2475 		return;
2476 	case INTEL_PMC_IDX_FIXED_VLBR:
2477 		intel_clear_masks(event, idx);
2478 		break;
2479 	default:
2480 		intel_clear_masks(event, idx);
2481 		pr_warn("Failed to disable the event with invalid index %d\n",
2482 			idx);
2483 		return;
2484 	}
2485 
2486 	/*
2487 	 * Needs to be called after x86_pmu_disable_event,
2488 	 * so we don't trigger the event without PEBS bit set.
2489 	 */
2490 	if (unlikely(event->attr.precise_ip))
2491 		intel_pmu_pebs_disable(event);
2492 }
2493 
2494 static void intel_pmu_assign_event(struct perf_event *event, int idx)
2495 {
2496 	if (is_pebs_pt(event))
2497 		perf_report_aux_output_id(event, idx);
2498 }
2499 
2500 static void intel_pmu_del_event(struct perf_event *event)
2501 {
2502 	if (needs_branch_stack(event))
2503 		intel_pmu_lbr_del(event);
2504 	if (event->attr.precise_ip)
2505 		intel_pmu_pebs_del(event);
2506 }
2507 
2508 static int icl_set_topdown_event_period(struct perf_event *event)
2509 {
2510 	struct hw_perf_event *hwc = &event->hw;
2511 	s64 left = local64_read(&hwc->period_left);
2512 
2513 	/*
2514 	 * The values in PERF_METRICS MSR are derived from fixed counter 3.
2515 	 * Software should start both registers, PERF_METRICS and fixed
2516 	 * counter 3, from zero.
2517 	 * Clear PERF_METRICS and Fixed counter 3 in initialization.
2518 	 * After that, both MSRs will be cleared for each read.
2519 	 * Don't need to clear them again.
2520 	 */
2521 	if (left == x86_pmu.max_period) {
2522 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2523 		wrmsrl(MSR_PERF_METRICS, 0);
2524 		hwc->saved_slots = 0;
2525 		hwc->saved_metric = 0;
2526 	}
2527 
2528 	if ((hwc->saved_slots) && is_slots_event(event)) {
2529 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2530 		wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2531 	}
2532 
2533 	perf_event_update_userpage(event);
2534 
2535 	return 0;
2536 }
2537 
2538 static int adl_set_topdown_event_period(struct perf_event *event)
2539 {
2540 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2541 
2542 	if (pmu->cpu_type != hybrid_big)
2543 		return 0;
2544 
2545 	return icl_set_topdown_event_period(event);
2546 }
2547 
2548 DEFINE_STATIC_CALL(intel_pmu_set_topdown_event_period, x86_perf_event_set_period);
2549 
2550 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2551 {
2552 	u32 val;
2553 
2554 	/*
2555 	 * The metric is reported as an 8bit integer fraction
2556 	 * summing up to 0xff.
2557 	 * slots-in-metric = (Metric / 0xff) * slots
2558 	 */
2559 	val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2560 	return  mul_u64_u32_div(slots, val, 0xff);
2561 }
2562 
2563 static u64 icl_get_topdown_value(struct perf_event *event,
2564 				       u64 slots, u64 metrics)
2565 {
2566 	int idx = event->hw.idx;
2567 	u64 delta;
2568 
2569 	if (is_metric_idx(idx))
2570 		delta = icl_get_metrics_event_value(metrics, slots, idx);
2571 	else
2572 		delta = slots;
2573 
2574 	return delta;
2575 }
2576 
2577 static void __icl_update_topdown_event(struct perf_event *event,
2578 				       u64 slots, u64 metrics,
2579 				       u64 last_slots, u64 last_metrics)
2580 {
2581 	u64 delta, last = 0;
2582 
2583 	delta = icl_get_topdown_value(event, slots, metrics);
2584 	if (last_slots)
2585 		last = icl_get_topdown_value(event, last_slots, last_metrics);
2586 
2587 	/*
2588 	 * The 8bit integer fraction of metric may be not accurate,
2589 	 * especially when the changes is very small.
2590 	 * For example, if only a few bad_spec happens, the fraction
2591 	 * may be reduced from 1 to 0. If so, the bad_spec event value
2592 	 * will be 0 which is definitely less than the last value.
2593 	 * Avoid update event->count for this case.
2594 	 */
2595 	if (delta > last) {
2596 		delta -= last;
2597 		local64_add(delta, &event->count);
2598 	}
2599 }
2600 
2601 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2602 				      u64 metrics, int metric_end)
2603 {
2604 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2605 	struct perf_event *other;
2606 	int idx;
2607 
2608 	event->hw.saved_slots = slots;
2609 	event->hw.saved_metric = metrics;
2610 
2611 	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2612 		if (!is_topdown_idx(idx))
2613 			continue;
2614 		other = cpuc->events[idx];
2615 		other->hw.saved_slots = slots;
2616 		other->hw.saved_metric = metrics;
2617 	}
2618 }
2619 
2620 /*
2621  * Update all active Topdown events.
2622  *
2623  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2624  * modify by a NMI. PMU has to be disabled before calling this function.
2625  */
2626 
2627 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2628 {
2629 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2630 	struct perf_event *other;
2631 	u64 slots, metrics;
2632 	bool reset = true;
2633 	int idx;
2634 
2635 	/* read Fixed counter 3 */
2636 	rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2637 	if (!slots)
2638 		return 0;
2639 
2640 	/* read PERF_METRICS */
2641 	rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2642 
2643 	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2644 		if (!is_topdown_idx(idx))
2645 			continue;
2646 		other = cpuc->events[idx];
2647 		__icl_update_topdown_event(other, slots, metrics,
2648 					   event ? event->hw.saved_slots : 0,
2649 					   event ? event->hw.saved_metric : 0);
2650 	}
2651 
2652 	/*
2653 	 * Check and update this event, which may have been cleared
2654 	 * in active_mask e.g. x86_pmu_stop()
2655 	 */
2656 	if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2657 		__icl_update_topdown_event(event, slots, metrics,
2658 					   event->hw.saved_slots,
2659 					   event->hw.saved_metric);
2660 
2661 		/*
2662 		 * In x86_pmu_stop(), the event is cleared in active_mask first,
2663 		 * then drain the delta, which indicates context switch for
2664 		 * counting.
2665 		 * Save metric and slots for context switch.
2666 		 * Don't need to reset the PERF_METRICS and Fixed counter 3.
2667 		 * Because the values will be restored in next schedule in.
2668 		 */
2669 		update_saved_topdown_regs(event, slots, metrics, metric_end);
2670 		reset = false;
2671 	}
2672 
2673 	if (reset) {
2674 		/* The fixed counter 3 has to be written before the PERF_METRICS. */
2675 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2676 		wrmsrl(MSR_PERF_METRICS, 0);
2677 		if (event)
2678 			update_saved_topdown_regs(event, 0, 0, metric_end);
2679 	}
2680 
2681 	return slots;
2682 }
2683 
2684 static u64 icl_update_topdown_event(struct perf_event *event)
2685 {
2686 	return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2687 						 x86_pmu.num_topdown_events - 1);
2688 }
2689 
2690 static u64 adl_update_topdown_event(struct perf_event *event)
2691 {
2692 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2693 
2694 	if (pmu->cpu_type != hybrid_big)
2695 		return 0;
2696 
2697 	return icl_update_topdown_event(event);
2698 }
2699 
2700 DEFINE_STATIC_CALL(intel_pmu_update_topdown_event, x86_perf_event_update);
2701 
2702 static void intel_pmu_read_topdown_event(struct perf_event *event)
2703 {
2704 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2705 
2706 	/* Only need to call update_topdown_event() once for group read. */
2707 	if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2708 	    !is_slots_event(event))
2709 		return;
2710 
2711 	perf_pmu_disable(event->pmu);
2712 	static_call(intel_pmu_update_topdown_event)(event);
2713 	perf_pmu_enable(event->pmu);
2714 }
2715 
2716 static void intel_pmu_read_event(struct perf_event *event)
2717 {
2718 	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2719 		intel_pmu_auto_reload_read(event);
2720 	else if (is_topdown_count(event))
2721 		intel_pmu_read_topdown_event(event);
2722 	else
2723 		x86_perf_event_update(event);
2724 }
2725 
2726 static void intel_pmu_enable_fixed(struct perf_event *event)
2727 {
2728 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2729 	struct hw_perf_event *hwc = &event->hw;
2730 	u64 mask, bits = 0;
2731 	int idx = hwc->idx;
2732 
2733 	if (is_topdown_idx(idx)) {
2734 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2735 		/*
2736 		 * When there are other active TopDown events,
2737 		 * don't enable the fixed counter 3 again.
2738 		 */
2739 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2740 			return;
2741 
2742 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
2743 	}
2744 
2745 	intel_set_masks(event, idx);
2746 
2747 	/*
2748 	 * Enable IRQ generation (0x8), if not PEBS,
2749 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2750 	 * if requested:
2751 	 */
2752 	if (!event->attr.precise_ip)
2753 		bits |= 0x8;
2754 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2755 		bits |= 0x2;
2756 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2757 		bits |= 0x1;
2758 
2759 	/*
2760 	 * ANY bit is supported in v3 and up
2761 	 */
2762 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2763 		bits |= 0x4;
2764 
2765 	idx -= INTEL_PMC_IDX_FIXED;
2766 	bits <<= (idx * 4);
2767 	mask = 0xfULL << (idx * 4);
2768 
2769 	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2770 		bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2771 		mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2772 	}
2773 
2774 	cpuc->fixed_ctrl_val &= ~mask;
2775 	cpuc->fixed_ctrl_val |= bits;
2776 }
2777 
2778 static void intel_pmu_enable_event(struct perf_event *event)
2779 {
2780 	struct hw_perf_event *hwc = &event->hw;
2781 	int idx = hwc->idx;
2782 
2783 	if (unlikely(event->attr.precise_ip))
2784 		intel_pmu_pebs_enable(event);
2785 
2786 	switch (idx) {
2787 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2788 		intel_set_masks(event, idx);
2789 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2790 		break;
2791 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2792 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2793 		intel_pmu_enable_fixed(event);
2794 		break;
2795 	case INTEL_PMC_IDX_FIXED_BTS:
2796 		if (!__this_cpu_read(cpu_hw_events.enabled))
2797 			return;
2798 		intel_pmu_enable_bts(hwc->config);
2799 		break;
2800 	case INTEL_PMC_IDX_FIXED_VLBR:
2801 		intel_set_masks(event, idx);
2802 		break;
2803 	default:
2804 		pr_warn("Failed to enable the event with invalid index %d\n",
2805 			idx);
2806 	}
2807 }
2808 
2809 static void intel_pmu_add_event(struct perf_event *event)
2810 {
2811 	if (event->attr.precise_ip)
2812 		intel_pmu_pebs_add(event);
2813 	if (needs_branch_stack(event))
2814 		intel_pmu_lbr_add(event);
2815 }
2816 
2817 /*
2818  * Save and restart an expired event. Called by NMI contexts,
2819  * so it has to be careful about preempting normal event ops:
2820  */
2821 int intel_pmu_save_and_restart(struct perf_event *event)
2822 {
2823 	static_call(x86_pmu_update)(event);
2824 	/*
2825 	 * For a checkpointed counter always reset back to 0.  This
2826 	 * avoids a situation where the counter overflows, aborts the
2827 	 * transaction and is then set back to shortly before the
2828 	 * overflow, and overflows and aborts again.
2829 	 */
2830 	if (unlikely(event_is_checkpointed(event))) {
2831 		/* No race with NMIs because the counter should not be armed */
2832 		wrmsrl(event->hw.event_base, 0);
2833 		local64_set(&event->hw.prev_count, 0);
2834 	}
2835 	return static_call(x86_pmu_set_period)(event);
2836 }
2837 
2838 static int intel_pmu_set_period(struct perf_event *event)
2839 {
2840 	if (unlikely(is_topdown_count(event)))
2841 		return static_call(intel_pmu_set_topdown_event_period)(event);
2842 
2843 	return x86_perf_event_set_period(event);
2844 }
2845 
2846 static u64 intel_pmu_update(struct perf_event *event)
2847 {
2848 	if (unlikely(is_topdown_count(event)))
2849 		return static_call(intel_pmu_update_topdown_event)(event);
2850 
2851 	return x86_perf_event_update(event);
2852 }
2853 
2854 static void intel_pmu_reset(void)
2855 {
2856 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2857 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2858 	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2859 	int num_counters = hybrid(cpuc->pmu, num_counters);
2860 	unsigned long flags;
2861 	int idx;
2862 
2863 	if (!num_counters)
2864 		return;
2865 
2866 	local_irq_save(flags);
2867 
2868 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2869 
2870 	for (idx = 0; idx < num_counters; idx++) {
2871 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2872 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2873 	}
2874 	for (idx = 0; idx < num_counters_fixed; idx++) {
2875 		if (fixed_counter_disabled(idx, cpuc->pmu))
2876 			continue;
2877 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2878 	}
2879 
2880 	if (ds)
2881 		ds->bts_index = ds->bts_buffer_base;
2882 
2883 	/* Ack all overflows and disable fixed counters */
2884 	if (x86_pmu.version >= 2) {
2885 		intel_pmu_ack_status(intel_pmu_get_status());
2886 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2887 	}
2888 
2889 	/* Reset LBRs and LBR freezing */
2890 	if (x86_pmu.lbr_nr) {
2891 		update_debugctlmsr(get_debugctlmsr() &
2892 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2893 	}
2894 
2895 	local_irq_restore(flags);
2896 }
2897 
2898 /*
2899  * We may be running with guest PEBS events created by KVM, and the
2900  * PEBS records are logged into the guest's DS and invisible to host.
2901  *
2902  * In the case of guest PEBS overflow, we only trigger a fake event
2903  * to emulate the PEBS overflow PMI for guest PEBS counters in KVM.
2904  * The guest will then vm-entry and check the guest DS area to read
2905  * the guest PEBS records.
2906  *
2907  * The contents and other behavior of the guest event do not matter.
2908  */
2909 static void x86_pmu_handle_guest_pebs(struct pt_regs *regs,
2910 				      struct perf_sample_data *data)
2911 {
2912 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2913 	u64 guest_pebs_idxs = cpuc->pebs_enabled & ~cpuc->intel_ctrl_host_mask;
2914 	struct perf_event *event = NULL;
2915 	int bit;
2916 
2917 	if (!unlikely(perf_guest_state()))
2918 		return;
2919 
2920 	if (!x86_pmu.pebs_ept || !x86_pmu.pebs_active ||
2921 	    !guest_pebs_idxs)
2922 		return;
2923 
2924 	for_each_set_bit(bit, (unsigned long *)&guest_pebs_idxs,
2925 			 INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed) {
2926 		event = cpuc->events[bit];
2927 		if (!event->attr.precise_ip)
2928 			continue;
2929 
2930 		perf_sample_data_init(data, 0, event->hw.last_period);
2931 		if (perf_event_overflow(event, data, regs))
2932 			x86_pmu_stop(event, 0);
2933 
2934 		/* Inject one fake event is enough. */
2935 		break;
2936 	}
2937 }
2938 
2939 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2940 {
2941 	struct perf_sample_data data;
2942 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2943 	int bit;
2944 	int handled = 0;
2945 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2946 
2947 	inc_irq_stat(apic_perf_irqs);
2948 
2949 	/*
2950 	 * Ignore a range of extra bits in status that do not indicate
2951 	 * overflow by themselves.
2952 	 */
2953 	status &= ~(GLOBAL_STATUS_COND_CHG |
2954 		    GLOBAL_STATUS_ASIF |
2955 		    GLOBAL_STATUS_LBRS_FROZEN);
2956 	if (!status)
2957 		return 0;
2958 	/*
2959 	 * In case multiple PEBS events are sampled at the same time,
2960 	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2961 	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2962 	 * having their bits set in the status register. This is a sign
2963 	 * that there was at least one PEBS record pending at the time
2964 	 * of the PMU interrupt. PEBS counters must only be processed
2965 	 * via the drain_pebs() calls and not via the regular sample
2966 	 * processing loop coming after that the function, otherwise
2967 	 * phony regular samples may be generated in the sampling buffer
2968 	 * not marked with the EXACT tag. Another possibility is to have
2969 	 * one PEBS event and at least one non-PEBS event which overflows
2970 	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2971 	 * not be set, yet the overflow status bit for the PEBS counter will
2972 	 * be on Skylake.
2973 	 *
2974 	 * To avoid this problem, we systematically ignore the PEBS-enabled
2975 	 * counters from the GLOBAL_STATUS mask and we always process PEBS
2976 	 * events via drain_pebs().
2977 	 */
2978 	status &= ~(cpuc->pebs_enabled & x86_pmu.pebs_capable);
2979 
2980 	/*
2981 	 * PEBS overflow sets bit 62 in the global status register
2982 	 */
2983 	if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2984 		u64 pebs_enabled = cpuc->pebs_enabled;
2985 
2986 		handled++;
2987 		x86_pmu_handle_guest_pebs(regs, &data);
2988 		x86_pmu.drain_pebs(regs, &data);
2989 		status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2990 
2991 		/*
2992 		 * PMI throttle may be triggered, which stops the PEBS event.
2993 		 * Although cpuc->pebs_enabled is updated accordingly, the
2994 		 * MSR_IA32_PEBS_ENABLE is not updated. Because the
2995 		 * cpuc->enabled has been forced to 0 in PMI.
2996 		 * Update the MSR if pebs_enabled is changed.
2997 		 */
2998 		if (pebs_enabled != cpuc->pebs_enabled)
2999 			wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
3000 	}
3001 
3002 	/*
3003 	 * Intel PT
3004 	 */
3005 	if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
3006 		handled++;
3007 		if (!perf_guest_handle_intel_pt_intr())
3008 			intel_pt_interrupt();
3009 	}
3010 
3011 	/*
3012 	 * Intel Perf metrics
3013 	 */
3014 	if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
3015 		handled++;
3016 		static_call(intel_pmu_update_topdown_event)(NULL);
3017 	}
3018 
3019 	/*
3020 	 * Checkpointed counters can lead to 'spurious' PMIs because the
3021 	 * rollback caused by the PMI will have cleared the overflow status
3022 	 * bit. Therefore always force probe these counters.
3023 	 */
3024 	status |= cpuc->intel_cp_status;
3025 
3026 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
3027 		struct perf_event *event = cpuc->events[bit];
3028 
3029 		handled++;
3030 
3031 		if (!test_bit(bit, cpuc->active_mask))
3032 			continue;
3033 
3034 		if (!intel_pmu_save_and_restart(event))
3035 			continue;
3036 
3037 		perf_sample_data_init(&data, 0, event->hw.last_period);
3038 
3039 		if (has_branch_stack(event))
3040 			perf_sample_save_brstack(&data, event, &cpuc->lbr_stack);
3041 
3042 		if (perf_event_overflow(event, &data, regs))
3043 			x86_pmu_stop(event, 0);
3044 	}
3045 
3046 	return handled;
3047 }
3048 
3049 /*
3050  * This handler is triggered by the local APIC, so the APIC IRQ handling
3051  * rules apply:
3052  */
3053 static int intel_pmu_handle_irq(struct pt_regs *regs)
3054 {
3055 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3056 	bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
3057 	bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
3058 	int loops;
3059 	u64 status;
3060 	int handled;
3061 	int pmu_enabled;
3062 
3063 	/*
3064 	 * Save the PMU state.
3065 	 * It needs to be restored when leaving the handler.
3066 	 */
3067 	pmu_enabled = cpuc->enabled;
3068 	/*
3069 	 * In general, the early ACK is only applied for old platforms.
3070 	 * For the big core starts from Haswell, the late ACK should be
3071 	 * applied.
3072 	 * For the small core after Tremont, we have to do the ACK right
3073 	 * before re-enabling counters, which is in the middle of the
3074 	 * NMI handler.
3075 	 */
3076 	if (!late_ack && !mid_ack)
3077 		apic_write(APIC_LVTPC, APIC_DM_NMI);
3078 	intel_bts_disable_local();
3079 	cpuc->enabled = 0;
3080 	__intel_pmu_disable_all(true);
3081 	handled = intel_pmu_drain_bts_buffer();
3082 	handled += intel_bts_interrupt();
3083 	status = intel_pmu_get_status();
3084 	if (!status)
3085 		goto done;
3086 
3087 	loops = 0;
3088 again:
3089 	intel_pmu_lbr_read();
3090 	intel_pmu_ack_status(status);
3091 	if (++loops > 100) {
3092 		static bool warned;
3093 
3094 		if (!warned) {
3095 			WARN(1, "perfevents: irq loop stuck!\n");
3096 			perf_event_print_debug();
3097 			warned = true;
3098 		}
3099 		intel_pmu_reset();
3100 		goto done;
3101 	}
3102 
3103 	handled += handle_pmi_common(regs, status);
3104 
3105 	/*
3106 	 * Repeat if there is more work to be done:
3107 	 */
3108 	status = intel_pmu_get_status();
3109 	if (status)
3110 		goto again;
3111 
3112 done:
3113 	if (mid_ack)
3114 		apic_write(APIC_LVTPC, APIC_DM_NMI);
3115 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
3116 	cpuc->enabled = pmu_enabled;
3117 	if (pmu_enabled)
3118 		__intel_pmu_enable_all(0, true);
3119 	intel_bts_enable_local();
3120 
3121 	/*
3122 	 * Only unmask the NMI after the overflow counters
3123 	 * have been reset. This avoids spurious NMIs on
3124 	 * Haswell CPUs.
3125 	 */
3126 	if (late_ack)
3127 		apic_write(APIC_LVTPC, APIC_DM_NMI);
3128 	return handled;
3129 }
3130 
3131 static struct event_constraint *
3132 intel_bts_constraints(struct perf_event *event)
3133 {
3134 	if (unlikely(intel_pmu_has_bts(event)))
3135 		return &bts_constraint;
3136 
3137 	return NULL;
3138 }
3139 
3140 /*
3141  * Note: matches a fake event, like Fixed2.
3142  */
3143 static struct event_constraint *
3144 intel_vlbr_constraints(struct perf_event *event)
3145 {
3146 	struct event_constraint *c = &vlbr_constraint;
3147 
3148 	if (unlikely(constraint_match(c, event->hw.config))) {
3149 		event->hw.flags |= c->flags;
3150 		return c;
3151 	}
3152 
3153 	return NULL;
3154 }
3155 
3156 static int intel_alt_er(struct cpu_hw_events *cpuc,
3157 			int idx, u64 config)
3158 {
3159 	struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3160 	int alt_idx = idx;
3161 
3162 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3163 		return idx;
3164 
3165 	if (idx == EXTRA_REG_RSP_0)
3166 		alt_idx = EXTRA_REG_RSP_1;
3167 
3168 	if (idx == EXTRA_REG_RSP_1)
3169 		alt_idx = EXTRA_REG_RSP_0;
3170 
3171 	if (config & ~extra_regs[alt_idx].valid_mask)
3172 		return idx;
3173 
3174 	return alt_idx;
3175 }
3176 
3177 static void intel_fixup_er(struct perf_event *event, int idx)
3178 {
3179 	struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3180 	event->hw.extra_reg.idx = idx;
3181 
3182 	if (idx == EXTRA_REG_RSP_0) {
3183 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3184 		event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3185 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3186 	} else if (idx == EXTRA_REG_RSP_1) {
3187 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3188 		event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3189 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3190 	}
3191 }
3192 
3193 /*
3194  * manage allocation of shared extra msr for certain events
3195  *
3196  * sharing can be:
3197  * per-cpu: to be shared between the various events on a single PMU
3198  * per-core: per-cpu + shared by HT threads
3199  */
3200 static struct event_constraint *
3201 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3202 				   struct perf_event *event,
3203 				   struct hw_perf_event_extra *reg)
3204 {
3205 	struct event_constraint *c = &emptyconstraint;
3206 	struct er_account *era;
3207 	unsigned long flags;
3208 	int idx = reg->idx;
3209 
3210 	/*
3211 	 * reg->alloc can be set due to existing state, so for fake cpuc we
3212 	 * need to ignore this, otherwise we might fail to allocate proper fake
3213 	 * state for this extra reg constraint. Also see the comment below.
3214 	 */
3215 	if (reg->alloc && !cpuc->is_fake)
3216 		return NULL; /* call x86_get_event_constraint() */
3217 
3218 again:
3219 	era = &cpuc->shared_regs->regs[idx];
3220 	/*
3221 	 * we use spin_lock_irqsave() to avoid lockdep issues when
3222 	 * passing a fake cpuc
3223 	 */
3224 	raw_spin_lock_irqsave(&era->lock, flags);
3225 
3226 	if (!atomic_read(&era->ref) || era->config == reg->config) {
3227 
3228 		/*
3229 		 * If its a fake cpuc -- as per validate_{group,event}() we
3230 		 * shouldn't touch event state and we can avoid doing so
3231 		 * since both will only call get_event_constraints() once
3232 		 * on each event, this avoids the need for reg->alloc.
3233 		 *
3234 		 * Not doing the ER fixup will only result in era->reg being
3235 		 * wrong, but since we won't actually try and program hardware
3236 		 * this isn't a problem either.
3237 		 */
3238 		if (!cpuc->is_fake) {
3239 			if (idx != reg->idx)
3240 				intel_fixup_er(event, idx);
3241 
3242 			/*
3243 			 * x86_schedule_events() can call get_event_constraints()
3244 			 * multiple times on events in the case of incremental
3245 			 * scheduling(). reg->alloc ensures we only do the ER
3246 			 * allocation once.
3247 			 */
3248 			reg->alloc = 1;
3249 		}
3250 
3251 		/* lock in msr value */
3252 		era->config = reg->config;
3253 		era->reg = reg->reg;
3254 
3255 		/* one more user */
3256 		atomic_inc(&era->ref);
3257 
3258 		/*
3259 		 * need to call x86_get_event_constraint()
3260 		 * to check if associated event has constraints
3261 		 */
3262 		c = NULL;
3263 	} else {
3264 		idx = intel_alt_er(cpuc, idx, reg->config);
3265 		if (idx != reg->idx) {
3266 			raw_spin_unlock_irqrestore(&era->lock, flags);
3267 			goto again;
3268 		}
3269 	}
3270 	raw_spin_unlock_irqrestore(&era->lock, flags);
3271 
3272 	return c;
3273 }
3274 
3275 static void
3276 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3277 				   struct hw_perf_event_extra *reg)
3278 {
3279 	struct er_account *era;
3280 
3281 	/*
3282 	 * Only put constraint if extra reg was actually allocated. Also takes
3283 	 * care of event which do not use an extra shared reg.
3284 	 *
3285 	 * Also, if this is a fake cpuc we shouldn't touch any event state
3286 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3287 	 * either since it'll be thrown out.
3288 	 */
3289 	if (!reg->alloc || cpuc->is_fake)
3290 		return;
3291 
3292 	era = &cpuc->shared_regs->regs[reg->idx];
3293 
3294 	/* one fewer user */
3295 	atomic_dec(&era->ref);
3296 
3297 	/* allocate again next time */
3298 	reg->alloc = 0;
3299 }
3300 
3301 static struct event_constraint *
3302 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3303 			      struct perf_event *event)
3304 {
3305 	struct event_constraint *c = NULL, *d;
3306 	struct hw_perf_event_extra *xreg, *breg;
3307 
3308 	xreg = &event->hw.extra_reg;
3309 	if (xreg->idx != EXTRA_REG_NONE) {
3310 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3311 		if (c == &emptyconstraint)
3312 			return c;
3313 	}
3314 	breg = &event->hw.branch_reg;
3315 	if (breg->idx != EXTRA_REG_NONE) {
3316 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3317 		if (d == &emptyconstraint) {
3318 			__intel_shared_reg_put_constraints(cpuc, xreg);
3319 			c = d;
3320 		}
3321 	}
3322 	return c;
3323 }
3324 
3325 struct event_constraint *
3326 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3327 			  struct perf_event *event)
3328 {
3329 	struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3330 	struct event_constraint *c;
3331 
3332 	if (event_constraints) {
3333 		for_each_event_constraint(c, event_constraints) {
3334 			if (constraint_match(c, event->hw.config)) {
3335 				event->hw.flags |= c->flags;
3336 				return c;
3337 			}
3338 		}
3339 	}
3340 
3341 	return &hybrid_var(cpuc->pmu, unconstrained);
3342 }
3343 
3344 static struct event_constraint *
3345 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3346 			    struct perf_event *event)
3347 {
3348 	struct event_constraint *c;
3349 
3350 	c = intel_vlbr_constraints(event);
3351 	if (c)
3352 		return c;
3353 
3354 	c = intel_bts_constraints(event);
3355 	if (c)
3356 		return c;
3357 
3358 	c = intel_shared_regs_constraints(cpuc, event);
3359 	if (c)
3360 		return c;
3361 
3362 	c = intel_pebs_constraints(event);
3363 	if (c)
3364 		return c;
3365 
3366 	return x86_get_event_constraints(cpuc, idx, event);
3367 }
3368 
3369 static void
3370 intel_start_scheduling(struct cpu_hw_events *cpuc)
3371 {
3372 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3373 	struct intel_excl_states *xl;
3374 	int tid = cpuc->excl_thread_id;
3375 
3376 	/*
3377 	 * nothing needed if in group validation mode
3378 	 */
3379 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3380 		return;
3381 
3382 	/*
3383 	 * no exclusion needed
3384 	 */
3385 	if (WARN_ON_ONCE(!excl_cntrs))
3386 		return;
3387 
3388 	xl = &excl_cntrs->states[tid];
3389 
3390 	xl->sched_started = true;
3391 	/*
3392 	 * lock shared state until we are done scheduling
3393 	 * in stop_event_scheduling()
3394 	 * makes scheduling appear as a transaction
3395 	 */
3396 	raw_spin_lock(&excl_cntrs->lock);
3397 }
3398 
3399 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3400 {
3401 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3402 	struct event_constraint *c = cpuc->event_constraint[idx];
3403 	struct intel_excl_states *xl;
3404 	int tid = cpuc->excl_thread_id;
3405 
3406 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3407 		return;
3408 
3409 	if (WARN_ON_ONCE(!excl_cntrs))
3410 		return;
3411 
3412 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3413 		return;
3414 
3415 	xl = &excl_cntrs->states[tid];
3416 
3417 	lockdep_assert_held(&excl_cntrs->lock);
3418 
3419 	if (c->flags & PERF_X86_EVENT_EXCL)
3420 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3421 	else
3422 		xl->state[cntr] = INTEL_EXCL_SHARED;
3423 }
3424 
3425 static void
3426 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3427 {
3428 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3429 	struct intel_excl_states *xl;
3430 	int tid = cpuc->excl_thread_id;
3431 
3432 	/*
3433 	 * nothing needed if in group validation mode
3434 	 */
3435 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3436 		return;
3437 	/*
3438 	 * no exclusion needed
3439 	 */
3440 	if (WARN_ON_ONCE(!excl_cntrs))
3441 		return;
3442 
3443 	xl = &excl_cntrs->states[tid];
3444 
3445 	xl->sched_started = false;
3446 	/*
3447 	 * release shared state lock (acquired in intel_start_scheduling())
3448 	 */
3449 	raw_spin_unlock(&excl_cntrs->lock);
3450 }
3451 
3452 static struct event_constraint *
3453 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3454 {
3455 	WARN_ON_ONCE(!cpuc->constraint_list);
3456 
3457 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3458 		struct event_constraint *cx;
3459 
3460 		/*
3461 		 * grab pre-allocated constraint entry
3462 		 */
3463 		cx = &cpuc->constraint_list[idx];
3464 
3465 		/*
3466 		 * initialize dynamic constraint
3467 		 * with static constraint
3468 		 */
3469 		*cx = *c;
3470 
3471 		/*
3472 		 * mark constraint as dynamic
3473 		 */
3474 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
3475 		c = cx;
3476 	}
3477 
3478 	return c;
3479 }
3480 
3481 static struct event_constraint *
3482 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3483 			   int idx, struct event_constraint *c)
3484 {
3485 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3486 	struct intel_excl_states *xlo;
3487 	int tid = cpuc->excl_thread_id;
3488 	int is_excl, i, w;
3489 
3490 	/*
3491 	 * validating a group does not require
3492 	 * enforcing cross-thread  exclusion
3493 	 */
3494 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3495 		return c;
3496 
3497 	/*
3498 	 * no exclusion needed
3499 	 */
3500 	if (WARN_ON_ONCE(!excl_cntrs))
3501 		return c;
3502 
3503 	/*
3504 	 * because we modify the constraint, we need
3505 	 * to make a copy. Static constraints come
3506 	 * from static const tables.
3507 	 *
3508 	 * only needed when constraint has not yet
3509 	 * been cloned (marked dynamic)
3510 	 */
3511 	c = dyn_constraint(cpuc, c, idx);
3512 
3513 	/*
3514 	 * From here on, the constraint is dynamic.
3515 	 * Either it was just allocated above, or it
3516 	 * was allocated during a earlier invocation
3517 	 * of this function
3518 	 */
3519 
3520 	/*
3521 	 * state of sibling HT
3522 	 */
3523 	xlo = &excl_cntrs->states[tid ^ 1];
3524 
3525 	/*
3526 	 * event requires exclusive counter access
3527 	 * across HT threads
3528 	 */
3529 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
3530 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3531 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3532 		if (!cpuc->n_excl++)
3533 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3534 	}
3535 
3536 	/*
3537 	 * Modify static constraint with current dynamic
3538 	 * state of thread
3539 	 *
3540 	 * EXCLUSIVE: sibling counter measuring exclusive event
3541 	 * SHARED   : sibling counter measuring non-exclusive event
3542 	 * UNUSED   : sibling counter unused
3543 	 */
3544 	w = c->weight;
3545 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3546 		/*
3547 		 * exclusive event in sibling counter
3548 		 * our corresponding counter cannot be used
3549 		 * regardless of our event
3550 		 */
3551 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3552 			__clear_bit(i, c->idxmsk);
3553 			w--;
3554 			continue;
3555 		}
3556 		/*
3557 		 * if measuring an exclusive event, sibling
3558 		 * measuring non-exclusive, then counter cannot
3559 		 * be used
3560 		 */
3561 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3562 			__clear_bit(i, c->idxmsk);
3563 			w--;
3564 			continue;
3565 		}
3566 	}
3567 
3568 	/*
3569 	 * if we return an empty mask, then switch
3570 	 * back to static empty constraint to avoid
3571 	 * the cost of freeing later on
3572 	 */
3573 	if (!w)
3574 		c = &emptyconstraint;
3575 
3576 	c->weight = w;
3577 
3578 	return c;
3579 }
3580 
3581 static struct event_constraint *
3582 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3583 			    struct perf_event *event)
3584 {
3585 	struct event_constraint *c1, *c2;
3586 
3587 	c1 = cpuc->event_constraint[idx];
3588 
3589 	/*
3590 	 * first time only
3591 	 * - static constraint: no change across incremental scheduling calls
3592 	 * - dynamic constraint: handled by intel_get_excl_constraints()
3593 	 */
3594 	c2 = __intel_get_event_constraints(cpuc, idx, event);
3595 	if (c1) {
3596 	        WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3597 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3598 		c1->weight = c2->weight;
3599 		c2 = c1;
3600 	}
3601 
3602 	if (cpuc->excl_cntrs)
3603 		return intel_get_excl_constraints(cpuc, event, idx, c2);
3604 
3605 	return c2;
3606 }
3607 
3608 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3609 		struct perf_event *event)
3610 {
3611 	struct hw_perf_event *hwc = &event->hw;
3612 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3613 	int tid = cpuc->excl_thread_id;
3614 	struct intel_excl_states *xl;
3615 
3616 	/*
3617 	 * nothing needed if in group validation mode
3618 	 */
3619 	if (cpuc->is_fake)
3620 		return;
3621 
3622 	if (WARN_ON_ONCE(!excl_cntrs))
3623 		return;
3624 
3625 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3626 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3627 		if (!--cpuc->n_excl)
3628 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3629 	}
3630 
3631 	/*
3632 	 * If event was actually assigned, then mark the counter state as
3633 	 * unused now.
3634 	 */
3635 	if (hwc->idx >= 0) {
3636 		xl = &excl_cntrs->states[tid];
3637 
3638 		/*
3639 		 * put_constraint may be called from x86_schedule_events()
3640 		 * which already has the lock held so here make locking
3641 		 * conditional.
3642 		 */
3643 		if (!xl->sched_started)
3644 			raw_spin_lock(&excl_cntrs->lock);
3645 
3646 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3647 
3648 		if (!xl->sched_started)
3649 			raw_spin_unlock(&excl_cntrs->lock);
3650 	}
3651 }
3652 
3653 static void
3654 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3655 					struct perf_event *event)
3656 {
3657 	struct hw_perf_event_extra *reg;
3658 
3659 	reg = &event->hw.extra_reg;
3660 	if (reg->idx != EXTRA_REG_NONE)
3661 		__intel_shared_reg_put_constraints(cpuc, reg);
3662 
3663 	reg = &event->hw.branch_reg;
3664 	if (reg->idx != EXTRA_REG_NONE)
3665 		__intel_shared_reg_put_constraints(cpuc, reg);
3666 }
3667 
3668 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3669 					struct perf_event *event)
3670 {
3671 	intel_put_shared_regs_event_constraints(cpuc, event);
3672 
3673 	/*
3674 	 * is PMU has exclusive counter restrictions, then
3675 	 * all events are subject to and must call the
3676 	 * put_excl_constraints() routine
3677 	 */
3678 	if (cpuc->excl_cntrs)
3679 		intel_put_excl_constraints(cpuc, event);
3680 }
3681 
3682 static void intel_pebs_aliases_core2(struct perf_event *event)
3683 {
3684 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3685 		/*
3686 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3687 		 * (0x003c) so that we can use it with PEBS.
3688 		 *
3689 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3690 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
3691 		 * (0x00c0), which is a PEBS capable event, to get the same
3692 		 * count.
3693 		 *
3694 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
3695 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
3696 		 * larger than the maximum number of instructions that can be
3697 		 * retired per cycle (4) and then inverting the condition, we
3698 		 * count all cycles that retire 16 or less instructions, which
3699 		 * is every cycle.
3700 		 *
3701 		 * Thereby we gain a PEBS capable cycle counter.
3702 		 */
3703 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3704 
3705 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3706 		event->hw.config = alt_config;
3707 	}
3708 }
3709 
3710 static void intel_pebs_aliases_snb(struct perf_event *event)
3711 {
3712 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3713 		/*
3714 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3715 		 * (0x003c) so that we can use it with PEBS.
3716 		 *
3717 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3718 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
3719 		 * (0x01c2), which is a PEBS capable event, to get the same
3720 		 * count.
3721 		 *
3722 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
3723 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3724 		 * larger than the maximum number of micro-ops that can be
3725 		 * retired per cycle (4) and then inverting the condition, we
3726 		 * count all cycles that retire 16 or less micro-ops, which
3727 		 * is every cycle.
3728 		 *
3729 		 * Thereby we gain a PEBS capable cycle counter.
3730 		 */
3731 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3732 
3733 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3734 		event->hw.config = alt_config;
3735 	}
3736 }
3737 
3738 static void intel_pebs_aliases_precdist(struct perf_event *event)
3739 {
3740 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3741 		/*
3742 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3743 		 * (0x003c) so that we can use it with PEBS.
3744 		 *
3745 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3746 		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3747 		 * (0x01c0), which is a PEBS capable event, to get the same
3748 		 * count.
3749 		 *
3750 		 * The PREC_DIST event has special support to minimize sample
3751 		 * shadowing effects. One drawback is that it can be
3752 		 * only programmed on counter 1, but that seems like an
3753 		 * acceptable trade off.
3754 		 */
3755 		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3756 
3757 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3758 		event->hw.config = alt_config;
3759 	}
3760 }
3761 
3762 static void intel_pebs_aliases_ivb(struct perf_event *event)
3763 {
3764 	if (event->attr.precise_ip < 3)
3765 		return intel_pebs_aliases_snb(event);
3766 	return intel_pebs_aliases_precdist(event);
3767 }
3768 
3769 static void intel_pebs_aliases_skl(struct perf_event *event)
3770 {
3771 	if (event->attr.precise_ip < 3)
3772 		return intel_pebs_aliases_core2(event);
3773 	return intel_pebs_aliases_precdist(event);
3774 }
3775 
3776 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3777 {
3778 	unsigned long flags = x86_pmu.large_pebs_flags;
3779 
3780 	if (event->attr.use_clockid)
3781 		flags &= ~PERF_SAMPLE_TIME;
3782 	if (!event->attr.exclude_kernel)
3783 		flags &= ~PERF_SAMPLE_REGS_USER;
3784 	if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3785 		flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3786 	return flags;
3787 }
3788 
3789 static int intel_pmu_bts_config(struct perf_event *event)
3790 {
3791 	struct perf_event_attr *attr = &event->attr;
3792 
3793 	if (unlikely(intel_pmu_has_bts(event))) {
3794 		/* BTS is not supported by this architecture. */
3795 		if (!x86_pmu.bts_active)
3796 			return -EOPNOTSUPP;
3797 
3798 		/* BTS is currently only allowed for user-mode. */
3799 		if (!attr->exclude_kernel)
3800 			return -EOPNOTSUPP;
3801 
3802 		/* BTS is not allowed for precise events. */
3803 		if (attr->precise_ip)
3804 			return -EOPNOTSUPP;
3805 
3806 		/* disallow bts if conflicting events are present */
3807 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3808 			return -EBUSY;
3809 
3810 		event->destroy = hw_perf_lbr_event_destroy;
3811 	}
3812 
3813 	return 0;
3814 }
3815 
3816 static int core_pmu_hw_config(struct perf_event *event)
3817 {
3818 	int ret = x86_pmu_hw_config(event);
3819 
3820 	if (ret)
3821 		return ret;
3822 
3823 	return intel_pmu_bts_config(event);
3824 }
3825 
3826 #define INTEL_TD_METRIC_AVAILABLE_MAX	(INTEL_TD_METRIC_RETIRING + \
3827 					 ((x86_pmu.num_topdown_events - 1) << 8))
3828 
3829 static bool is_available_metric_event(struct perf_event *event)
3830 {
3831 	return is_metric_event(event) &&
3832 		event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3833 }
3834 
3835 static inline bool is_mem_loads_event(struct perf_event *event)
3836 {
3837 	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3838 }
3839 
3840 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3841 {
3842 	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3843 }
3844 
3845 static inline bool require_mem_loads_aux_event(struct perf_event *event)
3846 {
3847 	if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
3848 		return false;
3849 
3850 	if (is_hybrid())
3851 		return hybrid_pmu(event->pmu)->cpu_type == hybrid_big;
3852 
3853 	return true;
3854 }
3855 
3856 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
3857 {
3858 	union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
3859 
3860 	return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
3861 }
3862 
3863 static int intel_pmu_hw_config(struct perf_event *event)
3864 {
3865 	int ret = x86_pmu_hw_config(event);
3866 
3867 	if (ret)
3868 		return ret;
3869 
3870 	ret = intel_pmu_bts_config(event);
3871 	if (ret)
3872 		return ret;
3873 
3874 	if (event->attr.precise_ip) {
3875 		if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
3876 			return -EINVAL;
3877 
3878 		if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3879 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3880 			if (!(event->attr.sample_type &
3881 			      ~intel_pmu_large_pebs_flags(event))) {
3882 				event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3883 				event->attach_state |= PERF_ATTACH_SCHED_CB;
3884 			}
3885 		}
3886 		if (x86_pmu.pebs_aliases)
3887 			x86_pmu.pebs_aliases(event);
3888 	}
3889 
3890 	if (needs_branch_stack(event)) {
3891 		ret = intel_pmu_setup_lbr_filter(event);
3892 		if (ret)
3893 			return ret;
3894 		event->attach_state |= PERF_ATTACH_SCHED_CB;
3895 
3896 		/*
3897 		 * BTS is set up earlier in this path, so don't account twice
3898 		 */
3899 		if (!unlikely(intel_pmu_has_bts(event))) {
3900 			/* disallow lbr if conflicting events are present */
3901 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3902 				return -EBUSY;
3903 
3904 			event->destroy = hw_perf_lbr_event_destroy;
3905 		}
3906 	}
3907 
3908 	if (event->attr.aux_output) {
3909 		if (!event->attr.precise_ip)
3910 			return -EINVAL;
3911 
3912 		event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3913 	}
3914 
3915 	if ((event->attr.type == PERF_TYPE_HARDWARE) ||
3916 	    (event->attr.type == PERF_TYPE_HW_CACHE))
3917 		return 0;
3918 
3919 	/*
3920 	 * Config Topdown slots and metric events
3921 	 *
3922 	 * The slots event on Fixed Counter 3 can support sampling,
3923 	 * which will be handled normally in x86_perf_event_update().
3924 	 *
3925 	 * Metric events don't support sampling and require being paired
3926 	 * with a slots event as group leader. When the slots event
3927 	 * is used in a metrics group, it too cannot support sampling.
3928 	 */
3929 	if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
3930 		if (event->attr.config1 || event->attr.config2)
3931 			return -EINVAL;
3932 
3933 		/*
3934 		 * The TopDown metrics events and slots event don't
3935 		 * support any filters.
3936 		 */
3937 		if (event->attr.config & X86_ALL_EVENT_FLAGS)
3938 			return -EINVAL;
3939 
3940 		if (is_available_metric_event(event)) {
3941 			struct perf_event *leader = event->group_leader;
3942 
3943 			/* The metric events don't support sampling. */
3944 			if (is_sampling_event(event))
3945 				return -EINVAL;
3946 
3947 			/* The metric events require a slots group leader. */
3948 			if (!is_slots_event(leader))
3949 				return -EINVAL;
3950 
3951 			/*
3952 			 * The leader/SLOTS must not be a sampling event for
3953 			 * metric use; hardware requires it starts at 0 when used
3954 			 * in conjunction with MSR_PERF_METRICS.
3955 			 */
3956 			if (is_sampling_event(leader))
3957 				return -EINVAL;
3958 
3959 			event->event_caps |= PERF_EV_CAP_SIBLING;
3960 			/*
3961 			 * Only once we have a METRICs sibling do we
3962 			 * need TopDown magic.
3963 			 */
3964 			leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3965 			event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
3966 		}
3967 	}
3968 
3969 	/*
3970 	 * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
3971 	 * doesn't function quite right. As a work-around it needs to always be
3972 	 * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
3973 	 * The actual count of this second event is irrelevant it just needs
3974 	 * to be active to make the first event function correctly.
3975 	 *
3976 	 * In a group, the auxiliary event must be in front of the load latency
3977 	 * event. The rule is to simplify the implementation of the check.
3978 	 * That's because perf cannot have a complete group at the moment.
3979 	 */
3980 	if (require_mem_loads_aux_event(event) &&
3981 	    (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
3982 	    is_mem_loads_event(event)) {
3983 		struct perf_event *leader = event->group_leader;
3984 		struct perf_event *sibling = NULL;
3985 
3986 		if (!is_mem_loads_aux_event(leader)) {
3987 			for_each_sibling_event(sibling, leader) {
3988 				if (is_mem_loads_aux_event(sibling))
3989 					break;
3990 			}
3991 			if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
3992 				return -ENODATA;
3993 		}
3994 	}
3995 
3996 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3997 		return 0;
3998 
3999 	if (x86_pmu.version < 3)
4000 		return -EINVAL;
4001 
4002 	ret = perf_allow_cpu(&event->attr);
4003 	if (ret)
4004 		return ret;
4005 
4006 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
4007 
4008 	return 0;
4009 }
4010 
4011 /*
4012  * Currently, the only caller of this function is the atomic_switch_perf_msrs().
4013  * The host perf conext helps to prepare the values of the real hardware for
4014  * a set of msrs that need to be switched atomically in a vmx transaction.
4015  *
4016  * For example, the pseudocode needed to add a new msr should look like:
4017  *
4018  * arr[(*nr)++] = (struct perf_guest_switch_msr){
4019  *	.msr = the hardware msr address,
4020  *	.host = the value the hardware has when it doesn't run a guest,
4021  *	.guest = the value the hardware has when it runs a guest,
4022  * };
4023  *
4024  * These values have nothing to do with the emulated values the guest sees
4025  * when it uses {RD,WR}MSR, which should be handled by the KVM context,
4026  * specifically in the intel_pmu_{get,set}_msr().
4027  */
4028 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr, void *data)
4029 {
4030 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4031 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4032 	struct kvm_pmu *kvm_pmu = (struct kvm_pmu *)data;
4033 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
4034 	u64 pebs_mask = cpuc->pebs_enabled & x86_pmu.pebs_capable;
4035 	int global_ctrl, pebs_enable;
4036 
4037 	*nr = 0;
4038 	global_ctrl = (*nr)++;
4039 	arr[global_ctrl] = (struct perf_guest_switch_msr){
4040 		.msr = MSR_CORE_PERF_GLOBAL_CTRL,
4041 		.host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask,
4042 		.guest = intel_ctrl & (~cpuc->intel_ctrl_host_mask | ~pebs_mask),
4043 	};
4044 
4045 	if (!x86_pmu.pebs)
4046 		return arr;
4047 
4048 	/*
4049 	 * If PMU counter has PEBS enabled it is not enough to
4050 	 * disable counter on a guest entry since PEBS memory
4051 	 * write can overshoot guest entry and corrupt guest
4052 	 * memory. Disabling PEBS solves the problem.
4053 	 *
4054 	 * Don't do this if the CPU already enforces it.
4055 	 */
4056 	if (x86_pmu.pebs_no_isolation) {
4057 		arr[(*nr)++] = (struct perf_guest_switch_msr){
4058 			.msr = MSR_IA32_PEBS_ENABLE,
4059 			.host = cpuc->pebs_enabled,
4060 			.guest = 0,
4061 		};
4062 		return arr;
4063 	}
4064 
4065 	if (!kvm_pmu || !x86_pmu.pebs_ept)
4066 		return arr;
4067 
4068 	arr[(*nr)++] = (struct perf_guest_switch_msr){
4069 		.msr = MSR_IA32_DS_AREA,
4070 		.host = (unsigned long)cpuc->ds,
4071 		.guest = kvm_pmu->ds_area,
4072 	};
4073 
4074 	if (x86_pmu.intel_cap.pebs_baseline) {
4075 		arr[(*nr)++] = (struct perf_guest_switch_msr){
4076 			.msr = MSR_PEBS_DATA_CFG,
4077 			.host = cpuc->pebs_data_cfg,
4078 			.guest = kvm_pmu->pebs_data_cfg,
4079 		};
4080 	}
4081 
4082 	pebs_enable = (*nr)++;
4083 	arr[pebs_enable] = (struct perf_guest_switch_msr){
4084 		.msr = MSR_IA32_PEBS_ENABLE,
4085 		.host = cpuc->pebs_enabled & ~cpuc->intel_ctrl_guest_mask,
4086 		.guest = pebs_mask & ~cpuc->intel_ctrl_host_mask,
4087 	};
4088 
4089 	if (arr[pebs_enable].host) {
4090 		/* Disable guest PEBS if host PEBS is enabled. */
4091 		arr[pebs_enable].guest = 0;
4092 	} else {
4093 		/* Disable guest PEBS thoroughly for cross-mapped PEBS counters. */
4094 		arr[pebs_enable].guest &= ~kvm_pmu->host_cross_mapped_mask;
4095 		arr[global_ctrl].guest &= ~kvm_pmu->host_cross_mapped_mask;
4096 		/* Set hw GLOBAL_CTRL bits for PEBS counter when it runs for guest */
4097 		arr[global_ctrl].guest |= arr[pebs_enable].guest;
4098 	}
4099 
4100 	return arr;
4101 }
4102 
4103 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr, void *data)
4104 {
4105 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4106 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4107 	int idx;
4108 
4109 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
4110 		struct perf_event *event = cpuc->events[idx];
4111 
4112 		arr[idx].msr = x86_pmu_config_addr(idx);
4113 		arr[idx].host = arr[idx].guest = 0;
4114 
4115 		if (!test_bit(idx, cpuc->active_mask))
4116 			continue;
4117 
4118 		arr[idx].host = arr[idx].guest =
4119 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
4120 
4121 		if (event->attr.exclude_host)
4122 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4123 		else if (event->attr.exclude_guest)
4124 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4125 	}
4126 
4127 	*nr = x86_pmu.num_counters;
4128 	return arr;
4129 }
4130 
4131 static void core_pmu_enable_event(struct perf_event *event)
4132 {
4133 	if (!event->attr.exclude_host)
4134 		x86_pmu_enable_event(event);
4135 }
4136 
4137 static void core_pmu_enable_all(int added)
4138 {
4139 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4140 	int idx;
4141 
4142 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
4143 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
4144 
4145 		if (!test_bit(idx, cpuc->active_mask) ||
4146 				cpuc->events[idx]->attr.exclude_host)
4147 			continue;
4148 
4149 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
4150 	}
4151 }
4152 
4153 static int hsw_hw_config(struct perf_event *event)
4154 {
4155 	int ret = intel_pmu_hw_config(event);
4156 
4157 	if (ret)
4158 		return ret;
4159 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
4160 		return 0;
4161 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
4162 
4163 	/*
4164 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
4165 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
4166 	 * this combination.
4167 	 */
4168 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
4169 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
4170 	      event->attr.precise_ip > 0))
4171 		return -EOPNOTSUPP;
4172 
4173 	if (event_is_checkpointed(event)) {
4174 		/*
4175 		 * Sampling of checkpointed events can cause situations where
4176 		 * the CPU constantly aborts because of a overflow, which is
4177 		 * then checkpointed back and ignored. Forbid checkpointing
4178 		 * for sampling.
4179 		 *
4180 		 * But still allow a long sampling period, so that perf stat
4181 		 * from KVM works.
4182 		 */
4183 		if (event->attr.sample_period > 0 &&
4184 		    event->attr.sample_period < 0x7fffffff)
4185 			return -EOPNOTSUPP;
4186 	}
4187 	return 0;
4188 }
4189 
4190 static struct event_constraint counter0_constraint =
4191 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
4192 
4193 static struct event_constraint counter1_constraint =
4194 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x2);
4195 
4196 static struct event_constraint counter0_1_constraint =
4197 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x3);
4198 
4199 static struct event_constraint counter2_constraint =
4200 			EVENT_CONSTRAINT(0, 0x4, 0);
4201 
4202 static struct event_constraint fixed0_constraint =
4203 			FIXED_EVENT_CONSTRAINT(0x00c0, 0);
4204 
4205 static struct event_constraint fixed0_counter0_constraint =
4206 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
4207 
4208 static struct event_constraint fixed0_counter0_1_constraint =
4209 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000003ULL);
4210 
4211 static struct event_constraint counters_1_7_constraint =
4212 			INTEL_ALL_EVENT_CONSTRAINT(0, 0xfeULL);
4213 
4214 static struct event_constraint *
4215 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4216 			  struct perf_event *event)
4217 {
4218 	struct event_constraint *c;
4219 
4220 	c = intel_get_event_constraints(cpuc, idx, event);
4221 
4222 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
4223 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4224 		if (c->idxmsk64 & (1U << 2))
4225 			return &counter2_constraint;
4226 		return &emptyconstraint;
4227 	}
4228 
4229 	return c;
4230 }
4231 
4232 static struct event_constraint *
4233 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4234 			  struct perf_event *event)
4235 {
4236 	/*
4237 	 * Fixed counter 0 has less skid.
4238 	 * Force instruction:ppp in Fixed counter 0
4239 	 */
4240 	if ((event->attr.precise_ip == 3) &&
4241 	    constraint_match(&fixed0_constraint, event->hw.config))
4242 		return &fixed0_constraint;
4243 
4244 	return hsw_get_event_constraints(cpuc, idx, event);
4245 }
4246 
4247 static struct event_constraint *
4248 spr_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4249 			  struct perf_event *event)
4250 {
4251 	struct event_constraint *c;
4252 
4253 	c = icl_get_event_constraints(cpuc, idx, event);
4254 
4255 	/*
4256 	 * The :ppp indicates the Precise Distribution (PDist) facility, which
4257 	 * is only supported on the GP counter 0. If a :ppp event which is not
4258 	 * available on the GP counter 0, error out.
4259 	 * Exception: Instruction PDIR is only available on the fixed counter 0.
4260 	 */
4261 	if ((event->attr.precise_ip == 3) &&
4262 	    !constraint_match(&fixed0_constraint, event->hw.config)) {
4263 		if (c->idxmsk64 & BIT_ULL(0))
4264 			return &counter0_constraint;
4265 
4266 		return &emptyconstraint;
4267 	}
4268 
4269 	return c;
4270 }
4271 
4272 static struct event_constraint *
4273 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4274 			  struct perf_event *event)
4275 {
4276 	struct event_constraint *c;
4277 
4278 	/* :ppp means to do reduced skid PEBS which is PMC0 only. */
4279 	if (event->attr.precise_ip == 3)
4280 		return &counter0_constraint;
4281 
4282 	c = intel_get_event_constraints(cpuc, idx, event);
4283 
4284 	return c;
4285 }
4286 
4287 static struct event_constraint *
4288 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4289 			  struct perf_event *event)
4290 {
4291 	struct event_constraint *c;
4292 
4293 	c = intel_get_event_constraints(cpuc, idx, event);
4294 
4295 	/*
4296 	 * :ppp means to do reduced skid PEBS,
4297 	 * which is available on PMC0 and fixed counter 0.
4298 	 */
4299 	if (event->attr.precise_ip == 3) {
4300 		/* Force instruction:ppp on PMC0 and Fixed counter 0 */
4301 		if (constraint_match(&fixed0_constraint, event->hw.config))
4302 			return &fixed0_counter0_constraint;
4303 
4304 		return &counter0_constraint;
4305 	}
4306 
4307 	return c;
4308 }
4309 
4310 static bool allow_tsx_force_abort = true;
4311 
4312 static struct event_constraint *
4313 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4314 			  struct perf_event *event)
4315 {
4316 	struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4317 
4318 	/*
4319 	 * Without TFA we must not use PMC3.
4320 	 */
4321 	if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4322 		c = dyn_constraint(cpuc, c, idx);
4323 		c->idxmsk64 &= ~(1ULL << 3);
4324 		c->weight--;
4325 	}
4326 
4327 	return c;
4328 }
4329 
4330 static struct event_constraint *
4331 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4332 			  struct perf_event *event)
4333 {
4334 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4335 
4336 	if (pmu->cpu_type == hybrid_big)
4337 		return spr_get_event_constraints(cpuc, idx, event);
4338 	else if (pmu->cpu_type == hybrid_small)
4339 		return tnt_get_event_constraints(cpuc, idx, event);
4340 
4341 	WARN_ON(1);
4342 	return &emptyconstraint;
4343 }
4344 
4345 static struct event_constraint *
4346 cmt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4347 			  struct perf_event *event)
4348 {
4349 	struct event_constraint *c;
4350 
4351 	c = intel_get_event_constraints(cpuc, idx, event);
4352 
4353 	/*
4354 	 * The :ppp indicates the Precise Distribution (PDist) facility, which
4355 	 * is only supported on the GP counter 0 & 1 and Fixed counter 0.
4356 	 * If a :ppp event which is not available on the above eligible counters,
4357 	 * error out.
4358 	 */
4359 	if (event->attr.precise_ip == 3) {
4360 		/* Force instruction:ppp on PMC0, 1 and Fixed counter 0 */
4361 		if (constraint_match(&fixed0_constraint, event->hw.config))
4362 			return &fixed0_counter0_1_constraint;
4363 
4364 		switch (c->idxmsk64 & 0x3ull) {
4365 		case 0x1:
4366 			return &counter0_constraint;
4367 		case 0x2:
4368 			return &counter1_constraint;
4369 		case 0x3:
4370 			return &counter0_1_constraint;
4371 		}
4372 		return &emptyconstraint;
4373 	}
4374 
4375 	return c;
4376 }
4377 
4378 static struct event_constraint *
4379 rwc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4380 			  struct perf_event *event)
4381 {
4382 	struct event_constraint *c;
4383 
4384 	c = spr_get_event_constraints(cpuc, idx, event);
4385 
4386 	/* The Retire Latency is not supported by the fixed counter 0. */
4387 	if (event->attr.precise_ip &&
4388 	    (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
4389 	    constraint_match(&fixed0_constraint, event->hw.config)) {
4390 		/*
4391 		 * The Instruction PDIR is only available
4392 		 * on the fixed counter 0. Error out for this case.
4393 		 */
4394 		if (event->attr.precise_ip == 3)
4395 			return &emptyconstraint;
4396 		return &counters_1_7_constraint;
4397 	}
4398 
4399 	return c;
4400 }
4401 
4402 static struct event_constraint *
4403 mtl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4404 			  struct perf_event *event)
4405 {
4406 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4407 
4408 	if (pmu->cpu_type == hybrid_big)
4409 		return rwc_get_event_constraints(cpuc, idx, event);
4410 	if (pmu->cpu_type == hybrid_small)
4411 		return cmt_get_event_constraints(cpuc, idx, event);
4412 
4413 	WARN_ON(1);
4414 	return &emptyconstraint;
4415 }
4416 
4417 static int adl_hw_config(struct perf_event *event)
4418 {
4419 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4420 
4421 	if (pmu->cpu_type == hybrid_big)
4422 		return hsw_hw_config(event);
4423 	else if (pmu->cpu_type == hybrid_small)
4424 		return intel_pmu_hw_config(event);
4425 
4426 	WARN_ON(1);
4427 	return -EOPNOTSUPP;
4428 }
4429 
4430 static u8 adl_get_hybrid_cpu_type(void)
4431 {
4432 	return hybrid_big;
4433 }
4434 
4435 /*
4436  * Broadwell:
4437  *
4438  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4439  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4440  * the two to enforce a minimum period of 128 (the smallest value that has bits
4441  * 0-5 cleared and >= 100).
4442  *
4443  * Because of how the code in x86_perf_event_set_period() works, the truncation
4444  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4445  * to make up for the 'lost' events due to carrying the 'error' in period_left.
4446  *
4447  * Therefore the effective (average) period matches the requested period,
4448  * despite coarser hardware granularity.
4449  */
4450 static void bdw_limit_period(struct perf_event *event, s64 *left)
4451 {
4452 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4453 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
4454 		if (*left < 128)
4455 			*left = 128;
4456 		*left &= ~0x3fULL;
4457 	}
4458 }
4459 
4460 static void nhm_limit_period(struct perf_event *event, s64 *left)
4461 {
4462 	*left = max(*left, 32LL);
4463 }
4464 
4465 static void spr_limit_period(struct perf_event *event, s64 *left)
4466 {
4467 	if (event->attr.precise_ip == 3)
4468 		*left = max(*left, 128LL);
4469 }
4470 
4471 PMU_FORMAT_ATTR(event,	"config:0-7"	);
4472 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
4473 PMU_FORMAT_ATTR(edge,	"config:18"	);
4474 PMU_FORMAT_ATTR(pc,	"config:19"	);
4475 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
4476 PMU_FORMAT_ATTR(inv,	"config:23"	);
4477 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
4478 PMU_FORMAT_ATTR(in_tx,  "config:32");
4479 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4480 
4481 static struct attribute *intel_arch_formats_attr[] = {
4482 	&format_attr_event.attr,
4483 	&format_attr_umask.attr,
4484 	&format_attr_edge.attr,
4485 	&format_attr_pc.attr,
4486 	&format_attr_inv.attr,
4487 	&format_attr_cmask.attr,
4488 	NULL,
4489 };
4490 
4491 ssize_t intel_event_sysfs_show(char *page, u64 config)
4492 {
4493 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4494 
4495 	return x86_event_sysfs_show(page, config, event);
4496 }
4497 
4498 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4499 {
4500 	struct intel_shared_regs *regs;
4501 	int i;
4502 
4503 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
4504 			    GFP_KERNEL, cpu_to_node(cpu));
4505 	if (regs) {
4506 		/*
4507 		 * initialize the locks to keep lockdep happy
4508 		 */
4509 		for (i = 0; i < EXTRA_REG_MAX; i++)
4510 			raw_spin_lock_init(&regs->regs[i].lock);
4511 
4512 		regs->core_id = -1;
4513 	}
4514 	return regs;
4515 }
4516 
4517 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4518 {
4519 	struct intel_excl_cntrs *c;
4520 
4521 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4522 			 GFP_KERNEL, cpu_to_node(cpu));
4523 	if (c) {
4524 		raw_spin_lock_init(&c->lock);
4525 		c->core_id = -1;
4526 	}
4527 	return c;
4528 }
4529 
4530 
4531 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4532 {
4533 	cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4534 
4535 	if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4536 		cpuc->shared_regs = allocate_shared_regs(cpu);
4537 		if (!cpuc->shared_regs)
4538 			goto err;
4539 	}
4540 
4541 	if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4542 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4543 
4544 		cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4545 		if (!cpuc->constraint_list)
4546 			goto err_shared_regs;
4547 	}
4548 
4549 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4550 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4551 		if (!cpuc->excl_cntrs)
4552 			goto err_constraint_list;
4553 
4554 		cpuc->excl_thread_id = 0;
4555 	}
4556 
4557 	return 0;
4558 
4559 err_constraint_list:
4560 	kfree(cpuc->constraint_list);
4561 	cpuc->constraint_list = NULL;
4562 
4563 err_shared_regs:
4564 	kfree(cpuc->shared_regs);
4565 	cpuc->shared_regs = NULL;
4566 
4567 err:
4568 	return -ENOMEM;
4569 }
4570 
4571 static int intel_pmu_cpu_prepare(int cpu)
4572 {
4573 	return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4574 }
4575 
4576 static void flip_smm_bit(void *data)
4577 {
4578 	unsigned long set = *(unsigned long *)data;
4579 
4580 	if (set > 0) {
4581 		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4582 			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4583 	} else {
4584 		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4585 			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4586 	}
4587 }
4588 
4589 static void intel_pmu_check_num_counters(int *num_counters,
4590 					 int *num_counters_fixed,
4591 					 u64 *intel_ctrl, u64 fixed_mask);
4592 
4593 static void update_pmu_cap(struct x86_hybrid_pmu *pmu)
4594 {
4595 	unsigned int sub_bitmaps = cpuid_eax(ARCH_PERFMON_EXT_LEAF);
4596 	unsigned int eax, ebx, ecx, edx;
4597 
4598 	if (sub_bitmaps & ARCH_PERFMON_NUM_COUNTER_LEAF_BIT) {
4599 		cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_NUM_COUNTER_LEAF,
4600 			    &eax, &ebx, &ecx, &edx);
4601 		pmu->num_counters = fls(eax);
4602 		pmu->num_counters_fixed = fls(ebx);
4603 		intel_pmu_check_num_counters(&pmu->num_counters, &pmu->num_counters_fixed,
4604 					     &pmu->intel_ctrl, ebx);
4605 	}
4606 }
4607 
4608 static bool init_hybrid_pmu(int cpu)
4609 {
4610 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4611 	u8 cpu_type = get_this_hybrid_cpu_type();
4612 	struct x86_hybrid_pmu *pmu = NULL;
4613 	int i;
4614 
4615 	if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
4616 		cpu_type = x86_pmu.get_hybrid_cpu_type();
4617 
4618 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
4619 		if (x86_pmu.hybrid_pmu[i].cpu_type == cpu_type) {
4620 			pmu = &x86_pmu.hybrid_pmu[i];
4621 			break;
4622 		}
4623 	}
4624 	if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
4625 		cpuc->pmu = NULL;
4626 		return false;
4627 	}
4628 
4629 	/* Only check and dump the PMU information for the first CPU */
4630 	if (!cpumask_empty(&pmu->supported_cpus))
4631 		goto end;
4632 
4633 	if (this_cpu_has(X86_FEATURE_ARCH_PERFMON_EXT))
4634 		update_pmu_cap(pmu);
4635 
4636 	if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
4637 		return false;
4638 
4639 	pr_info("%s PMU driver: ", pmu->name);
4640 
4641 	if (pmu->intel_cap.pebs_output_pt_available)
4642 		pr_cont("PEBS-via-PT ");
4643 
4644 	pr_cont("\n");
4645 
4646 	x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
4647 			     pmu->intel_ctrl);
4648 
4649 end:
4650 	cpumask_set_cpu(cpu, &pmu->supported_cpus);
4651 	cpuc->pmu = &pmu->pmu;
4652 
4653 	return true;
4654 }
4655 
4656 static void intel_pmu_cpu_starting(int cpu)
4657 {
4658 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4659 	int core_id = topology_core_id(cpu);
4660 	int i;
4661 
4662 	if (is_hybrid() && !init_hybrid_pmu(cpu))
4663 		return;
4664 
4665 	init_debug_store_on_cpu(cpu);
4666 	/*
4667 	 * Deal with CPUs that don't clear their LBRs on power-up.
4668 	 */
4669 	intel_pmu_lbr_reset();
4670 
4671 	cpuc->lbr_sel = NULL;
4672 
4673 	if (x86_pmu.flags & PMU_FL_TFA) {
4674 		WARN_ON_ONCE(cpuc->tfa_shadow);
4675 		cpuc->tfa_shadow = ~0ULL;
4676 		intel_set_tfa(cpuc, false);
4677 	}
4678 
4679 	if (x86_pmu.version > 1)
4680 		flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4681 
4682 	/*
4683 	 * Disable perf metrics if any added CPU doesn't support it.
4684 	 *
4685 	 * Turn off the check for a hybrid architecture, because the
4686 	 * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
4687 	 * the architecture features. The perf metrics is a model-specific
4688 	 * feature for now. The corresponding bit should always be 0 on
4689 	 * a hybrid platform, e.g., Alder Lake.
4690 	 */
4691 	if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
4692 		union perf_capabilities perf_cap;
4693 
4694 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4695 		if (!perf_cap.perf_metrics) {
4696 			x86_pmu.intel_cap.perf_metrics = 0;
4697 			x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4698 		}
4699 	}
4700 
4701 	if (!cpuc->shared_regs)
4702 		return;
4703 
4704 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4705 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4706 			struct intel_shared_regs *pc;
4707 
4708 			pc = per_cpu(cpu_hw_events, i).shared_regs;
4709 			if (pc && pc->core_id == core_id) {
4710 				cpuc->kfree_on_online[0] = cpuc->shared_regs;
4711 				cpuc->shared_regs = pc;
4712 				break;
4713 			}
4714 		}
4715 		cpuc->shared_regs->core_id = core_id;
4716 		cpuc->shared_regs->refcnt++;
4717 	}
4718 
4719 	if (x86_pmu.lbr_sel_map)
4720 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4721 
4722 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4723 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4724 			struct cpu_hw_events *sibling;
4725 			struct intel_excl_cntrs *c;
4726 
4727 			sibling = &per_cpu(cpu_hw_events, i);
4728 			c = sibling->excl_cntrs;
4729 			if (c && c->core_id == core_id) {
4730 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4731 				cpuc->excl_cntrs = c;
4732 				if (!sibling->excl_thread_id)
4733 					cpuc->excl_thread_id = 1;
4734 				break;
4735 			}
4736 		}
4737 		cpuc->excl_cntrs->core_id = core_id;
4738 		cpuc->excl_cntrs->refcnt++;
4739 	}
4740 }
4741 
4742 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4743 {
4744 	struct intel_excl_cntrs *c;
4745 
4746 	c = cpuc->excl_cntrs;
4747 	if (c) {
4748 		if (c->core_id == -1 || --c->refcnt == 0)
4749 			kfree(c);
4750 		cpuc->excl_cntrs = NULL;
4751 	}
4752 
4753 	kfree(cpuc->constraint_list);
4754 	cpuc->constraint_list = NULL;
4755 }
4756 
4757 static void intel_pmu_cpu_dying(int cpu)
4758 {
4759 	fini_debug_store_on_cpu(cpu);
4760 }
4761 
4762 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4763 {
4764 	struct intel_shared_regs *pc;
4765 
4766 	pc = cpuc->shared_regs;
4767 	if (pc) {
4768 		if (pc->core_id == -1 || --pc->refcnt == 0)
4769 			kfree(pc);
4770 		cpuc->shared_regs = NULL;
4771 	}
4772 
4773 	free_excl_cntrs(cpuc);
4774 }
4775 
4776 static void intel_pmu_cpu_dead(int cpu)
4777 {
4778 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4779 
4780 	intel_cpuc_finish(cpuc);
4781 
4782 	if (is_hybrid() && cpuc->pmu)
4783 		cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
4784 }
4785 
4786 static void intel_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
4787 				 bool sched_in)
4788 {
4789 	intel_pmu_pebs_sched_task(pmu_ctx, sched_in);
4790 	intel_pmu_lbr_sched_task(pmu_ctx, sched_in);
4791 }
4792 
4793 static void intel_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
4794 				    struct perf_event_pmu_context *next_epc)
4795 {
4796 	intel_pmu_lbr_swap_task_ctx(prev_epc, next_epc);
4797 }
4798 
4799 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4800 {
4801 	return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4802 }
4803 
4804 static void intel_aux_output_init(void)
4805 {
4806 	/* Refer also intel_pmu_aux_output_match() */
4807 	if (x86_pmu.intel_cap.pebs_output_pt_available)
4808 		x86_pmu.assign = intel_pmu_assign_event;
4809 }
4810 
4811 static int intel_pmu_aux_output_match(struct perf_event *event)
4812 {
4813 	/* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */
4814 	if (!x86_pmu.intel_cap.pebs_output_pt_available)
4815 		return 0;
4816 
4817 	return is_intel_pt_event(event);
4818 }
4819 
4820 static void intel_pmu_filter(struct pmu *pmu, int cpu, bool *ret)
4821 {
4822 	struct x86_hybrid_pmu *hpmu = hybrid_pmu(pmu);
4823 
4824 	*ret = !cpumask_test_cpu(cpu, &hpmu->supported_cpus);
4825 }
4826 
4827 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
4828 
4829 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
4830 
4831 PMU_FORMAT_ATTR(frontend, "config1:0-23");
4832 
4833 static struct attribute *intel_arch3_formats_attr[] = {
4834 	&format_attr_event.attr,
4835 	&format_attr_umask.attr,
4836 	&format_attr_edge.attr,
4837 	&format_attr_pc.attr,
4838 	&format_attr_any.attr,
4839 	&format_attr_inv.attr,
4840 	&format_attr_cmask.attr,
4841 	NULL,
4842 };
4843 
4844 static struct attribute *hsw_format_attr[] = {
4845 	&format_attr_in_tx.attr,
4846 	&format_attr_in_tx_cp.attr,
4847 	&format_attr_offcore_rsp.attr,
4848 	&format_attr_ldlat.attr,
4849 	NULL
4850 };
4851 
4852 static struct attribute *nhm_format_attr[] = {
4853 	&format_attr_offcore_rsp.attr,
4854 	&format_attr_ldlat.attr,
4855 	NULL
4856 };
4857 
4858 static struct attribute *slm_format_attr[] = {
4859 	&format_attr_offcore_rsp.attr,
4860 	NULL
4861 };
4862 
4863 static struct attribute *skl_format_attr[] = {
4864 	&format_attr_frontend.attr,
4865 	NULL,
4866 };
4867 
4868 static __initconst const struct x86_pmu core_pmu = {
4869 	.name			= "core",
4870 	.handle_irq		= x86_pmu_handle_irq,
4871 	.disable_all		= x86_pmu_disable_all,
4872 	.enable_all		= core_pmu_enable_all,
4873 	.enable			= core_pmu_enable_event,
4874 	.disable		= x86_pmu_disable_event,
4875 	.hw_config		= core_pmu_hw_config,
4876 	.schedule_events	= x86_schedule_events,
4877 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
4878 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
4879 	.event_map		= intel_pmu_event_map,
4880 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
4881 	.apic			= 1,
4882 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4883 
4884 	/*
4885 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
4886 	 * so we install an artificial 1<<31 period regardless of
4887 	 * the generic event period:
4888 	 */
4889 	.max_period		= (1ULL<<31) - 1,
4890 	.get_event_constraints	= intel_get_event_constraints,
4891 	.put_event_constraints	= intel_put_event_constraints,
4892 	.event_constraints	= intel_core_event_constraints,
4893 	.guest_get_msrs		= core_guest_get_msrs,
4894 	.format_attrs		= intel_arch_formats_attr,
4895 	.events_sysfs_show	= intel_event_sysfs_show,
4896 
4897 	/*
4898 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
4899 	 * together with PMU version 1 and thus be using core_pmu with
4900 	 * shared_regs. We need following callbacks here to allocate
4901 	 * it properly.
4902 	 */
4903 	.cpu_prepare		= intel_pmu_cpu_prepare,
4904 	.cpu_starting		= intel_pmu_cpu_starting,
4905 	.cpu_dying		= intel_pmu_cpu_dying,
4906 	.cpu_dead		= intel_pmu_cpu_dead,
4907 
4908 	.check_period		= intel_pmu_check_period,
4909 
4910 	.lbr_reset		= intel_pmu_lbr_reset_64,
4911 	.lbr_read		= intel_pmu_lbr_read_64,
4912 	.lbr_save		= intel_pmu_lbr_save,
4913 	.lbr_restore		= intel_pmu_lbr_restore,
4914 };
4915 
4916 static __initconst const struct x86_pmu intel_pmu = {
4917 	.name			= "Intel",
4918 	.handle_irq		= intel_pmu_handle_irq,
4919 	.disable_all		= intel_pmu_disable_all,
4920 	.enable_all		= intel_pmu_enable_all,
4921 	.enable			= intel_pmu_enable_event,
4922 	.disable		= intel_pmu_disable_event,
4923 	.add			= intel_pmu_add_event,
4924 	.del			= intel_pmu_del_event,
4925 	.read			= intel_pmu_read_event,
4926 	.set_period		= intel_pmu_set_period,
4927 	.update			= intel_pmu_update,
4928 	.hw_config		= intel_pmu_hw_config,
4929 	.schedule_events	= x86_schedule_events,
4930 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
4931 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
4932 	.event_map		= intel_pmu_event_map,
4933 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
4934 	.apic			= 1,
4935 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4936 	/*
4937 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
4938 	 * so we install an artificial 1<<31 period regardless of
4939 	 * the generic event period:
4940 	 */
4941 	.max_period		= (1ULL << 31) - 1,
4942 	.get_event_constraints	= intel_get_event_constraints,
4943 	.put_event_constraints	= intel_put_event_constraints,
4944 	.pebs_aliases		= intel_pebs_aliases_core2,
4945 
4946 	.format_attrs		= intel_arch3_formats_attr,
4947 	.events_sysfs_show	= intel_event_sysfs_show,
4948 
4949 	.cpu_prepare		= intel_pmu_cpu_prepare,
4950 	.cpu_starting		= intel_pmu_cpu_starting,
4951 	.cpu_dying		= intel_pmu_cpu_dying,
4952 	.cpu_dead		= intel_pmu_cpu_dead,
4953 
4954 	.guest_get_msrs		= intel_guest_get_msrs,
4955 	.sched_task		= intel_pmu_sched_task,
4956 	.swap_task_ctx		= intel_pmu_swap_task_ctx,
4957 
4958 	.check_period		= intel_pmu_check_period,
4959 
4960 	.aux_output_match	= intel_pmu_aux_output_match,
4961 
4962 	.lbr_reset		= intel_pmu_lbr_reset_64,
4963 	.lbr_read		= intel_pmu_lbr_read_64,
4964 	.lbr_save		= intel_pmu_lbr_save,
4965 	.lbr_restore		= intel_pmu_lbr_restore,
4966 
4967 	/*
4968 	 * SMM has access to all 4 rings and while traditionally SMM code only
4969 	 * ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
4970 	 *
4971 	 * Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
4972 	 * between SMM or not, this results in what should be pure userspace
4973 	 * counters including SMM data.
4974 	 *
4975 	 * This is a clear privilege issue, therefore globally disable
4976 	 * counting SMM by default.
4977 	 */
4978 	.attr_freeze_on_smi	= 1,
4979 };
4980 
4981 static __init void intel_clovertown_quirk(void)
4982 {
4983 	/*
4984 	 * PEBS is unreliable due to:
4985 	 *
4986 	 *   AJ67  - PEBS may experience CPL leaks
4987 	 *   AJ68  - PEBS PMI may be delayed by one event
4988 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
4989 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
4990 	 *
4991 	 * AJ67 could be worked around by restricting the OS/USR flags.
4992 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
4993 	 *
4994 	 * AJ106 could possibly be worked around by not allowing LBR
4995 	 *       usage from PEBS, including the fixup.
4996 	 * AJ68  could possibly be worked around by always programming
4997 	 *	 a pebs_event_reset[0] value and coping with the lost events.
4998 	 *
4999 	 * But taken together it might just make sense to not enable PEBS on
5000 	 * these chips.
5001 	 */
5002 	pr_warn("PEBS disabled due to CPU errata\n");
5003 	x86_pmu.pebs = 0;
5004 	x86_pmu.pebs_constraints = NULL;
5005 }
5006 
5007 static const struct x86_cpu_desc isolation_ucodes[] = {
5008 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL,		 3, 0x0000001f),
5009 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,		 1, 0x0000001e),
5010 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,		 1, 0x00000015),
5011 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 2, 0x00000037),
5012 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 4, 0x0000000a),
5013 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,		 4, 0x00000023),
5014 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,		 1, 0x00000014),
5015 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 2, 0x00000010),
5016 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 3, 0x07000009),
5017 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 4, 0x0f000009),
5018 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 5, 0x0e000002),
5019 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,		 1, 0x0b000014),
5020 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 3, 0x00000021),
5021 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 4, 0x00000000),
5022 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 5, 0x00000000),
5023 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 6, 0x00000000),
5024 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 7, 0x00000000),
5025 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		11, 0x00000000),
5026 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,		 3, 0x0000007c),
5027 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,		 3, 0x0000007c),
5028 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		 9, 0x0000004e),
5029 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		 9, 0x0000004e),
5030 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		10, 0x0000004e),
5031 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		11, 0x0000004e),
5032 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		12, 0x0000004e),
5033 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		10, 0x0000004e),
5034 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		11, 0x0000004e),
5035 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		12, 0x0000004e),
5036 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		13, 0x0000004e),
5037 	{}
5038 };
5039 
5040 static void intel_check_pebs_isolation(void)
5041 {
5042 	x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
5043 }
5044 
5045 static __init void intel_pebs_isolation_quirk(void)
5046 {
5047 	WARN_ON_ONCE(x86_pmu.check_microcode);
5048 	x86_pmu.check_microcode = intel_check_pebs_isolation;
5049 	intel_check_pebs_isolation();
5050 }
5051 
5052 static const struct x86_cpu_desc pebs_ucodes[] = {
5053 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,		7, 0x00000028),
5054 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	6, 0x00000618),
5055 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	7, 0x0000070c),
5056 	{}
5057 };
5058 
5059 static bool intel_snb_pebs_broken(void)
5060 {
5061 	return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
5062 }
5063 
5064 static void intel_snb_check_microcode(void)
5065 {
5066 	if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
5067 		return;
5068 
5069 	/*
5070 	 * Serialized by the microcode lock..
5071 	 */
5072 	if (x86_pmu.pebs_broken) {
5073 		pr_info("PEBS enabled due to microcode update\n");
5074 		x86_pmu.pebs_broken = 0;
5075 	} else {
5076 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
5077 		x86_pmu.pebs_broken = 1;
5078 	}
5079 }
5080 
5081 static bool is_lbr_from(unsigned long msr)
5082 {
5083 	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
5084 
5085 	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
5086 }
5087 
5088 /*
5089  * Under certain circumstances, access certain MSR may cause #GP.
5090  * The function tests if the input MSR can be safely accessed.
5091  */
5092 static bool check_msr(unsigned long msr, u64 mask)
5093 {
5094 	u64 val_old, val_new, val_tmp;
5095 
5096 	/*
5097 	 * Disable the check for real HW, so we don't
5098 	 * mess with potentially enabled registers:
5099 	 */
5100 	if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
5101 		return true;
5102 
5103 	/*
5104 	 * Read the current value, change it and read it back to see if it
5105 	 * matches, this is needed to detect certain hardware emulators
5106 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
5107 	 */
5108 	if (rdmsrl_safe(msr, &val_old))
5109 		return false;
5110 
5111 	/*
5112 	 * Only change the bits which can be updated by wrmsrl.
5113 	 */
5114 	val_tmp = val_old ^ mask;
5115 
5116 	if (is_lbr_from(msr))
5117 		val_tmp = lbr_from_signext_quirk_wr(val_tmp);
5118 
5119 	if (wrmsrl_safe(msr, val_tmp) ||
5120 	    rdmsrl_safe(msr, &val_new))
5121 		return false;
5122 
5123 	/*
5124 	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
5125 	 * should equal rdmsrl()'s even with the quirk.
5126 	 */
5127 	if (val_new != val_tmp)
5128 		return false;
5129 
5130 	if (is_lbr_from(msr))
5131 		val_old = lbr_from_signext_quirk_wr(val_old);
5132 
5133 	/* Here it's sure that the MSR can be safely accessed.
5134 	 * Restore the old value and return.
5135 	 */
5136 	wrmsrl(msr, val_old);
5137 
5138 	return true;
5139 }
5140 
5141 static __init void intel_sandybridge_quirk(void)
5142 {
5143 	x86_pmu.check_microcode = intel_snb_check_microcode;
5144 	cpus_read_lock();
5145 	intel_snb_check_microcode();
5146 	cpus_read_unlock();
5147 }
5148 
5149 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
5150 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
5151 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
5152 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
5153 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
5154 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
5155 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
5156 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
5157 };
5158 
5159 static __init void intel_arch_events_quirk(void)
5160 {
5161 	int bit;
5162 
5163 	/* disable event that reported as not present by cpuid */
5164 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
5165 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
5166 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
5167 			intel_arch_events_map[bit].name);
5168 	}
5169 }
5170 
5171 static __init void intel_nehalem_quirk(void)
5172 {
5173 	union cpuid10_ebx ebx;
5174 
5175 	ebx.full = x86_pmu.events_maskl;
5176 	if (ebx.split.no_branch_misses_retired) {
5177 		/*
5178 		 * Erratum AAJ80 detected, we work it around by using
5179 		 * the BR_MISP_EXEC.ANY event. This will over-count
5180 		 * branch-misses, but it's still much better than the
5181 		 * architectural event which is often completely bogus:
5182 		 */
5183 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
5184 		ebx.split.no_branch_misses_retired = 0;
5185 		x86_pmu.events_maskl = ebx.full;
5186 		pr_info("CPU erratum AAJ80 worked around\n");
5187 	}
5188 }
5189 
5190 /*
5191  * enable software workaround for errata:
5192  * SNB: BJ122
5193  * IVB: BV98
5194  * HSW: HSD29
5195  *
5196  * Only needed when HT is enabled. However detecting
5197  * if HT is enabled is difficult (model specific). So instead,
5198  * we enable the workaround in the early boot, and verify if
5199  * it is needed in a later initcall phase once we have valid
5200  * topology information to check if HT is actually enabled
5201  */
5202 static __init void intel_ht_bug(void)
5203 {
5204 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
5205 
5206 	x86_pmu.start_scheduling = intel_start_scheduling;
5207 	x86_pmu.commit_scheduling = intel_commit_scheduling;
5208 	x86_pmu.stop_scheduling = intel_stop_scheduling;
5209 }
5210 
5211 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
5212 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
5213 
5214 /* Haswell special events */
5215 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
5216 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
5217 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
5218 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
5219 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
5220 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
5221 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
5222 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
5223 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
5224 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
5225 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
5226 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
5227 
5228 static struct attribute *hsw_events_attrs[] = {
5229 	EVENT_PTR(td_slots_issued),
5230 	EVENT_PTR(td_slots_retired),
5231 	EVENT_PTR(td_fetch_bubbles),
5232 	EVENT_PTR(td_total_slots),
5233 	EVENT_PTR(td_total_slots_scale),
5234 	EVENT_PTR(td_recovery_bubbles),
5235 	EVENT_PTR(td_recovery_bubbles_scale),
5236 	NULL
5237 };
5238 
5239 static struct attribute *hsw_mem_events_attrs[] = {
5240 	EVENT_PTR(mem_ld_hsw),
5241 	EVENT_PTR(mem_st_hsw),
5242 	NULL,
5243 };
5244 
5245 static struct attribute *hsw_tsx_events_attrs[] = {
5246 	EVENT_PTR(tx_start),
5247 	EVENT_PTR(tx_commit),
5248 	EVENT_PTR(tx_abort),
5249 	EVENT_PTR(tx_capacity),
5250 	EVENT_PTR(tx_conflict),
5251 	EVENT_PTR(el_start),
5252 	EVENT_PTR(el_commit),
5253 	EVENT_PTR(el_abort),
5254 	EVENT_PTR(el_capacity),
5255 	EVENT_PTR(el_conflict),
5256 	EVENT_PTR(cycles_t),
5257 	EVENT_PTR(cycles_ct),
5258 	NULL
5259 };
5260 
5261 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
5262 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
5263 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
5264 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
5265 
5266 static struct attribute *icl_events_attrs[] = {
5267 	EVENT_PTR(mem_ld_hsw),
5268 	EVENT_PTR(mem_st_hsw),
5269 	NULL,
5270 };
5271 
5272 static struct attribute *icl_td_events_attrs[] = {
5273 	EVENT_PTR(slots),
5274 	EVENT_PTR(td_retiring),
5275 	EVENT_PTR(td_bad_spec),
5276 	EVENT_PTR(td_fe_bound),
5277 	EVENT_PTR(td_be_bound),
5278 	NULL,
5279 };
5280 
5281 static struct attribute *icl_tsx_events_attrs[] = {
5282 	EVENT_PTR(tx_start),
5283 	EVENT_PTR(tx_abort),
5284 	EVENT_PTR(tx_commit),
5285 	EVENT_PTR(tx_capacity_read),
5286 	EVENT_PTR(tx_capacity_write),
5287 	EVENT_PTR(tx_conflict),
5288 	EVENT_PTR(el_start),
5289 	EVENT_PTR(el_abort),
5290 	EVENT_PTR(el_commit),
5291 	EVENT_PTR(el_capacity_read),
5292 	EVENT_PTR(el_capacity_write),
5293 	EVENT_PTR(el_conflict),
5294 	EVENT_PTR(cycles_t),
5295 	EVENT_PTR(cycles_ct),
5296 	NULL,
5297 };
5298 
5299 
5300 EVENT_ATTR_STR(mem-stores,	mem_st_spr,	"event=0xcd,umask=0x2");
5301 EVENT_ATTR_STR(mem-loads-aux,	mem_ld_aux,	"event=0x03,umask=0x82");
5302 
5303 static struct attribute *spr_events_attrs[] = {
5304 	EVENT_PTR(mem_ld_hsw),
5305 	EVENT_PTR(mem_st_spr),
5306 	EVENT_PTR(mem_ld_aux),
5307 	NULL,
5308 };
5309 
5310 static struct attribute *spr_td_events_attrs[] = {
5311 	EVENT_PTR(slots),
5312 	EVENT_PTR(td_retiring),
5313 	EVENT_PTR(td_bad_spec),
5314 	EVENT_PTR(td_fe_bound),
5315 	EVENT_PTR(td_be_bound),
5316 	EVENT_PTR(td_heavy_ops),
5317 	EVENT_PTR(td_br_mispredict),
5318 	EVENT_PTR(td_fetch_lat),
5319 	EVENT_PTR(td_mem_bound),
5320 	NULL,
5321 };
5322 
5323 static struct attribute *spr_tsx_events_attrs[] = {
5324 	EVENT_PTR(tx_start),
5325 	EVENT_PTR(tx_abort),
5326 	EVENT_PTR(tx_commit),
5327 	EVENT_PTR(tx_capacity_read),
5328 	EVENT_PTR(tx_capacity_write),
5329 	EVENT_PTR(tx_conflict),
5330 	EVENT_PTR(cycles_t),
5331 	EVENT_PTR(cycles_ct),
5332 	NULL,
5333 };
5334 
5335 static ssize_t freeze_on_smi_show(struct device *cdev,
5336 				  struct device_attribute *attr,
5337 				  char *buf)
5338 {
5339 	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
5340 }
5341 
5342 static DEFINE_MUTEX(freeze_on_smi_mutex);
5343 
5344 static ssize_t freeze_on_smi_store(struct device *cdev,
5345 				   struct device_attribute *attr,
5346 				   const char *buf, size_t count)
5347 {
5348 	unsigned long val;
5349 	ssize_t ret;
5350 
5351 	ret = kstrtoul(buf, 0, &val);
5352 	if (ret)
5353 		return ret;
5354 
5355 	if (val > 1)
5356 		return -EINVAL;
5357 
5358 	mutex_lock(&freeze_on_smi_mutex);
5359 
5360 	if (x86_pmu.attr_freeze_on_smi == val)
5361 		goto done;
5362 
5363 	x86_pmu.attr_freeze_on_smi = val;
5364 
5365 	cpus_read_lock();
5366 	on_each_cpu(flip_smm_bit, &val, 1);
5367 	cpus_read_unlock();
5368 done:
5369 	mutex_unlock(&freeze_on_smi_mutex);
5370 
5371 	return count;
5372 }
5373 
5374 static void update_tfa_sched(void *ignored)
5375 {
5376 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5377 
5378 	/*
5379 	 * check if PMC3 is used
5380 	 * and if so force schedule out for all event types all contexts
5381 	 */
5382 	if (test_bit(3, cpuc->active_mask))
5383 		perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5384 }
5385 
5386 static ssize_t show_sysctl_tfa(struct device *cdev,
5387 			      struct device_attribute *attr,
5388 			      char *buf)
5389 {
5390 	return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
5391 }
5392 
5393 static ssize_t set_sysctl_tfa(struct device *cdev,
5394 			      struct device_attribute *attr,
5395 			      const char *buf, size_t count)
5396 {
5397 	bool val;
5398 	ssize_t ret;
5399 
5400 	ret = kstrtobool(buf, &val);
5401 	if (ret)
5402 		return ret;
5403 
5404 	/* no change */
5405 	if (val == allow_tsx_force_abort)
5406 		return count;
5407 
5408 	allow_tsx_force_abort = val;
5409 
5410 	cpus_read_lock();
5411 	on_each_cpu(update_tfa_sched, NULL, 1);
5412 	cpus_read_unlock();
5413 
5414 	return count;
5415 }
5416 
5417 
5418 static DEVICE_ATTR_RW(freeze_on_smi);
5419 
5420 static ssize_t branches_show(struct device *cdev,
5421 			     struct device_attribute *attr,
5422 			     char *buf)
5423 {
5424 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
5425 }
5426 
5427 static DEVICE_ATTR_RO(branches);
5428 
5429 static struct attribute *lbr_attrs[] = {
5430 	&dev_attr_branches.attr,
5431 	NULL
5432 };
5433 
5434 static char pmu_name_str[30];
5435 
5436 static ssize_t pmu_name_show(struct device *cdev,
5437 			     struct device_attribute *attr,
5438 			     char *buf)
5439 {
5440 	return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
5441 }
5442 
5443 static DEVICE_ATTR_RO(pmu_name);
5444 
5445 static struct attribute *intel_pmu_caps_attrs[] = {
5446        &dev_attr_pmu_name.attr,
5447        NULL
5448 };
5449 
5450 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
5451 		   show_sysctl_tfa,
5452 		   set_sysctl_tfa);
5453 
5454 static struct attribute *intel_pmu_attrs[] = {
5455 	&dev_attr_freeze_on_smi.attr,
5456 	&dev_attr_allow_tsx_force_abort.attr,
5457 	NULL,
5458 };
5459 
5460 static umode_t
5461 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5462 {
5463 	return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
5464 }
5465 
5466 static umode_t
5467 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5468 {
5469 	return x86_pmu.pebs ? attr->mode : 0;
5470 }
5471 
5472 static umode_t
5473 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5474 {
5475 	return x86_pmu.lbr_nr ? attr->mode : 0;
5476 }
5477 
5478 static umode_t
5479 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5480 {
5481 	return x86_pmu.version >= 2 ? attr->mode : 0;
5482 }
5483 
5484 static umode_t
5485 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5486 {
5487 	if (attr == &dev_attr_allow_tsx_force_abort.attr)
5488 		return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
5489 
5490 	return attr->mode;
5491 }
5492 
5493 static struct attribute_group group_events_td  = {
5494 	.name = "events",
5495 };
5496 
5497 static struct attribute_group group_events_mem = {
5498 	.name       = "events",
5499 	.is_visible = pebs_is_visible,
5500 };
5501 
5502 static struct attribute_group group_events_tsx = {
5503 	.name       = "events",
5504 	.is_visible = tsx_is_visible,
5505 };
5506 
5507 static struct attribute_group group_caps_gen = {
5508 	.name  = "caps",
5509 	.attrs = intel_pmu_caps_attrs,
5510 };
5511 
5512 static struct attribute_group group_caps_lbr = {
5513 	.name       = "caps",
5514 	.attrs	    = lbr_attrs,
5515 	.is_visible = lbr_is_visible,
5516 };
5517 
5518 static struct attribute_group group_format_extra = {
5519 	.name       = "format",
5520 	.is_visible = exra_is_visible,
5521 };
5522 
5523 static struct attribute_group group_format_extra_skl = {
5524 	.name       = "format",
5525 	.is_visible = exra_is_visible,
5526 };
5527 
5528 static struct attribute_group group_default = {
5529 	.attrs      = intel_pmu_attrs,
5530 	.is_visible = default_is_visible,
5531 };
5532 
5533 static const struct attribute_group *attr_update[] = {
5534 	&group_events_td,
5535 	&group_events_mem,
5536 	&group_events_tsx,
5537 	&group_caps_gen,
5538 	&group_caps_lbr,
5539 	&group_format_extra,
5540 	&group_format_extra_skl,
5541 	&group_default,
5542 	NULL,
5543 };
5544 
5545 EVENT_ATTR_STR_HYBRID(slots,                 slots_adl,        "event=0x00,umask=0x4",                       hybrid_big);
5546 EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_adl,  "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
5547 EVENT_ATTR_STR_HYBRID(topdown-bad-spec,      td_bad_spec_adl,  "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
5548 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_adl,  "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
5549 EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_adl,  "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
5550 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops,     td_heavy_ops_adl, "event=0x00,umask=0x84",                      hybrid_big);
5551 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl,    "event=0x00,umask=0x85",                      hybrid_big);
5552 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat,     td_fetch_lat_adl, "event=0x00,umask=0x86",                      hybrid_big);
5553 EVENT_ATTR_STR_HYBRID(topdown-mem-bound,     td_mem_bound_adl, "event=0x00,umask=0x87",                      hybrid_big);
5554 
5555 static struct attribute *adl_hybrid_events_attrs[] = {
5556 	EVENT_PTR(slots_adl),
5557 	EVENT_PTR(td_retiring_adl),
5558 	EVENT_PTR(td_bad_spec_adl),
5559 	EVENT_PTR(td_fe_bound_adl),
5560 	EVENT_PTR(td_be_bound_adl),
5561 	EVENT_PTR(td_heavy_ops_adl),
5562 	EVENT_PTR(td_br_mis_adl),
5563 	EVENT_PTR(td_fetch_lat_adl),
5564 	EVENT_PTR(td_mem_bound_adl),
5565 	NULL,
5566 };
5567 
5568 /* Must be in IDX order */
5569 EVENT_ATTR_STR_HYBRID(mem-loads,     mem_ld_adl,     "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
5570 EVENT_ATTR_STR_HYBRID(mem-stores,    mem_st_adl,     "event=0xd0,umask=0x6;event=0xcd,umask=0x2",                 hybrid_big_small);
5571 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82",                                     hybrid_big);
5572 
5573 static struct attribute *adl_hybrid_mem_attrs[] = {
5574 	EVENT_PTR(mem_ld_adl),
5575 	EVENT_PTR(mem_st_adl),
5576 	EVENT_PTR(mem_ld_aux_adl),
5577 	NULL,
5578 };
5579 
5580 static struct attribute *mtl_hybrid_mem_attrs[] = {
5581 	EVENT_PTR(mem_ld_adl),
5582 	EVENT_PTR(mem_st_adl),
5583 	NULL
5584 };
5585 
5586 EVENT_ATTR_STR_HYBRID(tx-start,          tx_start_adl,          "event=0xc9,umask=0x1",          hybrid_big);
5587 EVENT_ATTR_STR_HYBRID(tx-commit,         tx_commit_adl,         "event=0xc9,umask=0x2",          hybrid_big);
5588 EVENT_ATTR_STR_HYBRID(tx-abort,          tx_abort_adl,          "event=0xc9,umask=0x4",          hybrid_big);
5589 EVENT_ATTR_STR_HYBRID(tx-conflict,       tx_conflict_adl,       "event=0x54,umask=0x1",          hybrid_big);
5590 EVENT_ATTR_STR_HYBRID(cycles-t,          cycles_t_adl,          "event=0x3c,in_tx=1",            hybrid_big);
5591 EVENT_ATTR_STR_HYBRID(cycles-ct,         cycles_ct_adl,         "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
5592 EVENT_ATTR_STR_HYBRID(tx-capacity-read,  tx_capacity_read_adl,  "event=0x54,umask=0x80",         hybrid_big);
5593 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2",          hybrid_big);
5594 
5595 static struct attribute *adl_hybrid_tsx_attrs[] = {
5596 	EVENT_PTR(tx_start_adl),
5597 	EVENT_PTR(tx_abort_adl),
5598 	EVENT_PTR(tx_commit_adl),
5599 	EVENT_PTR(tx_capacity_read_adl),
5600 	EVENT_PTR(tx_capacity_write_adl),
5601 	EVENT_PTR(tx_conflict_adl),
5602 	EVENT_PTR(cycles_t_adl),
5603 	EVENT_PTR(cycles_ct_adl),
5604 	NULL,
5605 };
5606 
5607 FORMAT_ATTR_HYBRID(in_tx,       hybrid_big);
5608 FORMAT_ATTR_HYBRID(in_tx_cp,    hybrid_big);
5609 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
5610 FORMAT_ATTR_HYBRID(ldlat,       hybrid_big_small);
5611 FORMAT_ATTR_HYBRID(frontend,    hybrid_big);
5612 
5613 #define ADL_HYBRID_RTM_FORMAT_ATTR	\
5614 	FORMAT_HYBRID_PTR(in_tx),	\
5615 	FORMAT_HYBRID_PTR(in_tx_cp)
5616 
5617 #define ADL_HYBRID_FORMAT_ATTR		\
5618 	FORMAT_HYBRID_PTR(offcore_rsp),	\
5619 	FORMAT_HYBRID_PTR(ldlat),	\
5620 	FORMAT_HYBRID_PTR(frontend)
5621 
5622 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
5623 	ADL_HYBRID_RTM_FORMAT_ATTR,
5624 	ADL_HYBRID_FORMAT_ATTR,
5625 	NULL
5626 };
5627 
5628 static struct attribute *adl_hybrid_extra_attr[] = {
5629 	ADL_HYBRID_FORMAT_ATTR,
5630 	NULL
5631 };
5632 
5633 PMU_FORMAT_ATTR_SHOW(snoop_rsp, "config1:0-63");
5634 FORMAT_ATTR_HYBRID(snoop_rsp,	hybrid_small);
5635 
5636 static struct attribute *mtl_hybrid_extra_attr_rtm[] = {
5637 	ADL_HYBRID_RTM_FORMAT_ATTR,
5638 	ADL_HYBRID_FORMAT_ATTR,
5639 	FORMAT_HYBRID_PTR(snoop_rsp),
5640 	NULL
5641 };
5642 
5643 static struct attribute *mtl_hybrid_extra_attr[] = {
5644 	ADL_HYBRID_FORMAT_ATTR,
5645 	FORMAT_HYBRID_PTR(snoop_rsp),
5646 	NULL
5647 };
5648 
5649 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
5650 {
5651 	struct device *dev = kobj_to_dev(kobj);
5652 	struct x86_hybrid_pmu *pmu =
5653 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5654 	struct perf_pmu_events_hybrid_attr *pmu_attr =
5655 		container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
5656 
5657 	return pmu->cpu_type & pmu_attr->pmu_type;
5658 }
5659 
5660 static umode_t hybrid_events_is_visible(struct kobject *kobj,
5661 					struct attribute *attr, int i)
5662 {
5663 	return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
5664 }
5665 
5666 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
5667 {
5668 	int cpu = cpumask_first(&pmu->supported_cpus);
5669 
5670 	return (cpu >= nr_cpu_ids) ? -1 : cpu;
5671 }
5672 
5673 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
5674 				     struct attribute *attr, int i)
5675 {
5676 	struct device *dev = kobj_to_dev(kobj);
5677 	struct x86_hybrid_pmu *pmu =
5678 		 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5679 	int cpu = hybrid_find_supported_cpu(pmu);
5680 
5681 	return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
5682 }
5683 
5684 static umode_t hybrid_format_is_visible(struct kobject *kobj,
5685 					struct attribute *attr, int i)
5686 {
5687 	struct device *dev = kobj_to_dev(kobj);
5688 	struct x86_hybrid_pmu *pmu =
5689 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5690 	struct perf_pmu_format_hybrid_attr *pmu_attr =
5691 		container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
5692 	int cpu = hybrid_find_supported_cpu(pmu);
5693 
5694 	return (cpu >= 0) && (pmu->cpu_type & pmu_attr->pmu_type) ? attr->mode : 0;
5695 }
5696 
5697 static struct attribute_group hybrid_group_events_td  = {
5698 	.name		= "events",
5699 	.is_visible	= hybrid_events_is_visible,
5700 };
5701 
5702 static struct attribute_group hybrid_group_events_mem = {
5703 	.name		= "events",
5704 	.is_visible	= hybrid_events_is_visible,
5705 };
5706 
5707 static struct attribute_group hybrid_group_events_tsx = {
5708 	.name		= "events",
5709 	.is_visible	= hybrid_tsx_is_visible,
5710 };
5711 
5712 static struct attribute_group hybrid_group_format_extra = {
5713 	.name		= "format",
5714 	.is_visible	= hybrid_format_is_visible,
5715 };
5716 
5717 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
5718 					  struct device_attribute *attr,
5719 					  char *buf)
5720 {
5721 	struct x86_hybrid_pmu *pmu =
5722 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5723 
5724 	return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
5725 }
5726 
5727 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
5728 static struct attribute *intel_hybrid_cpus_attrs[] = {
5729 	&dev_attr_cpus.attr,
5730 	NULL,
5731 };
5732 
5733 static struct attribute_group hybrid_group_cpus = {
5734 	.attrs		= intel_hybrid_cpus_attrs,
5735 };
5736 
5737 static const struct attribute_group *hybrid_attr_update[] = {
5738 	&hybrid_group_events_td,
5739 	&hybrid_group_events_mem,
5740 	&hybrid_group_events_tsx,
5741 	&group_caps_gen,
5742 	&group_caps_lbr,
5743 	&hybrid_group_format_extra,
5744 	&group_default,
5745 	&hybrid_group_cpus,
5746 	NULL,
5747 };
5748 
5749 static struct attribute *empty_attrs;
5750 
5751 static void intel_pmu_check_num_counters(int *num_counters,
5752 					 int *num_counters_fixed,
5753 					 u64 *intel_ctrl, u64 fixed_mask)
5754 {
5755 	if (*num_counters > INTEL_PMC_MAX_GENERIC) {
5756 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5757 		     *num_counters, INTEL_PMC_MAX_GENERIC);
5758 		*num_counters = INTEL_PMC_MAX_GENERIC;
5759 	}
5760 	*intel_ctrl = (1ULL << *num_counters) - 1;
5761 
5762 	if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5763 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5764 		     *num_counters_fixed, INTEL_PMC_MAX_FIXED);
5765 		*num_counters_fixed = INTEL_PMC_MAX_FIXED;
5766 	}
5767 
5768 	*intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
5769 }
5770 
5771 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5772 					      int num_counters,
5773 					      int num_counters_fixed,
5774 					      u64 intel_ctrl)
5775 {
5776 	struct event_constraint *c;
5777 
5778 	if (!event_constraints)
5779 		return;
5780 
5781 	/*
5782 	 * event on fixed counter2 (REF_CYCLES) only works on this
5783 	 * counter, so do not extend mask to generic counters
5784 	 */
5785 	for_each_event_constraint(c, event_constraints) {
5786 		/*
5787 		 * Don't extend the topdown slots and metrics
5788 		 * events to the generic counters.
5789 		 */
5790 		if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5791 			/*
5792 			 * Disable topdown slots and metrics events,
5793 			 * if slots event is not in CPUID.
5794 			 */
5795 			if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
5796 				c->idxmsk64 = 0;
5797 			c->weight = hweight64(c->idxmsk64);
5798 			continue;
5799 		}
5800 
5801 		if (c->cmask == FIXED_EVENT_FLAGS) {
5802 			/* Disabled fixed counters which are not in CPUID */
5803 			c->idxmsk64 &= intel_ctrl;
5804 
5805 			/*
5806 			 * Don't extend the pseudo-encoding to the
5807 			 * generic counters
5808 			 */
5809 			if (!use_fixed_pseudo_encoding(c->code))
5810 				c->idxmsk64 |= (1ULL << num_counters) - 1;
5811 		}
5812 		c->idxmsk64 &=
5813 			~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
5814 		c->weight = hweight64(c->idxmsk64);
5815 	}
5816 }
5817 
5818 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
5819 {
5820 	struct extra_reg *er;
5821 
5822 	/*
5823 	 * Access extra MSR may cause #GP under certain circumstances.
5824 	 * E.g. KVM doesn't support offcore event
5825 	 * Check all extra_regs here.
5826 	 */
5827 	if (!extra_regs)
5828 		return;
5829 
5830 	for (er = extra_regs; er->msr; er++) {
5831 		er->extra_msr_access = check_msr(er->msr, 0x11UL);
5832 		/* Disable LBR select mapping */
5833 		if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5834 			x86_pmu.lbr_sel_map = NULL;
5835 	}
5836 }
5837 
5838 static void intel_pmu_check_hybrid_pmus(u64 fixed_mask)
5839 {
5840 	struct x86_hybrid_pmu *pmu;
5841 	int i;
5842 
5843 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
5844 		pmu = &x86_pmu.hybrid_pmu[i];
5845 
5846 		intel_pmu_check_num_counters(&pmu->num_counters,
5847 					     &pmu->num_counters_fixed,
5848 					     &pmu->intel_ctrl,
5849 					     fixed_mask);
5850 
5851 		if (pmu->intel_cap.perf_metrics) {
5852 			pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
5853 			pmu->intel_ctrl |= INTEL_PMC_MSK_FIXED_SLOTS;
5854 		}
5855 
5856 		if (pmu->intel_cap.pebs_output_pt_available)
5857 			pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
5858 
5859 		intel_pmu_check_event_constraints(pmu->event_constraints,
5860 						  pmu->num_counters,
5861 						  pmu->num_counters_fixed,
5862 						  pmu->intel_ctrl);
5863 
5864 		intel_pmu_check_extra_regs(pmu->extra_regs);
5865 	}
5866 }
5867 
5868 static __always_inline bool is_mtl(u8 x86_model)
5869 {
5870 	return (x86_model == INTEL_FAM6_METEORLAKE) ||
5871 	       (x86_model == INTEL_FAM6_METEORLAKE_L);
5872 }
5873 
5874 __init int intel_pmu_init(void)
5875 {
5876 	struct attribute **extra_skl_attr = &empty_attrs;
5877 	struct attribute **extra_attr = &empty_attrs;
5878 	struct attribute **td_attr    = &empty_attrs;
5879 	struct attribute **mem_attr   = &empty_attrs;
5880 	struct attribute **tsx_attr   = &empty_attrs;
5881 	union cpuid10_edx edx;
5882 	union cpuid10_eax eax;
5883 	union cpuid10_ebx ebx;
5884 	unsigned int fixed_mask;
5885 	bool pmem = false;
5886 	int version, i;
5887 	char *name;
5888 	struct x86_hybrid_pmu *pmu;
5889 
5890 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
5891 		switch (boot_cpu_data.x86) {
5892 		case 0x6:
5893 			return p6_pmu_init();
5894 		case 0xb:
5895 			return knc_pmu_init();
5896 		case 0xf:
5897 			return p4_pmu_init();
5898 		}
5899 		return -ENODEV;
5900 	}
5901 
5902 	/*
5903 	 * Check whether the Architectural PerfMon supports
5904 	 * Branch Misses Retired hw_event or not.
5905 	 */
5906 	cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
5907 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
5908 		return -ENODEV;
5909 
5910 	version = eax.split.version_id;
5911 	if (version < 2)
5912 		x86_pmu = core_pmu;
5913 	else
5914 		x86_pmu = intel_pmu;
5915 
5916 	x86_pmu.version			= version;
5917 	x86_pmu.num_counters		= eax.split.num_counters;
5918 	x86_pmu.cntval_bits		= eax.split.bit_width;
5919 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
5920 
5921 	x86_pmu.events_maskl		= ebx.full;
5922 	x86_pmu.events_mask_len		= eax.split.mask_length;
5923 
5924 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
5925 	x86_pmu.pebs_capable		= PEBS_COUNTER_MASK;
5926 
5927 	/*
5928 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
5929 	 * assume at least 3 events, when not running in a hypervisor:
5930 	 */
5931 	if (version > 1 && version < 5) {
5932 		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
5933 
5934 		x86_pmu.num_counters_fixed =
5935 			max((int)edx.split.num_counters_fixed, assume);
5936 
5937 		fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
5938 	} else if (version >= 5)
5939 		x86_pmu.num_counters_fixed = fls(fixed_mask);
5940 
5941 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
5942 		u64 capabilities;
5943 
5944 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
5945 		x86_pmu.intel_cap.capabilities = capabilities;
5946 	}
5947 
5948 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
5949 		x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
5950 		x86_pmu.lbr_read = intel_pmu_lbr_read_32;
5951 	}
5952 
5953 	if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
5954 		intel_pmu_arch_lbr_init();
5955 
5956 	intel_ds_init();
5957 
5958 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
5959 
5960 	if (version >= 5) {
5961 		x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
5962 		if (x86_pmu.intel_cap.anythread_deprecated)
5963 			pr_cont(" AnyThread deprecated, ");
5964 	}
5965 
5966 	/*
5967 	 * Install the hw-cache-events table:
5968 	 */
5969 	switch (boot_cpu_data.x86_model) {
5970 	case INTEL_FAM6_CORE_YONAH:
5971 		pr_cont("Core events, ");
5972 		name = "core";
5973 		break;
5974 
5975 	case INTEL_FAM6_CORE2_MEROM:
5976 		x86_add_quirk(intel_clovertown_quirk);
5977 		fallthrough;
5978 
5979 	case INTEL_FAM6_CORE2_MEROM_L:
5980 	case INTEL_FAM6_CORE2_PENRYN:
5981 	case INTEL_FAM6_CORE2_DUNNINGTON:
5982 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
5983 		       sizeof(hw_cache_event_ids));
5984 
5985 		intel_pmu_lbr_init_core();
5986 
5987 		x86_pmu.event_constraints = intel_core2_event_constraints;
5988 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
5989 		pr_cont("Core2 events, ");
5990 		name = "core2";
5991 		break;
5992 
5993 	case INTEL_FAM6_NEHALEM:
5994 	case INTEL_FAM6_NEHALEM_EP:
5995 	case INTEL_FAM6_NEHALEM_EX:
5996 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
5997 		       sizeof(hw_cache_event_ids));
5998 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5999 		       sizeof(hw_cache_extra_regs));
6000 
6001 		intel_pmu_lbr_init_nhm();
6002 
6003 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
6004 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
6005 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
6006 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
6007 		x86_pmu.limit_period = nhm_limit_period;
6008 
6009 		mem_attr = nhm_mem_events_attrs;
6010 
6011 		/* UOPS_ISSUED.STALLED_CYCLES */
6012 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6013 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6014 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
6015 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6016 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
6017 
6018 		intel_pmu_pebs_data_source_nhm();
6019 		x86_add_quirk(intel_nehalem_quirk);
6020 		x86_pmu.pebs_no_tlb = 1;
6021 		extra_attr = nhm_format_attr;
6022 
6023 		pr_cont("Nehalem events, ");
6024 		name = "nehalem";
6025 		break;
6026 
6027 	case INTEL_FAM6_ATOM_BONNELL:
6028 	case INTEL_FAM6_ATOM_BONNELL_MID:
6029 	case INTEL_FAM6_ATOM_SALTWELL:
6030 	case INTEL_FAM6_ATOM_SALTWELL_MID:
6031 	case INTEL_FAM6_ATOM_SALTWELL_TABLET:
6032 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
6033 		       sizeof(hw_cache_event_ids));
6034 
6035 		intel_pmu_lbr_init_atom();
6036 
6037 		x86_pmu.event_constraints = intel_gen_event_constraints;
6038 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
6039 		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
6040 		pr_cont("Atom events, ");
6041 		name = "bonnell";
6042 		break;
6043 
6044 	case INTEL_FAM6_ATOM_SILVERMONT:
6045 	case INTEL_FAM6_ATOM_SILVERMONT_D:
6046 	case INTEL_FAM6_ATOM_SILVERMONT_MID:
6047 	case INTEL_FAM6_ATOM_AIRMONT:
6048 	case INTEL_FAM6_ATOM_AIRMONT_MID:
6049 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
6050 			sizeof(hw_cache_event_ids));
6051 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
6052 		       sizeof(hw_cache_extra_regs));
6053 
6054 		intel_pmu_lbr_init_slm();
6055 
6056 		x86_pmu.event_constraints = intel_slm_event_constraints;
6057 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6058 		x86_pmu.extra_regs = intel_slm_extra_regs;
6059 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6060 		td_attr = slm_events_attrs;
6061 		extra_attr = slm_format_attr;
6062 		pr_cont("Silvermont events, ");
6063 		name = "silvermont";
6064 		break;
6065 
6066 	case INTEL_FAM6_ATOM_GOLDMONT:
6067 	case INTEL_FAM6_ATOM_GOLDMONT_D:
6068 		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
6069 		       sizeof(hw_cache_event_ids));
6070 		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
6071 		       sizeof(hw_cache_extra_regs));
6072 
6073 		intel_pmu_lbr_init_skl();
6074 
6075 		x86_pmu.event_constraints = intel_slm_event_constraints;
6076 		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
6077 		x86_pmu.extra_regs = intel_glm_extra_regs;
6078 		/*
6079 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6080 		 * for precise cycles.
6081 		 * :pp is identical to :ppp
6082 		 */
6083 		x86_pmu.pebs_aliases = NULL;
6084 		x86_pmu.pebs_prec_dist = true;
6085 		x86_pmu.lbr_pt_coexist = true;
6086 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6087 		td_attr = glm_events_attrs;
6088 		extra_attr = slm_format_attr;
6089 		pr_cont("Goldmont events, ");
6090 		name = "goldmont";
6091 		break;
6092 
6093 	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
6094 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
6095 		       sizeof(hw_cache_event_ids));
6096 		memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
6097 		       sizeof(hw_cache_extra_regs));
6098 
6099 		intel_pmu_lbr_init_skl();
6100 
6101 		x86_pmu.event_constraints = intel_slm_event_constraints;
6102 		x86_pmu.extra_regs = intel_glm_extra_regs;
6103 		/*
6104 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6105 		 * for precise cycles.
6106 		 */
6107 		x86_pmu.pebs_aliases = NULL;
6108 		x86_pmu.pebs_prec_dist = true;
6109 		x86_pmu.lbr_pt_coexist = true;
6110 		x86_pmu.pebs_capable = ~0ULL;
6111 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6112 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
6113 		x86_pmu.get_event_constraints = glp_get_event_constraints;
6114 		td_attr = glm_events_attrs;
6115 		/* Goldmont Plus has 4-wide pipeline */
6116 		event_attr_td_total_slots_scale_glm.event_str = "4";
6117 		extra_attr = slm_format_attr;
6118 		pr_cont("Goldmont plus events, ");
6119 		name = "goldmont_plus";
6120 		break;
6121 
6122 	case INTEL_FAM6_ATOM_TREMONT_D:
6123 	case INTEL_FAM6_ATOM_TREMONT:
6124 	case INTEL_FAM6_ATOM_TREMONT_L:
6125 		x86_pmu.late_ack = true;
6126 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
6127 		       sizeof(hw_cache_event_ids));
6128 		memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
6129 		       sizeof(hw_cache_extra_regs));
6130 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6131 
6132 		intel_pmu_lbr_init_skl();
6133 
6134 		x86_pmu.event_constraints = intel_slm_event_constraints;
6135 		x86_pmu.extra_regs = intel_tnt_extra_regs;
6136 		/*
6137 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6138 		 * for precise cycles.
6139 		 */
6140 		x86_pmu.pebs_aliases = NULL;
6141 		x86_pmu.pebs_prec_dist = true;
6142 		x86_pmu.lbr_pt_coexist = true;
6143 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6144 		x86_pmu.get_event_constraints = tnt_get_event_constraints;
6145 		td_attr = tnt_events_attrs;
6146 		extra_attr = slm_format_attr;
6147 		pr_cont("Tremont events, ");
6148 		name = "Tremont";
6149 		break;
6150 
6151 	case INTEL_FAM6_ALDERLAKE_N:
6152 		x86_pmu.mid_ack = true;
6153 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
6154 		       sizeof(hw_cache_event_ids));
6155 		memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
6156 		       sizeof(hw_cache_extra_regs));
6157 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6158 
6159 		x86_pmu.event_constraints = intel_slm_event_constraints;
6160 		x86_pmu.pebs_constraints = intel_grt_pebs_event_constraints;
6161 		x86_pmu.extra_regs = intel_grt_extra_regs;
6162 
6163 		x86_pmu.pebs_aliases = NULL;
6164 		x86_pmu.pebs_prec_dist = true;
6165 		x86_pmu.pebs_block = true;
6166 		x86_pmu.lbr_pt_coexist = true;
6167 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6168 		x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6169 
6170 		intel_pmu_pebs_data_source_grt();
6171 		x86_pmu.pebs_latency_data = adl_latency_data_small;
6172 		x86_pmu.get_event_constraints = tnt_get_event_constraints;
6173 		x86_pmu.limit_period = spr_limit_period;
6174 		td_attr = tnt_events_attrs;
6175 		mem_attr = grt_mem_attrs;
6176 		extra_attr = nhm_format_attr;
6177 		pr_cont("Gracemont events, ");
6178 		name = "gracemont";
6179 		break;
6180 
6181 	case INTEL_FAM6_WESTMERE:
6182 	case INTEL_FAM6_WESTMERE_EP:
6183 	case INTEL_FAM6_WESTMERE_EX:
6184 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
6185 		       sizeof(hw_cache_event_ids));
6186 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
6187 		       sizeof(hw_cache_extra_regs));
6188 
6189 		intel_pmu_lbr_init_nhm();
6190 
6191 		x86_pmu.event_constraints = intel_westmere_event_constraints;
6192 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
6193 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
6194 		x86_pmu.extra_regs = intel_westmere_extra_regs;
6195 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6196 
6197 		mem_attr = nhm_mem_events_attrs;
6198 
6199 		/* UOPS_ISSUED.STALLED_CYCLES */
6200 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6201 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6202 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
6203 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6204 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
6205 
6206 		intel_pmu_pebs_data_source_nhm();
6207 		extra_attr = nhm_format_attr;
6208 		pr_cont("Westmere events, ");
6209 		name = "westmere";
6210 		break;
6211 
6212 	case INTEL_FAM6_SANDYBRIDGE:
6213 	case INTEL_FAM6_SANDYBRIDGE_X:
6214 		x86_add_quirk(intel_sandybridge_quirk);
6215 		x86_add_quirk(intel_ht_bug);
6216 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6217 		       sizeof(hw_cache_event_ids));
6218 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6219 		       sizeof(hw_cache_extra_regs));
6220 
6221 		intel_pmu_lbr_init_snb();
6222 
6223 		x86_pmu.event_constraints = intel_snb_event_constraints;
6224 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
6225 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
6226 		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
6227 			x86_pmu.extra_regs = intel_snbep_extra_regs;
6228 		else
6229 			x86_pmu.extra_regs = intel_snb_extra_regs;
6230 
6231 
6232 		/* all extra regs are per-cpu when HT is on */
6233 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6234 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6235 
6236 		td_attr  = snb_events_attrs;
6237 		mem_attr = snb_mem_events_attrs;
6238 
6239 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6240 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6241 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6242 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
6243 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6244 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
6245 
6246 		extra_attr = nhm_format_attr;
6247 
6248 		pr_cont("SandyBridge events, ");
6249 		name = "sandybridge";
6250 		break;
6251 
6252 	case INTEL_FAM6_IVYBRIDGE:
6253 	case INTEL_FAM6_IVYBRIDGE_X:
6254 		x86_add_quirk(intel_ht_bug);
6255 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6256 		       sizeof(hw_cache_event_ids));
6257 		/* dTLB-load-misses on IVB is different than SNB */
6258 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
6259 
6260 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6261 		       sizeof(hw_cache_extra_regs));
6262 
6263 		intel_pmu_lbr_init_snb();
6264 
6265 		x86_pmu.event_constraints = intel_ivb_event_constraints;
6266 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
6267 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6268 		x86_pmu.pebs_prec_dist = true;
6269 		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
6270 			x86_pmu.extra_regs = intel_snbep_extra_regs;
6271 		else
6272 			x86_pmu.extra_regs = intel_snb_extra_regs;
6273 		/* all extra regs are per-cpu when HT is on */
6274 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6275 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6276 
6277 		td_attr  = snb_events_attrs;
6278 		mem_attr = snb_mem_events_attrs;
6279 
6280 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6281 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6282 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6283 
6284 		extra_attr = nhm_format_attr;
6285 
6286 		pr_cont("IvyBridge events, ");
6287 		name = "ivybridge";
6288 		break;
6289 
6290 
6291 	case INTEL_FAM6_HASWELL:
6292 	case INTEL_FAM6_HASWELL_X:
6293 	case INTEL_FAM6_HASWELL_L:
6294 	case INTEL_FAM6_HASWELL_G:
6295 		x86_add_quirk(intel_ht_bug);
6296 		x86_add_quirk(intel_pebs_isolation_quirk);
6297 		x86_pmu.late_ack = true;
6298 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6299 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6300 
6301 		intel_pmu_lbr_init_hsw();
6302 
6303 		x86_pmu.event_constraints = intel_hsw_event_constraints;
6304 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
6305 		x86_pmu.extra_regs = intel_snbep_extra_regs;
6306 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6307 		x86_pmu.pebs_prec_dist = true;
6308 		/* all extra regs are per-cpu when HT is on */
6309 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6310 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6311 
6312 		x86_pmu.hw_config = hsw_hw_config;
6313 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
6314 		x86_pmu.lbr_double_abort = true;
6315 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6316 			hsw_format_attr : nhm_format_attr;
6317 		td_attr  = hsw_events_attrs;
6318 		mem_attr = hsw_mem_events_attrs;
6319 		tsx_attr = hsw_tsx_events_attrs;
6320 		pr_cont("Haswell events, ");
6321 		name = "haswell";
6322 		break;
6323 
6324 	case INTEL_FAM6_BROADWELL:
6325 	case INTEL_FAM6_BROADWELL_D:
6326 	case INTEL_FAM6_BROADWELL_G:
6327 	case INTEL_FAM6_BROADWELL_X:
6328 		x86_add_quirk(intel_pebs_isolation_quirk);
6329 		x86_pmu.late_ack = true;
6330 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6331 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6332 
6333 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
6334 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
6335 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
6336 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
6337 									  HSW_SNOOP_DRAM;
6338 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
6339 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6340 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
6341 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6342 
6343 		intel_pmu_lbr_init_hsw();
6344 
6345 		x86_pmu.event_constraints = intel_bdw_event_constraints;
6346 		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
6347 		x86_pmu.extra_regs = intel_snbep_extra_regs;
6348 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6349 		x86_pmu.pebs_prec_dist = true;
6350 		/* all extra regs are per-cpu when HT is on */
6351 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6352 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6353 
6354 		x86_pmu.hw_config = hsw_hw_config;
6355 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
6356 		x86_pmu.limit_period = bdw_limit_period;
6357 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6358 			hsw_format_attr : nhm_format_attr;
6359 		td_attr  = hsw_events_attrs;
6360 		mem_attr = hsw_mem_events_attrs;
6361 		tsx_attr = hsw_tsx_events_attrs;
6362 		pr_cont("Broadwell events, ");
6363 		name = "broadwell";
6364 		break;
6365 
6366 	case INTEL_FAM6_XEON_PHI_KNL:
6367 	case INTEL_FAM6_XEON_PHI_KNM:
6368 		memcpy(hw_cache_event_ids,
6369 		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6370 		memcpy(hw_cache_extra_regs,
6371 		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6372 		intel_pmu_lbr_init_knl();
6373 
6374 		x86_pmu.event_constraints = intel_slm_event_constraints;
6375 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6376 		x86_pmu.extra_regs = intel_knl_extra_regs;
6377 
6378 		/* all extra regs are per-cpu when HT is on */
6379 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6380 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6381 		extra_attr = slm_format_attr;
6382 		pr_cont("Knights Landing/Mill events, ");
6383 		name = "knights-landing";
6384 		break;
6385 
6386 	case INTEL_FAM6_SKYLAKE_X:
6387 		pmem = true;
6388 		fallthrough;
6389 	case INTEL_FAM6_SKYLAKE_L:
6390 	case INTEL_FAM6_SKYLAKE:
6391 	case INTEL_FAM6_KABYLAKE_L:
6392 	case INTEL_FAM6_KABYLAKE:
6393 	case INTEL_FAM6_COMETLAKE_L:
6394 	case INTEL_FAM6_COMETLAKE:
6395 		x86_add_quirk(intel_pebs_isolation_quirk);
6396 		x86_pmu.late_ack = true;
6397 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6398 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6399 		intel_pmu_lbr_init_skl();
6400 
6401 		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
6402 		event_attr_td_recovery_bubbles.event_str_noht =
6403 			"event=0xd,umask=0x1,cmask=1";
6404 		event_attr_td_recovery_bubbles.event_str_ht =
6405 			"event=0xd,umask=0x1,cmask=1,any=1";
6406 
6407 		x86_pmu.event_constraints = intel_skl_event_constraints;
6408 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
6409 		x86_pmu.extra_regs = intel_skl_extra_regs;
6410 		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
6411 		x86_pmu.pebs_prec_dist = true;
6412 		/* all extra regs are per-cpu when HT is on */
6413 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6414 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6415 
6416 		x86_pmu.hw_config = hsw_hw_config;
6417 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
6418 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6419 			hsw_format_attr : nhm_format_attr;
6420 		extra_skl_attr = skl_format_attr;
6421 		td_attr  = hsw_events_attrs;
6422 		mem_attr = hsw_mem_events_attrs;
6423 		tsx_attr = hsw_tsx_events_attrs;
6424 		intel_pmu_pebs_data_source_skl(pmem);
6425 
6426 		/*
6427 		 * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
6428 		 * TSX force abort hooks are not required on these systems. Only deploy
6429 		 * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
6430 		 */
6431 		if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
6432 		   !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
6433 			x86_pmu.flags |= PMU_FL_TFA;
6434 			x86_pmu.get_event_constraints = tfa_get_event_constraints;
6435 			x86_pmu.enable_all = intel_tfa_pmu_enable_all;
6436 			x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
6437 		}
6438 
6439 		pr_cont("Skylake events, ");
6440 		name = "skylake";
6441 		break;
6442 
6443 	case INTEL_FAM6_ICELAKE_X:
6444 	case INTEL_FAM6_ICELAKE_D:
6445 		x86_pmu.pebs_ept = 1;
6446 		pmem = true;
6447 		fallthrough;
6448 	case INTEL_FAM6_ICELAKE_L:
6449 	case INTEL_FAM6_ICELAKE:
6450 	case INTEL_FAM6_TIGERLAKE_L:
6451 	case INTEL_FAM6_TIGERLAKE:
6452 	case INTEL_FAM6_ROCKETLAKE:
6453 		x86_pmu.late_ack = true;
6454 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6455 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6456 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6457 		intel_pmu_lbr_init_skl();
6458 
6459 		x86_pmu.event_constraints = intel_icl_event_constraints;
6460 		x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
6461 		x86_pmu.extra_regs = intel_icl_extra_regs;
6462 		x86_pmu.pebs_aliases = NULL;
6463 		x86_pmu.pebs_prec_dist = true;
6464 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6465 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6466 
6467 		x86_pmu.hw_config = hsw_hw_config;
6468 		x86_pmu.get_event_constraints = icl_get_event_constraints;
6469 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6470 			hsw_format_attr : nhm_format_attr;
6471 		extra_skl_attr = skl_format_attr;
6472 		mem_attr = icl_events_attrs;
6473 		td_attr = icl_td_events_attrs;
6474 		tsx_attr = icl_tsx_events_attrs;
6475 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6476 		x86_pmu.lbr_pt_coexist = true;
6477 		intel_pmu_pebs_data_source_skl(pmem);
6478 		x86_pmu.num_topdown_events = 4;
6479 		static_call_update(intel_pmu_update_topdown_event,
6480 				   &icl_update_topdown_event);
6481 		static_call_update(intel_pmu_set_topdown_event_period,
6482 				   &icl_set_topdown_event_period);
6483 		pr_cont("Icelake events, ");
6484 		name = "icelake";
6485 		break;
6486 
6487 	case INTEL_FAM6_SAPPHIRERAPIDS_X:
6488 	case INTEL_FAM6_EMERALDRAPIDS_X:
6489 		pmem = true;
6490 		x86_pmu.late_ack = true;
6491 		memcpy(hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6492 		memcpy(hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6493 
6494 		x86_pmu.event_constraints = intel_spr_event_constraints;
6495 		x86_pmu.pebs_constraints = intel_spr_pebs_event_constraints;
6496 		x86_pmu.extra_regs = intel_spr_extra_regs;
6497 		x86_pmu.limit_period = spr_limit_period;
6498 		x86_pmu.pebs_aliases = NULL;
6499 		x86_pmu.pebs_prec_dist = true;
6500 		x86_pmu.pebs_block = true;
6501 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6502 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6503 		x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6504 		x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6505 
6506 		x86_pmu.hw_config = hsw_hw_config;
6507 		x86_pmu.get_event_constraints = spr_get_event_constraints;
6508 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6509 			hsw_format_attr : nhm_format_attr;
6510 		extra_skl_attr = skl_format_attr;
6511 		mem_attr = spr_events_attrs;
6512 		td_attr = spr_td_events_attrs;
6513 		tsx_attr = spr_tsx_events_attrs;
6514 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6515 		x86_pmu.lbr_pt_coexist = true;
6516 		intel_pmu_pebs_data_source_skl(pmem);
6517 		x86_pmu.num_topdown_events = 8;
6518 		static_call_update(intel_pmu_update_topdown_event,
6519 				   &icl_update_topdown_event);
6520 		static_call_update(intel_pmu_set_topdown_event_period,
6521 				   &icl_set_topdown_event_period);
6522 		pr_cont("Sapphire Rapids events, ");
6523 		name = "sapphire_rapids";
6524 		break;
6525 
6526 	case INTEL_FAM6_ALDERLAKE:
6527 	case INTEL_FAM6_ALDERLAKE_L:
6528 	case INTEL_FAM6_RAPTORLAKE:
6529 	case INTEL_FAM6_RAPTORLAKE_P:
6530 	case INTEL_FAM6_RAPTORLAKE_S:
6531 	case INTEL_FAM6_METEORLAKE:
6532 	case INTEL_FAM6_METEORLAKE_L:
6533 		/*
6534 		 * Alder Lake has 2 types of CPU, core and atom.
6535 		 *
6536 		 * Initialize the common PerfMon capabilities here.
6537 		 */
6538 		x86_pmu.hybrid_pmu = kcalloc(X86_HYBRID_NUM_PMUS,
6539 					     sizeof(struct x86_hybrid_pmu),
6540 					     GFP_KERNEL);
6541 		if (!x86_pmu.hybrid_pmu)
6542 			return -ENOMEM;
6543 		static_branch_enable(&perf_is_hybrid);
6544 		x86_pmu.num_hybrid_pmus = X86_HYBRID_NUM_PMUS;
6545 
6546 		x86_pmu.pebs_aliases = NULL;
6547 		x86_pmu.pebs_prec_dist = true;
6548 		x86_pmu.pebs_block = true;
6549 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6550 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6551 		x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6552 		x86_pmu.lbr_pt_coexist = true;
6553 		x86_pmu.pebs_latency_data = adl_latency_data_small;
6554 		x86_pmu.num_topdown_events = 8;
6555 		static_call_update(intel_pmu_update_topdown_event,
6556 				   &adl_update_topdown_event);
6557 		static_call_update(intel_pmu_set_topdown_event_period,
6558 				   &adl_set_topdown_event_period);
6559 
6560 		x86_pmu.filter = intel_pmu_filter;
6561 		x86_pmu.get_event_constraints = adl_get_event_constraints;
6562 		x86_pmu.hw_config = adl_hw_config;
6563 		x86_pmu.limit_period = spr_limit_period;
6564 		x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
6565 		/*
6566 		 * The rtm_abort_event is used to check whether to enable GPRs
6567 		 * for the RTM abort event. Atom doesn't have the RTM abort
6568 		 * event. There is no harmful to set it in the common
6569 		 * x86_pmu.rtm_abort_event.
6570 		 */
6571 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6572 
6573 		td_attr = adl_hybrid_events_attrs;
6574 		mem_attr = adl_hybrid_mem_attrs;
6575 		tsx_attr = adl_hybrid_tsx_attrs;
6576 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6577 			adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
6578 
6579 		/* Initialize big core specific PerfMon capabilities.*/
6580 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6581 		pmu->name = "cpu_core";
6582 		pmu->cpu_type = hybrid_big;
6583 		pmu->late_ack = true;
6584 		if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
6585 			pmu->num_counters = x86_pmu.num_counters + 2;
6586 			pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
6587 		} else {
6588 			pmu->num_counters = x86_pmu.num_counters;
6589 			pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6590 		}
6591 
6592 		/*
6593 		 * Quirk: For some Alder Lake machine, when all E-cores are disabled in
6594 		 * a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
6595 		 * the X86_FEATURE_HYBRID_CPU is still set. The above codes will
6596 		 * mistakenly add extra counters for P-cores. Correct the number of
6597 		 * counters here.
6598 		 */
6599 		if ((pmu->num_counters > 8) || (pmu->num_counters_fixed > 4)) {
6600 			pmu->num_counters = x86_pmu.num_counters;
6601 			pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6602 		}
6603 
6604 		pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6605 		pmu->unconstrained = (struct event_constraint)
6606 					__EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6607 							   0, pmu->num_counters, 0, 0);
6608 		pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6609 		pmu->intel_cap.perf_metrics = 1;
6610 		pmu->intel_cap.pebs_output_pt_available = 0;
6611 
6612 		memcpy(pmu->hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6613 		memcpy(pmu->hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6614 		pmu->event_constraints = intel_spr_event_constraints;
6615 		pmu->pebs_constraints = intel_spr_pebs_event_constraints;
6616 		pmu->extra_regs = intel_spr_extra_regs;
6617 
6618 		/* Initialize Atom core specific PerfMon capabilities.*/
6619 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6620 		pmu->name = "cpu_atom";
6621 		pmu->cpu_type = hybrid_small;
6622 		pmu->mid_ack = true;
6623 		pmu->num_counters = x86_pmu.num_counters;
6624 		pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6625 		pmu->max_pebs_events = x86_pmu.max_pebs_events;
6626 		pmu->unconstrained = (struct event_constraint)
6627 					__EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6628 							   0, pmu->num_counters, 0, 0);
6629 		pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6630 		pmu->intel_cap.perf_metrics = 0;
6631 		pmu->intel_cap.pebs_output_pt_available = 1;
6632 
6633 		memcpy(pmu->hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6634 		memcpy(pmu->hw_cache_extra_regs, tnt_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6635 		pmu->hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6636 		pmu->event_constraints = intel_slm_event_constraints;
6637 		pmu->pebs_constraints = intel_grt_pebs_event_constraints;
6638 		pmu->extra_regs = intel_grt_extra_regs;
6639 		if (is_mtl(boot_cpu_data.x86_model)) {
6640 			x86_pmu.pebs_latency_data = mtl_latency_data_small;
6641 			extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6642 				mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
6643 			mem_attr = mtl_hybrid_mem_attrs;
6644 			intel_pmu_pebs_data_source_mtl();
6645 			x86_pmu.get_event_constraints = mtl_get_event_constraints;
6646 			pmu->extra_regs = intel_cmt_extra_regs;
6647 			pr_cont("Meteorlake Hybrid events, ");
6648 			name = "meteorlake_hybrid";
6649 		} else {
6650 			x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6651 			intel_pmu_pebs_data_source_adl();
6652 			pr_cont("Alderlake Hybrid events, ");
6653 			name = "alderlake_hybrid";
6654 		}
6655 		break;
6656 
6657 	default:
6658 		switch (x86_pmu.version) {
6659 		case 1:
6660 			x86_pmu.event_constraints = intel_v1_event_constraints;
6661 			pr_cont("generic architected perfmon v1, ");
6662 			name = "generic_arch_v1";
6663 			break;
6664 		case 2:
6665 		case 3:
6666 		case 4:
6667 			/*
6668 			 * default constraints for v2 and up
6669 			 */
6670 			x86_pmu.event_constraints = intel_gen_event_constraints;
6671 			pr_cont("generic architected perfmon, ");
6672 			name = "generic_arch_v2+";
6673 			break;
6674 		default:
6675 			/*
6676 			 * The default constraints for v5 and up can support up to
6677 			 * 16 fixed counters. For the fixed counters 4 and later,
6678 			 * the pseudo-encoding is applied.
6679 			 * The constraints may be cut according to the CPUID enumeration
6680 			 * by inserting the EVENT_CONSTRAINT_END.
6681 			 */
6682 			if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED)
6683 				x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
6684 			intel_v5_gen_event_constraints[x86_pmu.num_counters_fixed].weight = -1;
6685 			x86_pmu.event_constraints = intel_v5_gen_event_constraints;
6686 			pr_cont("generic architected perfmon, ");
6687 			name = "generic_arch_v5+";
6688 			break;
6689 		}
6690 	}
6691 
6692 	snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
6693 
6694 	if (!is_hybrid()) {
6695 		group_events_td.attrs  = td_attr;
6696 		group_events_mem.attrs = mem_attr;
6697 		group_events_tsx.attrs = tsx_attr;
6698 		group_format_extra.attrs = extra_attr;
6699 		group_format_extra_skl.attrs = extra_skl_attr;
6700 
6701 		x86_pmu.attr_update = attr_update;
6702 	} else {
6703 		hybrid_group_events_td.attrs  = td_attr;
6704 		hybrid_group_events_mem.attrs = mem_attr;
6705 		hybrid_group_events_tsx.attrs = tsx_attr;
6706 		hybrid_group_format_extra.attrs = extra_attr;
6707 
6708 		x86_pmu.attr_update = hybrid_attr_update;
6709 	}
6710 
6711 	intel_pmu_check_num_counters(&x86_pmu.num_counters,
6712 				     &x86_pmu.num_counters_fixed,
6713 				     &x86_pmu.intel_ctrl,
6714 				     (u64)fixed_mask);
6715 
6716 	/* AnyThread may be deprecated on arch perfmon v5 or later */
6717 	if (x86_pmu.intel_cap.anythread_deprecated)
6718 		x86_pmu.format_attrs = intel_arch_formats_attr;
6719 
6720 	intel_pmu_check_event_constraints(x86_pmu.event_constraints,
6721 					  x86_pmu.num_counters,
6722 					  x86_pmu.num_counters_fixed,
6723 					  x86_pmu.intel_ctrl);
6724 	/*
6725 	 * Access LBR MSR may cause #GP under certain circumstances.
6726 	 * Check all LBR MSR here.
6727 	 * Disable LBR access if any LBR MSRs can not be accessed.
6728 	 */
6729 	if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
6730 		x86_pmu.lbr_nr = 0;
6731 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
6732 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
6733 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
6734 			x86_pmu.lbr_nr = 0;
6735 	}
6736 
6737 	if (x86_pmu.lbr_nr) {
6738 		intel_pmu_lbr_init();
6739 
6740 		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
6741 
6742 		/* only support branch_stack snapshot for perfmon >= v2 */
6743 		if (x86_pmu.disable_all == intel_pmu_disable_all) {
6744 			if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
6745 				static_call_update(perf_snapshot_branch_stack,
6746 						   intel_pmu_snapshot_arch_branch_stack);
6747 			} else {
6748 				static_call_update(perf_snapshot_branch_stack,
6749 						   intel_pmu_snapshot_branch_stack);
6750 			}
6751 		}
6752 	}
6753 
6754 	intel_pmu_check_extra_regs(x86_pmu.extra_regs);
6755 
6756 	/* Support full width counters using alternative MSR range */
6757 	if (x86_pmu.intel_cap.full_width_write) {
6758 		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
6759 		x86_pmu.perfctr = MSR_IA32_PMC0;
6760 		pr_cont("full-width counters, ");
6761 	}
6762 
6763 	if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
6764 		x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
6765 
6766 	if (is_hybrid())
6767 		intel_pmu_check_hybrid_pmus((u64)fixed_mask);
6768 
6769 	if (x86_pmu.intel_cap.pebs_timing_info)
6770 		x86_pmu.flags |= PMU_FL_RETIRE_LATENCY;
6771 
6772 	intel_aux_output_init();
6773 
6774 	return 0;
6775 }
6776 
6777 /*
6778  * HT bug: phase 2 init
6779  * Called once we have valid topology information to check
6780  * whether or not HT is enabled
6781  * If HT is off, then we disable the workaround
6782  */
6783 static __init int fixup_ht_bug(void)
6784 {
6785 	int c;
6786 	/*
6787 	 * problem not present on this CPU model, nothing to do
6788 	 */
6789 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
6790 		return 0;
6791 
6792 	if (topology_max_smt_threads() > 1) {
6793 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
6794 		return 0;
6795 	}
6796 
6797 	cpus_read_lock();
6798 
6799 	hardlockup_detector_perf_stop();
6800 
6801 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
6802 
6803 	x86_pmu.start_scheduling = NULL;
6804 	x86_pmu.commit_scheduling = NULL;
6805 	x86_pmu.stop_scheduling = NULL;
6806 
6807 	hardlockup_detector_perf_restart();
6808 
6809 	for_each_online_cpu(c)
6810 		free_excl_cntrs(&per_cpu(cpu_hw_events, c));
6811 
6812 	cpus_read_unlock();
6813 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
6814 	return 0;
6815 }
6816 subsys_initcall(fixup_ht_bug)
6817