xref: /linux/arch/x86/hyperv/hv_init.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * X86 specific Hyper-V initialization code.
4  *
5  * Copyright (C) 2016, Microsoft, Inc.
6  *
7  * Author : K. Y. Srinivasan <kys@microsoft.com>
8  */
9 
10 #include <linux/efi.h>
11 #include <linux/types.h>
12 #include <asm/apic.h>
13 #include <asm/desc.h>
14 #include <asm/hypervisor.h>
15 #include <asm/hyperv-tlfs.h>
16 #include <asm/mshyperv.h>
17 #include <linux/version.h>
18 #include <linux/vmalloc.h>
19 #include <linux/mm.h>
20 #include <linux/clockchips.h>
21 #include <linux/hyperv.h>
22 #include <linux/slab.h>
23 #include <linux/cpuhotplug.h>
24 
25 #ifdef CONFIG_HYPERV_TSCPAGE
26 
27 static struct ms_hyperv_tsc_page *tsc_pg;
28 
29 struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
30 {
31 	return tsc_pg;
32 }
33 EXPORT_SYMBOL_GPL(hv_get_tsc_page);
34 
35 static u64 read_hv_clock_tsc(struct clocksource *arg)
36 {
37 	u64 current_tick = hv_read_tsc_page(tsc_pg);
38 
39 	if (current_tick == U64_MAX)
40 		rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
41 
42 	return current_tick;
43 }
44 
45 static struct clocksource hyperv_cs_tsc = {
46 		.name		= "hyperv_clocksource_tsc_page",
47 		.rating		= 400,
48 		.read		= read_hv_clock_tsc,
49 		.mask		= CLOCKSOURCE_MASK(64),
50 		.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
51 };
52 #endif
53 
54 static u64 read_hv_clock_msr(struct clocksource *arg)
55 {
56 	u64 current_tick;
57 	/*
58 	 * Read the partition counter to get the current tick count. This count
59 	 * is set to 0 when the partition is created and is incremented in
60 	 * 100 nanosecond units.
61 	 */
62 	rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
63 	return current_tick;
64 }
65 
66 static struct clocksource hyperv_cs_msr = {
67 	.name		= "hyperv_clocksource_msr",
68 	.rating		= 400,
69 	.read		= read_hv_clock_msr,
70 	.mask		= CLOCKSOURCE_MASK(64),
71 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
72 };
73 
74 void *hv_hypercall_pg;
75 EXPORT_SYMBOL_GPL(hv_hypercall_pg);
76 struct clocksource *hyperv_cs;
77 EXPORT_SYMBOL_GPL(hyperv_cs);
78 
79 u32 *hv_vp_index;
80 EXPORT_SYMBOL_GPL(hv_vp_index);
81 
82 struct hv_vp_assist_page **hv_vp_assist_page;
83 EXPORT_SYMBOL_GPL(hv_vp_assist_page);
84 
85 void  __percpu **hyperv_pcpu_input_arg;
86 EXPORT_SYMBOL_GPL(hyperv_pcpu_input_arg);
87 
88 u32 hv_max_vp_index;
89 EXPORT_SYMBOL_GPL(hv_max_vp_index);
90 
91 static int hv_cpu_init(unsigned int cpu)
92 {
93 	u64 msr_vp_index;
94 	struct hv_vp_assist_page **hvp = &hv_vp_assist_page[smp_processor_id()];
95 	void **input_arg;
96 	struct page *pg;
97 
98 	input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
99 	pg = alloc_page(GFP_KERNEL);
100 	if (unlikely(!pg))
101 		return -ENOMEM;
102 	*input_arg = page_address(pg);
103 
104 	hv_get_vp_index(msr_vp_index);
105 
106 	hv_vp_index[smp_processor_id()] = msr_vp_index;
107 
108 	if (msr_vp_index > hv_max_vp_index)
109 		hv_max_vp_index = msr_vp_index;
110 
111 	if (!hv_vp_assist_page)
112 		return 0;
113 
114 	if (!*hvp)
115 		*hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL);
116 
117 	if (*hvp) {
118 		u64 val;
119 
120 		val = vmalloc_to_pfn(*hvp);
121 		val = (val << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT) |
122 			HV_X64_MSR_VP_ASSIST_PAGE_ENABLE;
123 
124 		wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, val);
125 	}
126 
127 	return 0;
128 }
129 
130 static void (*hv_reenlightenment_cb)(void);
131 
132 static void hv_reenlightenment_notify(struct work_struct *dummy)
133 {
134 	struct hv_tsc_emulation_status emu_status;
135 
136 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
137 
138 	/* Don't issue the callback if TSC accesses are not emulated */
139 	if (hv_reenlightenment_cb && emu_status.inprogress)
140 		hv_reenlightenment_cb();
141 }
142 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
143 
144 void hyperv_stop_tsc_emulation(void)
145 {
146 	u64 freq;
147 	struct hv_tsc_emulation_status emu_status;
148 
149 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
150 	emu_status.inprogress = 0;
151 	wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
152 
153 	rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
154 	tsc_khz = div64_u64(freq, 1000);
155 }
156 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
157 
158 static inline bool hv_reenlightenment_available(void)
159 {
160 	/*
161 	 * Check for required features and priviliges to make TSC frequency
162 	 * change notifications work.
163 	 */
164 	return ms_hyperv.features & HV_X64_ACCESS_FREQUENCY_MSRS &&
165 		ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
166 		ms_hyperv.features & HV_X64_ACCESS_REENLIGHTENMENT;
167 }
168 
169 __visible void __irq_entry hyperv_reenlightenment_intr(struct pt_regs *regs)
170 {
171 	entering_ack_irq();
172 
173 	inc_irq_stat(irq_hv_reenlightenment_count);
174 
175 	schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
176 
177 	exiting_irq();
178 }
179 
180 void set_hv_tscchange_cb(void (*cb)(void))
181 {
182 	struct hv_reenlightenment_control re_ctrl = {
183 		.vector = HYPERV_REENLIGHTENMENT_VECTOR,
184 		.enabled = 1,
185 		.target_vp = hv_vp_index[smp_processor_id()]
186 	};
187 	struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
188 
189 	if (!hv_reenlightenment_available()) {
190 		pr_warn("Hyper-V: reenlightenment support is unavailable\n");
191 		return;
192 	}
193 
194 	hv_reenlightenment_cb = cb;
195 
196 	/* Make sure callback is registered before we write to MSRs */
197 	wmb();
198 
199 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
200 	wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
201 }
202 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
203 
204 void clear_hv_tscchange_cb(void)
205 {
206 	struct hv_reenlightenment_control re_ctrl;
207 
208 	if (!hv_reenlightenment_available())
209 		return;
210 
211 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
212 	re_ctrl.enabled = 0;
213 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
214 
215 	hv_reenlightenment_cb = NULL;
216 }
217 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
218 
219 static int hv_cpu_die(unsigned int cpu)
220 {
221 	struct hv_reenlightenment_control re_ctrl;
222 	unsigned int new_cpu;
223 	unsigned long flags;
224 	void **input_arg;
225 	void *input_pg = NULL;
226 
227 	local_irq_save(flags);
228 	input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
229 	input_pg = *input_arg;
230 	*input_arg = NULL;
231 	local_irq_restore(flags);
232 	free_page((unsigned long)input_pg);
233 
234 	if (hv_vp_assist_page && hv_vp_assist_page[cpu])
235 		wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, 0);
236 
237 	if (hv_reenlightenment_cb == NULL)
238 		return 0;
239 
240 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
241 	if (re_ctrl.target_vp == hv_vp_index[cpu]) {
242 		/* Reassign to some other online CPU */
243 		new_cpu = cpumask_any_but(cpu_online_mask, cpu);
244 
245 		re_ctrl.target_vp = hv_vp_index[new_cpu];
246 		wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
247 	}
248 
249 	return 0;
250 }
251 
252 static int __init hv_pci_init(void)
253 {
254 	int gen2vm = efi_enabled(EFI_BOOT);
255 
256 	/*
257 	 * For Generation-2 VM, we exit from pci_arch_init() by returning 0.
258 	 * The purpose is to suppress the harmless warning:
259 	 * "PCI: Fatal: No config space access function found"
260 	 */
261 	if (gen2vm)
262 		return 0;
263 
264 	/* For Generation-1 VM, we'll proceed in pci_arch_init().  */
265 	return 1;
266 }
267 
268 /*
269  * This function is to be invoked early in the boot sequence after the
270  * hypervisor has been detected.
271  *
272  * 1. Setup the hypercall page.
273  * 2. Register Hyper-V specific clocksource.
274  * 3. Setup Hyper-V specific APIC entry points.
275  */
276 void __init hyperv_init(void)
277 {
278 	u64 guest_id, required_msrs;
279 	union hv_x64_msr_hypercall_contents hypercall_msr;
280 	int cpuhp, i;
281 
282 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
283 		return;
284 
285 	/* Absolutely required MSRs */
286 	required_msrs = HV_X64_MSR_HYPERCALL_AVAILABLE |
287 		HV_X64_MSR_VP_INDEX_AVAILABLE;
288 
289 	if ((ms_hyperv.features & required_msrs) != required_msrs)
290 		return;
291 
292 	/*
293 	 * Allocate the per-CPU state for the hypercall input arg.
294 	 * If this allocation fails, we will not be able to setup
295 	 * (per-CPU) hypercall input page and thus this failure is
296 	 * fatal on Hyper-V.
297 	 */
298 	hyperv_pcpu_input_arg = alloc_percpu(void  *);
299 
300 	BUG_ON(hyperv_pcpu_input_arg == NULL);
301 
302 	/* Allocate percpu VP index */
303 	hv_vp_index = kmalloc_array(num_possible_cpus(), sizeof(*hv_vp_index),
304 				    GFP_KERNEL);
305 	if (!hv_vp_index)
306 		return;
307 
308 	for (i = 0; i < num_possible_cpus(); i++)
309 		hv_vp_index[i] = VP_INVAL;
310 
311 	hv_vp_assist_page = kcalloc(num_possible_cpus(),
312 				    sizeof(*hv_vp_assist_page), GFP_KERNEL);
313 	if (!hv_vp_assist_page) {
314 		ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
315 		goto free_vp_index;
316 	}
317 
318 	cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online",
319 				  hv_cpu_init, hv_cpu_die);
320 	if (cpuhp < 0)
321 		goto free_vp_assist_page;
322 
323 	/*
324 	 * Setup the hypercall page and enable hypercalls.
325 	 * 1. Register the guest ID
326 	 * 2. Enable the hypercall and register the hypercall page
327 	 */
328 	guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0);
329 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
330 
331 	hv_hypercall_pg  = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL_RX);
332 	if (hv_hypercall_pg == NULL) {
333 		wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
334 		goto remove_cpuhp_state;
335 	}
336 
337 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
338 	hypercall_msr.enable = 1;
339 	hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
340 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
341 
342 	hv_apic_init();
343 
344 	x86_init.pci.arch_init = hv_pci_init;
345 
346 	/*
347 	 * Register Hyper-V specific clocksource.
348 	 */
349 #ifdef CONFIG_HYPERV_TSCPAGE
350 	if (ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE) {
351 		union hv_x64_msr_hypercall_contents tsc_msr;
352 
353 		tsc_pg = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL);
354 		if (!tsc_pg)
355 			goto register_msr_cs;
356 
357 		hyperv_cs = &hyperv_cs_tsc;
358 
359 		rdmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
360 
361 		tsc_msr.enable = 1;
362 		tsc_msr.guest_physical_address = vmalloc_to_pfn(tsc_pg);
363 
364 		wrmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
365 
366 		hyperv_cs_tsc.archdata.vclock_mode = VCLOCK_HVCLOCK;
367 
368 		clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
369 		return;
370 	}
371 register_msr_cs:
372 #endif
373 	/*
374 	 * For 32 bit guests just use the MSR based mechanism for reading
375 	 * the partition counter.
376 	 */
377 
378 	hyperv_cs = &hyperv_cs_msr;
379 	if (ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE)
380 		clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
381 
382 	return;
383 
384 remove_cpuhp_state:
385 	cpuhp_remove_state(cpuhp);
386 free_vp_assist_page:
387 	kfree(hv_vp_assist_page);
388 	hv_vp_assist_page = NULL;
389 free_vp_index:
390 	kfree(hv_vp_index);
391 	hv_vp_index = NULL;
392 }
393 
394 /*
395  * This routine is called before kexec/kdump, it does the required cleanup.
396  */
397 void hyperv_cleanup(void)
398 {
399 	union hv_x64_msr_hypercall_contents hypercall_msr;
400 
401 	/* Reset our OS id */
402 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
403 
404 	/*
405 	 * Reset hypercall page reference before reset the page,
406 	 * let hypercall operations fail safely rather than
407 	 * panic the kernel for using invalid hypercall page
408 	 */
409 	hv_hypercall_pg = NULL;
410 
411 	/* Reset the hypercall page */
412 	hypercall_msr.as_uint64 = 0;
413 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
414 
415 	/* Reset the TSC page */
416 	hypercall_msr.as_uint64 = 0;
417 	wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
418 }
419 EXPORT_SYMBOL_GPL(hyperv_cleanup);
420 
421 void hyperv_report_panic(struct pt_regs *regs, long err)
422 {
423 	static bool panic_reported;
424 	u64 guest_id;
425 
426 	/*
427 	 * We prefer to report panic on 'die' chain as we have proper
428 	 * registers to report, but if we miss it (e.g. on BUG()) we need
429 	 * to report it on 'panic'.
430 	 */
431 	if (panic_reported)
432 		return;
433 	panic_reported = true;
434 
435 	rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
436 
437 	wrmsrl(HV_X64_MSR_CRASH_P0, err);
438 	wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
439 	wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
440 	wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
441 	wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
442 
443 	/*
444 	 * Let Hyper-V know there is crash data available
445 	 */
446 	wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
447 }
448 EXPORT_SYMBOL_GPL(hyperv_report_panic);
449 
450 /**
451  * hyperv_report_panic_msg - report panic message to Hyper-V
452  * @pa: physical address of the panic page containing the message
453  * @size: size of the message in the page
454  */
455 void hyperv_report_panic_msg(phys_addr_t pa, size_t size)
456 {
457 	/*
458 	 * P3 to contain the physical address of the panic page & P4 to
459 	 * contain the size of the panic data in that page. Rest of the
460 	 * registers are no-op when the NOTIFY_MSG flag is set.
461 	 */
462 	wrmsrl(HV_X64_MSR_CRASH_P0, 0);
463 	wrmsrl(HV_X64_MSR_CRASH_P1, 0);
464 	wrmsrl(HV_X64_MSR_CRASH_P2, 0);
465 	wrmsrl(HV_X64_MSR_CRASH_P3, pa);
466 	wrmsrl(HV_X64_MSR_CRASH_P4, size);
467 
468 	/*
469 	 * Let Hyper-V know there is crash data available along with
470 	 * the panic message.
471 	 */
472 	wrmsrl(HV_X64_MSR_CRASH_CTL,
473 	       (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG));
474 }
475 EXPORT_SYMBOL_GPL(hyperv_report_panic_msg);
476 
477 bool hv_is_hyperv_initialized(void)
478 {
479 	union hv_x64_msr_hypercall_contents hypercall_msr;
480 
481 	/*
482 	 * Ensure that we're really on Hyper-V, and not a KVM or Xen
483 	 * emulation of Hyper-V
484 	 */
485 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
486 		return false;
487 
488 	/*
489 	 * Verify that earlier initialization succeeded by checking
490 	 * that the hypercall page is setup
491 	 */
492 	hypercall_msr.as_uint64 = 0;
493 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
494 
495 	return hypercall_msr.enable;
496 }
497 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);
498