xref: /linux/arch/x86/hyperv/hv_init.c (revision 908fc4c2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * X86 specific Hyper-V initialization code.
4  *
5  * Copyright (C) 2016, Microsoft, Inc.
6  *
7  * Author : K. Y. Srinivasan <kys@microsoft.com>
8  */
9 
10 #include <linux/efi.h>
11 #include <linux/types.h>
12 #include <linux/bitfield.h>
13 #include <linux/io.h>
14 #include <asm/apic.h>
15 #include <asm/desc.h>
16 #include <asm/sev.h>
17 #include <asm/hypervisor.h>
18 #include <asm/hyperv-tlfs.h>
19 #include <asm/mshyperv.h>
20 #include <asm/idtentry.h>
21 #include <linux/kexec.h>
22 #include <linux/version.h>
23 #include <linux/vmalloc.h>
24 #include <linux/mm.h>
25 #include <linux/hyperv.h>
26 #include <linux/slab.h>
27 #include <linux/kernel.h>
28 #include <linux/cpuhotplug.h>
29 #include <linux/syscore_ops.h>
30 #include <clocksource/hyperv_timer.h>
31 #include <linux/highmem.h>
32 #include <linux/swiotlb.h>
33 
34 int hyperv_init_cpuhp;
35 u64 hv_current_partition_id = ~0ull;
36 EXPORT_SYMBOL_GPL(hv_current_partition_id);
37 
38 void *hv_hypercall_pg;
39 EXPORT_SYMBOL_GPL(hv_hypercall_pg);
40 
41 union hv_ghcb * __percpu *hv_ghcb_pg;
42 
43 /* Storage to save the hypercall page temporarily for hibernation */
44 static void *hv_hypercall_pg_saved;
45 
46 struct hv_vp_assist_page **hv_vp_assist_page;
47 EXPORT_SYMBOL_GPL(hv_vp_assist_page);
48 
49 static int hyperv_init_ghcb(void)
50 {
51 	u64 ghcb_gpa;
52 	void *ghcb_va;
53 	void **ghcb_base;
54 
55 	if (!hv_isolation_type_snp())
56 		return 0;
57 
58 	if (!hv_ghcb_pg)
59 		return -EINVAL;
60 
61 	/*
62 	 * GHCB page is allocated by paravisor. The address
63 	 * returned by MSR_AMD64_SEV_ES_GHCB is above shared
64 	 * memory boundary and map it here.
65 	 */
66 	rdmsrl(MSR_AMD64_SEV_ES_GHCB, ghcb_gpa);
67 	ghcb_va = memremap(ghcb_gpa, HV_HYP_PAGE_SIZE, MEMREMAP_WB);
68 	if (!ghcb_va)
69 		return -ENOMEM;
70 
71 	ghcb_base = (void **)this_cpu_ptr(hv_ghcb_pg);
72 	*ghcb_base = ghcb_va;
73 
74 	return 0;
75 }
76 
77 static int hv_cpu_init(unsigned int cpu)
78 {
79 	union hv_vp_assist_msr_contents msr = { 0 };
80 	struct hv_vp_assist_page **hvp = &hv_vp_assist_page[smp_processor_id()];
81 	int ret;
82 
83 	ret = hv_common_cpu_init(cpu);
84 	if (ret)
85 		return ret;
86 
87 	if (!hv_vp_assist_page)
88 		return 0;
89 
90 	if (!*hvp) {
91 		if (hv_root_partition) {
92 			/*
93 			 * For root partition we get the hypervisor provided VP assist
94 			 * page, instead of allocating a new page.
95 			 */
96 			rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
97 			*hvp = memremap(msr.pfn <<
98 					HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT,
99 					PAGE_SIZE, MEMREMAP_WB);
100 		} else {
101 			/*
102 			 * The VP assist page is an "overlay" page (see Hyper-V TLFS's
103 			 * Section 5.2.1 "GPA Overlay Pages"). Here it must be zeroed
104 			 * out to make sure we always write the EOI MSR in
105 			 * hv_apic_eoi_write() *after* the EOI optimization is disabled
106 			 * in hv_cpu_die(), otherwise a CPU may not be stopped in the
107 			 * case of CPU offlining and the VM will hang.
108 			 */
109 			*hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL | __GFP_ZERO);
110 			if (*hvp)
111 				msr.pfn = vmalloc_to_pfn(*hvp);
112 		}
113 		WARN_ON(!(*hvp));
114 		if (*hvp) {
115 			msr.enable = 1;
116 			wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
117 		}
118 	}
119 
120 	return hyperv_init_ghcb();
121 }
122 
123 static void (*hv_reenlightenment_cb)(void);
124 
125 static void hv_reenlightenment_notify(struct work_struct *dummy)
126 {
127 	struct hv_tsc_emulation_status emu_status;
128 
129 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
130 
131 	/* Don't issue the callback if TSC accesses are not emulated */
132 	if (hv_reenlightenment_cb && emu_status.inprogress)
133 		hv_reenlightenment_cb();
134 }
135 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
136 
137 void hyperv_stop_tsc_emulation(void)
138 {
139 	u64 freq;
140 	struct hv_tsc_emulation_status emu_status;
141 
142 	rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
143 	emu_status.inprogress = 0;
144 	wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
145 
146 	rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
147 	tsc_khz = div64_u64(freq, 1000);
148 }
149 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
150 
151 static inline bool hv_reenlightenment_available(void)
152 {
153 	/*
154 	 * Check for required features and privileges to make TSC frequency
155 	 * change notifications work.
156 	 */
157 	return ms_hyperv.features & HV_ACCESS_FREQUENCY_MSRS &&
158 		ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
159 		ms_hyperv.features & HV_ACCESS_REENLIGHTENMENT;
160 }
161 
162 DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_reenlightenment)
163 {
164 	ack_APIC_irq();
165 	inc_irq_stat(irq_hv_reenlightenment_count);
166 	schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
167 }
168 
169 void set_hv_tscchange_cb(void (*cb)(void))
170 {
171 	struct hv_reenlightenment_control re_ctrl = {
172 		.vector = HYPERV_REENLIGHTENMENT_VECTOR,
173 		.enabled = 1,
174 	};
175 	struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
176 
177 	if (!hv_reenlightenment_available()) {
178 		pr_warn("Hyper-V: reenlightenment support is unavailable\n");
179 		return;
180 	}
181 
182 	if (!hv_vp_index)
183 		return;
184 
185 	hv_reenlightenment_cb = cb;
186 
187 	/* Make sure callback is registered before we write to MSRs */
188 	wmb();
189 
190 	re_ctrl.target_vp = hv_vp_index[get_cpu()];
191 
192 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
193 	wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
194 
195 	put_cpu();
196 }
197 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
198 
199 void clear_hv_tscchange_cb(void)
200 {
201 	struct hv_reenlightenment_control re_ctrl;
202 
203 	if (!hv_reenlightenment_available())
204 		return;
205 
206 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
207 	re_ctrl.enabled = 0;
208 	wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
209 
210 	hv_reenlightenment_cb = NULL;
211 }
212 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
213 
214 static int hv_cpu_die(unsigned int cpu)
215 {
216 	struct hv_reenlightenment_control re_ctrl;
217 	unsigned int new_cpu;
218 	void **ghcb_va;
219 
220 	if (hv_ghcb_pg) {
221 		ghcb_va = (void **)this_cpu_ptr(hv_ghcb_pg);
222 		if (*ghcb_va)
223 			memunmap(*ghcb_va);
224 		*ghcb_va = NULL;
225 	}
226 
227 	hv_common_cpu_die(cpu);
228 
229 	if (hv_vp_assist_page && hv_vp_assist_page[cpu]) {
230 		union hv_vp_assist_msr_contents msr = { 0 };
231 		if (hv_root_partition) {
232 			/*
233 			 * For root partition the VP assist page is mapped to
234 			 * hypervisor provided page, and thus we unmap the
235 			 * page here and nullify it, so that in future we have
236 			 * correct page address mapped in hv_cpu_init.
237 			 */
238 			memunmap(hv_vp_assist_page[cpu]);
239 			hv_vp_assist_page[cpu] = NULL;
240 			rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
241 			msr.enable = 0;
242 		}
243 		wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
244 	}
245 
246 	if (hv_reenlightenment_cb == NULL)
247 		return 0;
248 
249 	rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
250 	if (re_ctrl.target_vp == hv_vp_index[cpu]) {
251 		/*
252 		 * Reassign reenlightenment notifications to some other online
253 		 * CPU or just disable the feature if there are no online CPUs
254 		 * left (happens on hibernation).
255 		 */
256 		new_cpu = cpumask_any_but(cpu_online_mask, cpu);
257 
258 		if (new_cpu < nr_cpu_ids)
259 			re_ctrl.target_vp = hv_vp_index[new_cpu];
260 		else
261 			re_ctrl.enabled = 0;
262 
263 		wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
264 	}
265 
266 	return 0;
267 }
268 
269 static int __init hv_pci_init(void)
270 {
271 	int gen2vm = efi_enabled(EFI_BOOT);
272 
273 	/*
274 	 * For Generation-2 VM, we exit from pci_arch_init() by returning 0.
275 	 * The purpose is to suppress the harmless warning:
276 	 * "PCI: Fatal: No config space access function found"
277 	 */
278 	if (gen2vm)
279 		return 0;
280 
281 	/* For Generation-1 VM, we'll proceed in pci_arch_init().  */
282 	return 1;
283 }
284 
285 static int hv_suspend(void)
286 {
287 	union hv_x64_msr_hypercall_contents hypercall_msr;
288 	int ret;
289 
290 	if (hv_root_partition)
291 		return -EPERM;
292 
293 	/*
294 	 * Reset the hypercall page as it is going to be invalidated
295 	 * across hibernation. Setting hv_hypercall_pg to NULL ensures
296 	 * that any subsequent hypercall operation fails safely instead of
297 	 * crashing due to an access of an invalid page. The hypercall page
298 	 * pointer is restored on resume.
299 	 */
300 	hv_hypercall_pg_saved = hv_hypercall_pg;
301 	hv_hypercall_pg = NULL;
302 
303 	/* Disable the hypercall page in the hypervisor */
304 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
305 	hypercall_msr.enable = 0;
306 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
307 
308 	ret = hv_cpu_die(0);
309 	return ret;
310 }
311 
312 static void hv_resume(void)
313 {
314 	union hv_x64_msr_hypercall_contents hypercall_msr;
315 	int ret;
316 
317 	ret = hv_cpu_init(0);
318 	WARN_ON(ret);
319 
320 	/* Re-enable the hypercall page */
321 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
322 	hypercall_msr.enable = 1;
323 	hypercall_msr.guest_physical_address =
324 		vmalloc_to_pfn(hv_hypercall_pg_saved);
325 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
326 
327 	hv_hypercall_pg = hv_hypercall_pg_saved;
328 	hv_hypercall_pg_saved = NULL;
329 
330 	/*
331 	 * Reenlightenment notifications are disabled by hv_cpu_die(0),
332 	 * reenable them here if hv_reenlightenment_cb was previously set.
333 	 */
334 	if (hv_reenlightenment_cb)
335 		set_hv_tscchange_cb(hv_reenlightenment_cb);
336 }
337 
338 /* Note: when the ops are called, only CPU0 is online and IRQs are disabled. */
339 static struct syscore_ops hv_syscore_ops = {
340 	.suspend	= hv_suspend,
341 	.resume		= hv_resume,
342 };
343 
344 static void (* __initdata old_setup_percpu_clockev)(void);
345 
346 static void __init hv_stimer_setup_percpu_clockev(void)
347 {
348 	/*
349 	 * Ignore any errors in setting up stimer clockevents
350 	 * as we can run with the LAPIC timer as a fallback.
351 	 */
352 	(void)hv_stimer_alloc(false);
353 
354 	/*
355 	 * Still register the LAPIC timer, because the direct-mode STIMER is
356 	 * not supported by old versions of Hyper-V. This also allows users
357 	 * to switch to LAPIC timer via /sys, if they want to.
358 	 */
359 	if (old_setup_percpu_clockev)
360 		old_setup_percpu_clockev();
361 }
362 
363 static void __init hv_get_partition_id(void)
364 {
365 	struct hv_get_partition_id *output_page;
366 	u64 status;
367 	unsigned long flags;
368 
369 	local_irq_save(flags);
370 	output_page = *this_cpu_ptr(hyperv_pcpu_output_arg);
371 	status = hv_do_hypercall(HVCALL_GET_PARTITION_ID, NULL, output_page);
372 	if (!hv_result_success(status)) {
373 		/* No point in proceeding if this failed */
374 		pr_err("Failed to get partition ID: %lld\n", status);
375 		BUG();
376 	}
377 	hv_current_partition_id = output_page->partition_id;
378 	local_irq_restore(flags);
379 }
380 
381 /*
382  * This function is to be invoked early in the boot sequence after the
383  * hypervisor has been detected.
384  *
385  * 1. Setup the hypercall page.
386  * 2. Register Hyper-V specific clocksource.
387  * 3. Setup Hyper-V specific APIC entry points.
388  */
389 void __init hyperv_init(void)
390 {
391 	u64 guest_id;
392 	union hv_x64_msr_hypercall_contents hypercall_msr;
393 	int cpuhp;
394 
395 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
396 		return;
397 
398 	if (hv_common_init())
399 		return;
400 
401 	hv_vp_assist_page = kcalloc(num_possible_cpus(),
402 				    sizeof(*hv_vp_assist_page), GFP_KERNEL);
403 	if (!hv_vp_assist_page) {
404 		ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
405 		goto common_free;
406 	}
407 
408 	if (hv_isolation_type_snp()) {
409 		/* Negotiate GHCB Version. */
410 		if (!hv_ghcb_negotiate_protocol())
411 			hv_ghcb_terminate(SEV_TERM_SET_GEN,
412 					  GHCB_SEV_ES_PROT_UNSUPPORTED);
413 
414 		hv_ghcb_pg = alloc_percpu(union hv_ghcb *);
415 		if (!hv_ghcb_pg)
416 			goto free_vp_assist_page;
417 	}
418 
419 	cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online",
420 				  hv_cpu_init, hv_cpu_die);
421 	if (cpuhp < 0)
422 		goto free_ghcb_page;
423 
424 	/*
425 	 * Setup the hypercall page and enable hypercalls.
426 	 * 1. Register the guest ID
427 	 * 2. Enable the hypercall and register the hypercall page
428 	 */
429 	guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0);
430 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
431 
432 	/* Hyper-V requires to write guest os id via ghcb in SNP IVM. */
433 	hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, guest_id);
434 
435 	hv_hypercall_pg = __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START,
436 			VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_ROX,
437 			VM_FLUSH_RESET_PERMS, NUMA_NO_NODE,
438 			__builtin_return_address(0));
439 	if (hv_hypercall_pg == NULL)
440 		goto clean_guest_os_id;
441 
442 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
443 	hypercall_msr.enable = 1;
444 
445 	if (hv_root_partition) {
446 		struct page *pg;
447 		void *src, *dst;
448 
449 		/*
450 		 * For the root partition, the hypervisor will set up its
451 		 * hypercall page. The hypervisor guarantees it will not show
452 		 * up in the root's address space. The root can't change the
453 		 * location of the hypercall page.
454 		 *
455 		 * Order is important here. We must enable the hypercall page
456 		 * so it is populated with code, then copy the code to an
457 		 * executable page.
458 		 */
459 		wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
460 
461 		pg = vmalloc_to_page(hv_hypercall_pg);
462 		dst = kmap(pg);
463 		src = memremap(hypercall_msr.guest_physical_address << PAGE_SHIFT, PAGE_SIZE,
464 				MEMREMAP_WB);
465 		BUG_ON(!(src && dst));
466 		memcpy(dst, src, HV_HYP_PAGE_SIZE);
467 		memunmap(src);
468 		kunmap(pg);
469 	} else {
470 		hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
471 		wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
472 	}
473 
474 	/*
475 	 * hyperv_init() is called before LAPIC is initialized: see
476 	 * apic_intr_mode_init() -> x86_platform.apic_post_init() and
477 	 * apic_bsp_setup() -> setup_local_APIC(). The direct-mode STIMER
478 	 * depends on LAPIC, so hv_stimer_alloc() should be called from
479 	 * x86_init.timers.setup_percpu_clockev.
480 	 */
481 	old_setup_percpu_clockev = x86_init.timers.setup_percpu_clockev;
482 	x86_init.timers.setup_percpu_clockev = hv_stimer_setup_percpu_clockev;
483 
484 	hv_apic_init();
485 
486 	x86_init.pci.arch_init = hv_pci_init;
487 
488 	register_syscore_ops(&hv_syscore_ops);
489 
490 	hyperv_init_cpuhp = cpuhp;
491 
492 	if (cpuid_ebx(HYPERV_CPUID_FEATURES) & HV_ACCESS_PARTITION_ID)
493 		hv_get_partition_id();
494 
495 	BUG_ON(hv_root_partition && hv_current_partition_id == ~0ull);
496 
497 #ifdef CONFIG_PCI_MSI
498 	/*
499 	 * If we're running as root, we want to create our own PCI MSI domain.
500 	 * We can't set this in hv_pci_init because that would be too late.
501 	 */
502 	if (hv_root_partition)
503 		x86_init.irqs.create_pci_msi_domain = hv_create_pci_msi_domain;
504 #endif
505 
506 	/* Query the VMs extended capability once, so that it can be cached. */
507 	hv_query_ext_cap(0);
508 
509 #ifdef CONFIG_SWIOTLB
510 	/*
511 	 * Swiotlb bounce buffer needs to be mapped in extra address
512 	 * space. Map function doesn't work in the early place and so
513 	 * call swiotlb_update_mem_attributes() here.
514 	 */
515 	if (hv_is_isolation_supported())
516 		swiotlb_update_mem_attributes();
517 #endif
518 
519 	return;
520 
521 clean_guest_os_id:
522 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
523 	hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
524 	cpuhp_remove_state(cpuhp);
525 free_ghcb_page:
526 	free_percpu(hv_ghcb_pg);
527 free_vp_assist_page:
528 	kfree(hv_vp_assist_page);
529 	hv_vp_assist_page = NULL;
530 common_free:
531 	hv_common_free();
532 }
533 
534 /*
535  * This routine is called before kexec/kdump, it does the required cleanup.
536  */
537 void hyperv_cleanup(void)
538 {
539 	union hv_x64_msr_hypercall_contents hypercall_msr;
540 
541 	unregister_syscore_ops(&hv_syscore_ops);
542 
543 	/* Reset our OS id */
544 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
545 	hv_ghcb_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
546 
547 	/*
548 	 * Reset hypercall page reference before reset the page,
549 	 * let hypercall operations fail safely rather than
550 	 * panic the kernel for using invalid hypercall page
551 	 */
552 	hv_hypercall_pg = NULL;
553 
554 	/* Reset the hypercall page */
555 	hypercall_msr.as_uint64 = 0;
556 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
557 
558 	/* Reset the TSC page */
559 	hypercall_msr.as_uint64 = 0;
560 	wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
561 }
562 
563 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die)
564 {
565 	static bool panic_reported;
566 	u64 guest_id;
567 
568 	if (in_die && !panic_on_oops)
569 		return;
570 
571 	/*
572 	 * We prefer to report panic on 'die' chain as we have proper
573 	 * registers to report, but if we miss it (e.g. on BUG()) we need
574 	 * to report it on 'panic'.
575 	 */
576 	if (panic_reported)
577 		return;
578 	panic_reported = true;
579 
580 	rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
581 
582 	wrmsrl(HV_X64_MSR_CRASH_P0, err);
583 	wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
584 	wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
585 	wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
586 	wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
587 
588 	/*
589 	 * Let Hyper-V know there is crash data available
590 	 */
591 	wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
592 }
593 EXPORT_SYMBOL_GPL(hyperv_report_panic);
594 
595 bool hv_is_hyperv_initialized(void)
596 {
597 	union hv_x64_msr_hypercall_contents hypercall_msr;
598 
599 	/*
600 	 * Ensure that we're really on Hyper-V, and not a KVM or Xen
601 	 * emulation of Hyper-V
602 	 */
603 	if (x86_hyper_type != X86_HYPER_MS_HYPERV)
604 		return false;
605 
606 	/*
607 	 * Verify that earlier initialization succeeded by checking
608 	 * that the hypercall page is setup
609 	 */
610 	hypercall_msr.as_uint64 = 0;
611 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
612 
613 	return hypercall_msr.enable;
614 }
615 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);
616