xref: /linux/arch/x86/kernel/cpu/resctrl/rdtgroup.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * User interface for Resource Alloction in Resource Director Technology(RDT)
4  *
5  * Copyright (C) 2016 Intel Corporation
6  *
7  * Author: Fenghua Yu <fenghua.yu@intel.com>
8  *
9  * More information about RDT be found in the Intel (R) x86 Architecture
10  * Software Developer Manual.
11  */
12 
13 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cacheinfo.h>
16 #include <linux/cpu.h>
17 #include <linux/debugfs.h>
18 #include <linux/fs.h>
19 #include <linux/fs_parser.h>
20 #include <linux/sysfs.h>
21 #include <linux/kernfs.h>
22 #include <linux/seq_buf.h>
23 #include <linux/seq_file.h>
24 #include <linux/sched/signal.h>
25 #include <linux/sched/task.h>
26 #include <linux/slab.h>
27 #include <linux/task_work.h>
28 #include <linux/user_namespace.h>
29 
30 #include <uapi/linux/magic.h>
31 
32 #include <asm/resctrl_sched.h>
33 #include "internal.h"
34 
35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
38 static struct kernfs_root *rdt_root;
39 struct rdtgroup rdtgroup_default;
40 LIST_HEAD(rdt_all_groups);
41 
42 /* Kernel fs node for "info" directory under root */
43 static struct kernfs_node *kn_info;
44 
45 /* Kernel fs node for "mon_groups" directory under root */
46 static struct kernfs_node *kn_mongrp;
47 
48 /* Kernel fs node for "mon_data" directory under root */
49 static struct kernfs_node *kn_mondata;
50 
51 static struct seq_buf last_cmd_status;
52 static char last_cmd_status_buf[512];
53 
54 struct dentry *debugfs_resctrl;
55 
56 void rdt_last_cmd_clear(void)
57 {
58 	lockdep_assert_held(&rdtgroup_mutex);
59 	seq_buf_clear(&last_cmd_status);
60 }
61 
62 void rdt_last_cmd_puts(const char *s)
63 {
64 	lockdep_assert_held(&rdtgroup_mutex);
65 	seq_buf_puts(&last_cmd_status, s);
66 }
67 
68 void rdt_last_cmd_printf(const char *fmt, ...)
69 {
70 	va_list ap;
71 
72 	va_start(ap, fmt);
73 	lockdep_assert_held(&rdtgroup_mutex);
74 	seq_buf_vprintf(&last_cmd_status, fmt, ap);
75 	va_end(ap);
76 }
77 
78 /*
79  * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
80  * we can keep a bitmap of free CLOSIDs in a single integer.
81  *
82  * Using a global CLOSID across all resources has some advantages and
83  * some drawbacks:
84  * + We can simply set "current->closid" to assign a task to a resource
85  *   group.
86  * + Context switch code can avoid extra memory references deciding which
87  *   CLOSID to load into the PQR_ASSOC MSR
88  * - We give up some options in configuring resource groups across multi-socket
89  *   systems.
90  * - Our choices on how to configure each resource become progressively more
91  *   limited as the number of resources grows.
92  */
93 static int closid_free_map;
94 static int closid_free_map_len;
95 
96 int closids_supported(void)
97 {
98 	return closid_free_map_len;
99 }
100 
101 static void closid_init(void)
102 {
103 	struct rdt_resource *r;
104 	int rdt_min_closid = 32;
105 
106 	/* Compute rdt_min_closid across all resources */
107 	for_each_alloc_enabled_rdt_resource(r)
108 		rdt_min_closid = min(rdt_min_closid, r->num_closid);
109 
110 	closid_free_map = BIT_MASK(rdt_min_closid) - 1;
111 
112 	/* CLOSID 0 is always reserved for the default group */
113 	closid_free_map &= ~1;
114 	closid_free_map_len = rdt_min_closid;
115 }
116 
117 static int closid_alloc(void)
118 {
119 	u32 closid = ffs(closid_free_map);
120 
121 	if (closid == 0)
122 		return -ENOSPC;
123 	closid--;
124 	closid_free_map &= ~(1 << closid);
125 
126 	return closid;
127 }
128 
129 void closid_free(int closid)
130 {
131 	closid_free_map |= 1 << closid;
132 }
133 
134 /**
135  * closid_allocated - test if provided closid is in use
136  * @closid: closid to be tested
137  *
138  * Return: true if @closid is currently associated with a resource group,
139  * false if @closid is free
140  */
141 static bool closid_allocated(unsigned int closid)
142 {
143 	return (closid_free_map & (1 << closid)) == 0;
144 }
145 
146 /**
147  * rdtgroup_mode_by_closid - Return mode of resource group with closid
148  * @closid: closid if the resource group
149  *
150  * Each resource group is associated with a @closid. Here the mode
151  * of a resource group can be queried by searching for it using its closid.
152  *
153  * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
154  */
155 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
156 {
157 	struct rdtgroup *rdtgrp;
158 
159 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
160 		if (rdtgrp->closid == closid)
161 			return rdtgrp->mode;
162 	}
163 
164 	return RDT_NUM_MODES;
165 }
166 
167 static const char * const rdt_mode_str[] = {
168 	[RDT_MODE_SHAREABLE]		= "shareable",
169 	[RDT_MODE_EXCLUSIVE]		= "exclusive",
170 	[RDT_MODE_PSEUDO_LOCKSETUP]	= "pseudo-locksetup",
171 	[RDT_MODE_PSEUDO_LOCKED]	= "pseudo-locked",
172 };
173 
174 /**
175  * rdtgroup_mode_str - Return the string representation of mode
176  * @mode: the resource group mode as &enum rdtgroup_mode
177  *
178  * Return: string representation of valid mode, "unknown" otherwise
179  */
180 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
181 {
182 	if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
183 		return "unknown";
184 
185 	return rdt_mode_str[mode];
186 }
187 
188 /* set uid and gid of rdtgroup dirs and files to that of the creator */
189 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
190 {
191 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
192 				.ia_uid = current_fsuid(),
193 				.ia_gid = current_fsgid(), };
194 
195 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
196 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
197 		return 0;
198 
199 	return kernfs_setattr(kn, &iattr);
200 }
201 
202 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
203 {
204 	struct kernfs_node *kn;
205 	int ret;
206 
207 	kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
208 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
209 				  0, rft->kf_ops, rft, NULL, NULL);
210 	if (IS_ERR(kn))
211 		return PTR_ERR(kn);
212 
213 	ret = rdtgroup_kn_set_ugid(kn);
214 	if (ret) {
215 		kernfs_remove(kn);
216 		return ret;
217 	}
218 
219 	return 0;
220 }
221 
222 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
223 {
224 	struct kernfs_open_file *of = m->private;
225 	struct rftype *rft = of->kn->priv;
226 
227 	if (rft->seq_show)
228 		return rft->seq_show(of, m, arg);
229 	return 0;
230 }
231 
232 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
233 				   size_t nbytes, loff_t off)
234 {
235 	struct rftype *rft = of->kn->priv;
236 
237 	if (rft->write)
238 		return rft->write(of, buf, nbytes, off);
239 
240 	return -EINVAL;
241 }
242 
243 static struct kernfs_ops rdtgroup_kf_single_ops = {
244 	.atomic_write_len	= PAGE_SIZE,
245 	.write			= rdtgroup_file_write,
246 	.seq_show		= rdtgroup_seqfile_show,
247 };
248 
249 static struct kernfs_ops kf_mondata_ops = {
250 	.atomic_write_len	= PAGE_SIZE,
251 	.seq_show		= rdtgroup_mondata_show,
252 };
253 
254 static bool is_cpu_list(struct kernfs_open_file *of)
255 {
256 	struct rftype *rft = of->kn->priv;
257 
258 	return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
259 }
260 
261 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
262 			      struct seq_file *s, void *v)
263 {
264 	struct rdtgroup *rdtgrp;
265 	struct cpumask *mask;
266 	int ret = 0;
267 
268 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
269 
270 	if (rdtgrp) {
271 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
272 			if (!rdtgrp->plr->d) {
273 				rdt_last_cmd_clear();
274 				rdt_last_cmd_puts("Cache domain offline\n");
275 				ret = -ENODEV;
276 			} else {
277 				mask = &rdtgrp->plr->d->cpu_mask;
278 				seq_printf(s, is_cpu_list(of) ?
279 					   "%*pbl\n" : "%*pb\n",
280 					   cpumask_pr_args(mask));
281 			}
282 		} else {
283 			seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
284 				   cpumask_pr_args(&rdtgrp->cpu_mask));
285 		}
286 	} else {
287 		ret = -ENOENT;
288 	}
289 	rdtgroup_kn_unlock(of->kn);
290 
291 	return ret;
292 }
293 
294 /*
295  * This is safe against resctrl_sched_in() called from __switch_to()
296  * because __switch_to() is executed with interrupts disabled. A local call
297  * from update_closid_rmid() is proteced against __switch_to() because
298  * preemption is disabled.
299  */
300 static void update_cpu_closid_rmid(void *info)
301 {
302 	struct rdtgroup *r = info;
303 
304 	if (r) {
305 		this_cpu_write(pqr_state.default_closid, r->closid);
306 		this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
307 	}
308 
309 	/*
310 	 * We cannot unconditionally write the MSR because the current
311 	 * executing task might have its own closid selected. Just reuse
312 	 * the context switch code.
313 	 */
314 	resctrl_sched_in();
315 }
316 
317 /*
318  * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
319  *
320  * Per task closids/rmids must have been set up before calling this function.
321  */
322 static void
323 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
324 {
325 	int cpu = get_cpu();
326 
327 	if (cpumask_test_cpu(cpu, cpu_mask))
328 		update_cpu_closid_rmid(r);
329 	smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
330 	put_cpu();
331 }
332 
333 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
334 			  cpumask_var_t tmpmask)
335 {
336 	struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
337 	struct list_head *head;
338 
339 	/* Check whether cpus belong to parent ctrl group */
340 	cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
341 	if (cpumask_weight(tmpmask)) {
342 		rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
343 		return -EINVAL;
344 	}
345 
346 	/* Check whether cpus are dropped from this group */
347 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
348 	if (cpumask_weight(tmpmask)) {
349 		/* Give any dropped cpus to parent rdtgroup */
350 		cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
351 		update_closid_rmid(tmpmask, prgrp);
352 	}
353 
354 	/*
355 	 * If we added cpus, remove them from previous group that owned them
356 	 * and update per-cpu rmid
357 	 */
358 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
359 	if (cpumask_weight(tmpmask)) {
360 		head = &prgrp->mon.crdtgrp_list;
361 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
362 			if (crgrp == rdtgrp)
363 				continue;
364 			cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
365 				       tmpmask);
366 		}
367 		update_closid_rmid(tmpmask, rdtgrp);
368 	}
369 
370 	/* Done pushing/pulling - update this group with new mask */
371 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
372 
373 	return 0;
374 }
375 
376 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
377 {
378 	struct rdtgroup *crgrp;
379 
380 	cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
381 	/* update the child mon group masks as well*/
382 	list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
383 		cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
384 }
385 
386 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
387 			   cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
388 {
389 	struct rdtgroup *r, *crgrp;
390 	struct list_head *head;
391 
392 	/* Check whether cpus are dropped from this group */
393 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
394 	if (cpumask_weight(tmpmask)) {
395 		/* Can't drop from default group */
396 		if (rdtgrp == &rdtgroup_default) {
397 			rdt_last_cmd_puts("Can't drop CPUs from default group\n");
398 			return -EINVAL;
399 		}
400 
401 		/* Give any dropped cpus to rdtgroup_default */
402 		cpumask_or(&rdtgroup_default.cpu_mask,
403 			   &rdtgroup_default.cpu_mask, tmpmask);
404 		update_closid_rmid(tmpmask, &rdtgroup_default);
405 	}
406 
407 	/*
408 	 * If we added cpus, remove them from previous group and
409 	 * the prev group's child groups that owned them
410 	 * and update per-cpu closid/rmid.
411 	 */
412 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
413 	if (cpumask_weight(tmpmask)) {
414 		list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
415 			if (r == rdtgrp)
416 				continue;
417 			cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
418 			if (cpumask_weight(tmpmask1))
419 				cpumask_rdtgrp_clear(r, tmpmask1);
420 		}
421 		update_closid_rmid(tmpmask, rdtgrp);
422 	}
423 
424 	/* Done pushing/pulling - update this group with new mask */
425 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
426 
427 	/*
428 	 * Clear child mon group masks since there is a new parent mask
429 	 * now and update the rmid for the cpus the child lost.
430 	 */
431 	head = &rdtgrp->mon.crdtgrp_list;
432 	list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
433 		cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
434 		update_closid_rmid(tmpmask, rdtgrp);
435 		cpumask_clear(&crgrp->cpu_mask);
436 	}
437 
438 	return 0;
439 }
440 
441 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
442 				   char *buf, size_t nbytes, loff_t off)
443 {
444 	cpumask_var_t tmpmask, newmask, tmpmask1;
445 	struct rdtgroup *rdtgrp;
446 	int ret;
447 
448 	if (!buf)
449 		return -EINVAL;
450 
451 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
452 		return -ENOMEM;
453 	if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
454 		free_cpumask_var(tmpmask);
455 		return -ENOMEM;
456 	}
457 	if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
458 		free_cpumask_var(tmpmask);
459 		free_cpumask_var(newmask);
460 		return -ENOMEM;
461 	}
462 
463 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
464 	if (!rdtgrp) {
465 		ret = -ENOENT;
466 		goto unlock;
467 	}
468 
469 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
470 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
471 		ret = -EINVAL;
472 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
473 		goto unlock;
474 	}
475 
476 	if (is_cpu_list(of))
477 		ret = cpulist_parse(buf, newmask);
478 	else
479 		ret = cpumask_parse(buf, newmask);
480 
481 	if (ret) {
482 		rdt_last_cmd_puts("Bad CPU list/mask\n");
483 		goto unlock;
484 	}
485 
486 	/* check that user didn't specify any offline cpus */
487 	cpumask_andnot(tmpmask, newmask, cpu_online_mask);
488 	if (cpumask_weight(tmpmask)) {
489 		ret = -EINVAL;
490 		rdt_last_cmd_puts("Can only assign online CPUs\n");
491 		goto unlock;
492 	}
493 
494 	if (rdtgrp->type == RDTCTRL_GROUP)
495 		ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
496 	else if (rdtgrp->type == RDTMON_GROUP)
497 		ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
498 	else
499 		ret = -EINVAL;
500 
501 unlock:
502 	rdtgroup_kn_unlock(of->kn);
503 	free_cpumask_var(tmpmask);
504 	free_cpumask_var(newmask);
505 	free_cpumask_var(tmpmask1);
506 
507 	return ret ?: nbytes;
508 }
509 
510 struct task_move_callback {
511 	struct callback_head	work;
512 	struct rdtgroup		*rdtgrp;
513 };
514 
515 static void move_myself(struct callback_head *head)
516 {
517 	struct task_move_callback *callback;
518 	struct rdtgroup *rdtgrp;
519 
520 	callback = container_of(head, struct task_move_callback, work);
521 	rdtgrp = callback->rdtgrp;
522 
523 	/*
524 	 * If resource group was deleted before this task work callback
525 	 * was invoked, then assign the task to root group and free the
526 	 * resource group.
527 	 */
528 	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
529 	    (rdtgrp->flags & RDT_DELETED)) {
530 		current->closid = 0;
531 		current->rmid = 0;
532 		kfree(rdtgrp);
533 	}
534 
535 	preempt_disable();
536 	/* update PQR_ASSOC MSR to make resource group go into effect */
537 	resctrl_sched_in();
538 	preempt_enable();
539 
540 	kfree(callback);
541 }
542 
543 static int __rdtgroup_move_task(struct task_struct *tsk,
544 				struct rdtgroup *rdtgrp)
545 {
546 	struct task_move_callback *callback;
547 	int ret;
548 
549 	callback = kzalloc(sizeof(*callback), GFP_KERNEL);
550 	if (!callback)
551 		return -ENOMEM;
552 	callback->work.func = move_myself;
553 	callback->rdtgrp = rdtgrp;
554 
555 	/*
556 	 * Take a refcount, so rdtgrp cannot be freed before the
557 	 * callback has been invoked.
558 	 */
559 	atomic_inc(&rdtgrp->waitcount);
560 	ret = task_work_add(tsk, &callback->work, true);
561 	if (ret) {
562 		/*
563 		 * Task is exiting. Drop the refcount and free the callback.
564 		 * No need to check the refcount as the group cannot be
565 		 * deleted before the write function unlocks rdtgroup_mutex.
566 		 */
567 		atomic_dec(&rdtgrp->waitcount);
568 		kfree(callback);
569 		rdt_last_cmd_puts("Task exited\n");
570 	} else {
571 		/*
572 		 * For ctrl_mon groups move both closid and rmid.
573 		 * For monitor groups, can move the tasks only from
574 		 * their parent CTRL group.
575 		 */
576 		if (rdtgrp->type == RDTCTRL_GROUP) {
577 			tsk->closid = rdtgrp->closid;
578 			tsk->rmid = rdtgrp->mon.rmid;
579 		} else if (rdtgrp->type == RDTMON_GROUP) {
580 			if (rdtgrp->mon.parent->closid == tsk->closid) {
581 				tsk->rmid = rdtgrp->mon.rmid;
582 			} else {
583 				rdt_last_cmd_puts("Can't move task to different control group\n");
584 				ret = -EINVAL;
585 			}
586 		}
587 	}
588 	return ret;
589 }
590 
591 /**
592  * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
593  * @r: Resource group
594  *
595  * Return: 1 if tasks have been assigned to @r, 0 otherwise
596  */
597 int rdtgroup_tasks_assigned(struct rdtgroup *r)
598 {
599 	struct task_struct *p, *t;
600 	int ret = 0;
601 
602 	lockdep_assert_held(&rdtgroup_mutex);
603 
604 	rcu_read_lock();
605 	for_each_process_thread(p, t) {
606 		if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
607 		    (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid)) {
608 			ret = 1;
609 			break;
610 		}
611 	}
612 	rcu_read_unlock();
613 
614 	return ret;
615 }
616 
617 static int rdtgroup_task_write_permission(struct task_struct *task,
618 					  struct kernfs_open_file *of)
619 {
620 	const struct cred *tcred = get_task_cred(task);
621 	const struct cred *cred = current_cred();
622 	int ret = 0;
623 
624 	/*
625 	 * Even if we're attaching all tasks in the thread group, we only
626 	 * need to check permissions on one of them.
627 	 */
628 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
629 	    !uid_eq(cred->euid, tcred->uid) &&
630 	    !uid_eq(cred->euid, tcred->suid)) {
631 		rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
632 		ret = -EPERM;
633 	}
634 
635 	put_cred(tcred);
636 	return ret;
637 }
638 
639 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
640 			      struct kernfs_open_file *of)
641 {
642 	struct task_struct *tsk;
643 	int ret;
644 
645 	rcu_read_lock();
646 	if (pid) {
647 		tsk = find_task_by_vpid(pid);
648 		if (!tsk) {
649 			rcu_read_unlock();
650 			rdt_last_cmd_printf("No task %d\n", pid);
651 			return -ESRCH;
652 		}
653 	} else {
654 		tsk = current;
655 	}
656 
657 	get_task_struct(tsk);
658 	rcu_read_unlock();
659 
660 	ret = rdtgroup_task_write_permission(tsk, of);
661 	if (!ret)
662 		ret = __rdtgroup_move_task(tsk, rdtgrp);
663 
664 	put_task_struct(tsk);
665 	return ret;
666 }
667 
668 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
669 				    char *buf, size_t nbytes, loff_t off)
670 {
671 	struct rdtgroup *rdtgrp;
672 	int ret = 0;
673 	pid_t pid;
674 
675 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
676 		return -EINVAL;
677 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
678 	if (!rdtgrp) {
679 		rdtgroup_kn_unlock(of->kn);
680 		return -ENOENT;
681 	}
682 	rdt_last_cmd_clear();
683 
684 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
685 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
686 		ret = -EINVAL;
687 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
688 		goto unlock;
689 	}
690 
691 	ret = rdtgroup_move_task(pid, rdtgrp, of);
692 
693 unlock:
694 	rdtgroup_kn_unlock(of->kn);
695 
696 	return ret ?: nbytes;
697 }
698 
699 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
700 {
701 	struct task_struct *p, *t;
702 
703 	rcu_read_lock();
704 	for_each_process_thread(p, t) {
705 		if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
706 		    (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid))
707 			seq_printf(s, "%d\n", t->pid);
708 	}
709 	rcu_read_unlock();
710 }
711 
712 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
713 			       struct seq_file *s, void *v)
714 {
715 	struct rdtgroup *rdtgrp;
716 	int ret = 0;
717 
718 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
719 	if (rdtgrp)
720 		show_rdt_tasks(rdtgrp, s);
721 	else
722 		ret = -ENOENT;
723 	rdtgroup_kn_unlock(of->kn);
724 
725 	return ret;
726 }
727 
728 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
729 				    struct seq_file *seq, void *v)
730 {
731 	int len;
732 
733 	mutex_lock(&rdtgroup_mutex);
734 	len = seq_buf_used(&last_cmd_status);
735 	if (len)
736 		seq_printf(seq, "%.*s", len, last_cmd_status_buf);
737 	else
738 		seq_puts(seq, "ok\n");
739 	mutex_unlock(&rdtgroup_mutex);
740 	return 0;
741 }
742 
743 static int rdt_num_closids_show(struct kernfs_open_file *of,
744 				struct seq_file *seq, void *v)
745 {
746 	struct rdt_resource *r = of->kn->parent->priv;
747 
748 	seq_printf(seq, "%d\n", r->num_closid);
749 	return 0;
750 }
751 
752 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
753 			     struct seq_file *seq, void *v)
754 {
755 	struct rdt_resource *r = of->kn->parent->priv;
756 
757 	seq_printf(seq, "%x\n", r->default_ctrl);
758 	return 0;
759 }
760 
761 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
762 			     struct seq_file *seq, void *v)
763 {
764 	struct rdt_resource *r = of->kn->parent->priv;
765 
766 	seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
767 	return 0;
768 }
769 
770 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
771 				   struct seq_file *seq, void *v)
772 {
773 	struct rdt_resource *r = of->kn->parent->priv;
774 
775 	seq_printf(seq, "%x\n", r->cache.shareable_bits);
776 	return 0;
777 }
778 
779 /**
780  * rdt_bit_usage_show - Display current usage of resources
781  *
782  * A domain is a shared resource that can now be allocated differently. Here
783  * we display the current regions of the domain as an annotated bitmask.
784  * For each domain of this resource its allocation bitmask
785  * is annotated as below to indicate the current usage of the corresponding bit:
786  *   0 - currently unused
787  *   X - currently available for sharing and used by software and hardware
788  *   H - currently used by hardware only but available for software use
789  *   S - currently used and shareable by software only
790  *   E - currently used exclusively by one resource group
791  *   P - currently pseudo-locked by one resource group
792  */
793 static int rdt_bit_usage_show(struct kernfs_open_file *of,
794 			      struct seq_file *seq, void *v)
795 {
796 	struct rdt_resource *r = of->kn->parent->priv;
797 	/*
798 	 * Use unsigned long even though only 32 bits are used to ensure
799 	 * test_bit() is used safely.
800 	 */
801 	unsigned long sw_shareable = 0, hw_shareable = 0;
802 	unsigned long exclusive = 0, pseudo_locked = 0;
803 	struct rdt_domain *dom;
804 	int i, hwb, swb, excl, psl;
805 	enum rdtgrp_mode mode;
806 	bool sep = false;
807 	u32 *ctrl;
808 
809 	mutex_lock(&rdtgroup_mutex);
810 	hw_shareable = r->cache.shareable_bits;
811 	list_for_each_entry(dom, &r->domains, list) {
812 		if (sep)
813 			seq_putc(seq, ';');
814 		ctrl = dom->ctrl_val;
815 		sw_shareable = 0;
816 		exclusive = 0;
817 		seq_printf(seq, "%d=", dom->id);
818 		for (i = 0; i < closids_supported(); i++, ctrl++) {
819 			if (!closid_allocated(i))
820 				continue;
821 			mode = rdtgroup_mode_by_closid(i);
822 			switch (mode) {
823 			case RDT_MODE_SHAREABLE:
824 				sw_shareable |= *ctrl;
825 				break;
826 			case RDT_MODE_EXCLUSIVE:
827 				exclusive |= *ctrl;
828 				break;
829 			case RDT_MODE_PSEUDO_LOCKSETUP:
830 			/*
831 			 * RDT_MODE_PSEUDO_LOCKSETUP is possible
832 			 * here but not included since the CBM
833 			 * associated with this CLOSID in this mode
834 			 * is not initialized and no task or cpu can be
835 			 * assigned this CLOSID.
836 			 */
837 				break;
838 			case RDT_MODE_PSEUDO_LOCKED:
839 			case RDT_NUM_MODES:
840 				WARN(1,
841 				     "invalid mode for closid %d\n", i);
842 				break;
843 			}
844 		}
845 		for (i = r->cache.cbm_len - 1; i >= 0; i--) {
846 			pseudo_locked = dom->plr ? dom->plr->cbm : 0;
847 			hwb = test_bit(i, &hw_shareable);
848 			swb = test_bit(i, &sw_shareable);
849 			excl = test_bit(i, &exclusive);
850 			psl = test_bit(i, &pseudo_locked);
851 			if (hwb && swb)
852 				seq_putc(seq, 'X');
853 			else if (hwb && !swb)
854 				seq_putc(seq, 'H');
855 			else if (!hwb && swb)
856 				seq_putc(seq, 'S');
857 			else if (excl)
858 				seq_putc(seq, 'E');
859 			else if (psl)
860 				seq_putc(seq, 'P');
861 			else /* Unused bits remain */
862 				seq_putc(seq, '0');
863 		}
864 		sep = true;
865 	}
866 	seq_putc(seq, '\n');
867 	mutex_unlock(&rdtgroup_mutex);
868 	return 0;
869 }
870 
871 static int rdt_min_bw_show(struct kernfs_open_file *of,
872 			     struct seq_file *seq, void *v)
873 {
874 	struct rdt_resource *r = of->kn->parent->priv;
875 
876 	seq_printf(seq, "%u\n", r->membw.min_bw);
877 	return 0;
878 }
879 
880 static int rdt_num_rmids_show(struct kernfs_open_file *of,
881 			      struct seq_file *seq, void *v)
882 {
883 	struct rdt_resource *r = of->kn->parent->priv;
884 
885 	seq_printf(seq, "%d\n", r->num_rmid);
886 
887 	return 0;
888 }
889 
890 static int rdt_mon_features_show(struct kernfs_open_file *of,
891 				 struct seq_file *seq, void *v)
892 {
893 	struct rdt_resource *r = of->kn->parent->priv;
894 	struct mon_evt *mevt;
895 
896 	list_for_each_entry(mevt, &r->evt_list, list)
897 		seq_printf(seq, "%s\n", mevt->name);
898 
899 	return 0;
900 }
901 
902 static int rdt_bw_gran_show(struct kernfs_open_file *of,
903 			     struct seq_file *seq, void *v)
904 {
905 	struct rdt_resource *r = of->kn->parent->priv;
906 
907 	seq_printf(seq, "%u\n", r->membw.bw_gran);
908 	return 0;
909 }
910 
911 static int rdt_delay_linear_show(struct kernfs_open_file *of,
912 			     struct seq_file *seq, void *v)
913 {
914 	struct rdt_resource *r = of->kn->parent->priv;
915 
916 	seq_printf(seq, "%u\n", r->membw.delay_linear);
917 	return 0;
918 }
919 
920 static int max_threshold_occ_show(struct kernfs_open_file *of,
921 				  struct seq_file *seq, void *v)
922 {
923 	struct rdt_resource *r = of->kn->parent->priv;
924 
925 	seq_printf(seq, "%u\n", resctrl_cqm_threshold * r->mon_scale);
926 
927 	return 0;
928 }
929 
930 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
931 				       char *buf, size_t nbytes, loff_t off)
932 {
933 	struct rdt_resource *r = of->kn->parent->priv;
934 	unsigned int bytes;
935 	int ret;
936 
937 	ret = kstrtouint(buf, 0, &bytes);
938 	if (ret)
939 		return ret;
940 
941 	if (bytes > (boot_cpu_data.x86_cache_size * 1024))
942 		return -EINVAL;
943 
944 	resctrl_cqm_threshold = bytes / r->mon_scale;
945 
946 	return nbytes;
947 }
948 
949 /*
950  * rdtgroup_mode_show - Display mode of this resource group
951  */
952 static int rdtgroup_mode_show(struct kernfs_open_file *of,
953 			      struct seq_file *s, void *v)
954 {
955 	struct rdtgroup *rdtgrp;
956 
957 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
958 	if (!rdtgrp) {
959 		rdtgroup_kn_unlock(of->kn);
960 		return -ENOENT;
961 	}
962 
963 	seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
964 
965 	rdtgroup_kn_unlock(of->kn);
966 	return 0;
967 }
968 
969 /**
970  * rdt_cdp_peer_get - Retrieve CDP peer if it exists
971  * @r: RDT resource to which RDT domain @d belongs
972  * @d: Cache instance for which a CDP peer is requested
973  * @r_cdp: RDT resource that shares hardware with @r (RDT resource peer)
974  *         Used to return the result.
975  * @d_cdp: RDT domain that shares hardware with @d (RDT domain peer)
976  *         Used to return the result.
977  *
978  * RDT resources are managed independently and by extension the RDT domains
979  * (RDT resource instances) are managed independently also. The Code and
980  * Data Prioritization (CDP) RDT resources, while managed independently,
981  * could refer to the same underlying hardware. For example,
982  * RDT_RESOURCE_L2CODE and RDT_RESOURCE_L2DATA both refer to the L2 cache.
983  *
984  * When provided with an RDT resource @r and an instance of that RDT
985  * resource @d rdt_cdp_peer_get() will return if there is a peer RDT
986  * resource and the exact instance that shares the same hardware.
987  *
988  * Return: 0 if a CDP peer was found, <0 on error or if no CDP peer exists.
989  *         If a CDP peer was found, @r_cdp will point to the peer RDT resource
990  *         and @d_cdp will point to the peer RDT domain.
991  */
992 static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d,
993 			    struct rdt_resource **r_cdp,
994 			    struct rdt_domain **d_cdp)
995 {
996 	struct rdt_resource *_r_cdp = NULL;
997 	struct rdt_domain *_d_cdp = NULL;
998 	int ret = 0;
999 
1000 	switch (r->rid) {
1001 	case RDT_RESOURCE_L3DATA:
1002 		_r_cdp = &rdt_resources_all[RDT_RESOURCE_L3CODE];
1003 		break;
1004 	case RDT_RESOURCE_L3CODE:
1005 		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L3DATA];
1006 		break;
1007 	case RDT_RESOURCE_L2DATA:
1008 		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L2CODE];
1009 		break;
1010 	case RDT_RESOURCE_L2CODE:
1011 		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L2DATA];
1012 		break;
1013 	default:
1014 		ret = -ENOENT;
1015 		goto out;
1016 	}
1017 
1018 	/*
1019 	 * When a new CPU comes online and CDP is enabled then the new
1020 	 * RDT domains (if any) associated with both CDP RDT resources
1021 	 * are added in the same CPU online routine while the
1022 	 * rdtgroup_mutex is held. It should thus not happen for one
1023 	 * RDT domain to exist and be associated with its RDT CDP
1024 	 * resource but there is no RDT domain associated with the
1025 	 * peer RDT CDP resource. Hence the WARN.
1026 	 */
1027 	_d_cdp = rdt_find_domain(_r_cdp, d->id, NULL);
1028 	if (WARN_ON(IS_ERR_OR_NULL(_d_cdp))) {
1029 		_r_cdp = NULL;
1030 		ret = -EINVAL;
1031 	}
1032 
1033 out:
1034 	*r_cdp = _r_cdp;
1035 	*d_cdp = _d_cdp;
1036 
1037 	return ret;
1038 }
1039 
1040 /**
1041  * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1042  * @r: Resource to which domain instance @d belongs.
1043  * @d: The domain instance for which @closid is being tested.
1044  * @cbm: Capacity bitmask being tested.
1045  * @closid: Intended closid for @cbm.
1046  * @exclusive: Only check if overlaps with exclusive resource groups
1047  *
1048  * Checks if provided @cbm intended to be used for @closid on domain
1049  * @d overlaps with any other closids or other hardware usage associated
1050  * with this domain. If @exclusive is true then only overlaps with
1051  * resource groups in exclusive mode will be considered. If @exclusive
1052  * is false then overlaps with any resource group or hardware entities
1053  * will be considered.
1054  *
1055  * @cbm is unsigned long, even if only 32 bits are used, to make the
1056  * bitmap functions work correctly.
1057  *
1058  * Return: false if CBM does not overlap, true if it does.
1059  */
1060 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1061 				    unsigned long cbm, int closid, bool exclusive)
1062 {
1063 	enum rdtgrp_mode mode;
1064 	unsigned long ctrl_b;
1065 	u32 *ctrl;
1066 	int i;
1067 
1068 	/* Check for any overlap with regions used by hardware directly */
1069 	if (!exclusive) {
1070 		ctrl_b = r->cache.shareable_bits;
1071 		if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1072 			return true;
1073 	}
1074 
1075 	/* Check for overlap with other resource groups */
1076 	ctrl = d->ctrl_val;
1077 	for (i = 0; i < closids_supported(); i++, ctrl++) {
1078 		ctrl_b = *ctrl;
1079 		mode = rdtgroup_mode_by_closid(i);
1080 		if (closid_allocated(i) && i != closid &&
1081 		    mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1082 			if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1083 				if (exclusive) {
1084 					if (mode == RDT_MODE_EXCLUSIVE)
1085 						return true;
1086 					continue;
1087 				}
1088 				return true;
1089 			}
1090 		}
1091 	}
1092 
1093 	return false;
1094 }
1095 
1096 /**
1097  * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1098  * @r: Resource to which domain instance @d belongs.
1099  * @d: The domain instance for which @closid is being tested.
1100  * @cbm: Capacity bitmask being tested.
1101  * @closid: Intended closid for @cbm.
1102  * @exclusive: Only check if overlaps with exclusive resource groups
1103  *
1104  * Resources that can be allocated using a CBM can use the CBM to control
1105  * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1106  * for overlap. Overlap test is not limited to the specific resource for
1107  * which the CBM is intended though - when dealing with CDP resources that
1108  * share the underlying hardware the overlap check should be performed on
1109  * the CDP resource sharing the hardware also.
1110  *
1111  * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1112  * overlap test.
1113  *
1114  * Return: true if CBM overlap detected, false if there is no overlap
1115  */
1116 bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1117 			   unsigned long cbm, int closid, bool exclusive)
1118 {
1119 	struct rdt_resource *r_cdp;
1120 	struct rdt_domain *d_cdp;
1121 
1122 	if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, exclusive))
1123 		return true;
1124 
1125 	if (rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp) < 0)
1126 		return false;
1127 
1128 	return  __rdtgroup_cbm_overlaps(r_cdp, d_cdp, cbm, closid, exclusive);
1129 }
1130 
1131 /**
1132  * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1133  *
1134  * An exclusive resource group implies that there should be no sharing of
1135  * its allocated resources. At the time this group is considered to be
1136  * exclusive this test can determine if its current schemata supports this
1137  * setting by testing for overlap with all other resource groups.
1138  *
1139  * Return: true if resource group can be exclusive, false if there is overlap
1140  * with allocations of other resource groups and thus this resource group
1141  * cannot be exclusive.
1142  */
1143 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1144 {
1145 	int closid = rdtgrp->closid;
1146 	struct rdt_resource *r;
1147 	bool has_cache = false;
1148 	struct rdt_domain *d;
1149 
1150 	for_each_alloc_enabled_rdt_resource(r) {
1151 		if (r->rid == RDT_RESOURCE_MBA)
1152 			continue;
1153 		has_cache = true;
1154 		list_for_each_entry(d, &r->domains, list) {
1155 			if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid],
1156 						  rdtgrp->closid, false)) {
1157 				rdt_last_cmd_puts("Schemata overlaps\n");
1158 				return false;
1159 			}
1160 		}
1161 	}
1162 
1163 	if (!has_cache) {
1164 		rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1165 		return false;
1166 	}
1167 
1168 	return true;
1169 }
1170 
1171 /**
1172  * rdtgroup_mode_write - Modify the resource group's mode
1173  *
1174  */
1175 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1176 				   char *buf, size_t nbytes, loff_t off)
1177 {
1178 	struct rdtgroup *rdtgrp;
1179 	enum rdtgrp_mode mode;
1180 	int ret = 0;
1181 
1182 	/* Valid input requires a trailing newline */
1183 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1184 		return -EINVAL;
1185 	buf[nbytes - 1] = '\0';
1186 
1187 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1188 	if (!rdtgrp) {
1189 		rdtgroup_kn_unlock(of->kn);
1190 		return -ENOENT;
1191 	}
1192 
1193 	rdt_last_cmd_clear();
1194 
1195 	mode = rdtgrp->mode;
1196 
1197 	if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1198 	    (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1199 	    (!strcmp(buf, "pseudo-locksetup") &&
1200 	     mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1201 	    (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1202 		goto out;
1203 
1204 	if (mode == RDT_MODE_PSEUDO_LOCKED) {
1205 		rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1206 		ret = -EINVAL;
1207 		goto out;
1208 	}
1209 
1210 	if (!strcmp(buf, "shareable")) {
1211 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1212 			ret = rdtgroup_locksetup_exit(rdtgrp);
1213 			if (ret)
1214 				goto out;
1215 		}
1216 		rdtgrp->mode = RDT_MODE_SHAREABLE;
1217 	} else if (!strcmp(buf, "exclusive")) {
1218 		if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1219 			ret = -EINVAL;
1220 			goto out;
1221 		}
1222 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1223 			ret = rdtgroup_locksetup_exit(rdtgrp);
1224 			if (ret)
1225 				goto out;
1226 		}
1227 		rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1228 	} else if (!strcmp(buf, "pseudo-locksetup")) {
1229 		ret = rdtgroup_locksetup_enter(rdtgrp);
1230 		if (ret)
1231 			goto out;
1232 		rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1233 	} else {
1234 		rdt_last_cmd_puts("Unknown or unsupported mode\n");
1235 		ret = -EINVAL;
1236 	}
1237 
1238 out:
1239 	rdtgroup_kn_unlock(of->kn);
1240 	return ret ?: nbytes;
1241 }
1242 
1243 /**
1244  * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1245  * @r: RDT resource to which @d belongs.
1246  * @d: RDT domain instance.
1247  * @cbm: bitmask for which the size should be computed.
1248  *
1249  * The bitmask provided associated with the RDT domain instance @d will be
1250  * translated into how many bytes it represents. The size in bytes is
1251  * computed by first dividing the total cache size by the CBM length to
1252  * determine how many bytes each bit in the bitmask represents. The result
1253  * is multiplied with the number of bits set in the bitmask.
1254  *
1255  * @cbm is unsigned long, even if only 32 bits are used to make the
1256  * bitmap functions work correctly.
1257  */
1258 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1259 				  struct rdt_domain *d, unsigned long cbm)
1260 {
1261 	struct cpu_cacheinfo *ci;
1262 	unsigned int size = 0;
1263 	int num_b, i;
1264 
1265 	num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1266 	ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1267 	for (i = 0; i < ci->num_leaves; i++) {
1268 		if (ci->info_list[i].level == r->cache_level) {
1269 			size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1270 			break;
1271 		}
1272 	}
1273 
1274 	return size;
1275 }
1276 
1277 /**
1278  * rdtgroup_size_show - Display size in bytes of allocated regions
1279  *
1280  * The "size" file mirrors the layout of the "schemata" file, printing the
1281  * size in bytes of each region instead of the capacity bitmask.
1282  *
1283  */
1284 static int rdtgroup_size_show(struct kernfs_open_file *of,
1285 			      struct seq_file *s, void *v)
1286 {
1287 	struct rdtgroup *rdtgrp;
1288 	struct rdt_resource *r;
1289 	struct rdt_domain *d;
1290 	unsigned int size;
1291 	int ret = 0;
1292 	bool sep;
1293 	u32 ctrl;
1294 
1295 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1296 	if (!rdtgrp) {
1297 		rdtgroup_kn_unlock(of->kn);
1298 		return -ENOENT;
1299 	}
1300 
1301 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1302 		if (!rdtgrp->plr->d) {
1303 			rdt_last_cmd_clear();
1304 			rdt_last_cmd_puts("Cache domain offline\n");
1305 			ret = -ENODEV;
1306 		} else {
1307 			seq_printf(s, "%*s:", max_name_width,
1308 				   rdtgrp->plr->r->name);
1309 			size = rdtgroup_cbm_to_size(rdtgrp->plr->r,
1310 						    rdtgrp->plr->d,
1311 						    rdtgrp->plr->cbm);
1312 			seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1313 		}
1314 		goto out;
1315 	}
1316 
1317 	for_each_alloc_enabled_rdt_resource(r) {
1318 		sep = false;
1319 		seq_printf(s, "%*s:", max_name_width, r->name);
1320 		list_for_each_entry(d, &r->domains, list) {
1321 			if (sep)
1322 				seq_putc(s, ';');
1323 			if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1324 				size = 0;
1325 			} else {
1326 				ctrl = (!is_mba_sc(r) ?
1327 						d->ctrl_val[rdtgrp->closid] :
1328 						d->mbps_val[rdtgrp->closid]);
1329 				if (r->rid == RDT_RESOURCE_MBA)
1330 					size = ctrl;
1331 				else
1332 					size = rdtgroup_cbm_to_size(r, d, ctrl);
1333 			}
1334 			seq_printf(s, "%d=%u", d->id, size);
1335 			sep = true;
1336 		}
1337 		seq_putc(s, '\n');
1338 	}
1339 
1340 out:
1341 	rdtgroup_kn_unlock(of->kn);
1342 
1343 	return ret;
1344 }
1345 
1346 /* rdtgroup information files for one cache resource. */
1347 static struct rftype res_common_files[] = {
1348 	{
1349 		.name		= "last_cmd_status",
1350 		.mode		= 0444,
1351 		.kf_ops		= &rdtgroup_kf_single_ops,
1352 		.seq_show	= rdt_last_cmd_status_show,
1353 		.fflags		= RF_TOP_INFO,
1354 	},
1355 	{
1356 		.name		= "num_closids",
1357 		.mode		= 0444,
1358 		.kf_ops		= &rdtgroup_kf_single_ops,
1359 		.seq_show	= rdt_num_closids_show,
1360 		.fflags		= RF_CTRL_INFO,
1361 	},
1362 	{
1363 		.name		= "mon_features",
1364 		.mode		= 0444,
1365 		.kf_ops		= &rdtgroup_kf_single_ops,
1366 		.seq_show	= rdt_mon_features_show,
1367 		.fflags		= RF_MON_INFO,
1368 	},
1369 	{
1370 		.name		= "num_rmids",
1371 		.mode		= 0444,
1372 		.kf_ops		= &rdtgroup_kf_single_ops,
1373 		.seq_show	= rdt_num_rmids_show,
1374 		.fflags		= RF_MON_INFO,
1375 	},
1376 	{
1377 		.name		= "cbm_mask",
1378 		.mode		= 0444,
1379 		.kf_ops		= &rdtgroup_kf_single_ops,
1380 		.seq_show	= rdt_default_ctrl_show,
1381 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1382 	},
1383 	{
1384 		.name		= "min_cbm_bits",
1385 		.mode		= 0444,
1386 		.kf_ops		= &rdtgroup_kf_single_ops,
1387 		.seq_show	= rdt_min_cbm_bits_show,
1388 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1389 	},
1390 	{
1391 		.name		= "shareable_bits",
1392 		.mode		= 0444,
1393 		.kf_ops		= &rdtgroup_kf_single_ops,
1394 		.seq_show	= rdt_shareable_bits_show,
1395 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1396 	},
1397 	{
1398 		.name		= "bit_usage",
1399 		.mode		= 0444,
1400 		.kf_ops		= &rdtgroup_kf_single_ops,
1401 		.seq_show	= rdt_bit_usage_show,
1402 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1403 	},
1404 	{
1405 		.name		= "min_bandwidth",
1406 		.mode		= 0444,
1407 		.kf_ops		= &rdtgroup_kf_single_ops,
1408 		.seq_show	= rdt_min_bw_show,
1409 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1410 	},
1411 	{
1412 		.name		= "bandwidth_gran",
1413 		.mode		= 0444,
1414 		.kf_ops		= &rdtgroup_kf_single_ops,
1415 		.seq_show	= rdt_bw_gran_show,
1416 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1417 	},
1418 	{
1419 		.name		= "delay_linear",
1420 		.mode		= 0444,
1421 		.kf_ops		= &rdtgroup_kf_single_ops,
1422 		.seq_show	= rdt_delay_linear_show,
1423 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1424 	},
1425 	{
1426 		.name		= "max_threshold_occupancy",
1427 		.mode		= 0644,
1428 		.kf_ops		= &rdtgroup_kf_single_ops,
1429 		.write		= max_threshold_occ_write,
1430 		.seq_show	= max_threshold_occ_show,
1431 		.fflags		= RF_MON_INFO | RFTYPE_RES_CACHE,
1432 	},
1433 	{
1434 		.name		= "cpus",
1435 		.mode		= 0644,
1436 		.kf_ops		= &rdtgroup_kf_single_ops,
1437 		.write		= rdtgroup_cpus_write,
1438 		.seq_show	= rdtgroup_cpus_show,
1439 		.fflags		= RFTYPE_BASE,
1440 	},
1441 	{
1442 		.name		= "cpus_list",
1443 		.mode		= 0644,
1444 		.kf_ops		= &rdtgroup_kf_single_ops,
1445 		.write		= rdtgroup_cpus_write,
1446 		.seq_show	= rdtgroup_cpus_show,
1447 		.flags		= RFTYPE_FLAGS_CPUS_LIST,
1448 		.fflags		= RFTYPE_BASE,
1449 	},
1450 	{
1451 		.name		= "tasks",
1452 		.mode		= 0644,
1453 		.kf_ops		= &rdtgroup_kf_single_ops,
1454 		.write		= rdtgroup_tasks_write,
1455 		.seq_show	= rdtgroup_tasks_show,
1456 		.fflags		= RFTYPE_BASE,
1457 	},
1458 	{
1459 		.name		= "schemata",
1460 		.mode		= 0644,
1461 		.kf_ops		= &rdtgroup_kf_single_ops,
1462 		.write		= rdtgroup_schemata_write,
1463 		.seq_show	= rdtgroup_schemata_show,
1464 		.fflags		= RF_CTRL_BASE,
1465 	},
1466 	{
1467 		.name		= "mode",
1468 		.mode		= 0644,
1469 		.kf_ops		= &rdtgroup_kf_single_ops,
1470 		.write		= rdtgroup_mode_write,
1471 		.seq_show	= rdtgroup_mode_show,
1472 		.fflags		= RF_CTRL_BASE,
1473 	},
1474 	{
1475 		.name		= "size",
1476 		.mode		= 0444,
1477 		.kf_ops		= &rdtgroup_kf_single_ops,
1478 		.seq_show	= rdtgroup_size_show,
1479 		.fflags		= RF_CTRL_BASE,
1480 	},
1481 
1482 };
1483 
1484 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1485 {
1486 	struct rftype *rfts, *rft;
1487 	int ret, len;
1488 
1489 	rfts = res_common_files;
1490 	len = ARRAY_SIZE(res_common_files);
1491 
1492 	lockdep_assert_held(&rdtgroup_mutex);
1493 
1494 	for (rft = rfts; rft < rfts + len; rft++) {
1495 		if ((fflags & rft->fflags) == rft->fflags) {
1496 			ret = rdtgroup_add_file(kn, rft);
1497 			if (ret)
1498 				goto error;
1499 		}
1500 	}
1501 
1502 	return 0;
1503 error:
1504 	pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1505 	while (--rft >= rfts) {
1506 		if ((fflags & rft->fflags) == rft->fflags)
1507 			kernfs_remove_by_name(kn, rft->name);
1508 	}
1509 	return ret;
1510 }
1511 
1512 /**
1513  * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
1514  * @r: The resource group with which the file is associated.
1515  * @name: Name of the file
1516  *
1517  * The permissions of named resctrl file, directory, or link are modified
1518  * to not allow read, write, or execute by any user.
1519  *
1520  * WARNING: This function is intended to communicate to the user that the
1521  * resctrl file has been locked down - that it is not relevant to the
1522  * particular state the system finds itself in. It should not be relied
1523  * on to protect from user access because after the file's permissions
1524  * are restricted the user can still change the permissions using chmod
1525  * from the command line.
1526  *
1527  * Return: 0 on success, <0 on failure.
1528  */
1529 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
1530 {
1531 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
1532 	struct kernfs_node *kn;
1533 	int ret = 0;
1534 
1535 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1536 	if (!kn)
1537 		return -ENOENT;
1538 
1539 	switch (kernfs_type(kn)) {
1540 	case KERNFS_DIR:
1541 		iattr.ia_mode = S_IFDIR;
1542 		break;
1543 	case KERNFS_FILE:
1544 		iattr.ia_mode = S_IFREG;
1545 		break;
1546 	case KERNFS_LINK:
1547 		iattr.ia_mode = S_IFLNK;
1548 		break;
1549 	}
1550 
1551 	ret = kernfs_setattr(kn, &iattr);
1552 	kernfs_put(kn);
1553 	return ret;
1554 }
1555 
1556 /**
1557  * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
1558  * @r: The resource group with which the file is associated.
1559  * @name: Name of the file
1560  * @mask: Mask of permissions that should be restored
1561  *
1562  * Restore the permissions of the named file. If @name is a directory the
1563  * permissions of its parent will be used.
1564  *
1565  * Return: 0 on success, <0 on failure.
1566  */
1567 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
1568 			     umode_t mask)
1569 {
1570 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
1571 	struct kernfs_node *kn, *parent;
1572 	struct rftype *rfts, *rft;
1573 	int ret, len;
1574 
1575 	rfts = res_common_files;
1576 	len = ARRAY_SIZE(res_common_files);
1577 
1578 	for (rft = rfts; rft < rfts + len; rft++) {
1579 		if (!strcmp(rft->name, name))
1580 			iattr.ia_mode = rft->mode & mask;
1581 	}
1582 
1583 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1584 	if (!kn)
1585 		return -ENOENT;
1586 
1587 	switch (kernfs_type(kn)) {
1588 	case KERNFS_DIR:
1589 		parent = kernfs_get_parent(kn);
1590 		if (parent) {
1591 			iattr.ia_mode |= parent->mode;
1592 			kernfs_put(parent);
1593 		}
1594 		iattr.ia_mode |= S_IFDIR;
1595 		break;
1596 	case KERNFS_FILE:
1597 		iattr.ia_mode |= S_IFREG;
1598 		break;
1599 	case KERNFS_LINK:
1600 		iattr.ia_mode |= S_IFLNK;
1601 		break;
1602 	}
1603 
1604 	ret = kernfs_setattr(kn, &iattr);
1605 	kernfs_put(kn);
1606 	return ret;
1607 }
1608 
1609 static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name,
1610 				      unsigned long fflags)
1611 {
1612 	struct kernfs_node *kn_subdir;
1613 	int ret;
1614 
1615 	kn_subdir = kernfs_create_dir(kn_info, name,
1616 				      kn_info->mode, r);
1617 	if (IS_ERR(kn_subdir))
1618 		return PTR_ERR(kn_subdir);
1619 
1620 	kernfs_get(kn_subdir);
1621 	ret = rdtgroup_kn_set_ugid(kn_subdir);
1622 	if (ret)
1623 		return ret;
1624 
1625 	ret = rdtgroup_add_files(kn_subdir, fflags);
1626 	if (!ret)
1627 		kernfs_activate(kn_subdir);
1628 
1629 	return ret;
1630 }
1631 
1632 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
1633 {
1634 	struct rdt_resource *r;
1635 	unsigned long fflags;
1636 	char name[32];
1637 	int ret;
1638 
1639 	/* create the directory */
1640 	kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
1641 	if (IS_ERR(kn_info))
1642 		return PTR_ERR(kn_info);
1643 	kernfs_get(kn_info);
1644 
1645 	ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
1646 	if (ret)
1647 		goto out_destroy;
1648 
1649 	for_each_alloc_enabled_rdt_resource(r) {
1650 		fflags =  r->fflags | RF_CTRL_INFO;
1651 		ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags);
1652 		if (ret)
1653 			goto out_destroy;
1654 	}
1655 
1656 	for_each_mon_enabled_rdt_resource(r) {
1657 		fflags =  r->fflags | RF_MON_INFO;
1658 		sprintf(name, "%s_MON", r->name);
1659 		ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
1660 		if (ret)
1661 			goto out_destroy;
1662 	}
1663 
1664 	/*
1665 	 * This extra ref will be put in kernfs_remove() and guarantees
1666 	 * that @rdtgrp->kn is always accessible.
1667 	 */
1668 	kernfs_get(kn_info);
1669 
1670 	ret = rdtgroup_kn_set_ugid(kn_info);
1671 	if (ret)
1672 		goto out_destroy;
1673 
1674 	kernfs_activate(kn_info);
1675 
1676 	return 0;
1677 
1678 out_destroy:
1679 	kernfs_remove(kn_info);
1680 	return ret;
1681 }
1682 
1683 static int
1684 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
1685 		    char *name, struct kernfs_node **dest_kn)
1686 {
1687 	struct kernfs_node *kn;
1688 	int ret;
1689 
1690 	/* create the directory */
1691 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
1692 	if (IS_ERR(kn))
1693 		return PTR_ERR(kn);
1694 
1695 	if (dest_kn)
1696 		*dest_kn = kn;
1697 
1698 	/*
1699 	 * This extra ref will be put in kernfs_remove() and guarantees
1700 	 * that @rdtgrp->kn is always accessible.
1701 	 */
1702 	kernfs_get(kn);
1703 
1704 	ret = rdtgroup_kn_set_ugid(kn);
1705 	if (ret)
1706 		goto out_destroy;
1707 
1708 	kernfs_activate(kn);
1709 
1710 	return 0;
1711 
1712 out_destroy:
1713 	kernfs_remove(kn);
1714 	return ret;
1715 }
1716 
1717 static void l3_qos_cfg_update(void *arg)
1718 {
1719 	bool *enable = arg;
1720 
1721 	wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
1722 }
1723 
1724 static void l2_qos_cfg_update(void *arg)
1725 {
1726 	bool *enable = arg;
1727 
1728 	wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
1729 }
1730 
1731 static inline bool is_mba_linear(void)
1732 {
1733 	return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear;
1734 }
1735 
1736 static int set_cache_qos_cfg(int level, bool enable)
1737 {
1738 	void (*update)(void *arg);
1739 	struct rdt_resource *r_l;
1740 	cpumask_var_t cpu_mask;
1741 	struct rdt_domain *d;
1742 	int cpu;
1743 
1744 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1745 		return -ENOMEM;
1746 
1747 	if (level == RDT_RESOURCE_L3)
1748 		update = l3_qos_cfg_update;
1749 	else if (level == RDT_RESOURCE_L2)
1750 		update = l2_qos_cfg_update;
1751 	else
1752 		return -EINVAL;
1753 
1754 	r_l = &rdt_resources_all[level];
1755 	list_for_each_entry(d, &r_l->domains, list) {
1756 		/* Pick one CPU from each domain instance to update MSR */
1757 		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
1758 	}
1759 	cpu = get_cpu();
1760 	/* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
1761 	if (cpumask_test_cpu(cpu, cpu_mask))
1762 		update(&enable);
1763 	/* Update QOS_CFG MSR on all other cpus in cpu_mask. */
1764 	smp_call_function_many(cpu_mask, update, &enable, 1);
1765 	put_cpu();
1766 
1767 	free_cpumask_var(cpu_mask);
1768 
1769 	return 0;
1770 }
1771 
1772 /*
1773  * Enable or disable the MBA software controller
1774  * which helps user specify bandwidth in MBps.
1775  * MBA software controller is supported only if
1776  * MBM is supported and MBA is in linear scale.
1777  */
1778 static int set_mba_sc(bool mba_sc)
1779 {
1780 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA];
1781 	struct rdt_domain *d;
1782 
1783 	if (!is_mbm_enabled() || !is_mba_linear() ||
1784 	    mba_sc == is_mba_sc(r))
1785 		return -EINVAL;
1786 
1787 	r->membw.mba_sc = mba_sc;
1788 	list_for_each_entry(d, &r->domains, list)
1789 		setup_default_ctrlval(r, d->ctrl_val, d->mbps_val);
1790 
1791 	return 0;
1792 }
1793 
1794 static int cdp_enable(int level, int data_type, int code_type)
1795 {
1796 	struct rdt_resource *r_ldata = &rdt_resources_all[data_type];
1797 	struct rdt_resource *r_lcode = &rdt_resources_all[code_type];
1798 	struct rdt_resource *r_l = &rdt_resources_all[level];
1799 	int ret;
1800 
1801 	if (!r_l->alloc_capable || !r_ldata->alloc_capable ||
1802 	    !r_lcode->alloc_capable)
1803 		return -EINVAL;
1804 
1805 	ret = set_cache_qos_cfg(level, true);
1806 	if (!ret) {
1807 		r_l->alloc_enabled = false;
1808 		r_ldata->alloc_enabled = true;
1809 		r_lcode->alloc_enabled = true;
1810 	}
1811 	return ret;
1812 }
1813 
1814 static int cdpl3_enable(void)
1815 {
1816 	return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA,
1817 			  RDT_RESOURCE_L3CODE);
1818 }
1819 
1820 static int cdpl2_enable(void)
1821 {
1822 	return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA,
1823 			  RDT_RESOURCE_L2CODE);
1824 }
1825 
1826 static void cdp_disable(int level, int data_type, int code_type)
1827 {
1828 	struct rdt_resource *r = &rdt_resources_all[level];
1829 
1830 	r->alloc_enabled = r->alloc_capable;
1831 
1832 	if (rdt_resources_all[data_type].alloc_enabled) {
1833 		rdt_resources_all[data_type].alloc_enabled = false;
1834 		rdt_resources_all[code_type].alloc_enabled = false;
1835 		set_cache_qos_cfg(level, false);
1836 	}
1837 }
1838 
1839 static void cdpl3_disable(void)
1840 {
1841 	cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE);
1842 }
1843 
1844 static void cdpl2_disable(void)
1845 {
1846 	cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE);
1847 }
1848 
1849 static void cdp_disable_all(void)
1850 {
1851 	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
1852 		cdpl3_disable();
1853 	if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
1854 		cdpl2_disable();
1855 }
1856 
1857 /*
1858  * We don't allow rdtgroup directories to be created anywhere
1859  * except the root directory. Thus when looking for the rdtgroup
1860  * structure for a kernfs node we are either looking at a directory,
1861  * in which case the rdtgroup structure is pointed at by the "priv"
1862  * field, otherwise we have a file, and need only look to the parent
1863  * to find the rdtgroup.
1864  */
1865 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
1866 {
1867 	if (kernfs_type(kn) == KERNFS_DIR) {
1868 		/*
1869 		 * All the resource directories use "kn->priv"
1870 		 * to point to the "struct rdtgroup" for the
1871 		 * resource. "info" and its subdirectories don't
1872 		 * have rdtgroup structures, so return NULL here.
1873 		 */
1874 		if (kn == kn_info || kn->parent == kn_info)
1875 			return NULL;
1876 		else
1877 			return kn->priv;
1878 	} else {
1879 		return kn->parent->priv;
1880 	}
1881 }
1882 
1883 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
1884 {
1885 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1886 
1887 	if (!rdtgrp)
1888 		return NULL;
1889 
1890 	atomic_inc(&rdtgrp->waitcount);
1891 	kernfs_break_active_protection(kn);
1892 
1893 	mutex_lock(&rdtgroup_mutex);
1894 
1895 	/* Was this group deleted while we waited? */
1896 	if (rdtgrp->flags & RDT_DELETED)
1897 		return NULL;
1898 
1899 	return rdtgrp;
1900 }
1901 
1902 void rdtgroup_kn_unlock(struct kernfs_node *kn)
1903 {
1904 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1905 
1906 	if (!rdtgrp)
1907 		return;
1908 
1909 	mutex_unlock(&rdtgroup_mutex);
1910 
1911 	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
1912 	    (rdtgrp->flags & RDT_DELETED)) {
1913 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
1914 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
1915 			rdtgroup_pseudo_lock_remove(rdtgrp);
1916 		kernfs_unbreak_active_protection(kn);
1917 		kernfs_put(rdtgrp->kn);
1918 		kfree(rdtgrp);
1919 	} else {
1920 		kernfs_unbreak_active_protection(kn);
1921 	}
1922 }
1923 
1924 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
1925 			     struct rdtgroup *prgrp,
1926 			     struct kernfs_node **mon_data_kn);
1927 
1928 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
1929 {
1930 	int ret = 0;
1931 
1932 	if (ctx->enable_cdpl2)
1933 		ret = cdpl2_enable();
1934 
1935 	if (!ret && ctx->enable_cdpl3)
1936 		ret = cdpl3_enable();
1937 
1938 	if (!ret && ctx->enable_mba_mbps)
1939 		ret = set_mba_sc(true);
1940 
1941 	return ret;
1942 }
1943 
1944 static int rdt_get_tree(struct fs_context *fc)
1945 {
1946 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
1947 	struct rdt_domain *dom;
1948 	struct rdt_resource *r;
1949 	int ret;
1950 
1951 	cpus_read_lock();
1952 	mutex_lock(&rdtgroup_mutex);
1953 	/*
1954 	 * resctrl file system can only be mounted once.
1955 	 */
1956 	if (static_branch_unlikely(&rdt_enable_key)) {
1957 		ret = -EBUSY;
1958 		goto out;
1959 	}
1960 
1961 	ret = rdt_enable_ctx(ctx);
1962 	if (ret < 0)
1963 		goto out_cdp;
1964 
1965 	closid_init();
1966 
1967 	ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
1968 	if (ret < 0)
1969 		goto out_mba;
1970 
1971 	if (rdt_mon_capable) {
1972 		ret = mongroup_create_dir(rdtgroup_default.kn,
1973 					  NULL, "mon_groups",
1974 					  &kn_mongrp);
1975 		if (ret < 0)
1976 			goto out_info;
1977 		kernfs_get(kn_mongrp);
1978 
1979 		ret = mkdir_mondata_all(rdtgroup_default.kn,
1980 					&rdtgroup_default, &kn_mondata);
1981 		if (ret < 0)
1982 			goto out_mongrp;
1983 		kernfs_get(kn_mondata);
1984 		rdtgroup_default.mon.mon_data_kn = kn_mondata;
1985 	}
1986 
1987 	ret = rdt_pseudo_lock_init();
1988 	if (ret)
1989 		goto out_mondata;
1990 
1991 	ret = kernfs_get_tree(fc);
1992 	if (ret < 0)
1993 		goto out_psl;
1994 
1995 	if (rdt_alloc_capable)
1996 		static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
1997 	if (rdt_mon_capable)
1998 		static_branch_enable_cpuslocked(&rdt_mon_enable_key);
1999 
2000 	if (rdt_alloc_capable || rdt_mon_capable)
2001 		static_branch_enable_cpuslocked(&rdt_enable_key);
2002 
2003 	if (is_mbm_enabled()) {
2004 		r = &rdt_resources_all[RDT_RESOURCE_L3];
2005 		list_for_each_entry(dom, &r->domains, list)
2006 			mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2007 	}
2008 
2009 	goto out;
2010 
2011 out_psl:
2012 	rdt_pseudo_lock_release();
2013 out_mondata:
2014 	if (rdt_mon_capable)
2015 		kernfs_remove(kn_mondata);
2016 out_mongrp:
2017 	if (rdt_mon_capable)
2018 		kernfs_remove(kn_mongrp);
2019 out_info:
2020 	kernfs_remove(kn_info);
2021 out_mba:
2022 	if (ctx->enable_mba_mbps)
2023 		set_mba_sc(false);
2024 out_cdp:
2025 	cdp_disable_all();
2026 out:
2027 	rdt_last_cmd_clear();
2028 	mutex_unlock(&rdtgroup_mutex);
2029 	cpus_read_unlock();
2030 	return ret;
2031 }
2032 
2033 enum rdt_param {
2034 	Opt_cdp,
2035 	Opt_cdpl2,
2036 	Opt_mba_mbps,
2037 	nr__rdt_params
2038 };
2039 
2040 static const struct fs_parameter_spec rdt_param_specs[] = {
2041 	fsparam_flag("cdp",		Opt_cdp),
2042 	fsparam_flag("cdpl2",		Opt_cdpl2),
2043 	fsparam_flag("mba_MBps",	Opt_mba_mbps),
2044 	{}
2045 };
2046 
2047 static const struct fs_parameter_description rdt_fs_parameters = {
2048 	.name		= "rdt",
2049 	.specs		= rdt_param_specs,
2050 };
2051 
2052 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2053 {
2054 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2055 	struct fs_parse_result result;
2056 	int opt;
2057 
2058 	opt = fs_parse(fc, &rdt_fs_parameters, param, &result);
2059 	if (opt < 0)
2060 		return opt;
2061 
2062 	switch (opt) {
2063 	case Opt_cdp:
2064 		ctx->enable_cdpl3 = true;
2065 		return 0;
2066 	case Opt_cdpl2:
2067 		ctx->enable_cdpl2 = true;
2068 		return 0;
2069 	case Opt_mba_mbps:
2070 		if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2071 			return -EINVAL;
2072 		ctx->enable_mba_mbps = true;
2073 		return 0;
2074 	}
2075 
2076 	return -EINVAL;
2077 }
2078 
2079 static void rdt_fs_context_free(struct fs_context *fc)
2080 {
2081 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2082 
2083 	kernfs_free_fs_context(fc);
2084 	kfree(ctx);
2085 }
2086 
2087 static const struct fs_context_operations rdt_fs_context_ops = {
2088 	.free		= rdt_fs_context_free,
2089 	.parse_param	= rdt_parse_param,
2090 	.get_tree	= rdt_get_tree,
2091 };
2092 
2093 static int rdt_init_fs_context(struct fs_context *fc)
2094 {
2095 	struct rdt_fs_context *ctx;
2096 
2097 	ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2098 	if (!ctx)
2099 		return -ENOMEM;
2100 
2101 	ctx->kfc.root = rdt_root;
2102 	ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2103 	fc->fs_private = &ctx->kfc;
2104 	fc->ops = &rdt_fs_context_ops;
2105 	put_user_ns(fc->user_ns);
2106 	fc->user_ns = get_user_ns(&init_user_ns);
2107 	fc->global = true;
2108 	return 0;
2109 }
2110 
2111 static int reset_all_ctrls(struct rdt_resource *r)
2112 {
2113 	struct msr_param msr_param;
2114 	cpumask_var_t cpu_mask;
2115 	struct rdt_domain *d;
2116 	int i, cpu;
2117 
2118 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2119 		return -ENOMEM;
2120 
2121 	msr_param.res = r;
2122 	msr_param.low = 0;
2123 	msr_param.high = r->num_closid;
2124 
2125 	/*
2126 	 * Disable resource control for this resource by setting all
2127 	 * CBMs in all domains to the maximum mask value. Pick one CPU
2128 	 * from each domain to update the MSRs below.
2129 	 */
2130 	list_for_each_entry(d, &r->domains, list) {
2131 		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2132 
2133 		for (i = 0; i < r->num_closid; i++)
2134 			d->ctrl_val[i] = r->default_ctrl;
2135 	}
2136 	cpu = get_cpu();
2137 	/* Update CBM on this cpu if it's in cpu_mask. */
2138 	if (cpumask_test_cpu(cpu, cpu_mask))
2139 		rdt_ctrl_update(&msr_param);
2140 	/* Update CBM on all other cpus in cpu_mask. */
2141 	smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2142 	put_cpu();
2143 
2144 	free_cpumask_var(cpu_mask);
2145 
2146 	return 0;
2147 }
2148 
2149 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
2150 {
2151 	return (rdt_alloc_capable &&
2152 		(r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
2153 }
2154 
2155 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
2156 {
2157 	return (rdt_mon_capable &&
2158 		(r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
2159 }
2160 
2161 /*
2162  * Move tasks from one to the other group. If @from is NULL, then all tasks
2163  * in the systems are moved unconditionally (used for teardown).
2164  *
2165  * If @mask is not NULL the cpus on which moved tasks are running are set
2166  * in that mask so the update smp function call is restricted to affected
2167  * cpus.
2168  */
2169 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2170 				 struct cpumask *mask)
2171 {
2172 	struct task_struct *p, *t;
2173 
2174 	read_lock(&tasklist_lock);
2175 	for_each_process_thread(p, t) {
2176 		if (!from || is_closid_match(t, from) ||
2177 		    is_rmid_match(t, from)) {
2178 			t->closid = to->closid;
2179 			t->rmid = to->mon.rmid;
2180 
2181 #ifdef CONFIG_SMP
2182 			/*
2183 			 * This is safe on x86 w/o barriers as the ordering
2184 			 * of writing to task_cpu() and t->on_cpu is
2185 			 * reverse to the reading here. The detection is
2186 			 * inaccurate as tasks might move or schedule
2187 			 * before the smp function call takes place. In
2188 			 * such a case the function call is pointless, but
2189 			 * there is no other side effect.
2190 			 */
2191 			if (mask && t->on_cpu)
2192 				cpumask_set_cpu(task_cpu(t), mask);
2193 #endif
2194 		}
2195 	}
2196 	read_unlock(&tasklist_lock);
2197 }
2198 
2199 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2200 {
2201 	struct rdtgroup *sentry, *stmp;
2202 	struct list_head *head;
2203 
2204 	head = &rdtgrp->mon.crdtgrp_list;
2205 	list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2206 		free_rmid(sentry->mon.rmid);
2207 		list_del(&sentry->mon.crdtgrp_list);
2208 		kfree(sentry);
2209 	}
2210 }
2211 
2212 /*
2213  * Forcibly remove all of subdirectories under root.
2214  */
2215 static void rmdir_all_sub(void)
2216 {
2217 	struct rdtgroup *rdtgrp, *tmp;
2218 
2219 	/* Move all tasks to the default resource group */
2220 	rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2221 
2222 	list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2223 		/* Free any child rmids */
2224 		free_all_child_rdtgrp(rdtgrp);
2225 
2226 		/* Remove each rdtgroup other than root */
2227 		if (rdtgrp == &rdtgroup_default)
2228 			continue;
2229 
2230 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2231 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2232 			rdtgroup_pseudo_lock_remove(rdtgrp);
2233 
2234 		/*
2235 		 * Give any CPUs back to the default group. We cannot copy
2236 		 * cpu_online_mask because a CPU might have executed the
2237 		 * offline callback already, but is still marked online.
2238 		 */
2239 		cpumask_or(&rdtgroup_default.cpu_mask,
2240 			   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2241 
2242 		free_rmid(rdtgrp->mon.rmid);
2243 
2244 		kernfs_remove(rdtgrp->kn);
2245 		list_del(&rdtgrp->rdtgroup_list);
2246 		kfree(rdtgrp);
2247 	}
2248 	/* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2249 	update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2250 
2251 	kernfs_remove(kn_info);
2252 	kernfs_remove(kn_mongrp);
2253 	kernfs_remove(kn_mondata);
2254 }
2255 
2256 static void rdt_kill_sb(struct super_block *sb)
2257 {
2258 	struct rdt_resource *r;
2259 
2260 	cpus_read_lock();
2261 	mutex_lock(&rdtgroup_mutex);
2262 
2263 	set_mba_sc(false);
2264 
2265 	/*Put everything back to default values. */
2266 	for_each_alloc_enabled_rdt_resource(r)
2267 		reset_all_ctrls(r);
2268 	cdp_disable_all();
2269 	rmdir_all_sub();
2270 	rdt_pseudo_lock_release();
2271 	rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2272 	static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2273 	static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2274 	static_branch_disable_cpuslocked(&rdt_enable_key);
2275 	kernfs_kill_sb(sb);
2276 	mutex_unlock(&rdtgroup_mutex);
2277 	cpus_read_unlock();
2278 }
2279 
2280 static struct file_system_type rdt_fs_type = {
2281 	.name			= "resctrl",
2282 	.init_fs_context	= rdt_init_fs_context,
2283 	.parameters		= &rdt_fs_parameters,
2284 	.kill_sb		= rdt_kill_sb,
2285 };
2286 
2287 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2288 		       void *priv)
2289 {
2290 	struct kernfs_node *kn;
2291 	int ret = 0;
2292 
2293 	kn = __kernfs_create_file(parent_kn, name, 0444,
2294 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2295 				  &kf_mondata_ops, priv, NULL, NULL);
2296 	if (IS_ERR(kn))
2297 		return PTR_ERR(kn);
2298 
2299 	ret = rdtgroup_kn_set_ugid(kn);
2300 	if (ret) {
2301 		kernfs_remove(kn);
2302 		return ret;
2303 	}
2304 
2305 	return ret;
2306 }
2307 
2308 /*
2309  * Remove all subdirectories of mon_data of ctrl_mon groups
2310  * and monitor groups with given domain id.
2311  */
2312 void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id)
2313 {
2314 	struct rdtgroup *prgrp, *crgrp;
2315 	char name[32];
2316 
2317 	if (!r->mon_enabled)
2318 		return;
2319 
2320 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2321 		sprintf(name, "mon_%s_%02d", r->name, dom_id);
2322 		kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2323 
2324 		list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2325 			kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2326 	}
2327 }
2328 
2329 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2330 				struct rdt_domain *d,
2331 				struct rdt_resource *r, struct rdtgroup *prgrp)
2332 {
2333 	union mon_data_bits priv;
2334 	struct kernfs_node *kn;
2335 	struct mon_evt *mevt;
2336 	struct rmid_read rr;
2337 	char name[32];
2338 	int ret;
2339 
2340 	sprintf(name, "mon_%s_%02d", r->name, d->id);
2341 	/* create the directory */
2342 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2343 	if (IS_ERR(kn))
2344 		return PTR_ERR(kn);
2345 
2346 	/*
2347 	 * This extra ref will be put in kernfs_remove() and guarantees
2348 	 * that kn is always accessible.
2349 	 */
2350 	kernfs_get(kn);
2351 	ret = rdtgroup_kn_set_ugid(kn);
2352 	if (ret)
2353 		goto out_destroy;
2354 
2355 	if (WARN_ON(list_empty(&r->evt_list))) {
2356 		ret = -EPERM;
2357 		goto out_destroy;
2358 	}
2359 
2360 	priv.u.rid = r->rid;
2361 	priv.u.domid = d->id;
2362 	list_for_each_entry(mevt, &r->evt_list, list) {
2363 		priv.u.evtid = mevt->evtid;
2364 		ret = mon_addfile(kn, mevt->name, priv.priv);
2365 		if (ret)
2366 			goto out_destroy;
2367 
2368 		if (is_mbm_event(mevt->evtid))
2369 			mon_event_read(&rr, d, prgrp, mevt->evtid, true);
2370 	}
2371 	kernfs_activate(kn);
2372 	return 0;
2373 
2374 out_destroy:
2375 	kernfs_remove(kn);
2376 	return ret;
2377 }
2378 
2379 /*
2380  * Add all subdirectories of mon_data for "ctrl_mon" groups
2381  * and "monitor" groups with given domain id.
2382  */
2383 void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2384 				    struct rdt_domain *d)
2385 {
2386 	struct kernfs_node *parent_kn;
2387 	struct rdtgroup *prgrp, *crgrp;
2388 	struct list_head *head;
2389 
2390 	if (!r->mon_enabled)
2391 		return;
2392 
2393 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2394 		parent_kn = prgrp->mon.mon_data_kn;
2395 		mkdir_mondata_subdir(parent_kn, d, r, prgrp);
2396 
2397 		head = &prgrp->mon.crdtgrp_list;
2398 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
2399 			parent_kn = crgrp->mon.mon_data_kn;
2400 			mkdir_mondata_subdir(parent_kn, d, r, crgrp);
2401 		}
2402 	}
2403 }
2404 
2405 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
2406 				       struct rdt_resource *r,
2407 				       struct rdtgroup *prgrp)
2408 {
2409 	struct rdt_domain *dom;
2410 	int ret;
2411 
2412 	list_for_each_entry(dom, &r->domains, list) {
2413 		ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
2414 		if (ret)
2415 			return ret;
2416 	}
2417 
2418 	return 0;
2419 }
2420 
2421 /*
2422  * This creates a directory mon_data which contains the monitored data.
2423  *
2424  * mon_data has one directory for each domain whic are named
2425  * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
2426  * with L3 domain looks as below:
2427  * ./mon_data:
2428  * mon_L3_00
2429  * mon_L3_01
2430  * mon_L3_02
2431  * ...
2432  *
2433  * Each domain directory has one file per event:
2434  * ./mon_L3_00/:
2435  * llc_occupancy
2436  *
2437  */
2438 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2439 			     struct rdtgroup *prgrp,
2440 			     struct kernfs_node **dest_kn)
2441 {
2442 	struct rdt_resource *r;
2443 	struct kernfs_node *kn;
2444 	int ret;
2445 
2446 	/*
2447 	 * Create the mon_data directory first.
2448 	 */
2449 	ret = mongroup_create_dir(parent_kn, NULL, "mon_data", &kn);
2450 	if (ret)
2451 		return ret;
2452 
2453 	if (dest_kn)
2454 		*dest_kn = kn;
2455 
2456 	/*
2457 	 * Create the subdirectories for each domain. Note that all events
2458 	 * in a domain like L3 are grouped into a resource whose domain is L3
2459 	 */
2460 	for_each_mon_enabled_rdt_resource(r) {
2461 		ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
2462 		if (ret)
2463 			goto out_destroy;
2464 	}
2465 
2466 	return 0;
2467 
2468 out_destroy:
2469 	kernfs_remove(kn);
2470 	return ret;
2471 }
2472 
2473 /**
2474  * cbm_ensure_valid - Enforce validity on provided CBM
2475  * @_val:	Candidate CBM
2476  * @r:		RDT resource to which the CBM belongs
2477  *
2478  * The provided CBM represents all cache portions available for use. This
2479  * may be represented by a bitmap that does not consist of contiguous ones
2480  * and thus be an invalid CBM.
2481  * Here the provided CBM is forced to be a valid CBM by only considering
2482  * the first set of contiguous bits as valid and clearing all bits.
2483  * The intention here is to provide a valid default CBM with which a new
2484  * resource group is initialized. The user can follow this with a
2485  * modification to the CBM if the default does not satisfy the
2486  * requirements.
2487  */
2488 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
2489 {
2490 	unsigned int cbm_len = r->cache.cbm_len;
2491 	unsigned long first_bit, zero_bit;
2492 	unsigned long val = _val;
2493 
2494 	if (!val)
2495 		return 0;
2496 
2497 	first_bit = find_first_bit(&val, cbm_len);
2498 	zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
2499 
2500 	/* Clear any remaining bits to ensure contiguous region */
2501 	bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
2502 	return (u32)val;
2503 }
2504 
2505 /*
2506  * Initialize cache resources per RDT domain
2507  *
2508  * Set the RDT domain up to start off with all usable allocations. That is,
2509  * all shareable and unused bits. All-zero CBM is invalid.
2510  */
2511 static int __init_one_rdt_domain(struct rdt_domain *d, struct rdt_resource *r,
2512 				 u32 closid)
2513 {
2514 	struct rdt_resource *r_cdp = NULL;
2515 	struct rdt_domain *d_cdp = NULL;
2516 	u32 used_b = 0, unused_b = 0;
2517 	unsigned long tmp_cbm;
2518 	enum rdtgrp_mode mode;
2519 	u32 peer_ctl, *ctrl;
2520 	int i;
2521 
2522 	rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp);
2523 	d->have_new_ctrl = false;
2524 	d->new_ctrl = r->cache.shareable_bits;
2525 	used_b = r->cache.shareable_bits;
2526 	ctrl = d->ctrl_val;
2527 	for (i = 0; i < closids_supported(); i++, ctrl++) {
2528 		if (closid_allocated(i) && i != closid) {
2529 			mode = rdtgroup_mode_by_closid(i);
2530 			if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
2531 				/*
2532 				 * ctrl values for locksetup aren't relevant
2533 				 * until the schemata is written, and the mode
2534 				 * becomes RDT_MODE_PSEUDO_LOCKED.
2535 				 */
2536 				continue;
2537 			/*
2538 			 * If CDP is active include peer domain's
2539 			 * usage to ensure there is no overlap
2540 			 * with an exclusive group.
2541 			 */
2542 			if (d_cdp)
2543 				peer_ctl = d_cdp->ctrl_val[i];
2544 			else
2545 				peer_ctl = 0;
2546 			used_b |= *ctrl | peer_ctl;
2547 			if (mode == RDT_MODE_SHAREABLE)
2548 				d->new_ctrl |= *ctrl | peer_ctl;
2549 		}
2550 	}
2551 	if (d->plr && d->plr->cbm > 0)
2552 		used_b |= d->plr->cbm;
2553 	unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
2554 	unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
2555 	d->new_ctrl |= unused_b;
2556 	/*
2557 	 * Force the initial CBM to be valid, user can
2558 	 * modify the CBM based on system availability.
2559 	 */
2560 	d->new_ctrl = cbm_ensure_valid(d->new_ctrl, r);
2561 	/*
2562 	 * Assign the u32 CBM to an unsigned long to ensure that
2563 	 * bitmap_weight() does not access out-of-bound memory.
2564 	 */
2565 	tmp_cbm = d->new_ctrl;
2566 	if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
2567 		rdt_last_cmd_printf("No space on %s:%d\n", r->name, d->id);
2568 		return -ENOSPC;
2569 	}
2570 	d->have_new_ctrl = true;
2571 
2572 	return 0;
2573 }
2574 
2575 /*
2576  * Initialize cache resources with default values.
2577  *
2578  * A new RDT group is being created on an allocation capable (CAT)
2579  * supporting system. Set this group up to start off with all usable
2580  * allocations.
2581  *
2582  * If there are no more shareable bits available on any domain then
2583  * the entire allocation will fail.
2584  */
2585 static int rdtgroup_init_cat(struct rdt_resource *r, u32 closid)
2586 {
2587 	struct rdt_domain *d;
2588 	int ret;
2589 
2590 	list_for_each_entry(d, &r->domains, list) {
2591 		ret = __init_one_rdt_domain(d, r, closid);
2592 		if (ret < 0)
2593 			return ret;
2594 	}
2595 
2596 	return 0;
2597 }
2598 
2599 /* Initialize MBA resource with default values. */
2600 static void rdtgroup_init_mba(struct rdt_resource *r)
2601 {
2602 	struct rdt_domain *d;
2603 
2604 	list_for_each_entry(d, &r->domains, list) {
2605 		d->new_ctrl = is_mba_sc(r) ? MBA_MAX_MBPS : r->default_ctrl;
2606 		d->have_new_ctrl = true;
2607 	}
2608 }
2609 
2610 /* Initialize the RDT group's allocations. */
2611 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
2612 {
2613 	struct rdt_resource *r;
2614 	int ret;
2615 
2616 	for_each_alloc_enabled_rdt_resource(r) {
2617 		if (r->rid == RDT_RESOURCE_MBA) {
2618 			rdtgroup_init_mba(r);
2619 		} else {
2620 			ret = rdtgroup_init_cat(r, rdtgrp->closid);
2621 			if (ret < 0)
2622 				return ret;
2623 		}
2624 
2625 		ret = update_domains(r, rdtgrp->closid);
2626 		if (ret < 0) {
2627 			rdt_last_cmd_puts("Failed to initialize allocations\n");
2628 			return ret;
2629 		}
2630 
2631 	}
2632 
2633 	rdtgrp->mode = RDT_MODE_SHAREABLE;
2634 
2635 	return 0;
2636 }
2637 
2638 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
2639 			     struct kernfs_node *prgrp_kn,
2640 			     const char *name, umode_t mode,
2641 			     enum rdt_group_type rtype, struct rdtgroup **r)
2642 {
2643 	struct rdtgroup *prdtgrp, *rdtgrp;
2644 	struct kernfs_node *kn;
2645 	uint files = 0;
2646 	int ret;
2647 
2648 	prdtgrp = rdtgroup_kn_lock_live(prgrp_kn);
2649 	if (!prdtgrp) {
2650 		ret = -ENODEV;
2651 		goto out_unlock;
2652 	}
2653 
2654 	if (rtype == RDTMON_GROUP &&
2655 	    (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2656 	     prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
2657 		ret = -EINVAL;
2658 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
2659 		goto out_unlock;
2660 	}
2661 
2662 	/* allocate the rdtgroup. */
2663 	rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
2664 	if (!rdtgrp) {
2665 		ret = -ENOSPC;
2666 		rdt_last_cmd_puts("Kernel out of memory\n");
2667 		goto out_unlock;
2668 	}
2669 	*r = rdtgrp;
2670 	rdtgrp->mon.parent = prdtgrp;
2671 	rdtgrp->type = rtype;
2672 	INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
2673 
2674 	/* kernfs creates the directory for rdtgrp */
2675 	kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
2676 	if (IS_ERR(kn)) {
2677 		ret = PTR_ERR(kn);
2678 		rdt_last_cmd_puts("kernfs create error\n");
2679 		goto out_free_rgrp;
2680 	}
2681 	rdtgrp->kn = kn;
2682 
2683 	/*
2684 	 * kernfs_remove() will drop the reference count on "kn" which
2685 	 * will free it. But we still need it to stick around for the
2686 	 * rdtgroup_kn_unlock(kn} call below. Take one extra reference
2687 	 * here, which will be dropped inside rdtgroup_kn_unlock().
2688 	 */
2689 	kernfs_get(kn);
2690 
2691 	ret = rdtgroup_kn_set_ugid(kn);
2692 	if (ret) {
2693 		rdt_last_cmd_puts("kernfs perm error\n");
2694 		goto out_destroy;
2695 	}
2696 
2697 	files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
2698 	ret = rdtgroup_add_files(kn, files);
2699 	if (ret) {
2700 		rdt_last_cmd_puts("kernfs fill error\n");
2701 		goto out_destroy;
2702 	}
2703 
2704 	if (rdt_mon_capable) {
2705 		ret = alloc_rmid();
2706 		if (ret < 0) {
2707 			rdt_last_cmd_puts("Out of RMIDs\n");
2708 			goto out_destroy;
2709 		}
2710 		rdtgrp->mon.rmid = ret;
2711 
2712 		ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
2713 		if (ret) {
2714 			rdt_last_cmd_puts("kernfs subdir error\n");
2715 			goto out_idfree;
2716 		}
2717 	}
2718 	kernfs_activate(kn);
2719 
2720 	/*
2721 	 * The caller unlocks the prgrp_kn upon success.
2722 	 */
2723 	return 0;
2724 
2725 out_idfree:
2726 	free_rmid(rdtgrp->mon.rmid);
2727 out_destroy:
2728 	kernfs_remove(rdtgrp->kn);
2729 out_free_rgrp:
2730 	kfree(rdtgrp);
2731 out_unlock:
2732 	rdtgroup_kn_unlock(prgrp_kn);
2733 	return ret;
2734 }
2735 
2736 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
2737 {
2738 	kernfs_remove(rgrp->kn);
2739 	free_rmid(rgrp->mon.rmid);
2740 	kfree(rgrp);
2741 }
2742 
2743 /*
2744  * Create a monitor group under "mon_groups" directory of a control
2745  * and monitor group(ctrl_mon). This is a resource group
2746  * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
2747  */
2748 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
2749 			      struct kernfs_node *prgrp_kn,
2750 			      const char *name,
2751 			      umode_t mode)
2752 {
2753 	struct rdtgroup *rdtgrp, *prgrp;
2754 	int ret;
2755 
2756 	ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTMON_GROUP,
2757 				&rdtgrp);
2758 	if (ret)
2759 		return ret;
2760 
2761 	prgrp = rdtgrp->mon.parent;
2762 	rdtgrp->closid = prgrp->closid;
2763 
2764 	/*
2765 	 * Add the rdtgrp to the list of rdtgrps the parent
2766 	 * ctrl_mon group has to track.
2767 	 */
2768 	list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
2769 
2770 	rdtgroup_kn_unlock(prgrp_kn);
2771 	return ret;
2772 }
2773 
2774 /*
2775  * These are rdtgroups created under the root directory. Can be used
2776  * to allocate and monitor resources.
2777  */
2778 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
2779 				   struct kernfs_node *prgrp_kn,
2780 				   const char *name, umode_t mode)
2781 {
2782 	struct rdtgroup *rdtgrp;
2783 	struct kernfs_node *kn;
2784 	u32 closid;
2785 	int ret;
2786 
2787 	ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTCTRL_GROUP,
2788 				&rdtgrp);
2789 	if (ret)
2790 		return ret;
2791 
2792 	kn = rdtgrp->kn;
2793 	ret = closid_alloc();
2794 	if (ret < 0) {
2795 		rdt_last_cmd_puts("Out of CLOSIDs\n");
2796 		goto out_common_fail;
2797 	}
2798 	closid = ret;
2799 	ret = 0;
2800 
2801 	rdtgrp->closid = closid;
2802 	ret = rdtgroup_init_alloc(rdtgrp);
2803 	if (ret < 0)
2804 		goto out_id_free;
2805 
2806 	list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
2807 
2808 	if (rdt_mon_capable) {
2809 		/*
2810 		 * Create an empty mon_groups directory to hold the subset
2811 		 * of tasks and cpus to monitor.
2812 		 */
2813 		ret = mongroup_create_dir(kn, NULL, "mon_groups", NULL);
2814 		if (ret) {
2815 			rdt_last_cmd_puts("kernfs subdir error\n");
2816 			goto out_del_list;
2817 		}
2818 	}
2819 
2820 	goto out_unlock;
2821 
2822 out_del_list:
2823 	list_del(&rdtgrp->rdtgroup_list);
2824 out_id_free:
2825 	closid_free(closid);
2826 out_common_fail:
2827 	mkdir_rdt_prepare_clean(rdtgrp);
2828 out_unlock:
2829 	rdtgroup_kn_unlock(prgrp_kn);
2830 	return ret;
2831 }
2832 
2833 /*
2834  * We allow creating mon groups only with in a directory called "mon_groups"
2835  * which is present in every ctrl_mon group. Check if this is a valid
2836  * "mon_groups" directory.
2837  *
2838  * 1. The directory should be named "mon_groups".
2839  * 2. The mon group itself should "not" be named "mon_groups".
2840  *   This makes sure "mon_groups" directory always has a ctrl_mon group
2841  *   as parent.
2842  */
2843 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
2844 {
2845 	return (!strcmp(kn->name, "mon_groups") &&
2846 		strcmp(name, "mon_groups"));
2847 }
2848 
2849 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
2850 			  umode_t mode)
2851 {
2852 	/* Do not accept '\n' to avoid unparsable situation. */
2853 	if (strchr(name, '\n'))
2854 		return -EINVAL;
2855 
2856 	/*
2857 	 * If the parent directory is the root directory and RDT
2858 	 * allocation is supported, add a control and monitoring
2859 	 * subdirectory
2860 	 */
2861 	if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
2862 		return rdtgroup_mkdir_ctrl_mon(parent_kn, parent_kn, name, mode);
2863 
2864 	/*
2865 	 * If RDT monitoring is supported and the parent directory is a valid
2866 	 * "mon_groups" directory, add a monitoring subdirectory.
2867 	 */
2868 	if (rdt_mon_capable && is_mon_groups(parent_kn, name))
2869 		return rdtgroup_mkdir_mon(parent_kn, parent_kn->parent, name, mode);
2870 
2871 	return -EPERM;
2872 }
2873 
2874 static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2875 			      cpumask_var_t tmpmask)
2876 {
2877 	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
2878 	int cpu;
2879 
2880 	/* Give any tasks back to the parent group */
2881 	rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
2882 
2883 	/* Update per cpu rmid of the moved CPUs first */
2884 	for_each_cpu(cpu, &rdtgrp->cpu_mask)
2885 		per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
2886 	/*
2887 	 * Update the MSR on moved CPUs and CPUs which have moved
2888 	 * task running on them.
2889 	 */
2890 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2891 	update_closid_rmid(tmpmask, NULL);
2892 
2893 	rdtgrp->flags = RDT_DELETED;
2894 	free_rmid(rdtgrp->mon.rmid);
2895 
2896 	/*
2897 	 * Remove the rdtgrp from the parent ctrl_mon group's list
2898 	 */
2899 	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
2900 	list_del(&rdtgrp->mon.crdtgrp_list);
2901 
2902 	/*
2903 	 * one extra hold on this, will drop when we kfree(rdtgrp)
2904 	 * in rdtgroup_kn_unlock()
2905 	 */
2906 	kernfs_get(kn);
2907 	kernfs_remove(rdtgrp->kn);
2908 
2909 	return 0;
2910 }
2911 
2912 static int rdtgroup_ctrl_remove(struct kernfs_node *kn,
2913 				struct rdtgroup *rdtgrp)
2914 {
2915 	rdtgrp->flags = RDT_DELETED;
2916 	list_del(&rdtgrp->rdtgroup_list);
2917 
2918 	/*
2919 	 * one extra hold on this, will drop when we kfree(rdtgrp)
2920 	 * in rdtgroup_kn_unlock()
2921 	 */
2922 	kernfs_get(kn);
2923 	kernfs_remove(rdtgrp->kn);
2924 	return 0;
2925 }
2926 
2927 static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2928 			       cpumask_var_t tmpmask)
2929 {
2930 	int cpu;
2931 
2932 	/* Give any tasks back to the default group */
2933 	rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
2934 
2935 	/* Give any CPUs back to the default group */
2936 	cpumask_or(&rdtgroup_default.cpu_mask,
2937 		   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2938 
2939 	/* Update per cpu closid and rmid of the moved CPUs first */
2940 	for_each_cpu(cpu, &rdtgrp->cpu_mask) {
2941 		per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
2942 		per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
2943 	}
2944 
2945 	/*
2946 	 * Update the MSR on moved CPUs and CPUs which have moved
2947 	 * task running on them.
2948 	 */
2949 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2950 	update_closid_rmid(tmpmask, NULL);
2951 
2952 	closid_free(rdtgrp->closid);
2953 	free_rmid(rdtgrp->mon.rmid);
2954 
2955 	/*
2956 	 * Free all the child monitor group rmids.
2957 	 */
2958 	free_all_child_rdtgrp(rdtgrp);
2959 
2960 	rdtgroup_ctrl_remove(kn, rdtgrp);
2961 
2962 	return 0;
2963 }
2964 
2965 static int rdtgroup_rmdir(struct kernfs_node *kn)
2966 {
2967 	struct kernfs_node *parent_kn = kn->parent;
2968 	struct rdtgroup *rdtgrp;
2969 	cpumask_var_t tmpmask;
2970 	int ret = 0;
2971 
2972 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
2973 		return -ENOMEM;
2974 
2975 	rdtgrp = rdtgroup_kn_lock_live(kn);
2976 	if (!rdtgrp) {
2977 		ret = -EPERM;
2978 		goto out;
2979 	}
2980 
2981 	/*
2982 	 * If the rdtgroup is a ctrl_mon group and parent directory
2983 	 * is the root directory, remove the ctrl_mon group.
2984 	 *
2985 	 * If the rdtgroup is a mon group and parent directory
2986 	 * is a valid "mon_groups" directory, remove the mon group.
2987 	 */
2988 	if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn) {
2989 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2990 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
2991 			ret = rdtgroup_ctrl_remove(kn, rdtgrp);
2992 		} else {
2993 			ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask);
2994 		}
2995 	} else if (rdtgrp->type == RDTMON_GROUP &&
2996 		 is_mon_groups(parent_kn, kn->name)) {
2997 		ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask);
2998 	} else {
2999 		ret = -EPERM;
3000 	}
3001 
3002 out:
3003 	rdtgroup_kn_unlock(kn);
3004 	free_cpumask_var(tmpmask);
3005 	return ret;
3006 }
3007 
3008 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3009 {
3010 	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
3011 		seq_puts(seq, ",cdp");
3012 
3013 	if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
3014 		seq_puts(seq, ",cdpl2");
3015 
3016 	if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA]))
3017 		seq_puts(seq, ",mba_MBps");
3018 
3019 	return 0;
3020 }
3021 
3022 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3023 	.mkdir		= rdtgroup_mkdir,
3024 	.rmdir		= rdtgroup_rmdir,
3025 	.show_options	= rdtgroup_show_options,
3026 };
3027 
3028 static int __init rdtgroup_setup_root(void)
3029 {
3030 	int ret;
3031 
3032 	rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3033 				      KERNFS_ROOT_CREATE_DEACTIVATED |
3034 				      KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3035 				      &rdtgroup_default);
3036 	if (IS_ERR(rdt_root))
3037 		return PTR_ERR(rdt_root);
3038 
3039 	mutex_lock(&rdtgroup_mutex);
3040 
3041 	rdtgroup_default.closid = 0;
3042 	rdtgroup_default.mon.rmid = 0;
3043 	rdtgroup_default.type = RDTCTRL_GROUP;
3044 	INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3045 
3046 	list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3047 
3048 	ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE);
3049 	if (ret) {
3050 		kernfs_destroy_root(rdt_root);
3051 		goto out;
3052 	}
3053 
3054 	rdtgroup_default.kn = rdt_root->kn;
3055 	kernfs_activate(rdtgroup_default.kn);
3056 
3057 out:
3058 	mutex_unlock(&rdtgroup_mutex);
3059 
3060 	return ret;
3061 }
3062 
3063 /*
3064  * rdtgroup_init - rdtgroup initialization
3065  *
3066  * Setup resctrl file system including set up root, create mount point,
3067  * register rdtgroup filesystem, and initialize files under root directory.
3068  *
3069  * Return: 0 on success or -errno
3070  */
3071 int __init rdtgroup_init(void)
3072 {
3073 	int ret = 0;
3074 
3075 	seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3076 		     sizeof(last_cmd_status_buf));
3077 
3078 	ret = rdtgroup_setup_root();
3079 	if (ret)
3080 		return ret;
3081 
3082 	ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3083 	if (ret)
3084 		goto cleanup_root;
3085 
3086 	ret = register_filesystem(&rdt_fs_type);
3087 	if (ret)
3088 		goto cleanup_mountpoint;
3089 
3090 	/*
3091 	 * Adding the resctrl debugfs directory here may not be ideal since
3092 	 * it would let the resctrl debugfs directory appear on the debugfs
3093 	 * filesystem before the resctrl filesystem is mounted.
3094 	 * It may also be ok since that would enable debugging of RDT before
3095 	 * resctrl is mounted.
3096 	 * The reason why the debugfs directory is created here and not in
3097 	 * rdt_mount() is because rdt_mount() takes rdtgroup_mutex and
3098 	 * during the debugfs directory creation also &sb->s_type->i_mutex_key
3099 	 * (the lockdep class of inode->i_rwsem). Other filesystem
3100 	 * interactions (eg. SyS_getdents) have the lock ordering:
3101 	 * &sb->s_type->i_mutex_key --> &mm->mmap_sem
3102 	 * During mmap(), called with &mm->mmap_sem, the rdtgroup_mutex
3103 	 * is taken, thus creating dependency:
3104 	 * &mm->mmap_sem --> rdtgroup_mutex for the latter that can cause
3105 	 * issues considering the other two lock dependencies.
3106 	 * By creating the debugfs directory here we avoid a dependency
3107 	 * that may cause deadlock (even though file operations cannot
3108 	 * occur until the filesystem is mounted, but I do not know how to
3109 	 * tell lockdep that).
3110 	 */
3111 	debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3112 
3113 	return 0;
3114 
3115 cleanup_mountpoint:
3116 	sysfs_remove_mount_point(fs_kobj, "resctrl");
3117 cleanup_root:
3118 	kernfs_destroy_root(rdt_root);
3119 
3120 	return ret;
3121 }
3122 
3123 void __exit rdtgroup_exit(void)
3124 {
3125 	debugfs_remove_recursive(debugfs_resctrl);
3126 	unregister_filesystem(&rdt_fs_type);
3127 	sysfs_remove_mount_point(fs_kobj, "resctrl");
3128 	kernfs_destroy_root(rdt_root);
3129 }
3130