xref: /linux/arch/x86/kernel/cpu/sgx/encl.c (revision 908fc4c2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*  Copyright(c) 2016-20 Intel Corporation. */
3 
4 #include <linux/lockdep.h>
5 #include <linux/mm.h>
6 #include <linux/mman.h>
7 #include <linux/shmem_fs.h>
8 #include <linux/suspend.h>
9 #include <linux/sched/mm.h>
10 #include <asm/sgx.h>
11 #include "encl.h"
12 #include "encls.h"
13 #include "sgx.h"
14 
15 #define PCMDS_PER_PAGE (PAGE_SIZE / sizeof(struct sgx_pcmd))
16 /*
17  * 32 PCMD entries share a PCMD page. PCMD_FIRST_MASK is used to
18  * determine the page index associated with the first PCMD entry
19  * within a PCMD page.
20  */
21 #define PCMD_FIRST_MASK GENMASK(4, 0)
22 
23 /**
24  * reclaimer_writing_to_pcmd() - Query if any enclave page associated with
25  *                               a PCMD page is in process of being reclaimed.
26  * @encl:        Enclave to which PCMD page belongs
27  * @start_addr:  Address of enclave page using first entry within the PCMD page
28  *
29  * When an enclave page is reclaimed some Paging Crypto MetaData (PCMD) is
30  * stored. The PCMD data of a reclaimed enclave page contains enough
31  * information for the processor to verify the page at the time
32  * it is loaded back into the Enclave Page Cache (EPC).
33  *
34  * The backing storage to which enclave pages are reclaimed is laid out as
35  * follows:
36  * Encrypted enclave pages:SECS page:PCMD pages
37  *
38  * Each PCMD page contains the PCMD metadata of
39  * PAGE_SIZE/sizeof(struct sgx_pcmd) enclave pages.
40  *
41  * A PCMD page can only be truncated if it is (a) empty, and (b) not in the
42  * process of getting data (and thus soon being non-empty). (b) is tested with
43  * a check if an enclave page sharing the PCMD page is in the process of being
44  * reclaimed.
45  *
46  * The reclaimer sets the SGX_ENCL_PAGE_BEING_RECLAIMED flag when it
47  * intends to reclaim that enclave page - it means that the PCMD page
48  * associated with that enclave page is about to get some data and thus
49  * even if the PCMD page is empty, it should not be truncated.
50  *
51  * Context: Enclave mutex (&sgx_encl->lock) must be held.
52  * Return: 1 if the reclaimer is about to write to the PCMD page
53  *         0 if the reclaimer has no intention to write to the PCMD page
54  */
55 static int reclaimer_writing_to_pcmd(struct sgx_encl *encl,
56 				     unsigned long start_addr)
57 {
58 	int reclaimed = 0;
59 	int i;
60 
61 	/*
62 	 * PCMD_FIRST_MASK is based on number of PCMD entries within
63 	 * PCMD page being 32.
64 	 */
65 	BUILD_BUG_ON(PCMDS_PER_PAGE != 32);
66 
67 	for (i = 0; i < PCMDS_PER_PAGE; i++) {
68 		struct sgx_encl_page *entry;
69 		unsigned long addr;
70 
71 		addr = start_addr + i * PAGE_SIZE;
72 
73 		/*
74 		 * Stop when reaching the SECS page - it does not
75 		 * have a page_array entry and its reclaim is
76 		 * started and completed with enclave mutex held so
77 		 * it does not use the SGX_ENCL_PAGE_BEING_RECLAIMED
78 		 * flag.
79 		 */
80 		if (addr == encl->base + encl->size)
81 			break;
82 
83 		entry = xa_load(&encl->page_array, PFN_DOWN(addr));
84 		if (!entry)
85 			continue;
86 
87 		/*
88 		 * VA page slot ID uses same bit as the flag so it is important
89 		 * to ensure that the page is not already in backing store.
90 		 */
91 		if (entry->epc_page &&
92 		    (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED)) {
93 			reclaimed = 1;
94 			break;
95 		}
96 	}
97 
98 	return reclaimed;
99 }
100 
101 /*
102  * Calculate byte offset of a PCMD struct associated with an enclave page. PCMD's
103  * follow right after the EPC data in the backing storage. In addition to the
104  * visible enclave pages, there's one extra page slot for SECS, before PCMD
105  * structs.
106  */
107 static inline pgoff_t sgx_encl_get_backing_page_pcmd_offset(struct sgx_encl *encl,
108 							    unsigned long page_index)
109 {
110 	pgoff_t epc_end_off = encl->size + sizeof(struct sgx_secs);
111 
112 	return epc_end_off + page_index * sizeof(struct sgx_pcmd);
113 }
114 
115 /*
116  * Free a page from the backing storage in the given page index.
117  */
118 static inline void sgx_encl_truncate_backing_page(struct sgx_encl *encl, unsigned long page_index)
119 {
120 	struct inode *inode = file_inode(encl->backing);
121 
122 	shmem_truncate_range(inode, PFN_PHYS(page_index), PFN_PHYS(page_index) + PAGE_SIZE - 1);
123 }
124 
125 /*
126  * ELDU: Load an EPC page as unblocked. For more info, see "OS Management of EPC
127  * Pages" in the SDM.
128  */
129 static int __sgx_encl_eldu(struct sgx_encl_page *encl_page,
130 			   struct sgx_epc_page *epc_page,
131 			   struct sgx_epc_page *secs_page)
132 {
133 	unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK;
134 	struct sgx_encl *encl = encl_page->encl;
135 	pgoff_t page_index, page_pcmd_off;
136 	unsigned long pcmd_first_page;
137 	struct sgx_pageinfo pginfo;
138 	struct sgx_backing b;
139 	bool pcmd_page_empty;
140 	u8 *pcmd_page;
141 	int ret;
142 
143 	if (secs_page)
144 		page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
145 	else
146 		page_index = PFN_DOWN(encl->size);
147 
148 	/*
149 	 * Address of enclave page using the first entry within the PCMD page.
150 	 */
151 	pcmd_first_page = PFN_PHYS(page_index & ~PCMD_FIRST_MASK) + encl->base;
152 
153 	page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index);
154 
155 	ret = sgx_encl_lookup_backing(encl, page_index, &b);
156 	if (ret)
157 		return ret;
158 
159 	pginfo.addr = encl_page->desc & PAGE_MASK;
160 	pginfo.contents = (unsigned long)kmap_atomic(b.contents);
161 	pcmd_page = kmap_atomic(b.pcmd);
162 	pginfo.metadata = (unsigned long)pcmd_page + b.pcmd_offset;
163 
164 	if (secs_page)
165 		pginfo.secs = (u64)sgx_get_epc_virt_addr(secs_page);
166 	else
167 		pginfo.secs = 0;
168 
169 	ret = __eldu(&pginfo, sgx_get_epc_virt_addr(epc_page),
170 		     sgx_get_epc_virt_addr(encl_page->va_page->epc_page) + va_offset);
171 	if (ret) {
172 		if (encls_failed(ret))
173 			ENCLS_WARN(ret, "ELDU");
174 
175 		ret = -EFAULT;
176 	}
177 
178 	memset(pcmd_page + b.pcmd_offset, 0, sizeof(struct sgx_pcmd));
179 	set_page_dirty(b.pcmd);
180 
181 	/*
182 	 * The area for the PCMD in the page was zeroed above.  Check if the
183 	 * whole page is now empty meaning that all PCMD's have been zeroed:
184 	 */
185 	pcmd_page_empty = !memchr_inv(pcmd_page, 0, PAGE_SIZE);
186 
187 	kunmap_atomic(pcmd_page);
188 	kunmap_atomic((void *)(unsigned long)pginfo.contents);
189 
190 	get_page(b.pcmd);
191 	sgx_encl_put_backing(&b);
192 
193 	sgx_encl_truncate_backing_page(encl, page_index);
194 
195 	if (pcmd_page_empty && !reclaimer_writing_to_pcmd(encl, pcmd_first_page)) {
196 		sgx_encl_truncate_backing_page(encl, PFN_DOWN(page_pcmd_off));
197 		pcmd_page = kmap_atomic(b.pcmd);
198 		if (memchr_inv(pcmd_page, 0, PAGE_SIZE))
199 			pr_warn("PCMD page not empty after truncate.\n");
200 		kunmap_atomic(pcmd_page);
201 	}
202 
203 	put_page(b.pcmd);
204 
205 	return ret;
206 }
207 
208 static struct sgx_epc_page *sgx_encl_eldu(struct sgx_encl_page *encl_page,
209 					  struct sgx_epc_page *secs_page)
210 {
211 
212 	unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK;
213 	struct sgx_encl *encl = encl_page->encl;
214 	struct sgx_epc_page *epc_page;
215 	int ret;
216 
217 	epc_page = sgx_alloc_epc_page(encl_page, false);
218 	if (IS_ERR(epc_page))
219 		return epc_page;
220 
221 	ret = __sgx_encl_eldu(encl_page, epc_page, secs_page);
222 	if (ret) {
223 		sgx_encl_free_epc_page(epc_page);
224 		return ERR_PTR(ret);
225 	}
226 
227 	sgx_free_va_slot(encl_page->va_page, va_offset);
228 	list_move(&encl_page->va_page->list, &encl->va_pages);
229 	encl_page->desc &= ~SGX_ENCL_PAGE_VA_OFFSET_MASK;
230 	encl_page->epc_page = epc_page;
231 
232 	return epc_page;
233 }
234 
235 static struct sgx_encl_page *sgx_encl_load_page(struct sgx_encl *encl,
236 						unsigned long addr,
237 						unsigned long vm_flags)
238 {
239 	unsigned long vm_prot_bits = vm_flags & (VM_READ | VM_WRITE | VM_EXEC);
240 	struct sgx_epc_page *epc_page;
241 	struct sgx_encl_page *entry;
242 
243 	entry = xa_load(&encl->page_array, PFN_DOWN(addr));
244 	if (!entry)
245 		return ERR_PTR(-EFAULT);
246 
247 	/*
248 	 * Verify that the faulted page has equal or higher build time
249 	 * permissions than the VMA permissions (i.e. the subset of {VM_READ,
250 	 * VM_WRITE, VM_EXECUTE} in vma->vm_flags).
251 	 */
252 	if ((entry->vm_max_prot_bits & vm_prot_bits) != vm_prot_bits)
253 		return ERR_PTR(-EFAULT);
254 
255 	/* Entry successfully located. */
256 	if (entry->epc_page) {
257 		if (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED)
258 			return ERR_PTR(-EBUSY);
259 
260 		return entry;
261 	}
262 
263 	if (!(encl->secs.epc_page)) {
264 		epc_page = sgx_encl_eldu(&encl->secs, NULL);
265 		if (IS_ERR(epc_page))
266 			return ERR_CAST(epc_page);
267 	}
268 
269 	epc_page = sgx_encl_eldu(entry, encl->secs.epc_page);
270 	if (IS_ERR(epc_page))
271 		return ERR_CAST(epc_page);
272 
273 	encl->secs_child_cnt++;
274 	sgx_mark_page_reclaimable(entry->epc_page);
275 
276 	return entry;
277 }
278 
279 static vm_fault_t sgx_vma_fault(struct vm_fault *vmf)
280 {
281 	unsigned long addr = (unsigned long)vmf->address;
282 	struct vm_area_struct *vma = vmf->vma;
283 	struct sgx_encl_page *entry;
284 	unsigned long phys_addr;
285 	struct sgx_encl *encl;
286 	vm_fault_t ret;
287 
288 	encl = vma->vm_private_data;
289 
290 	/*
291 	 * It's very unlikely but possible that allocating memory for the
292 	 * mm_list entry of a forked process failed in sgx_vma_open(). When
293 	 * this happens, vm_private_data is set to NULL.
294 	 */
295 	if (unlikely(!encl))
296 		return VM_FAULT_SIGBUS;
297 
298 	mutex_lock(&encl->lock);
299 
300 	entry = sgx_encl_load_page(encl, addr, vma->vm_flags);
301 	if (IS_ERR(entry)) {
302 		mutex_unlock(&encl->lock);
303 
304 		if (PTR_ERR(entry) == -EBUSY)
305 			return VM_FAULT_NOPAGE;
306 
307 		return VM_FAULT_SIGBUS;
308 	}
309 
310 	phys_addr = sgx_get_epc_phys_addr(entry->epc_page);
311 
312 	ret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr));
313 	if (ret != VM_FAULT_NOPAGE) {
314 		mutex_unlock(&encl->lock);
315 
316 		return VM_FAULT_SIGBUS;
317 	}
318 
319 	sgx_encl_test_and_clear_young(vma->vm_mm, entry);
320 	mutex_unlock(&encl->lock);
321 
322 	return VM_FAULT_NOPAGE;
323 }
324 
325 static void sgx_vma_open(struct vm_area_struct *vma)
326 {
327 	struct sgx_encl *encl = vma->vm_private_data;
328 
329 	/*
330 	 * It's possible but unlikely that vm_private_data is NULL. This can
331 	 * happen in a grandchild of a process, when sgx_encl_mm_add() had
332 	 * failed to allocate memory in this callback.
333 	 */
334 	if (unlikely(!encl))
335 		return;
336 
337 	if (sgx_encl_mm_add(encl, vma->vm_mm))
338 		vma->vm_private_data = NULL;
339 }
340 
341 
342 /**
343  * sgx_encl_may_map() - Check if a requested VMA mapping is allowed
344  * @encl:		an enclave pointer
345  * @start:		lower bound of the address range, inclusive
346  * @end:		upper bound of the address range, exclusive
347  * @vm_flags:		VMA flags
348  *
349  * Iterate through the enclave pages contained within [@start, @end) to verify
350  * that the permissions requested by a subset of {VM_READ, VM_WRITE, VM_EXEC}
351  * do not contain any permissions that are not contained in the build time
352  * permissions of any of the enclave pages within the given address range.
353  *
354  * An enclave creator must declare the strongest permissions that will be
355  * needed for each enclave page. This ensures that mappings have the identical
356  * or weaker permissions than the earlier declared permissions.
357  *
358  * Return: 0 on success, -EACCES otherwise
359  */
360 int sgx_encl_may_map(struct sgx_encl *encl, unsigned long start,
361 		     unsigned long end, unsigned long vm_flags)
362 {
363 	unsigned long vm_prot_bits = vm_flags & (VM_READ | VM_WRITE | VM_EXEC);
364 	struct sgx_encl_page *page;
365 	unsigned long count = 0;
366 	int ret = 0;
367 
368 	XA_STATE(xas, &encl->page_array, PFN_DOWN(start));
369 
370 	/*
371 	 * Disallow READ_IMPLIES_EXEC tasks as their VMA permissions might
372 	 * conflict with the enclave page permissions.
373 	 */
374 	if (current->personality & READ_IMPLIES_EXEC)
375 		return -EACCES;
376 
377 	mutex_lock(&encl->lock);
378 	xas_lock(&xas);
379 	xas_for_each(&xas, page, PFN_DOWN(end - 1)) {
380 		if (~page->vm_max_prot_bits & vm_prot_bits) {
381 			ret = -EACCES;
382 			break;
383 		}
384 
385 		/* Reschedule on every XA_CHECK_SCHED iteration. */
386 		if (!(++count % XA_CHECK_SCHED)) {
387 			xas_pause(&xas);
388 			xas_unlock(&xas);
389 			mutex_unlock(&encl->lock);
390 
391 			cond_resched();
392 
393 			mutex_lock(&encl->lock);
394 			xas_lock(&xas);
395 		}
396 	}
397 	xas_unlock(&xas);
398 	mutex_unlock(&encl->lock);
399 
400 	return ret;
401 }
402 
403 static int sgx_vma_mprotect(struct vm_area_struct *vma, unsigned long start,
404 			    unsigned long end, unsigned long newflags)
405 {
406 	return sgx_encl_may_map(vma->vm_private_data, start, end, newflags);
407 }
408 
409 static int sgx_encl_debug_read(struct sgx_encl *encl, struct sgx_encl_page *page,
410 			       unsigned long addr, void *data)
411 {
412 	unsigned long offset = addr & ~PAGE_MASK;
413 	int ret;
414 
415 
416 	ret = __edbgrd(sgx_get_epc_virt_addr(page->epc_page) + offset, data);
417 	if (ret)
418 		return -EIO;
419 
420 	return 0;
421 }
422 
423 static int sgx_encl_debug_write(struct sgx_encl *encl, struct sgx_encl_page *page,
424 				unsigned long addr, void *data)
425 {
426 	unsigned long offset = addr & ~PAGE_MASK;
427 	int ret;
428 
429 	ret = __edbgwr(sgx_get_epc_virt_addr(page->epc_page) + offset, data);
430 	if (ret)
431 		return -EIO;
432 
433 	return 0;
434 }
435 
436 /*
437  * Load an enclave page to EPC if required, and take encl->lock.
438  */
439 static struct sgx_encl_page *sgx_encl_reserve_page(struct sgx_encl *encl,
440 						   unsigned long addr,
441 						   unsigned long vm_flags)
442 {
443 	struct sgx_encl_page *entry;
444 
445 	for ( ; ; ) {
446 		mutex_lock(&encl->lock);
447 
448 		entry = sgx_encl_load_page(encl, addr, vm_flags);
449 		if (PTR_ERR(entry) != -EBUSY)
450 			break;
451 
452 		mutex_unlock(&encl->lock);
453 	}
454 
455 	if (IS_ERR(entry))
456 		mutex_unlock(&encl->lock);
457 
458 	return entry;
459 }
460 
461 static int sgx_vma_access(struct vm_area_struct *vma, unsigned long addr,
462 			  void *buf, int len, int write)
463 {
464 	struct sgx_encl *encl = vma->vm_private_data;
465 	struct sgx_encl_page *entry = NULL;
466 	char data[sizeof(unsigned long)];
467 	unsigned long align;
468 	int offset;
469 	int cnt;
470 	int ret = 0;
471 	int i;
472 
473 	/*
474 	 * If process was forked, VMA is still there but vm_private_data is set
475 	 * to NULL.
476 	 */
477 	if (!encl)
478 		return -EFAULT;
479 
480 	if (!test_bit(SGX_ENCL_DEBUG, &encl->flags))
481 		return -EFAULT;
482 
483 	for (i = 0; i < len; i += cnt) {
484 		entry = sgx_encl_reserve_page(encl, (addr + i) & PAGE_MASK,
485 					      vma->vm_flags);
486 		if (IS_ERR(entry)) {
487 			ret = PTR_ERR(entry);
488 			break;
489 		}
490 
491 		align = ALIGN_DOWN(addr + i, sizeof(unsigned long));
492 		offset = (addr + i) & (sizeof(unsigned long) - 1);
493 		cnt = sizeof(unsigned long) - offset;
494 		cnt = min(cnt, len - i);
495 
496 		ret = sgx_encl_debug_read(encl, entry, align, data);
497 		if (ret)
498 			goto out;
499 
500 		if (write) {
501 			memcpy(data + offset, buf + i, cnt);
502 			ret = sgx_encl_debug_write(encl, entry, align, data);
503 			if (ret)
504 				goto out;
505 		} else {
506 			memcpy(buf + i, data + offset, cnt);
507 		}
508 
509 out:
510 		mutex_unlock(&encl->lock);
511 
512 		if (ret)
513 			break;
514 	}
515 
516 	return ret < 0 ? ret : i;
517 }
518 
519 const struct vm_operations_struct sgx_vm_ops = {
520 	.fault = sgx_vma_fault,
521 	.mprotect = sgx_vma_mprotect,
522 	.open = sgx_vma_open,
523 	.access = sgx_vma_access,
524 };
525 
526 /**
527  * sgx_encl_release - Destroy an enclave instance
528  * @ref:	address of a kref inside &sgx_encl
529  *
530  * Used together with kref_put(). Frees all the resources associated with the
531  * enclave and the instance itself.
532  */
533 void sgx_encl_release(struct kref *ref)
534 {
535 	struct sgx_encl *encl = container_of(ref, struct sgx_encl, refcount);
536 	struct sgx_va_page *va_page;
537 	struct sgx_encl_page *entry;
538 	unsigned long index;
539 
540 	xa_for_each(&encl->page_array, index, entry) {
541 		if (entry->epc_page) {
542 			/*
543 			 * The page and its radix tree entry cannot be freed
544 			 * if the page is being held by the reclaimer.
545 			 */
546 			if (sgx_unmark_page_reclaimable(entry->epc_page))
547 				continue;
548 
549 			sgx_encl_free_epc_page(entry->epc_page);
550 			encl->secs_child_cnt--;
551 			entry->epc_page = NULL;
552 		}
553 
554 		kfree(entry);
555 		/* Invoke scheduler to prevent soft lockups. */
556 		cond_resched();
557 	}
558 
559 	xa_destroy(&encl->page_array);
560 
561 	if (!encl->secs_child_cnt && encl->secs.epc_page) {
562 		sgx_encl_free_epc_page(encl->secs.epc_page);
563 		encl->secs.epc_page = NULL;
564 	}
565 
566 	while (!list_empty(&encl->va_pages)) {
567 		va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
568 					   list);
569 		list_del(&va_page->list);
570 		sgx_encl_free_epc_page(va_page->epc_page);
571 		kfree(va_page);
572 	}
573 
574 	if (encl->backing)
575 		fput(encl->backing);
576 
577 	cleanup_srcu_struct(&encl->srcu);
578 
579 	WARN_ON_ONCE(!list_empty(&encl->mm_list));
580 
581 	/* Detect EPC page leak's. */
582 	WARN_ON_ONCE(encl->secs_child_cnt);
583 	WARN_ON_ONCE(encl->secs.epc_page);
584 
585 	kfree(encl);
586 }
587 
588 /*
589  * 'mm' is exiting and no longer needs mmu notifications.
590  */
591 static void sgx_mmu_notifier_release(struct mmu_notifier *mn,
592 				     struct mm_struct *mm)
593 {
594 	struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier);
595 	struct sgx_encl_mm *tmp = NULL;
596 
597 	/*
598 	 * The enclave itself can remove encl_mm.  Note, objects can't be moved
599 	 * off an RCU protected list, but deletion is ok.
600 	 */
601 	spin_lock(&encl_mm->encl->mm_lock);
602 	list_for_each_entry(tmp, &encl_mm->encl->mm_list, list) {
603 		if (tmp == encl_mm) {
604 			list_del_rcu(&encl_mm->list);
605 			break;
606 		}
607 	}
608 	spin_unlock(&encl_mm->encl->mm_lock);
609 
610 	if (tmp == encl_mm) {
611 		synchronize_srcu(&encl_mm->encl->srcu);
612 		mmu_notifier_put(mn);
613 	}
614 }
615 
616 static void sgx_mmu_notifier_free(struct mmu_notifier *mn)
617 {
618 	struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier);
619 
620 	/* 'encl_mm' is going away, put encl_mm->encl reference: */
621 	kref_put(&encl_mm->encl->refcount, sgx_encl_release);
622 
623 	kfree(encl_mm);
624 }
625 
626 static const struct mmu_notifier_ops sgx_mmu_notifier_ops = {
627 	.release		= sgx_mmu_notifier_release,
628 	.free_notifier		= sgx_mmu_notifier_free,
629 };
630 
631 static struct sgx_encl_mm *sgx_encl_find_mm(struct sgx_encl *encl,
632 					    struct mm_struct *mm)
633 {
634 	struct sgx_encl_mm *encl_mm = NULL;
635 	struct sgx_encl_mm *tmp;
636 	int idx;
637 
638 	idx = srcu_read_lock(&encl->srcu);
639 
640 	list_for_each_entry_rcu(tmp, &encl->mm_list, list) {
641 		if (tmp->mm == mm) {
642 			encl_mm = tmp;
643 			break;
644 		}
645 	}
646 
647 	srcu_read_unlock(&encl->srcu, idx);
648 
649 	return encl_mm;
650 }
651 
652 int sgx_encl_mm_add(struct sgx_encl *encl, struct mm_struct *mm)
653 {
654 	struct sgx_encl_mm *encl_mm;
655 	int ret;
656 
657 	/*
658 	 * Even though a single enclave may be mapped into an mm more than once,
659 	 * each 'mm' only appears once on encl->mm_list. This is guaranteed by
660 	 * holding the mm's mmap lock for write before an mm can be added or
661 	 * remove to an encl->mm_list.
662 	 */
663 	mmap_assert_write_locked(mm);
664 
665 	/*
666 	 * It's possible that an entry already exists in the mm_list, because it
667 	 * is removed only on VFS release or process exit.
668 	 */
669 	if (sgx_encl_find_mm(encl, mm))
670 		return 0;
671 
672 	encl_mm = kzalloc(sizeof(*encl_mm), GFP_KERNEL);
673 	if (!encl_mm)
674 		return -ENOMEM;
675 
676 	/* Grab a refcount for the encl_mm->encl reference: */
677 	kref_get(&encl->refcount);
678 	encl_mm->encl = encl;
679 	encl_mm->mm = mm;
680 	encl_mm->mmu_notifier.ops = &sgx_mmu_notifier_ops;
681 
682 	ret = __mmu_notifier_register(&encl_mm->mmu_notifier, mm);
683 	if (ret) {
684 		kfree(encl_mm);
685 		return ret;
686 	}
687 
688 	spin_lock(&encl->mm_lock);
689 	list_add_rcu(&encl_mm->list, &encl->mm_list);
690 	/* Pairs with smp_rmb() in sgx_reclaimer_block(). */
691 	smp_wmb();
692 	encl->mm_list_version++;
693 	spin_unlock(&encl->mm_lock);
694 
695 	return 0;
696 }
697 
698 static struct page *sgx_encl_get_backing_page(struct sgx_encl *encl,
699 					      pgoff_t index)
700 {
701 	struct inode *inode = encl->backing->f_path.dentry->d_inode;
702 	struct address_space *mapping = inode->i_mapping;
703 	gfp_t gfpmask = mapping_gfp_mask(mapping);
704 
705 	return shmem_read_mapping_page_gfp(mapping, index, gfpmask);
706 }
707 
708 /**
709  * sgx_encl_get_backing() - Pin the backing storage
710  * @encl:	an enclave pointer
711  * @page_index:	enclave page index
712  * @backing:	data for accessing backing storage for the page
713  *
714  * Pin the backing storage pages for storing the encrypted contents and Paging
715  * Crypto MetaData (PCMD) of an enclave page.
716  *
717  * Return:
718  *   0 on success,
719  *   -errno otherwise.
720  */
721 static int sgx_encl_get_backing(struct sgx_encl *encl, unsigned long page_index,
722 			 struct sgx_backing *backing)
723 {
724 	pgoff_t page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index);
725 	struct page *contents;
726 	struct page *pcmd;
727 
728 	contents = sgx_encl_get_backing_page(encl, page_index);
729 	if (IS_ERR(contents))
730 		return PTR_ERR(contents);
731 
732 	pcmd = sgx_encl_get_backing_page(encl, PFN_DOWN(page_pcmd_off));
733 	if (IS_ERR(pcmd)) {
734 		put_page(contents);
735 		return PTR_ERR(pcmd);
736 	}
737 
738 	backing->page_index = page_index;
739 	backing->contents = contents;
740 	backing->pcmd = pcmd;
741 	backing->pcmd_offset = page_pcmd_off & (PAGE_SIZE - 1);
742 
743 	return 0;
744 }
745 
746 /*
747  * When called from ksgxd, returns the mem_cgroup of a struct mm stored
748  * in the enclave's mm_list. When not called from ksgxd, just returns
749  * the mem_cgroup of the current task.
750  */
751 static struct mem_cgroup *sgx_encl_get_mem_cgroup(struct sgx_encl *encl)
752 {
753 	struct mem_cgroup *memcg = NULL;
754 	struct sgx_encl_mm *encl_mm;
755 	int idx;
756 
757 	/*
758 	 * If called from normal task context, return the mem_cgroup
759 	 * of the current task's mm. The remainder of the handling is for
760 	 * ksgxd.
761 	 */
762 	if (!current_is_ksgxd())
763 		return get_mem_cgroup_from_mm(current->mm);
764 
765 	/*
766 	 * Search the enclave's mm_list to find an mm associated with
767 	 * this enclave to charge the allocation to.
768 	 */
769 	idx = srcu_read_lock(&encl->srcu);
770 
771 	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
772 		if (!mmget_not_zero(encl_mm->mm))
773 			continue;
774 
775 		memcg = get_mem_cgroup_from_mm(encl_mm->mm);
776 
777 		mmput_async(encl_mm->mm);
778 
779 		break;
780 	}
781 
782 	srcu_read_unlock(&encl->srcu, idx);
783 
784 	/*
785 	 * In the rare case that there isn't an mm associated with
786 	 * the enclave, set memcg to the current active mem_cgroup.
787 	 * This will be the root mem_cgroup if there is no active
788 	 * mem_cgroup.
789 	 */
790 	if (!memcg)
791 		return get_mem_cgroup_from_mm(NULL);
792 
793 	return memcg;
794 }
795 
796 /**
797  * sgx_encl_alloc_backing() - allocate a new backing storage page
798  * @encl:	an enclave pointer
799  * @page_index:	enclave page index
800  * @backing:	data for accessing backing storage for the page
801  *
802  * When called from ksgxd, sets the active memcg from one of the
803  * mms in the enclave's mm_list prior to any backing page allocation,
804  * in order to ensure that shmem page allocations are charged to the
805  * enclave.
806  *
807  * Return:
808  *   0 on success,
809  *   -errno otherwise.
810  */
811 int sgx_encl_alloc_backing(struct sgx_encl *encl, unsigned long page_index,
812 			   struct sgx_backing *backing)
813 {
814 	struct mem_cgroup *encl_memcg = sgx_encl_get_mem_cgroup(encl);
815 	struct mem_cgroup *memcg = set_active_memcg(encl_memcg);
816 	int ret;
817 
818 	ret = sgx_encl_get_backing(encl, page_index, backing);
819 
820 	set_active_memcg(memcg);
821 	mem_cgroup_put(encl_memcg);
822 
823 	return ret;
824 }
825 
826 /**
827  * sgx_encl_lookup_backing() - retrieve an existing backing storage page
828  * @encl:	an enclave pointer
829  * @page_index:	enclave page index
830  * @backing:	data for accessing backing storage for the page
831  *
832  * Retrieve a backing page for loading data back into an EPC page with ELDU.
833  * It is the caller's responsibility to ensure that it is appropriate to use
834  * sgx_encl_lookup_backing() rather than sgx_encl_alloc_backing(). If lookup is
835  * not used correctly, this will cause an allocation which is not accounted for.
836  *
837  * Return:
838  *   0 on success,
839  *   -errno otherwise.
840  */
841 int sgx_encl_lookup_backing(struct sgx_encl *encl, unsigned long page_index,
842 			   struct sgx_backing *backing)
843 {
844 	return sgx_encl_get_backing(encl, page_index, backing);
845 }
846 
847 /**
848  * sgx_encl_put_backing() - Unpin the backing storage
849  * @backing:	data for accessing backing storage for the page
850  */
851 void sgx_encl_put_backing(struct sgx_backing *backing)
852 {
853 	put_page(backing->pcmd);
854 	put_page(backing->contents);
855 }
856 
857 static int sgx_encl_test_and_clear_young_cb(pte_t *ptep, unsigned long addr,
858 					    void *data)
859 {
860 	pte_t pte;
861 	int ret;
862 
863 	ret = pte_young(*ptep);
864 	if (ret) {
865 		pte = pte_mkold(*ptep);
866 		set_pte_at((struct mm_struct *)data, addr, ptep, pte);
867 	}
868 
869 	return ret;
870 }
871 
872 /**
873  * sgx_encl_test_and_clear_young() - Test and reset the accessed bit
874  * @mm:		mm_struct that is checked
875  * @page:	enclave page to be tested for recent access
876  *
877  * Checks the Access (A) bit from the PTE corresponding to the enclave page and
878  * clears it.
879  *
880  * Return: 1 if the page has been recently accessed and 0 if not.
881  */
882 int sgx_encl_test_and_clear_young(struct mm_struct *mm,
883 				  struct sgx_encl_page *page)
884 {
885 	unsigned long addr = page->desc & PAGE_MASK;
886 	struct sgx_encl *encl = page->encl;
887 	struct vm_area_struct *vma;
888 	int ret;
889 
890 	ret = sgx_encl_find(mm, addr, &vma);
891 	if (ret)
892 		return 0;
893 
894 	if (encl != vma->vm_private_data)
895 		return 0;
896 
897 	ret = apply_to_page_range(vma->vm_mm, addr, PAGE_SIZE,
898 				  sgx_encl_test_and_clear_young_cb, vma->vm_mm);
899 	if (ret < 0)
900 		return 0;
901 
902 	return ret;
903 }
904 
905 /**
906  * sgx_alloc_va_page() - Allocate a Version Array (VA) page
907  *
908  * Allocate a free EPC page and convert it to a Version Array (VA) page.
909  *
910  * Return:
911  *   a VA page,
912  *   -errno otherwise
913  */
914 struct sgx_epc_page *sgx_alloc_va_page(void)
915 {
916 	struct sgx_epc_page *epc_page;
917 	int ret;
918 
919 	epc_page = sgx_alloc_epc_page(NULL, true);
920 	if (IS_ERR(epc_page))
921 		return ERR_CAST(epc_page);
922 
923 	ret = __epa(sgx_get_epc_virt_addr(epc_page));
924 	if (ret) {
925 		WARN_ONCE(1, "EPA returned %d (0x%x)", ret, ret);
926 		sgx_encl_free_epc_page(epc_page);
927 		return ERR_PTR(-EFAULT);
928 	}
929 
930 	return epc_page;
931 }
932 
933 /**
934  * sgx_alloc_va_slot - allocate a VA slot
935  * @va_page:	a &struct sgx_va_page instance
936  *
937  * Allocates a slot from a &struct sgx_va_page instance.
938  *
939  * Return: offset of the slot inside the VA page
940  */
941 unsigned int sgx_alloc_va_slot(struct sgx_va_page *va_page)
942 {
943 	int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT);
944 
945 	if (slot < SGX_VA_SLOT_COUNT)
946 		set_bit(slot, va_page->slots);
947 
948 	return slot << 3;
949 }
950 
951 /**
952  * sgx_free_va_slot - free a VA slot
953  * @va_page:	a &struct sgx_va_page instance
954  * @offset:	offset of the slot inside the VA page
955  *
956  * Frees a slot from a &struct sgx_va_page instance.
957  */
958 void sgx_free_va_slot(struct sgx_va_page *va_page, unsigned int offset)
959 {
960 	clear_bit(offset >> 3, va_page->slots);
961 }
962 
963 /**
964  * sgx_va_page_full - is the VA page full?
965  * @va_page:	a &struct sgx_va_page instance
966  *
967  * Return: true if all slots have been taken
968  */
969 bool sgx_va_page_full(struct sgx_va_page *va_page)
970 {
971 	int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT);
972 
973 	return slot == SGX_VA_SLOT_COUNT;
974 }
975 
976 /**
977  * sgx_encl_free_epc_page - free an EPC page assigned to an enclave
978  * @page:	EPC page to be freed
979  *
980  * Free an EPC page assigned to an enclave. It does EREMOVE for the page, and
981  * only upon success, it puts the page back to free page list.  Otherwise, it
982  * gives a WARNING to indicate page is leaked.
983  */
984 void sgx_encl_free_epc_page(struct sgx_epc_page *page)
985 {
986 	int ret;
987 
988 	WARN_ON_ONCE(page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED);
989 
990 	ret = __eremove(sgx_get_epc_virt_addr(page));
991 	if (WARN_ONCE(ret, EREMOVE_ERROR_MESSAGE, ret, ret))
992 		return;
993 
994 	sgx_free_epc_page(page);
995 }
996