xref: /linux/arch/x86/kvm/mmu/mmu.c (revision 1e525507)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include "irq.h"
20 #include "ioapic.h"
21 #include "mmu.h"
22 #include "mmu_internal.h"
23 #include "tdp_mmu.h"
24 #include "x86.h"
25 #include "kvm_cache_regs.h"
26 #include "smm.h"
27 #include "kvm_emulate.h"
28 #include "page_track.h"
29 #include "cpuid.h"
30 #include "spte.h"
31 
32 #include <linux/kvm_host.h>
33 #include <linux/types.h>
34 #include <linux/string.h>
35 #include <linux/mm.h>
36 #include <linux/highmem.h>
37 #include <linux/moduleparam.h>
38 #include <linux/export.h>
39 #include <linux/swap.h>
40 #include <linux/hugetlb.h>
41 #include <linux/compiler.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/sched/signal.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <linux/kern_levels.h>
48 #include <linux/kstrtox.h>
49 #include <linux/kthread.h>
50 #include <linux/wordpart.h>
51 
52 #include <asm/page.h>
53 #include <asm/memtype.h>
54 #include <asm/cmpxchg.h>
55 #include <asm/io.h>
56 #include <asm/set_memory.h>
57 #include <asm/spec-ctrl.h>
58 #include <asm/vmx.h>
59 
60 #include "trace.h"
61 
62 static bool nx_hugepage_mitigation_hard_disabled;
63 
64 int __read_mostly nx_huge_pages = -1;
65 static uint __read_mostly nx_huge_pages_recovery_period_ms;
66 #ifdef CONFIG_PREEMPT_RT
67 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
68 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
69 #else
70 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
71 #endif
72 
73 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp);
74 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
75 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
76 
77 static const struct kernel_param_ops nx_huge_pages_ops = {
78 	.set = set_nx_huge_pages,
79 	.get = get_nx_huge_pages,
80 };
81 
82 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
83 	.set = set_nx_huge_pages_recovery_param,
84 	.get = param_get_uint,
85 };
86 
87 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
88 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
89 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
90 		&nx_huge_pages_recovery_ratio, 0644);
91 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
92 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
93 		&nx_huge_pages_recovery_period_ms, 0644);
94 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
95 
96 static bool __read_mostly force_flush_and_sync_on_reuse;
97 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
98 
99 /*
100  * When setting this variable to true it enables Two-Dimensional-Paging
101  * where the hardware walks 2 page tables:
102  * 1. the guest-virtual to guest-physical
103  * 2. while doing 1. it walks guest-physical to host-physical
104  * If the hardware supports that we don't need to do shadow paging.
105  */
106 bool tdp_enabled = false;
107 
108 static bool __ro_after_init tdp_mmu_allowed;
109 
110 #ifdef CONFIG_X86_64
111 bool __read_mostly tdp_mmu_enabled = true;
112 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444);
113 #endif
114 
115 static int max_huge_page_level __read_mostly;
116 static int tdp_root_level __read_mostly;
117 static int max_tdp_level __read_mostly;
118 
119 #define PTE_PREFETCH_NUM		8
120 
121 #include <trace/events/kvm.h>
122 
123 /* make pte_list_desc fit well in cache lines */
124 #define PTE_LIST_EXT 14
125 
126 /*
127  * struct pte_list_desc is the core data structure used to implement a custom
128  * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a
129  * given GFN when used in the context of rmaps.  Using a custom list allows KVM
130  * to optimize for the common case where many GFNs will have at most a handful
131  * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small
132  * memory footprint, which in turn improves runtime performance by exploiting
133  * cache locality.
134  *
135  * A list is comprised of one or more pte_list_desc objects (descriptors).
136  * Each individual descriptor stores up to PTE_LIST_EXT SPTEs.  If a descriptor
137  * is full and a new SPTEs needs to be added, a new descriptor is allocated and
138  * becomes the head of the list.  This means that by definitions, all tail
139  * descriptors are full.
140  *
141  * Note, the meta data fields are deliberately placed at the start of the
142  * structure to optimize the cacheline layout; accessing the descriptor will
143  * touch only a single cacheline so long as @spte_count<=6 (or if only the
144  * descriptors metadata is accessed).
145  */
146 struct pte_list_desc {
147 	struct pte_list_desc *more;
148 	/* The number of PTEs stored in _this_ descriptor. */
149 	u32 spte_count;
150 	/* The number of PTEs stored in all tails of this descriptor. */
151 	u32 tail_count;
152 	u64 *sptes[PTE_LIST_EXT];
153 };
154 
155 struct kvm_shadow_walk_iterator {
156 	u64 addr;
157 	hpa_t shadow_addr;
158 	u64 *sptep;
159 	int level;
160 	unsigned index;
161 };
162 
163 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
164 	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
165 					 (_root), (_addr));                \
166 	     shadow_walk_okay(&(_walker));			           \
167 	     shadow_walk_next(&(_walker)))
168 
169 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
170 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
171 	     shadow_walk_okay(&(_walker));			\
172 	     shadow_walk_next(&(_walker)))
173 
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
175 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
176 	     shadow_walk_okay(&(_walker)) &&				\
177 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
178 	     __shadow_walk_next(&(_walker), spte))
179 
180 static struct kmem_cache *pte_list_desc_cache;
181 struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183 
184 static void mmu_spte_set(u64 *sptep, u64 spte);
185 
186 struct kvm_mmu_role_regs {
187 	const unsigned long cr0;
188 	const unsigned long cr4;
189 	const u64 efer;
190 };
191 
192 #define CREATE_TRACE_POINTS
193 #include "mmutrace.h"
194 
195 /*
196  * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
197  * reading from the role_regs.  Once the root_role is constructed, it becomes
198  * the single source of truth for the MMU's state.
199  */
200 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
201 static inline bool __maybe_unused					\
202 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs)		\
203 {									\
204 	return !!(regs->reg & flag);					\
205 }
206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
215 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
216 
217 /*
218  * The MMU itself (with a valid role) is the single source of truth for the
219  * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
220  * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
221  * and the vCPU may be incorrect/irrelevant.
222  */
223 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
224 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)	\
225 {								\
226 	return !!(mmu->cpu_role. base_or_ext . reg##_##name);	\
227 }
228 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
229 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
230 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
231 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
232 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
233 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
234 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
235 BUILD_MMU_ROLE_ACCESSOR(ext,  efer, lma);
236 
237 static inline bool is_cr0_pg(struct kvm_mmu *mmu)
238 {
239         return mmu->cpu_role.base.level > 0;
240 }
241 
242 static inline bool is_cr4_pae(struct kvm_mmu *mmu)
243 {
244         return !mmu->cpu_role.base.has_4_byte_gpte;
245 }
246 
247 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
248 {
249 	struct kvm_mmu_role_regs regs = {
250 		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
251 		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
252 		.efer = vcpu->arch.efer,
253 	};
254 
255 	return regs;
256 }
257 
258 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu)
259 {
260 	return kvm_read_cr3(vcpu);
261 }
262 
263 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu,
264 						  struct kvm_mmu *mmu)
265 {
266 	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3)
267 		return kvm_read_cr3(vcpu);
268 
269 	return mmu->get_guest_pgd(vcpu);
270 }
271 
272 static inline bool kvm_available_flush_remote_tlbs_range(void)
273 {
274 #if IS_ENABLED(CONFIG_HYPERV)
275 	return kvm_x86_ops.flush_remote_tlbs_range;
276 #else
277 	return false;
278 #endif
279 }
280 
281 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index);
282 
283 /* Flush the range of guest memory mapped by the given SPTE. */
284 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep)
285 {
286 	struct kvm_mmu_page *sp = sptep_to_sp(sptep);
287 	gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep));
288 
289 	kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level);
290 }
291 
292 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
293 			   unsigned int access)
294 {
295 	u64 spte = make_mmio_spte(vcpu, gfn, access);
296 
297 	trace_mark_mmio_spte(sptep, gfn, spte);
298 	mmu_spte_set(sptep, spte);
299 }
300 
301 static gfn_t get_mmio_spte_gfn(u64 spte)
302 {
303 	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
304 
305 	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
306 	       & shadow_nonpresent_or_rsvd_mask;
307 
308 	return gpa >> PAGE_SHIFT;
309 }
310 
311 static unsigned get_mmio_spte_access(u64 spte)
312 {
313 	return spte & shadow_mmio_access_mask;
314 }
315 
316 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
317 {
318 	u64 kvm_gen, spte_gen, gen;
319 
320 	gen = kvm_vcpu_memslots(vcpu)->generation;
321 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
322 		return false;
323 
324 	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
325 	spte_gen = get_mmio_spte_generation(spte);
326 
327 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
328 	return likely(kvm_gen == spte_gen);
329 }
330 
331 static int is_cpuid_PSE36(void)
332 {
333 	return 1;
334 }
335 
336 #ifdef CONFIG_X86_64
337 static void __set_spte(u64 *sptep, u64 spte)
338 {
339 	WRITE_ONCE(*sptep, spte);
340 }
341 
342 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
343 {
344 	WRITE_ONCE(*sptep, spte);
345 }
346 
347 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
348 {
349 	return xchg(sptep, spte);
350 }
351 
352 static u64 __get_spte_lockless(u64 *sptep)
353 {
354 	return READ_ONCE(*sptep);
355 }
356 #else
357 union split_spte {
358 	struct {
359 		u32 spte_low;
360 		u32 spte_high;
361 	};
362 	u64 spte;
363 };
364 
365 static void count_spte_clear(u64 *sptep, u64 spte)
366 {
367 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
368 
369 	if (is_shadow_present_pte(spte))
370 		return;
371 
372 	/* Ensure the spte is completely set before we increase the count */
373 	smp_wmb();
374 	sp->clear_spte_count++;
375 }
376 
377 static void __set_spte(u64 *sptep, u64 spte)
378 {
379 	union split_spte *ssptep, sspte;
380 
381 	ssptep = (union split_spte *)sptep;
382 	sspte = (union split_spte)spte;
383 
384 	ssptep->spte_high = sspte.spte_high;
385 
386 	/*
387 	 * If we map the spte from nonpresent to present, We should store
388 	 * the high bits firstly, then set present bit, so cpu can not
389 	 * fetch this spte while we are setting the spte.
390 	 */
391 	smp_wmb();
392 
393 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
394 }
395 
396 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
397 {
398 	union split_spte *ssptep, sspte;
399 
400 	ssptep = (union split_spte *)sptep;
401 	sspte = (union split_spte)spte;
402 
403 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
404 
405 	/*
406 	 * If we map the spte from present to nonpresent, we should clear
407 	 * present bit firstly to avoid vcpu fetch the old high bits.
408 	 */
409 	smp_wmb();
410 
411 	ssptep->spte_high = sspte.spte_high;
412 	count_spte_clear(sptep, spte);
413 }
414 
415 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
416 {
417 	union split_spte *ssptep, sspte, orig;
418 
419 	ssptep = (union split_spte *)sptep;
420 	sspte = (union split_spte)spte;
421 
422 	/* xchg acts as a barrier before the setting of the high bits */
423 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
424 	orig.spte_high = ssptep->spte_high;
425 	ssptep->spte_high = sspte.spte_high;
426 	count_spte_clear(sptep, spte);
427 
428 	return orig.spte;
429 }
430 
431 /*
432  * The idea using the light way get the spte on x86_32 guest is from
433  * gup_get_pte (mm/gup.c).
434  *
435  * An spte tlb flush may be pending, because kvm_set_pte_rmap
436  * coalesces them and we are running out of the MMU lock.  Therefore
437  * we need to protect against in-progress updates of the spte.
438  *
439  * Reading the spte while an update is in progress may get the old value
440  * for the high part of the spte.  The race is fine for a present->non-present
441  * change (because the high part of the spte is ignored for non-present spte),
442  * but for a present->present change we must reread the spte.
443  *
444  * All such changes are done in two steps (present->non-present and
445  * non-present->present), hence it is enough to count the number of
446  * present->non-present updates: if it changed while reading the spte,
447  * we might have hit the race.  This is done using clear_spte_count.
448  */
449 static u64 __get_spte_lockless(u64 *sptep)
450 {
451 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
452 	union split_spte spte, *orig = (union split_spte *)sptep;
453 	int count;
454 
455 retry:
456 	count = sp->clear_spte_count;
457 	smp_rmb();
458 
459 	spte.spte_low = orig->spte_low;
460 	smp_rmb();
461 
462 	spte.spte_high = orig->spte_high;
463 	smp_rmb();
464 
465 	if (unlikely(spte.spte_low != orig->spte_low ||
466 	      count != sp->clear_spte_count))
467 		goto retry;
468 
469 	return spte.spte;
470 }
471 #endif
472 
473 /* Rules for using mmu_spte_set:
474  * Set the sptep from nonpresent to present.
475  * Note: the sptep being assigned *must* be either not present
476  * or in a state where the hardware will not attempt to update
477  * the spte.
478  */
479 static void mmu_spte_set(u64 *sptep, u64 new_spte)
480 {
481 	WARN_ON_ONCE(is_shadow_present_pte(*sptep));
482 	__set_spte(sptep, new_spte);
483 }
484 
485 /*
486  * Update the SPTE (excluding the PFN), but do not track changes in its
487  * accessed/dirty status.
488  */
489 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
490 {
491 	u64 old_spte = *sptep;
492 
493 	WARN_ON_ONCE(!is_shadow_present_pte(new_spte));
494 	check_spte_writable_invariants(new_spte);
495 
496 	if (!is_shadow_present_pte(old_spte)) {
497 		mmu_spte_set(sptep, new_spte);
498 		return old_spte;
499 	}
500 
501 	if (!spte_has_volatile_bits(old_spte))
502 		__update_clear_spte_fast(sptep, new_spte);
503 	else
504 		old_spte = __update_clear_spte_slow(sptep, new_spte);
505 
506 	WARN_ON_ONCE(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
507 
508 	return old_spte;
509 }
510 
511 /* Rules for using mmu_spte_update:
512  * Update the state bits, it means the mapped pfn is not changed.
513  *
514  * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote
515  * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only
516  * spte, even though the writable spte might be cached on a CPU's TLB.
517  *
518  * Returns true if the TLB needs to be flushed
519  */
520 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
521 {
522 	bool flush = false;
523 	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
524 
525 	if (!is_shadow_present_pte(old_spte))
526 		return false;
527 
528 	/*
529 	 * For the spte updated out of mmu-lock is safe, since
530 	 * we always atomically update it, see the comments in
531 	 * spte_has_volatile_bits().
532 	 */
533 	if (is_mmu_writable_spte(old_spte) &&
534 	      !is_writable_pte(new_spte))
535 		flush = true;
536 
537 	/*
538 	 * Flush TLB when accessed/dirty states are changed in the page tables,
539 	 * to guarantee consistency between TLB and page tables.
540 	 */
541 
542 	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
543 		flush = true;
544 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
545 	}
546 
547 	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
548 		flush = true;
549 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
550 	}
551 
552 	return flush;
553 }
554 
555 /*
556  * Rules for using mmu_spte_clear_track_bits:
557  * It sets the sptep from present to nonpresent, and track the
558  * state bits, it is used to clear the last level sptep.
559  * Returns the old PTE.
560  */
561 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
562 {
563 	kvm_pfn_t pfn;
564 	u64 old_spte = *sptep;
565 	int level = sptep_to_sp(sptep)->role.level;
566 	struct page *page;
567 
568 	if (!is_shadow_present_pte(old_spte) ||
569 	    !spte_has_volatile_bits(old_spte))
570 		__update_clear_spte_fast(sptep, 0ull);
571 	else
572 		old_spte = __update_clear_spte_slow(sptep, 0ull);
573 
574 	if (!is_shadow_present_pte(old_spte))
575 		return old_spte;
576 
577 	kvm_update_page_stats(kvm, level, -1);
578 
579 	pfn = spte_to_pfn(old_spte);
580 
581 	/*
582 	 * KVM doesn't hold a reference to any pages mapped into the guest, and
583 	 * instead uses the mmu_notifier to ensure that KVM unmaps any pages
584 	 * before they are reclaimed.  Sanity check that, if the pfn is backed
585 	 * by a refcounted page, the refcount is elevated.
586 	 */
587 	page = kvm_pfn_to_refcounted_page(pfn);
588 	WARN_ON_ONCE(page && !page_count(page));
589 
590 	if (is_accessed_spte(old_spte))
591 		kvm_set_pfn_accessed(pfn);
592 
593 	if (is_dirty_spte(old_spte))
594 		kvm_set_pfn_dirty(pfn);
595 
596 	return old_spte;
597 }
598 
599 /*
600  * Rules for using mmu_spte_clear_no_track:
601  * Directly clear spte without caring the state bits of sptep,
602  * it is used to set the upper level spte.
603  */
604 static void mmu_spte_clear_no_track(u64 *sptep)
605 {
606 	__update_clear_spte_fast(sptep, 0ull);
607 }
608 
609 static u64 mmu_spte_get_lockless(u64 *sptep)
610 {
611 	return __get_spte_lockless(sptep);
612 }
613 
614 /* Returns the Accessed status of the PTE and resets it at the same time. */
615 static bool mmu_spte_age(u64 *sptep)
616 {
617 	u64 spte = mmu_spte_get_lockless(sptep);
618 
619 	if (!is_accessed_spte(spte))
620 		return false;
621 
622 	if (spte_ad_enabled(spte)) {
623 		clear_bit((ffs(shadow_accessed_mask) - 1),
624 			  (unsigned long *)sptep);
625 	} else {
626 		/*
627 		 * Capture the dirty status of the page, so that it doesn't get
628 		 * lost when the SPTE is marked for access tracking.
629 		 */
630 		if (is_writable_pte(spte))
631 			kvm_set_pfn_dirty(spte_to_pfn(spte));
632 
633 		spte = mark_spte_for_access_track(spte);
634 		mmu_spte_update_no_track(sptep, spte);
635 	}
636 
637 	return true;
638 }
639 
640 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu)
641 {
642 	return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct;
643 }
644 
645 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
646 {
647 	if (is_tdp_mmu_active(vcpu)) {
648 		kvm_tdp_mmu_walk_lockless_begin();
649 	} else {
650 		/*
651 		 * Prevent page table teardown by making any free-er wait during
652 		 * kvm_flush_remote_tlbs() IPI to all active vcpus.
653 		 */
654 		local_irq_disable();
655 
656 		/*
657 		 * Make sure a following spte read is not reordered ahead of the write
658 		 * to vcpu->mode.
659 		 */
660 		smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
661 	}
662 }
663 
664 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
665 {
666 	if (is_tdp_mmu_active(vcpu)) {
667 		kvm_tdp_mmu_walk_lockless_end();
668 	} else {
669 		/*
670 		 * Make sure the write to vcpu->mode is not reordered in front of
671 		 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
672 		 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
673 		 */
674 		smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
675 		local_irq_enable();
676 	}
677 }
678 
679 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
680 {
681 	int r;
682 
683 	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
684 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
685 				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
686 	if (r)
687 		return r;
688 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
689 				       PT64_ROOT_MAX_LEVEL);
690 	if (r)
691 		return r;
692 	if (maybe_indirect) {
693 		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache,
694 					       PT64_ROOT_MAX_LEVEL);
695 		if (r)
696 			return r;
697 	}
698 	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
699 					  PT64_ROOT_MAX_LEVEL);
700 }
701 
702 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
703 {
704 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
705 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
706 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache);
707 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
708 }
709 
710 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
711 {
712 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
713 }
714 
715 static bool sp_has_gptes(struct kvm_mmu_page *sp);
716 
717 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
718 {
719 	if (sp->role.passthrough)
720 		return sp->gfn;
721 
722 	if (!sp->role.direct)
723 		return sp->shadowed_translation[index] >> PAGE_SHIFT;
724 
725 	return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS));
726 }
727 
728 /*
729  * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note
730  * that the SPTE itself may have a more constrained access permissions that
731  * what the guest enforces. For example, a guest may create an executable
732  * huge PTE but KVM may disallow execution to mitigate iTLB multihit.
733  */
734 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index)
735 {
736 	if (sp_has_gptes(sp))
737 		return sp->shadowed_translation[index] & ACC_ALL;
738 
739 	/*
740 	 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs,
741 	 * KVM is not shadowing any guest page tables, so the "guest access
742 	 * permissions" are just ACC_ALL.
743 	 *
744 	 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM
745 	 * is shadowing a guest huge page with small pages, the guest access
746 	 * permissions being shadowed are the access permissions of the huge
747 	 * page.
748 	 *
749 	 * In both cases, sp->role.access contains the correct access bits.
750 	 */
751 	return sp->role.access;
752 }
753 
754 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index,
755 					 gfn_t gfn, unsigned int access)
756 {
757 	if (sp_has_gptes(sp)) {
758 		sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access;
759 		return;
760 	}
761 
762 	WARN_ONCE(access != kvm_mmu_page_get_access(sp, index),
763 	          "access mismatch under %s page %llx (expected %u, got %u)\n",
764 	          sp->role.passthrough ? "passthrough" : "direct",
765 	          sp->gfn, kvm_mmu_page_get_access(sp, index), access);
766 
767 	WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index),
768 	          "gfn mismatch under %s page %llx (expected %llx, got %llx)\n",
769 	          sp->role.passthrough ? "passthrough" : "direct",
770 	          sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn);
771 }
772 
773 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index,
774 				    unsigned int access)
775 {
776 	gfn_t gfn = kvm_mmu_page_get_gfn(sp, index);
777 
778 	kvm_mmu_page_set_translation(sp, index, gfn, access);
779 }
780 
781 /*
782  * Return the pointer to the large page information for a given gfn,
783  * handling slots that are not large page aligned.
784  */
785 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
786 		const struct kvm_memory_slot *slot, int level)
787 {
788 	unsigned long idx;
789 
790 	idx = gfn_to_index(gfn, slot->base_gfn, level);
791 	return &slot->arch.lpage_info[level - 2][idx];
792 }
793 
794 /*
795  * The most significant bit in disallow_lpage tracks whether or not memory
796  * attributes are mixed, i.e. not identical for all gfns at the current level.
797  * The lower order bits are used to refcount other cases where a hugepage is
798  * disallowed, e.g. if KVM has shadow a page table at the gfn.
799  */
800 #define KVM_LPAGE_MIXED_FLAG	BIT(31)
801 
802 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
803 					    gfn_t gfn, int count)
804 {
805 	struct kvm_lpage_info *linfo;
806 	int old, i;
807 
808 	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
809 		linfo = lpage_info_slot(gfn, slot, i);
810 
811 		old = linfo->disallow_lpage;
812 		linfo->disallow_lpage += count;
813 		WARN_ON_ONCE((old ^ linfo->disallow_lpage) & KVM_LPAGE_MIXED_FLAG);
814 	}
815 }
816 
817 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
818 {
819 	update_gfn_disallow_lpage_count(slot, gfn, 1);
820 }
821 
822 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
823 {
824 	update_gfn_disallow_lpage_count(slot, gfn, -1);
825 }
826 
827 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
828 {
829 	struct kvm_memslots *slots;
830 	struct kvm_memory_slot *slot;
831 	gfn_t gfn;
832 
833 	kvm->arch.indirect_shadow_pages++;
834 	gfn = sp->gfn;
835 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
836 	slot = __gfn_to_memslot(slots, gfn);
837 
838 	/* the non-leaf shadow pages are keeping readonly. */
839 	if (sp->role.level > PG_LEVEL_4K)
840 		return __kvm_write_track_add_gfn(kvm, slot, gfn);
841 
842 	kvm_mmu_gfn_disallow_lpage(slot, gfn);
843 
844 	if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K))
845 		kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K);
846 }
847 
848 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
849 {
850 	/*
851 	 * If it's possible to replace the shadow page with an NX huge page,
852 	 * i.e. if the shadow page is the only thing currently preventing KVM
853 	 * from using a huge page, add the shadow page to the list of "to be
854 	 * zapped for NX recovery" pages.  Note, the shadow page can already be
855 	 * on the list if KVM is reusing an existing shadow page, i.e. if KVM
856 	 * links a shadow page at multiple points.
857 	 */
858 	if (!list_empty(&sp->possible_nx_huge_page_link))
859 		return;
860 
861 	++kvm->stat.nx_lpage_splits;
862 	list_add_tail(&sp->possible_nx_huge_page_link,
863 		      &kvm->arch.possible_nx_huge_pages);
864 }
865 
866 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp,
867 				 bool nx_huge_page_possible)
868 {
869 	sp->nx_huge_page_disallowed = true;
870 
871 	if (nx_huge_page_possible)
872 		track_possible_nx_huge_page(kvm, sp);
873 }
874 
875 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
876 {
877 	struct kvm_memslots *slots;
878 	struct kvm_memory_slot *slot;
879 	gfn_t gfn;
880 
881 	kvm->arch.indirect_shadow_pages--;
882 	gfn = sp->gfn;
883 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
884 	slot = __gfn_to_memslot(slots, gfn);
885 	if (sp->role.level > PG_LEVEL_4K)
886 		return __kvm_write_track_remove_gfn(kvm, slot, gfn);
887 
888 	kvm_mmu_gfn_allow_lpage(slot, gfn);
889 }
890 
891 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
892 {
893 	if (list_empty(&sp->possible_nx_huge_page_link))
894 		return;
895 
896 	--kvm->stat.nx_lpage_splits;
897 	list_del_init(&sp->possible_nx_huge_page_link);
898 }
899 
900 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
901 {
902 	sp->nx_huge_page_disallowed = false;
903 
904 	untrack_possible_nx_huge_page(kvm, sp);
905 }
906 
907 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu,
908 							   gfn_t gfn,
909 							   bool no_dirty_log)
910 {
911 	struct kvm_memory_slot *slot;
912 
913 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
914 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
915 		return NULL;
916 	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
917 		return NULL;
918 
919 	return slot;
920 }
921 
922 /*
923  * About rmap_head encoding:
924  *
925  * If the bit zero of rmap_head->val is clear, then it points to the only spte
926  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
927  * pte_list_desc containing more mappings.
928  */
929 
930 /*
931  * Returns the number of pointers in the rmap chain, not counting the new one.
932  */
933 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte,
934 			struct kvm_rmap_head *rmap_head)
935 {
936 	struct pte_list_desc *desc;
937 	int count = 0;
938 
939 	if (!rmap_head->val) {
940 		rmap_head->val = (unsigned long)spte;
941 	} else if (!(rmap_head->val & 1)) {
942 		desc = kvm_mmu_memory_cache_alloc(cache);
943 		desc->sptes[0] = (u64 *)rmap_head->val;
944 		desc->sptes[1] = spte;
945 		desc->spte_count = 2;
946 		desc->tail_count = 0;
947 		rmap_head->val = (unsigned long)desc | 1;
948 		++count;
949 	} else {
950 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
951 		count = desc->tail_count + desc->spte_count;
952 
953 		/*
954 		 * If the previous head is full, allocate a new head descriptor
955 		 * as tail descriptors are always kept full.
956 		 */
957 		if (desc->spte_count == PTE_LIST_EXT) {
958 			desc = kvm_mmu_memory_cache_alloc(cache);
959 			desc->more = (struct pte_list_desc *)(rmap_head->val & ~1ul);
960 			desc->spte_count = 0;
961 			desc->tail_count = count;
962 			rmap_head->val = (unsigned long)desc | 1;
963 		}
964 		desc->sptes[desc->spte_count++] = spte;
965 	}
966 	return count;
967 }
968 
969 static void pte_list_desc_remove_entry(struct kvm *kvm,
970 				       struct kvm_rmap_head *rmap_head,
971 				       struct pte_list_desc *desc, int i)
972 {
973 	struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
974 	int j = head_desc->spte_count - 1;
975 
976 	/*
977 	 * The head descriptor should never be empty.  A new head is added only
978 	 * when adding an entry and the previous head is full, and heads are
979 	 * removed (this flow) when they become empty.
980 	 */
981 	KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm);
982 
983 	/*
984 	 * Replace the to-be-freed SPTE with the last valid entry from the head
985 	 * descriptor to ensure that tail descriptors are full at all times.
986 	 * Note, this also means that tail_count is stable for each descriptor.
987 	 */
988 	desc->sptes[i] = head_desc->sptes[j];
989 	head_desc->sptes[j] = NULL;
990 	head_desc->spte_count--;
991 	if (head_desc->spte_count)
992 		return;
993 
994 	/*
995 	 * The head descriptor is empty.  If there are no tail descriptors,
996 	 * nullify the rmap head to mark the list as empty, else point the rmap
997 	 * head at the next descriptor, i.e. the new head.
998 	 */
999 	if (!head_desc->more)
1000 		rmap_head->val = 0;
1001 	else
1002 		rmap_head->val = (unsigned long)head_desc->more | 1;
1003 	mmu_free_pte_list_desc(head_desc);
1004 }
1005 
1006 static void pte_list_remove(struct kvm *kvm, u64 *spte,
1007 			    struct kvm_rmap_head *rmap_head)
1008 {
1009 	struct pte_list_desc *desc;
1010 	int i;
1011 
1012 	if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_head->val, kvm))
1013 		return;
1014 
1015 	if (!(rmap_head->val & 1)) {
1016 		if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_head->val != spte, kvm))
1017 			return;
1018 
1019 		rmap_head->val = 0;
1020 	} else {
1021 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1022 		while (desc) {
1023 			for (i = 0; i < desc->spte_count; ++i) {
1024 				if (desc->sptes[i] == spte) {
1025 					pte_list_desc_remove_entry(kvm, rmap_head,
1026 								   desc, i);
1027 					return;
1028 				}
1029 			}
1030 			desc = desc->more;
1031 		}
1032 
1033 		KVM_BUG_ON_DATA_CORRUPTION(true, kvm);
1034 	}
1035 }
1036 
1037 static void kvm_zap_one_rmap_spte(struct kvm *kvm,
1038 				  struct kvm_rmap_head *rmap_head, u64 *sptep)
1039 {
1040 	mmu_spte_clear_track_bits(kvm, sptep);
1041 	pte_list_remove(kvm, sptep, rmap_head);
1042 }
1043 
1044 /* Return true if at least one SPTE was zapped, false otherwise */
1045 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm,
1046 				   struct kvm_rmap_head *rmap_head)
1047 {
1048 	struct pte_list_desc *desc, *next;
1049 	int i;
1050 
1051 	if (!rmap_head->val)
1052 		return false;
1053 
1054 	if (!(rmap_head->val & 1)) {
1055 		mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
1056 		goto out;
1057 	}
1058 
1059 	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1060 
1061 	for (; desc; desc = next) {
1062 		for (i = 0; i < desc->spte_count; i++)
1063 			mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
1064 		next = desc->more;
1065 		mmu_free_pte_list_desc(desc);
1066 	}
1067 out:
1068 	/* rmap_head is meaningless now, remember to reset it */
1069 	rmap_head->val = 0;
1070 	return true;
1071 }
1072 
1073 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
1074 {
1075 	struct pte_list_desc *desc;
1076 
1077 	if (!rmap_head->val)
1078 		return 0;
1079 	else if (!(rmap_head->val & 1))
1080 		return 1;
1081 
1082 	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1083 	return desc->tail_count + desc->spte_count;
1084 }
1085 
1086 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1087 					 const struct kvm_memory_slot *slot)
1088 {
1089 	unsigned long idx;
1090 
1091 	idx = gfn_to_index(gfn, slot->base_gfn, level);
1092 	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1093 }
1094 
1095 static void rmap_remove(struct kvm *kvm, u64 *spte)
1096 {
1097 	struct kvm_memslots *slots;
1098 	struct kvm_memory_slot *slot;
1099 	struct kvm_mmu_page *sp;
1100 	gfn_t gfn;
1101 	struct kvm_rmap_head *rmap_head;
1102 
1103 	sp = sptep_to_sp(spte);
1104 	gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte));
1105 
1106 	/*
1107 	 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
1108 	 * so we have to determine which memslots to use based on context
1109 	 * information in sp->role.
1110 	 */
1111 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1112 
1113 	slot = __gfn_to_memslot(slots, gfn);
1114 	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1115 
1116 	pte_list_remove(kvm, spte, rmap_head);
1117 }
1118 
1119 /*
1120  * Used by the following functions to iterate through the sptes linked by a
1121  * rmap.  All fields are private and not assumed to be used outside.
1122  */
1123 struct rmap_iterator {
1124 	/* private fields */
1125 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
1126 	int pos;			/* index of the sptep */
1127 };
1128 
1129 /*
1130  * Iteration must be started by this function.  This should also be used after
1131  * removing/dropping sptes from the rmap link because in such cases the
1132  * information in the iterator may not be valid.
1133  *
1134  * Returns sptep if found, NULL otherwise.
1135  */
1136 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1137 			   struct rmap_iterator *iter)
1138 {
1139 	u64 *sptep;
1140 
1141 	if (!rmap_head->val)
1142 		return NULL;
1143 
1144 	if (!(rmap_head->val & 1)) {
1145 		iter->desc = NULL;
1146 		sptep = (u64 *)rmap_head->val;
1147 		goto out;
1148 	}
1149 
1150 	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1151 	iter->pos = 0;
1152 	sptep = iter->desc->sptes[iter->pos];
1153 out:
1154 	BUG_ON(!is_shadow_present_pte(*sptep));
1155 	return sptep;
1156 }
1157 
1158 /*
1159  * Must be used with a valid iterator: e.g. after rmap_get_first().
1160  *
1161  * Returns sptep if found, NULL otherwise.
1162  */
1163 static u64 *rmap_get_next(struct rmap_iterator *iter)
1164 {
1165 	u64 *sptep;
1166 
1167 	if (iter->desc) {
1168 		if (iter->pos < PTE_LIST_EXT - 1) {
1169 			++iter->pos;
1170 			sptep = iter->desc->sptes[iter->pos];
1171 			if (sptep)
1172 				goto out;
1173 		}
1174 
1175 		iter->desc = iter->desc->more;
1176 
1177 		if (iter->desc) {
1178 			iter->pos = 0;
1179 			/* desc->sptes[0] cannot be NULL */
1180 			sptep = iter->desc->sptes[iter->pos];
1181 			goto out;
1182 		}
1183 	}
1184 
1185 	return NULL;
1186 out:
1187 	BUG_ON(!is_shadow_present_pte(*sptep));
1188 	return sptep;
1189 }
1190 
1191 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1192 	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1193 	     _spte_; _spte_ = rmap_get_next(_iter_))
1194 
1195 static void drop_spte(struct kvm *kvm, u64 *sptep)
1196 {
1197 	u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1198 
1199 	if (is_shadow_present_pte(old_spte))
1200 		rmap_remove(kvm, sptep);
1201 }
1202 
1203 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush)
1204 {
1205 	struct kvm_mmu_page *sp;
1206 
1207 	sp = sptep_to_sp(sptep);
1208 	WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K);
1209 
1210 	drop_spte(kvm, sptep);
1211 
1212 	if (flush)
1213 		kvm_flush_remote_tlbs_sptep(kvm, sptep);
1214 }
1215 
1216 /*
1217  * Write-protect on the specified @sptep, @pt_protect indicates whether
1218  * spte write-protection is caused by protecting shadow page table.
1219  *
1220  * Note: write protection is difference between dirty logging and spte
1221  * protection:
1222  * - for dirty logging, the spte can be set to writable at anytime if
1223  *   its dirty bitmap is properly set.
1224  * - for spte protection, the spte can be writable only after unsync-ing
1225  *   shadow page.
1226  *
1227  * Return true if tlb need be flushed.
1228  */
1229 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1230 {
1231 	u64 spte = *sptep;
1232 
1233 	if (!is_writable_pte(spte) &&
1234 	    !(pt_protect && is_mmu_writable_spte(spte)))
1235 		return false;
1236 
1237 	if (pt_protect)
1238 		spte &= ~shadow_mmu_writable_mask;
1239 	spte = spte & ~PT_WRITABLE_MASK;
1240 
1241 	return mmu_spte_update(sptep, spte);
1242 }
1243 
1244 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
1245 			       bool pt_protect)
1246 {
1247 	u64 *sptep;
1248 	struct rmap_iterator iter;
1249 	bool flush = false;
1250 
1251 	for_each_rmap_spte(rmap_head, &iter, sptep)
1252 		flush |= spte_write_protect(sptep, pt_protect);
1253 
1254 	return flush;
1255 }
1256 
1257 static bool spte_clear_dirty(u64 *sptep)
1258 {
1259 	u64 spte = *sptep;
1260 
1261 	KVM_MMU_WARN_ON(!spte_ad_enabled(spte));
1262 	spte &= ~shadow_dirty_mask;
1263 	return mmu_spte_update(sptep, spte);
1264 }
1265 
1266 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1267 {
1268 	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1269 					       (unsigned long *)sptep);
1270 	if (was_writable && !spte_ad_enabled(*sptep))
1271 		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1272 
1273 	return was_writable;
1274 }
1275 
1276 /*
1277  * Gets the GFN ready for another round of dirty logging by clearing the
1278  *	- D bit on ad-enabled SPTEs, and
1279  *	- W bit on ad-disabled SPTEs.
1280  * Returns true iff any D or W bits were cleared.
1281  */
1282 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1283 			       const struct kvm_memory_slot *slot)
1284 {
1285 	u64 *sptep;
1286 	struct rmap_iterator iter;
1287 	bool flush = false;
1288 
1289 	for_each_rmap_spte(rmap_head, &iter, sptep)
1290 		if (spte_ad_need_write_protect(*sptep))
1291 			flush |= spte_wrprot_for_clear_dirty(sptep);
1292 		else
1293 			flush |= spte_clear_dirty(sptep);
1294 
1295 	return flush;
1296 }
1297 
1298 /**
1299  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1300  * @kvm: kvm instance
1301  * @slot: slot to protect
1302  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1303  * @mask: indicates which pages we should protect
1304  *
1305  * Used when we do not need to care about huge page mappings.
1306  */
1307 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1308 				     struct kvm_memory_slot *slot,
1309 				     gfn_t gfn_offset, unsigned long mask)
1310 {
1311 	struct kvm_rmap_head *rmap_head;
1312 
1313 	if (tdp_mmu_enabled)
1314 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1315 				slot->base_gfn + gfn_offset, mask, true);
1316 
1317 	if (!kvm_memslots_have_rmaps(kvm))
1318 		return;
1319 
1320 	while (mask) {
1321 		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1322 					PG_LEVEL_4K, slot);
1323 		rmap_write_protect(rmap_head, false);
1324 
1325 		/* clear the first set bit */
1326 		mask &= mask - 1;
1327 	}
1328 }
1329 
1330 /**
1331  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1332  * protect the page if the D-bit isn't supported.
1333  * @kvm: kvm instance
1334  * @slot: slot to clear D-bit
1335  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1336  * @mask: indicates which pages we should clear D-bit
1337  *
1338  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1339  */
1340 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1341 					 struct kvm_memory_slot *slot,
1342 					 gfn_t gfn_offset, unsigned long mask)
1343 {
1344 	struct kvm_rmap_head *rmap_head;
1345 
1346 	if (tdp_mmu_enabled)
1347 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1348 				slot->base_gfn + gfn_offset, mask, false);
1349 
1350 	if (!kvm_memslots_have_rmaps(kvm))
1351 		return;
1352 
1353 	while (mask) {
1354 		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1355 					PG_LEVEL_4K, slot);
1356 		__rmap_clear_dirty(kvm, rmap_head, slot);
1357 
1358 		/* clear the first set bit */
1359 		mask &= mask - 1;
1360 	}
1361 }
1362 
1363 /**
1364  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1365  * PT level pages.
1366  *
1367  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1368  * enable dirty logging for them.
1369  *
1370  * We need to care about huge page mappings: e.g. during dirty logging we may
1371  * have such mappings.
1372  */
1373 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1374 				struct kvm_memory_slot *slot,
1375 				gfn_t gfn_offset, unsigned long mask)
1376 {
1377 	/*
1378 	 * Huge pages are NOT write protected when we start dirty logging in
1379 	 * initially-all-set mode; must write protect them here so that they
1380 	 * are split to 4K on the first write.
1381 	 *
1382 	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1383 	 * of memslot has no such restriction, so the range can cross two large
1384 	 * pages.
1385 	 */
1386 	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1387 		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1388 		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1389 
1390 		if (READ_ONCE(eager_page_split))
1391 			kvm_mmu_try_split_huge_pages(kvm, slot, start, end + 1, PG_LEVEL_4K);
1392 
1393 		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1394 
1395 		/* Cross two large pages? */
1396 		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1397 		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1398 			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1399 						       PG_LEVEL_2M);
1400 	}
1401 
1402 	/* Now handle 4K PTEs.  */
1403 	if (kvm_x86_ops.cpu_dirty_log_size)
1404 		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1405 	else
1406 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1407 }
1408 
1409 int kvm_cpu_dirty_log_size(void)
1410 {
1411 	return kvm_x86_ops.cpu_dirty_log_size;
1412 }
1413 
1414 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1415 				    struct kvm_memory_slot *slot, u64 gfn,
1416 				    int min_level)
1417 {
1418 	struct kvm_rmap_head *rmap_head;
1419 	int i;
1420 	bool write_protected = false;
1421 
1422 	if (kvm_memslots_have_rmaps(kvm)) {
1423 		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1424 			rmap_head = gfn_to_rmap(gfn, i, slot);
1425 			write_protected |= rmap_write_protect(rmap_head, true);
1426 		}
1427 	}
1428 
1429 	if (tdp_mmu_enabled)
1430 		write_protected |=
1431 			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1432 
1433 	return write_protected;
1434 }
1435 
1436 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
1437 {
1438 	struct kvm_memory_slot *slot;
1439 
1440 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1441 	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1442 }
1443 
1444 static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1445 			   const struct kvm_memory_slot *slot)
1446 {
1447 	return kvm_zap_all_rmap_sptes(kvm, rmap_head);
1448 }
1449 
1450 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1451 			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1452 			 pte_t unused)
1453 {
1454 	return __kvm_zap_rmap(kvm, rmap_head, slot);
1455 }
1456 
1457 static bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1458 			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
1459 			     pte_t pte)
1460 {
1461 	u64 *sptep;
1462 	struct rmap_iterator iter;
1463 	bool need_flush = false;
1464 	u64 new_spte;
1465 	kvm_pfn_t new_pfn;
1466 
1467 	WARN_ON_ONCE(pte_huge(pte));
1468 	new_pfn = pte_pfn(pte);
1469 
1470 restart:
1471 	for_each_rmap_spte(rmap_head, &iter, sptep) {
1472 		need_flush = true;
1473 
1474 		if (pte_write(pte)) {
1475 			kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
1476 			goto restart;
1477 		} else {
1478 			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1479 					*sptep, new_pfn);
1480 
1481 			mmu_spte_clear_track_bits(kvm, sptep);
1482 			mmu_spte_set(sptep, new_spte);
1483 		}
1484 	}
1485 
1486 	if (need_flush && kvm_available_flush_remote_tlbs_range()) {
1487 		kvm_flush_remote_tlbs_gfn(kvm, gfn, level);
1488 		return false;
1489 	}
1490 
1491 	return need_flush;
1492 }
1493 
1494 struct slot_rmap_walk_iterator {
1495 	/* input fields. */
1496 	const struct kvm_memory_slot *slot;
1497 	gfn_t start_gfn;
1498 	gfn_t end_gfn;
1499 	int start_level;
1500 	int end_level;
1501 
1502 	/* output fields. */
1503 	gfn_t gfn;
1504 	struct kvm_rmap_head *rmap;
1505 	int level;
1506 
1507 	/* private field. */
1508 	struct kvm_rmap_head *end_rmap;
1509 };
1510 
1511 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator,
1512 				 int level)
1513 {
1514 	iterator->level = level;
1515 	iterator->gfn = iterator->start_gfn;
1516 	iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
1517 	iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1518 }
1519 
1520 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1521 				const struct kvm_memory_slot *slot,
1522 				int start_level, int end_level,
1523 				gfn_t start_gfn, gfn_t end_gfn)
1524 {
1525 	iterator->slot = slot;
1526 	iterator->start_level = start_level;
1527 	iterator->end_level = end_level;
1528 	iterator->start_gfn = start_gfn;
1529 	iterator->end_gfn = end_gfn;
1530 
1531 	rmap_walk_init_level(iterator, iterator->start_level);
1532 }
1533 
1534 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1535 {
1536 	return !!iterator->rmap;
1537 }
1538 
1539 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1540 {
1541 	while (++iterator->rmap <= iterator->end_rmap) {
1542 		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1543 
1544 		if (iterator->rmap->val)
1545 			return;
1546 	}
1547 
1548 	if (++iterator->level > iterator->end_level) {
1549 		iterator->rmap = NULL;
1550 		return;
1551 	}
1552 
1553 	rmap_walk_init_level(iterator, iterator->level);
1554 }
1555 
1556 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1557 	   _start_gfn, _end_gfn, _iter_)				\
1558 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1559 				 _end_level_, _start_gfn, _end_gfn);	\
1560 	     slot_rmap_walk_okay(_iter_);				\
1561 	     slot_rmap_walk_next(_iter_))
1562 
1563 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1564 			       struct kvm_memory_slot *slot, gfn_t gfn,
1565 			       int level, pte_t pte);
1566 
1567 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1568 						 struct kvm_gfn_range *range,
1569 						 rmap_handler_t handler)
1570 {
1571 	struct slot_rmap_walk_iterator iterator;
1572 	bool ret = false;
1573 
1574 	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1575 				 range->start, range->end - 1, &iterator)
1576 		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1577 			       iterator.level, range->arg.pte);
1578 
1579 	return ret;
1580 }
1581 
1582 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1583 {
1584 	bool flush = false;
1585 
1586 	if (kvm_memslots_have_rmaps(kvm))
1587 		flush = kvm_handle_gfn_range(kvm, range, kvm_zap_rmap);
1588 
1589 	if (tdp_mmu_enabled)
1590 		flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1591 
1592 	if (kvm_x86_ops.set_apic_access_page_addr &&
1593 	    range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT)
1594 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
1595 
1596 	return flush;
1597 }
1598 
1599 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1600 {
1601 	bool flush = false;
1602 
1603 	if (kvm_memslots_have_rmaps(kvm))
1604 		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmap);
1605 
1606 	if (tdp_mmu_enabled)
1607 		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1608 
1609 	return flush;
1610 }
1611 
1612 static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1613 			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1614 			 pte_t unused)
1615 {
1616 	u64 *sptep;
1617 	struct rmap_iterator iter;
1618 	int young = 0;
1619 
1620 	for_each_rmap_spte(rmap_head, &iter, sptep)
1621 		young |= mmu_spte_age(sptep);
1622 
1623 	return young;
1624 }
1625 
1626 static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1627 			      struct kvm_memory_slot *slot, gfn_t gfn,
1628 			      int level, pte_t unused)
1629 {
1630 	u64 *sptep;
1631 	struct rmap_iterator iter;
1632 
1633 	for_each_rmap_spte(rmap_head, &iter, sptep)
1634 		if (is_accessed_spte(*sptep))
1635 			return true;
1636 	return false;
1637 }
1638 
1639 #define RMAP_RECYCLE_THRESHOLD 1000
1640 
1641 static void __rmap_add(struct kvm *kvm,
1642 		       struct kvm_mmu_memory_cache *cache,
1643 		       const struct kvm_memory_slot *slot,
1644 		       u64 *spte, gfn_t gfn, unsigned int access)
1645 {
1646 	struct kvm_mmu_page *sp;
1647 	struct kvm_rmap_head *rmap_head;
1648 	int rmap_count;
1649 
1650 	sp = sptep_to_sp(spte);
1651 	kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access);
1652 	kvm_update_page_stats(kvm, sp->role.level, 1);
1653 
1654 	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1655 	rmap_count = pte_list_add(cache, spte, rmap_head);
1656 
1657 	if (rmap_count > kvm->stat.max_mmu_rmap_size)
1658 		kvm->stat.max_mmu_rmap_size = rmap_count;
1659 	if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
1660 		kvm_zap_all_rmap_sptes(kvm, rmap_head);
1661 		kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level);
1662 	}
1663 }
1664 
1665 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot,
1666 		     u64 *spte, gfn_t gfn, unsigned int access)
1667 {
1668 	struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache;
1669 
1670 	__rmap_add(vcpu->kvm, cache, slot, spte, gfn, access);
1671 }
1672 
1673 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1674 {
1675 	bool young = false;
1676 
1677 	if (kvm_memslots_have_rmaps(kvm))
1678 		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap);
1679 
1680 	if (tdp_mmu_enabled)
1681 		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1682 
1683 	return young;
1684 }
1685 
1686 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1687 {
1688 	bool young = false;
1689 
1690 	if (kvm_memslots_have_rmaps(kvm))
1691 		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap);
1692 
1693 	if (tdp_mmu_enabled)
1694 		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1695 
1696 	return young;
1697 }
1698 
1699 static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp)
1700 {
1701 #ifdef CONFIG_KVM_PROVE_MMU
1702 	int i;
1703 
1704 	for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
1705 		if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i])))
1706 			pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free",
1707 					   sp->spt[i], &sp->spt[i],
1708 					   kvm_mmu_page_get_gfn(sp, i));
1709 	}
1710 #endif
1711 }
1712 
1713 /*
1714  * This value is the sum of all of the kvm instances's
1715  * kvm->arch.n_used_mmu_pages values.  We need a global,
1716  * aggregate version in order to make the slab shrinker
1717  * faster
1718  */
1719 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1720 {
1721 	kvm->arch.n_used_mmu_pages += nr;
1722 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1723 }
1724 
1725 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1726 {
1727 	kvm_mod_used_mmu_pages(kvm, +1);
1728 	kvm_account_pgtable_pages((void *)sp->spt, +1);
1729 }
1730 
1731 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1732 {
1733 	kvm_mod_used_mmu_pages(kvm, -1);
1734 	kvm_account_pgtable_pages((void *)sp->spt, -1);
1735 }
1736 
1737 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp)
1738 {
1739 	kvm_mmu_check_sptes_at_free(sp);
1740 
1741 	hlist_del(&sp->hash_link);
1742 	list_del(&sp->link);
1743 	free_page((unsigned long)sp->spt);
1744 	if (!sp->role.direct)
1745 		free_page((unsigned long)sp->shadowed_translation);
1746 	kmem_cache_free(mmu_page_header_cache, sp);
1747 }
1748 
1749 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1750 {
1751 	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1752 }
1753 
1754 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache,
1755 				    struct kvm_mmu_page *sp, u64 *parent_pte)
1756 {
1757 	if (!parent_pte)
1758 		return;
1759 
1760 	pte_list_add(cache, parent_pte, &sp->parent_ptes);
1761 }
1762 
1763 static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1764 				       u64 *parent_pte)
1765 {
1766 	pte_list_remove(kvm, parent_pte, &sp->parent_ptes);
1767 }
1768 
1769 static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1770 			    u64 *parent_pte)
1771 {
1772 	mmu_page_remove_parent_pte(kvm, sp, parent_pte);
1773 	mmu_spte_clear_no_track(parent_pte);
1774 }
1775 
1776 static void mark_unsync(u64 *spte);
1777 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1778 {
1779 	u64 *sptep;
1780 	struct rmap_iterator iter;
1781 
1782 	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1783 		mark_unsync(sptep);
1784 	}
1785 }
1786 
1787 static void mark_unsync(u64 *spte)
1788 {
1789 	struct kvm_mmu_page *sp;
1790 
1791 	sp = sptep_to_sp(spte);
1792 	if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap))
1793 		return;
1794 	if (sp->unsync_children++)
1795 		return;
1796 	kvm_mmu_mark_parents_unsync(sp);
1797 }
1798 
1799 #define KVM_PAGE_ARRAY_NR 16
1800 
1801 struct kvm_mmu_pages {
1802 	struct mmu_page_and_offset {
1803 		struct kvm_mmu_page *sp;
1804 		unsigned int idx;
1805 	} page[KVM_PAGE_ARRAY_NR];
1806 	unsigned int nr;
1807 };
1808 
1809 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1810 			 int idx)
1811 {
1812 	int i;
1813 
1814 	if (sp->unsync)
1815 		for (i=0; i < pvec->nr; i++)
1816 			if (pvec->page[i].sp == sp)
1817 				return 0;
1818 
1819 	pvec->page[pvec->nr].sp = sp;
1820 	pvec->page[pvec->nr].idx = idx;
1821 	pvec->nr++;
1822 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1823 }
1824 
1825 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1826 {
1827 	--sp->unsync_children;
1828 	WARN_ON_ONCE((int)sp->unsync_children < 0);
1829 	__clear_bit(idx, sp->unsync_child_bitmap);
1830 }
1831 
1832 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1833 			   struct kvm_mmu_pages *pvec)
1834 {
1835 	int i, ret, nr_unsync_leaf = 0;
1836 
1837 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1838 		struct kvm_mmu_page *child;
1839 		u64 ent = sp->spt[i];
1840 
1841 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1842 			clear_unsync_child_bit(sp, i);
1843 			continue;
1844 		}
1845 
1846 		child = spte_to_child_sp(ent);
1847 
1848 		if (child->unsync_children) {
1849 			if (mmu_pages_add(pvec, child, i))
1850 				return -ENOSPC;
1851 
1852 			ret = __mmu_unsync_walk(child, pvec);
1853 			if (!ret) {
1854 				clear_unsync_child_bit(sp, i);
1855 				continue;
1856 			} else if (ret > 0) {
1857 				nr_unsync_leaf += ret;
1858 			} else
1859 				return ret;
1860 		} else if (child->unsync) {
1861 			nr_unsync_leaf++;
1862 			if (mmu_pages_add(pvec, child, i))
1863 				return -ENOSPC;
1864 		} else
1865 			clear_unsync_child_bit(sp, i);
1866 	}
1867 
1868 	return nr_unsync_leaf;
1869 }
1870 
1871 #define INVALID_INDEX (-1)
1872 
1873 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1874 			   struct kvm_mmu_pages *pvec)
1875 {
1876 	pvec->nr = 0;
1877 	if (!sp->unsync_children)
1878 		return 0;
1879 
1880 	mmu_pages_add(pvec, sp, INVALID_INDEX);
1881 	return __mmu_unsync_walk(sp, pvec);
1882 }
1883 
1884 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1885 {
1886 	WARN_ON_ONCE(!sp->unsync);
1887 	trace_kvm_mmu_sync_page(sp);
1888 	sp->unsync = 0;
1889 	--kvm->stat.mmu_unsync;
1890 }
1891 
1892 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1893 				     struct list_head *invalid_list);
1894 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1895 				    struct list_head *invalid_list);
1896 
1897 static bool sp_has_gptes(struct kvm_mmu_page *sp)
1898 {
1899 	if (sp->role.direct)
1900 		return false;
1901 
1902 	if (sp->role.passthrough)
1903 		return false;
1904 
1905 	return true;
1906 }
1907 
1908 #define for_each_valid_sp(_kvm, _sp, _list)				\
1909 	hlist_for_each_entry(_sp, _list, hash_link)			\
1910 		if (is_obsolete_sp((_kvm), (_sp))) {			\
1911 		} else
1912 
1913 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn)		\
1914 	for_each_valid_sp(_kvm, _sp,					\
1915 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1916 		if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else
1917 
1918 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1919 {
1920 	union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role;
1921 
1922 	/*
1923 	 * Ignore various flags when verifying that it's safe to sync a shadow
1924 	 * page using the current MMU context.
1925 	 *
1926 	 *  - level: not part of the overall MMU role and will never match as the MMU's
1927 	 *           level tracks the root level
1928 	 *  - access: updated based on the new guest PTE
1929 	 *  - quadrant: not part of the overall MMU role (similar to level)
1930 	 */
1931 	const union kvm_mmu_page_role sync_role_ign = {
1932 		.level = 0xf,
1933 		.access = 0x7,
1934 		.quadrant = 0x3,
1935 		.passthrough = 0x1,
1936 	};
1937 
1938 	/*
1939 	 * Direct pages can never be unsync, and KVM should never attempt to
1940 	 * sync a shadow page for a different MMU context, e.g. if the role
1941 	 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the
1942 	 * reserved bits checks will be wrong, etc...
1943 	 */
1944 	if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte ||
1945 			 (sp->role.word ^ root_role.word) & ~sync_role_ign.word))
1946 		return false;
1947 
1948 	return true;
1949 }
1950 
1951 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i)
1952 {
1953 	if (!sp->spt[i])
1954 		return 0;
1955 
1956 	return vcpu->arch.mmu->sync_spte(vcpu, sp, i);
1957 }
1958 
1959 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1960 {
1961 	int flush = 0;
1962 	int i;
1963 
1964 	if (!kvm_sync_page_check(vcpu, sp))
1965 		return -1;
1966 
1967 	for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
1968 		int ret = kvm_sync_spte(vcpu, sp, i);
1969 
1970 		if (ret < -1)
1971 			return -1;
1972 		flush |= ret;
1973 	}
1974 
1975 	/*
1976 	 * Note, any flush is purely for KVM's correctness, e.g. when dropping
1977 	 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier
1978 	 * unmap or dirty logging event doesn't fail to flush.  The guest is
1979 	 * responsible for flushing the TLB to ensure any changes in protection
1980 	 * bits are recognized, i.e. until the guest flushes or page faults on
1981 	 * a relevant address, KVM is architecturally allowed to let vCPUs use
1982 	 * cached translations with the old protection bits.
1983 	 */
1984 	return flush;
1985 }
1986 
1987 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1988 			 struct list_head *invalid_list)
1989 {
1990 	int ret = __kvm_sync_page(vcpu, sp);
1991 
1992 	if (ret < 0)
1993 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1994 	return ret;
1995 }
1996 
1997 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1998 					struct list_head *invalid_list,
1999 					bool remote_flush)
2000 {
2001 	if (!remote_flush && list_empty(invalid_list))
2002 		return false;
2003 
2004 	if (!list_empty(invalid_list))
2005 		kvm_mmu_commit_zap_page(kvm, invalid_list);
2006 	else
2007 		kvm_flush_remote_tlbs(kvm);
2008 	return true;
2009 }
2010 
2011 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2012 {
2013 	if (sp->role.invalid)
2014 		return true;
2015 
2016 	/* TDP MMU pages do not use the MMU generation. */
2017 	return !is_tdp_mmu_page(sp) &&
2018 	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2019 }
2020 
2021 struct mmu_page_path {
2022 	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2023 	unsigned int idx[PT64_ROOT_MAX_LEVEL];
2024 };
2025 
2026 #define for_each_sp(pvec, sp, parents, i)			\
2027 		for (i = mmu_pages_first(&pvec, &parents);	\
2028 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
2029 			i = mmu_pages_next(&pvec, &parents, i))
2030 
2031 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2032 			  struct mmu_page_path *parents,
2033 			  int i)
2034 {
2035 	int n;
2036 
2037 	for (n = i+1; n < pvec->nr; n++) {
2038 		struct kvm_mmu_page *sp = pvec->page[n].sp;
2039 		unsigned idx = pvec->page[n].idx;
2040 		int level = sp->role.level;
2041 
2042 		parents->idx[level-1] = idx;
2043 		if (level == PG_LEVEL_4K)
2044 			break;
2045 
2046 		parents->parent[level-2] = sp;
2047 	}
2048 
2049 	return n;
2050 }
2051 
2052 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2053 			   struct mmu_page_path *parents)
2054 {
2055 	struct kvm_mmu_page *sp;
2056 	int level;
2057 
2058 	if (pvec->nr == 0)
2059 		return 0;
2060 
2061 	WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX);
2062 
2063 	sp = pvec->page[0].sp;
2064 	level = sp->role.level;
2065 	WARN_ON_ONCE(level == PG_LEVEL_4K);
2066 
2067 	parents->parent[level-2] = sp;
2068 
2069 	/* Also set up a sentinel.  Further entries in pvec are all
2070 	 * children of sp, so this element is never overwritten.
2071 	 */
2072 	parents->parent[level-1] = NULL;
2073 	return mmu_pages_next(pvec, parents, 0);
2074 }
2075 
2076 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2077 {
2078 	struct kvm_mmu_page *sp;
2079 	unsigned int level = 0;
2080 
2081 	do {
2082 		unsigned int idx = parents->idx[level];
2083 		sp = parents->parent[level];
2084 		if (!sp)
2085 			return;
2086 
2087 		WARN_ON_ONCE(idx == INVALID_INDEX);
2088 		clear_unsync_child_bit(sp, idx);
2089 		level++;
2090 	} while (!sp->unsync_children);
2091 }
2092 
2093 static int mmu_sync_children(struct kvm_vcpu *vcpu,
2094 			     struct kvm_mmu_page *parent, bool can_yield)
2095 {
2096 	int i;
2097 	struct kvm_mmu_page *sp;
2098 	struct mmu_page_path parents;
2099 	struct kvm_mmu_pages pages;
2100 	LIST_HEAD(invalid_list);
2101 	bool flush = false;
2102 
2103 	while (mmu_unsync_walk(parent, &pages)) {
2104 		bool protected = false;
2105 
2106 		for_each_sp(pages, sp, parents, i)
2107 			protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
2108 
2109 		if (protected) {
2110 			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
2111 			flush = false;
2112 		}
2113 
2114 		for_each_sp(pages, sp, parents, i) {
2115 			kvm_unlink_unsync_page(vcpu->kvm, sp);
2116 			flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0;
2117 			mmu_pages_clear_parents(&parents);
2118 		}
2119 		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2120 			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2121 			if (!can_yield) {
2122 				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2123 				return -EINTR;
2124 			}
2125 
2126 			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2127 			flush = false;
2128 		}
2129 	}
2130 
2131 	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2132 	return 0;
2133 }
2134 
2135 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2136 {
2137 	atomic_set(&sp->write_flooding_count,  0);
2138 }
2139 
2140 static void clear_sp_write_flooding_count(u64 *spte)
2141 {
2142 	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2143 }
2144 
2145 /*
2146  * The vCPU is required when finding indirect shadow pages; the shadow
2147  * page may already exist and syncing it needs the vCPU pointer in
2148  * order to read guest page tables.  Direct shadow pages are never
2149  * unsync, thus @vcpu can be NULL if @role.direct is true.
2150  */
2151 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm,
2152 						     struct kvm_vcpu *vcpu,
2153 						     gfn_t gfn,
2154 						     struct hlist_head *sp_list,
2155 						     union kvm_mmu_page_role role)
2156 {
2157 	struct kvm_mmu_page *sp;
2158 	int ret;
2159 	int collisions = 0;
2160 	LIST_HEAD(invalid_list);
2161 
2162 	for_each_valid_sp(kvm, sp, sp_list) {
2163 		if (sp->gfn != gfn) {
2164 			collisions++;
2165 			continue;
2166 		}
2167 
2168 		if (sp->role.word != role.word) {
2169 			/*
2170 			 * If the guest is creating an upper-level page, zap
2171 			 * unsync pages for the same gfn.  While it's possible
2172 			 * the guest is using recursive page tables, in all
2173 			 * likelihood the guest has stopped using the unsync
2174 			 * page and is installing a completely unrelated page.
2175 			 * Unsync pages must not be left as is, because the new
2176 			 * upper-level page will be write-protected.
2177 			 */
2178 			if (role.level > PG_LEVEL_4K && sp->unsync)
2179 				kvm_mmu_prepare_zap_page(kvm, sp,
2180 							 &invalid_list);
2181 			continue;
2182 		}
2183 
2184 		/* unsync and write-flooding only apply to indirect SPs. */
2185 		if (sp->role.direct)
2186 			goto out;
2187 
2188 		if (sp->unsync) {
2189 			if (KVM_BUG_ON(!vcpu, kvm))
2190 				break;
2191 
2192 			/*
2193 			 * The page is good, but is stale.  kvm_sync_page does
2194 			 * get the latest guest state, but (unlike mmu_unsync_children)
2195 			 * it doesn't write-protect the page or mark it synchronized!
2196 			 * This way the validity of the mapping is ensured, but the
2197 			 * overhead of write protection is not incurred until the
2198 			 * guest invalidates the TLB mapping.  This allows multiple
2199 			 * SPs for a single gfn to be unsync.
2200 			 *
2201 			 * If the sync fails, the page is zapped.  If so, break
2202 			 * in order to rebuild it.
2203 			 */
2204 			ret = kvm_sync_page(vcpu, sp, &invalid_list);
2205 			if (ret < 0)
2206 				break;
2207 
2208 			WARN_ON_ONCE(!list_empty(&invalid_list));
2209 			if (ret > 0)
2210 				kvm_flush_remote_tlbs(kvm);
2211 		}
2212 
2213 		__clear_sp_write_flooding_count(sp);
2214 
2215 		goto out;
2216 	}
2217 
2218 	sp = NULL;
2219 	++kvm->stat.mmu_cache_miss;
2220 
2221 out:
2222 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2223 
2224 	if (collisions > kvm->stat.max_mmu_page_hash_collisions)
2225 		kvm->stat.max_mmu_page_hash_collisions = collisions;
2226 	return sp;
2227 }
2228 
2229 /* Caches used when allocating a new shadow page. */
2230 struct shadow_page_caches {
2231 	struct kvm_mmu_memory_cache *page_header_cache;
2232 	struct kvm_mmu_memory_cache *shadow_page_cache;
2233 	struct kvm_mmu_memory_cache *shadowed_info_cache;
2234 };
2235 
2236 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm,
2237 						      struct shadow_page_caches *caches,
2238 						      gfn_t gfn,
2239 						      struct hlist_head *sp_list,
2240 						      union kvm_mmu_page_role role)
2241 {
2242 	struct kvm_mmu_page *sp;
2243 
2244 	sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache);
2245 	sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache);
2246 	if (!role.direct)
2247 		sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache);
2248 
2249 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2250 
2251 	INIT_LIST_HEAD(&sp->possible_nx_huge_page_link);
2252 
2253 	/*
2254 	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2255 	 * depends on valid pages being added to the head of the list.  See
2256 	 * comments in kvm_zap_obsolete_pages().
2257 	 */
2258 	sp->mmu_valid_gen = kvm->arch.mmu_valid_gen;
2259 	list_add(&sp->link, &kvm->arch.active_mmu_pages);
2260 	kvm_account_mmu_page(kvm, sp);
2261 
2262 	sp->gfn = gfn;
2263 	sp->role = role;
2264 	hlist_add_head(&sp->hash_link, sp_list);
2265 	if (sp_has_gptes(sp))
2266 		account_shadowed(kvm, sp);
2267 
2268 	return sp;
2269 }
2270 
2271 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */
2272 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm,
2273 						      struct kvm_vcpu *vcpu,
2274 						      struct shadow_page_caches *caches,
2275 						      gfn_t gfn,
2276 						      union kvm_mmu_page_role role)
2277 {
2278 	struct hlist_head *sp_list;
2279 	struct kvm_mmu_page *sp;
2280 	bool created = false;
2281 
2282 	sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2283 
2284 	sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role);
2285 	if (!sp) {
2286 		created = true;
2287 		sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role);
2288 	}
2289 
2290 	trace_kvm_mmu_get_page(sp, created);
2291 	return sp;
2292 }
2293 
2294 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu,
2295 						    gfn_t gfn,
2296 						    union kvm_mmu_page_role role)
2297 {
2298 	struct shadow_page_caches caches = {
2299 		.page_header_cache = &vcpu->arch.mmu_page_header_cache,
2300 		.shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache,
2301 		.shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache,
2302 	};
2303 
2304 	return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role);
2305 }
2306 
2307 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct,
2308 						  unsigned int access)
2309 {
2310 	struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep);
2311 	union kvm_mmu_page_role role;
2312 
2313 	role = parent_sp->role;
2314 	role.level--;
2315 	role.access = access;
2316 	role.direct = direct;
2317 	role.passthrough = 0;
2318 
2319 	/*
2320 	 * If the guest has 4-byte PTEs then that means it's using 32-bit,
2321 	 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging
2322 	 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must
2323 	 * shadow each guest page table with multiple shadow page tables, which
2324 	 * requires extra bookkeeping in the role.
2325 	 *
2326 	 * Specifically, to shadow the guest's page directory (which covers a
2327 	 * 4GiB address space), KVM uses 4 PAE page directories, each mapping
2328 	 * 1GiB of the address space. @role.quadrant encodes which quarter of
2329 	 * the address space each maps.
2330 	 *
2331 	 * To shadow the guest's page tables (which each map a 4MiB region), KVM
2332 	 * uses 2 PAE page tables, each mapping a 2MiB region. For these,
2333 	 * @role.quadrant encodes which half of the region they map.
2334 	 *
2335 	 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE
2336 	 * consumes bits 29:21.  To consume bits 31:30, KVM's uses 4 shadow
2337 	 * PDPTEs; those 4 PAE page directories are pre-allocated and their
2338 	 * quadrant is assigned in mmu_alloc_root().   A 4-byte PTE consumes
2339 	 * bits 21:12, while an 8-byte PTE consumes bits 20:12.  To consume
2340 	 * bit 21 in the PTE (the child here), KVM propagates that bit to the
2341 	 * quadrant, i.e. sets quadrant to '0' or '1'.  The parent 8-byte PDE
2342 	 * covers bit 21 (see above), thus the quadrant is calculated from the
2343 	 * _least_ significant bit of the PDE index.
2344 	 */
2345 	if (role.has_4_byte_gpte) {
2346 		WARN_ON_ONCE(role.level != PG_LEVEL_4K);
2347 		role.quadrant = spte_index(sptep) & 1;
2348 	}
2349 
2350 	return role;
2351 }
2352 
2353 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu,
2354 						 u64 *sptep, gfn_t gfn,
2355 						 bool direct, unsigned int access)
2356 {
2357 	union kvm_mmu_page_role role;
2358 
2359 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
2360 		return ERR_PTR(-EEXIST);
2361 
2362 	role = kvm_mmu_child_role(sptep, direct, access);
2363 	return kvm_mmu_get_shadow_page(vcpu, gfn, role);
2364 }
2365 
2366 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2367 					struct kvm_vcpu *vcpu, hpa_t root,
2368 					u64 addr)
2369 {
2370 	iterator->addr = addr;
2371 	iterator->shadow_addr = root;
2372 	iterator->level = vcpu->arch.mmu->root_role.level;
2373 
2374 	if (iterator->level >= PT64_ROOT_4LEVEL &&
2375 	    vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL &&
2376 	    !vcpu->arch.mmu->root_role.direct)
2377 		iterator->level = PT32E_ROOT_LEVEL;
2378 
2379 	if (iterator->level == PT32E_ROOT_LEVEL) {
2380 		/*
2381 		 * prev_root is currently only used for 64-bit hosts. So only
2382 		 * the active root_hpa is valid here.
2383 		 */
2384 		BUG_ON(root != vcpu->arch.mmu->root.hpa);
2385 
2386 		iterator->shadow_addr
2387 			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2388 		iterator->shadow_addr &= SPTE_BASE_ADDR_MASK;
2389 		--iterator->level;
2390 		if (!iterator->shadow_addr)
2391 			iterator->level = 0;
2392 	}
2393 }
2394 
2395 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2396 			     struct kvm_vcpu *vcpu, u64 addr)
2397 {
2398 	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
2399 				    addr);
2400 }
2401 
2402 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2403 {
2404 	if (iterator->level < PG_LEVEL_4K)
2405 		return false;
2406 
2407 	iterator->index = SPTE_INDEX(iterator->addr, iterator->level);
2408 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2409 	return true;
2410 }
2411 
2412 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2413 			       u64 spte)
2414 {
2415 	if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2416 		iterator->level = 0;
2417 		return;
2418 	}
2419 
2420 	iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK;
2421 	--iterator->level;
2422 }
2423 
2424 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2425 {
2426 	__shadow_walk_next(iterator, *iterator->sptep);
2427 }
2428 
2429 static void __link_shadow_page(struct kvm *kvm,
2430 			       struct kvm_mmu_memory_cache *cache, u64 *sptep,
2431 			       struct kvm_mmu_page *sp, bool flush)
2432 {
2433 	u64 spte;
2434 
2435 	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2436 
2437 	/*
2438 	 * If an SPTE is present already, it must be a leaf and therefore
2439 	 * a large one.  Drop it, and flush the TLB if needed, before
2440 	 * installing sp.
2441 	 */
2442 	if (is_shadow_present_pte(*sptep))
2443 		drop_large_spte(kvm, sptep, flush);
2444 
2445 	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2446 
2447 	mmu_spte_set(sptep, spte);
2448 
2449 	mmu_page_add_parent_pte(cache, sp, sptep);
2450 
2451 	/*
2452 	 * The non-direct sub-pagetable must be updated before linking.  For
2453 	 * L1 sp, the pagetable is updated via kvm_sync_page() in
2454 	 * kvm_mmu_find_shadow_page() without write-protecting the gfn,
2455 	 * so sp->unsync can be true or false.  For higher level non-direct
2456 	 * sp, the pagetable is updated/synced via mmu_sync_children() in
2457 	 * FNAME(fetch)(), so sp->unsync_children can only be false.
2458 	 * WARN_ON_ONCE() if anything happens unexpectedly.
2459 	 */
2460 	if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync)
2461 		mark_unsync(sptep);
2462 }
2463 
2464 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2465 			     struct kvm_mmu_page *sp)
2466 {
2467 	__link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true);
2468 }
2469 
2470 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2471 				   unsigned direct_access)
2472 {
2473 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2474 		struct kvm_mmu_page *child;
2475 
2476 		/*
2477 		 * For the direct sp, if the guest pte's dirty bit
2478 		 * changed form clean to dirty, it will corrupt the
2479 		 * sp's access: allow writable in the read-only sp,
2480 		 * so we should update the spte at this point to get
2481 		 * a new sp with the correct access.
2482 		 */
2483 		child = spte_to_child_sp(*sptep);
2484 		if (child->role.access == direct_access)
2485 			return;
2486 
2487 		drop_parent_pte(vcpu->kvm, child, sptep);
2488 		kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep);
2489 	}
2490 }
2491 
2492 /* Returns the number of zapped non-leaf child shadow pages. */
2493 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2494 			    u64 *spte, struct list_head *invalid_list)
2495 {
2496 	u64 pte;
2497 	struct kvm_mmu_page *child;
2498 
2499 	pte = *spte;
2500 	if (is_shadow_present_pte(pte)) {
2501 		if (is_last_spte(pte, sp->role.level)) {
2502 			drop_spte(kvm, spte);
2503 		} else {
2504 			child = spte_to_child_sp(pte);
2505 			drop_parent_pte(kvm, child, spte);
2506 
2507 			/*
2508 			 * Recursively zap nested TDP SPs, parentless SPs are
2509 			 * unlikely to be used again in the near future.  This
2510 			 * avoids retaining a large number of stale nested SPs.
2511 			 */
2512 			if (tdp_enabled && invalid_list &&
2513 			    child->role.guest_mode && !child->parent_ptes.val)
2514 				return kvm_mmu_prepare_zap_page(kvm, child,
2515 								invalid_list);
2516 		}
2517 	} else if (is_mmio_spte(pte)) {
2518 		mmu_spte_clear_no_track(spte);
2519 	}
2520 	return 0;
2521 }
2522 
2523 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2524 					struct kvm_mmu_page *sp,
2525 					struct list_head *invalid_list)
2526 {
2527 	int zapped = 0;
2528 	unsigned i;
2529 
2530 	for (i = 0; i < SPTE_ENT_PER_PAGE; ++i)
2531 		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2532 
2533 	return zapped;
2534 }
2535 
2536 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2537 {
2538 	u64 *sptep;
2539 	struct rmap_iterator iter;
2540 
2541 	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2542 		drop_parent_pte(kvm, sp, sptep);
2543 }
2544 
2545 static int mmu_zap_unsync_children(struct kvm *kvm,
2546 				   struct kvm_mmu_page *parent,
2547 				   struct list_head *invalid_list)
2548 {
2549 	int i, zapped = 0;
2550 	struct mmu_page_path parents;
2551 	struct kvm_mmu_pages pages;
2552 
2553 	if (parent->role.level == PG_LEVEL_4K)
2554 		return 0;
2555 
2556 	while (mmu_unsync_walk(parent, &pages)) {
2557 		struct kvm_mmu_page *sp;
2558 
2559 		for_each_sp(pages, sp, parents, i) {
2560 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2561 			mmu_pages_clear_parents(&parents);
2562 			zapped++;
2563 		}
2564 	}
2565 
2566 	return zapped;
2567 }
2568 
2569 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2570 				       struct kvm_mmu_page *sp,
2571 				       struct list_head *invalid_list,
2572 				       int *nr_zapped)
2573 {
2574 	bool list_unstable, zapped_root = false;
2575 
2576 	lockdep_assert_held_write(&kvm->mmu_lock);
2577 	trace_kvm_mmu_prepare_zap_page(sp);
2578 	++kvm->stat.mmu_shadow_zapped;
2579 	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2580 	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2581 	kvm_mmu_unlink_parents(kvm, sp);
2582 
2583 	/* Zapping children means active_mmu_pages has become unstable. */
2584 	list_unstable = *nr_zapped;
2585 
2586 	if (!sp->role.invalid && sp_has_gptes(sp))
2587 		unaccount_shadowed(kvm, sp);
2588 
2589 	if (sp->unsync)
2590 		kvm_unlink_unsync_page(kvm, sp);
2591 	if (!sp->root_count) {
2592 		/* Count self */
2593 		(*nr_zapped)++;
2594 
2595 		/*
2596 		 * Already invalid pages (previously active roots) are not on
2597 		 * the active page list.  See list_del() in the "else" case of
2598 		 * !sp->root_count.
2599 		 */
2600 		if (sp->role.invalid)
2601 			list_add(&sp->link, invalid_list);
2602 		else
2603 			list_move(&sp->link, invalid_list);
2604 		kvm_unaccount_mmu_page(kvm, sp);
2605 	} else {
2606 		/*
2607 		 * Remove the active root from the active page list, the root
2608 		 * will be explicitly freed when the root_count hits zero.
2609 		 */
2610 		list_del(&sp->link);
2611 
2612 		/*
2613 		 * Obsolete pages cannot be used on any vCPUs, see the comment
2614 		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2615 		 * treats invalid shadow pages as being obsolete.
2616 		 */
2617 		zapped_root = !is_obsolete_sp(kvm, sp);
2618 	}
2619 
2620 	if (sp->nx_huge_page_disallowed)
2621 		unaccount_nx_huge_page(kvm, sp);
2622 
2623 	sp->role.invalid = 1;
2624 
2625 	/*
2626 	 * Make the request to free obsolete roots after marking the root
2627 	 * invalid, otherwise other vCPUs may not see it as invalid.
2628 	 */
2629 	if (zapped_root)
2630 		kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
2631 	return list_unstable;
2632 }
2633 
2634 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2635 				     struct list_head *invalid_list)
2636 {
2637 	int nr_zapped;
2638 
2639 	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2640 	return nr_zapped;
2641 }
2642 
2643 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2644 				    struct list_head *invalid_list)
2645 {
2646 	struct kvm_mmu_page *sp, *nsp;
2647 
2648 	if (list_empty(invalid_list))
2649 		return;
2650 
2651 	/*
2652 	 * We need to make sure everyone sees our modifications to
2653 	 * the page tables and see changes to vcpu->mode here. The barrier
2654 	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2655 	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2656 	 *
2657 	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2658 	 * guest mode and/or lockless shadow page table walks.
2659 	 */
2660 	kvm_flush_remote_tlbs(kvm);
2661 
2662 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2663 		WARN_ON_ONCE(!sp->role.invalid || sp->root_count);
2664 		kvm_mmu_free_shadow_page(sp);
2665 	}
2666 }
2667 
2668 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2669 						  unsigned long nr_to_zap)
2670 {
2671 	unsigned long total_zapped = 0;
2672 	struct kvm_mmu_page *sp, *tmp;
2673 	LIST_HEAD(invalid_list);
2674 	bool unstable;
2675 	int nr_zapped;
2676 
2677 	if (list_empty(&kvm->arch.active_mmu_pages))
2678 		return 0;
2679 
2680 restart:
2681 	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2682 		/*
2683 		 * Don't zap active root pages, the page itself can't be freed
2684 		 * and zapping it will just force vCPUs to realloc and reload.
2685 		 */
2686 		if (sp->root_count)
2687 			continue;
2688 
2689 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2690 						      &nr_zapped);
2691 		total_zapped += nr_zapped;
2692 		if (total_zapped >= nr_to_zap)
2693 			break;
2694 
2695 		if (unstable)
2696 			goto restart;
2697 	}
2698 
2699 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2700 
2701 	kvm->stat.mmu_recycled += total_zapped;
2702 	return total_zapped;
2703 }
2704 
2705 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2706 {
2707 	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2708 		return kvm->arch.n_max_mmu_pages -
2709 			kvm->arch.n_used_mmu_pages;
2710 
2711 	return 0;
2712 }
2713 
2714 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2715 {
2716 	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2717 
2718 	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2719 		return 0;
2720 
2721 	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2722 
2723 	/*
2724 	 * Note, this check is intentionally soft, it only guarantees that one
2725 	 * page is available, while the caller may end up allocating as many as
2726 	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2727 	 * exceeding the (arbitrary by default) limit will not harm the host,
2728 	 * being too aggressive may unnecessarily kill the guest, and getting an
2729 	 * exact count is far more trouble than it's worth, especially in the
2730 	 * page fault paths.
2731 	 */
2732 	if (!kvm_mmu_available_pages(vcpu->kvm))
2733 		return -ENOSPC;
2734 	return 0;
2735 }
2736 
2737 /*
2738  * Changing the number of mmu pages allocated to the vm
2739  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2740  */
2741 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2742 {
2743 	write_lock(&kvm->mmu_lock);
2744 
2745 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2746 		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2747 						  goal_nr_mmu_pages);
2748 
2749 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2750 	}
2751 
2752 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2753 
2754 	write_unlock(&kvm->mmu_lock);
2755 }
2756 
2757 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2758 {
2759 	struct kvm_mmu_page *sp;
2760 	LIST_HEAD(invalid_list);
2761 	int r;
2762 
2763 	r = 0;
2764 	write_lock(&kvm->mmu_lock);
2765 	for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2766 		r = 1;
2767 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2768 	}
2769 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2770 	write_unlock(&kvm->mmu_lock);
2771 
2772 	return r;
2773 }
2774 
2775 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2776 {
2777 	gpa_t gpa;
2778 	int r;
2779 
2780 	if (vcpu->arch.mmu->root_role.direct)
2781 		return 0;
2782 
2783 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2784 
2785 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2786 
2787 	return r;
2788 }
2789 
2790 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2791 {
2792 	trace_kvm_mmu_unsync_page(sp);
2793 	++kvm->stat.mmu_unsync;
2794 	sp->unsync = 1;
2795 
2796 	kvm_mmu_mark_parents_unsync(sp);
2797 }
2798 
2799 /*
2800  * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2801  * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
2802  * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2803  * be write-protected.
2804  */
2805 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2806 			    gfn_t gfn, bool can_unsync, bool prefetch)
2807 {
2808 	struct kvm_mmu_page *sp;
2809 	bool locked = false;
2810 
2811 	/*
2812 	 * Force write-protection if the page is being tracked.  Note, the page
2813 	 * track machinery is used to write-protect upper-level shadow pages,
2814 	 * i.e. this guards the role.level == 4K assertion below!
2815 	 */
2816 	if (kvm_gfn_is_write_tracked(kvm, slot, gfn))
2817 		return -EPERM;
2818 
2819 	/*
2820 	 * The page is not write-tracked, mark existing shadow pages unsync
2821 	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
2822 	 * that case, KVM must complete emulation of the guest TLB flush before
2823 	 * allowing shadow pages to become unsync (writable by the guest).
2824 	 */
2825 	for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2826 		if (!can_unsync)
2827 			return -EPERM;
2828 
2829 		if (sp->unsync)
2830 			continue;
2831 
2832 		if (prefetch)
2833 			return -EEXIST;
2834 
2835 		/*
2836 		 * TDP MMU page faults require an additional spinlock as they
2837 		 * run with mmu_lock held for read, not write, and the unsync
2838 		 * logic is not thread safe.  Take the spinklock regardless of
2839 		 * the MMU type to avoid extra conditionals/parameters, there's
2840 		 * no meaningful penalty if mmu_lock is held for write.
2841 		 */
2842 		if (!locked) {
2843 			locked = true;
2844 			spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2845 
2846 			/*
2847 			 * Recheck after taking the spinlock, a different vCPU
2848 			 * may have since marked the page unsync.  A false
2849 			 * negative on the unprotected check above is not
2850 			 * possible as clearing sp->unsync _must_ hold mmu_lock
2851 			 * for write, i.e. unsync cannot transition from 1->0
2852 			 * while this CPU holds mmu_lock for read (or write).
2853 			 */
2854 			if (READ_ONCE(sp->unsync))
2855 				continue;
2856 		}
2857 
2858 		WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K);
2859 		kvm_unsync_page(kvm, sp);
2860 	}
2861 	if (locked)
2862 		spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2863 
2864 	/*
2865 	 * We need to ensure that the marking of unsync pages is visible
2866 	 * before the SPTE is updated to allow writes because
2867 	 * kvm_mmu_sync_roots() checks the unsync flags without holding
2868 	 * the MMU lock and so can race with this. If the SPTE was updated
2869 	 * before the page had been marked as unsync-ed, something like the
2870 	 * following could happen:
2871 	 *
2872 	 * CPU 1                    CPU 2
2873 	 * ---------------------------------------------------------------------
2874 	 * 1.2 Host updates SPTE
2875 	 *     to be writable
2876 	 *                      2.1 Guest writes a GPTE for GVA X.
2877 	 *                          (GPTE being in the guest page table shadowed
2878 	 *                           by the SP from CPU 1.)
2879 	 *                          This reads SPTE during the page table walk.
2880 	 *                          Since SPTE.W is read as 1, there is no
2881 	 *                          fault.
2882 	 *
2883 	 *                      2.2 Guest issues TLB flush.
2884 	 *                          That causes a VM Exit.
2885 	 *
2886 	 *                      2.3 Walking of unsync pages sees sp->unsync is
2887 	 *                          false and skips the page.
2888 	 *
2889 	 *                      2.4 Guest accesses GVA X.
2890 	 *                          Since the mapping in the SP was not updated,
2891 	 *                          so the old mapping for GVA X incorrectly
2892 	 *                          gets used.
2893 	 * 1.1 Host marks SP
2894 	 *     as unsync
2895 	 *     (sp->unsync = true)
2896 	 *
2897 	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2898 	 * the situation in 2.4 does not arise.  It pairs with the read barrier
2899 	 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2900 	 */
2901 	smp_wmb();
2902 
2903 	return 0;
2904 }
2905 
2906 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
2907 			u64 *sptep, unsigned int pte_access, gfn_t gfn,
2908 			kvm_pfn_t pfn, struct kvm_page_fault *fault)
2909 {
2910 	struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2911 	int level = sp->role.level;
2912 	int was_rmapped = 0;
2913 	int ret = RET_PF_FIXED;
2914 	bool flush = false;
2915 	bool wrprot;
2916 	u64 spte;
2917 
2918 	/* Prefetching always gets a writable pfn.  */
2919 	bool host_writable = !fault || fault->map_writable;
2920 	bool prefetch = !fault || fault->prefetch;
2921 	bool write_fault = fault && fault->write;
2922 
2923 	if (unlikely(is_noslot_pfn(pfn))) {
2924 		vcpu->stat.pf_mmio_spte_created++;
2925 		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2926 		return RET_PF_EMULATE;
2927 	}
2928 
2929 	if (is_shadow_present_pte(*sptep)) {
2930 		/*
2931 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2932 		 * the parent of the now unreachable PTE.
2933 		 */
2934 		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2935 			struct kvm_mmu_page *child;
2936 			u64 pte = *sptep;
2937 
2938 			child = spte_to_child_sp(pte);
2939 			drop_parent_pte(vcpu->kvm, child, sptep);
2940 			flush = true;
2941 		} else if (pfn != spte_to_pfn(*sptep)) {
2942 			drop_spte(vcpu->kvm, sptep);
2943 			flush = true;
2944 		} else
2945 			was_rmapped = 1;
2946 	}
2947 
2948 	wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
2949 			   true, host_writable, &spte);
2950 
2951 	if (*sptep == spte) {
2952 		ret = RET_PF_SPURIOUS;
2953 	} else {
2954 		flush |= mmu_spte_update(sptep, spte);
2955 		trace_kvm_mmu_set_spte(level, gfn, sptep);
2956 	}
2957 
2958 	if (wrprot) {
2959 		if (write_fault)
2960 			ret = RET_PF_EMULATE;
2961 	}
2962 
2963 	if (flush)
2964 		kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level);
2965 
2966 	if (!was_rmapped) {
2967 		WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2968 		rmap_add(vcpu, slot, sptep, gfn, pte_access);
2969 	} else {
2970 		/* Already rmapped but the pte_access bits may have changed. */
2971 		kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access);
2972 	}
2973 
2974 	return ret;
2975 }
2976 
2977 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2978 				    struct kvm_mmu_page *sp,
2979 				    u64 *start, u64 *end)
2980 {
2981 	struct page *pages[PTE_PREFETCH_NUM];
2982 	struct kvm_memory_slot *slot;
2983 	unsigned int access = sp->role.access;
2984 	int i, ret;
2985 	gfn_t gfn;
2986 
2987 	gfn = kvm_mmu_page_get_gfn(sp, spte_index(start));
2988 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2989 	if (!slot)
2990 		return -1;
2991 
2992 	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2993 	if (ret <= 0)
2994 		return -1;
2995 
2996 	for (i = 0; i < ret; i++, gfn++, start++) {
2997 		mmu_set_spte(vcpu, slot, start, access, gfn,
2998 			     page_to_pfn(pages[i]), NULL);
2999 		put_page(pages[i]);
3000 	}
3001 
3002 	return 0;
3003 }
3004 
3005 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3006 				  struct kvm_mmu_page *sp, u64 *sptep)
3007 {
3008 	u64 *spte, *start = NULL;
3009 	int i;
3010 
3011 	WARN_ON_ONCE(!sp->role.direct);
3012 
3013 	i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
3014 	spte = sp->spt + i;
3015 
3016 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3017 		if (is_shadow_present_pte(*spte) || spte == sptep) {
3018 			if (!start)
3019 				continue;
3020 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3021 				return;
3022 			start = NULL;
3023 		} else if (!start)
3024 			start = spte;
3025 	}
3026 	if (start)
3027 		direct_pte_prefetch_many(vcpu, sp, start, spte);
3028 }
3029 
3030 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3031 {
3032 	struct kvm_mmu_page *sp;
3033 
3034 	sp = sptep_to_sp(sptep);
3035 
3036 	/*
3037 	 * Without accessed bits, there's no way to distinguish between
3038 	 * actually accessed translations and prefetched, so disable pte
3039 	 * prefetch if accessed bits aren't available.
3040 	 */
3041 	if (sp_ad_disabled(sp))
3042 		return;
3043 
3044 	if (sp->role.level > PG_LEVEL_4K)
3045 		return;
3046 
3047 	/*
3048 	 * If addresses are being invalidated, skip prefetching to avoid
3049 	 * accidentally prefetching those addresses.
3050 	 */
3051 	if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
3052 		return;
3053 
3054 	__direct_pte_prefetch(vcpu, sp, sptep);
3055 }
3056 
3057 /*
3058  * Lookup the mapping level for @gfn in the current mm.
3059  *
3060  * WARNING!  Use of host_pfn_mapping_level() requires the caller and the end
3061  * consumer to be tied into KVM's handlers for MMU notifier events!
3062  *
3063  * There are several ways to safely use this helper:
3064  *
3065  * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before
3066  *   consuming it.  In this case, mmu_lock doesn't need to be held during the
3067  *   lookup, but it does need to be held while checking the MMU notifier.
3068  *
3069  * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation
3070  *   event for the hva.  This can be done by explicit checking the MMU notifier
3071  *   or by ensuring that KVM already has a valid mapping that covers the hva.
3072  *
3073  * - Do not use the result to install new mappings, e.g. use the host mapping
3074  *   level only to decide whether or not to zap an entry.  In this case, it's
3075  *   not required to hold mmu_lock (though it's highly likely the caller will
3076  *   want to hold mmu_lock anyways, e.g. to modify SPTEs).
3077  *
3078  * Note!  The lookup can still race with modifications to host page tables, but
3079  * the above "rules" ensure KVM will not _consume_ the result of the walk if a
3080  * race with the primary MMU occurs.
3081  */
3082 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn,
3083 				  const struct kvm_memory_slot *slot)
3084 {
3085 	int level = PG_LEVEL_4K;
3086 	unsigned long hva;
3087 	unsigned long flags;
3088 	pgd_t pgd;
3089 	p4d_t p4d;
3090 	pud_t pud;
3091 	pmd_t pmd;
3092 
3093 	/*
3094 	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3095 	 * is not solely for performance, it's also necessary to avoid the
3096 	 * "writable" check in __gfn_to_hva_many(), which will always fail on
3097 	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
3098 	 * page fault steps have already verified the guest isn't writing a
3099 	 * read-only memslot.
3100 	 */
3101 	hva = __gfn_to_hva_memslot(slot, gfn);
3102 
3103 	/*
3104 	 * Disable IRQs to prevent concurrent tear down of host page tables,
3105 	 * e.g. if the primary MMU promotes a P*D to a huge page and then frees
3106 	 * the original page table.
3107 	 */
3108 	local_irq_save(flags);
3109 
3110 	/*
3111 	 * Read each entry once.  As above, a non-leaf entry can be promoted to
3112 	 * a huge page _during_ this walk.  Re-reading the entry could send the
3113 	 * walk into the weeks, e.g. p*d_leaf() returns false (sees the old
3114 	 * value) and then p*d_offset() walks into the target huge page instead
3115 	 * of the old page table (sees the new value).
3116 	 */
3117 	pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
3118 	if (pgd_none(pgd))
3119 		goto out;
3120 
3121 	p4d = READ_ONCE(*p4d_offset(&pgd, hva));
3122 	if (p4d_none(p4d) || !p4d_present(p4d))
3123 		goto out;
3124 
3125 	pud = READ_ONCE(*pud_offset(&p4d, hva));
3126 	if (pud_none(pud) || !pud_present(pud))
3127 		goto out;
3128 
3129 	if (pud_leaf(pud)) {
3130 		level = PG_LEVEL_1G;
3131 		goto out;
3132 	}
3133 
3134 	pmd = READ_ONCE(*pmd_offset(&pud, hva));
3135 	if (pmd_none(pmd) || !pmd_present(pmd))
3136 		goto out;
3137 
3138 	if (pmd_leaf(pmd))
3139 		level = PG_LEVEL_2M;
3140 
3141 out:
3142 	local_irq_restore(flags);
3143 	return level;
3144 }
3145 
3146 static int __kvm_mmu_max_mapping_level(struct kvm *kvm,
3147 				       const struct kvm_memory_slot *slot,
3148 				       gfn_t gfn, int max_level, bool is_private)
3149 {
3150 	struct kvm_lpage_info *linfo;
3151 	int host_level;
3152 
3153 	max_level = min(max_level, max_huge_page_level);
3154 	for ( ; max_level > PG_LEVEL_4K; max_level--) {
3155 		linfo = lpage_info_slot(gfn, slot, max_level);
3156 		if (!linfo->disallow_lpage)
3157 			break;
3158 	}
3159 
3160 	if (is_private)
3161 		return max_level;
3162 
3163 	if (max_level == PG_LEVEL_4K)
3164 		return PG_LEVEL_4K;
3165 
3166 	host_level = host_pfn_mapping_level(kvm, gfn, slot);
3167 	return min(host_level, max_level);
3168 }
3169 
3170 int kvm_mmu_max_mapping_level(struct kvm *kvm,
3171 			      const struct kvm_memory_slot *slot, gfn_t gfn,
3172 			      int max_level)
3173 {
3174 	bool is_private = kvm_slot_can_be_private(slot) &&
3175 			  kvm_mem_is_private(kvm, gfn);
3176 
3177 	return __kvm_mmu_max_mapping_level(kvm, slot, gfn, max_level, is_private);
3178 }
3179 
3180 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3181 {
3182 	struct kvm_memory_slot *slot = fault->slot;
3183 	kvm_pfn_t mask;
3184 
3185 	fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
3186 
3187 	if (unlikely(fault->max_level == PG_LEVEL_4K))
3188 		return;
3189 
3190 	if (is_error_noslot_pfn(fault->pfn))
3191 		return;
3192 
3193 	if (kvm_slot_dirty_track_enabled(slot))
3194 		return;
3195 
3196 	/*
3197 	 * Enforce the iTLB multihit workaround after capturing the requested
3198 	 * level, which will be used to do precise, accurate accounting.
3199 	 */
3200 	fault->req_level = __kvm_mmu_max_mapping_level(vcpu->kvm, slot,
3201 						       fault->gfn, fault->max_level,
3202 						       fault->is_private);
3203 	if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
3204 		return;
3205 
3206 	/*
3207 	 * mmu_invalidate_retry() was successful and mmu_lock is held, so
3208 	 * the pmd can't be split from under us.
3209 	 */
3210 	fault->goal_level = fault->req_level;
3211 	mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
3212 	VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
3213 	fault->pfn &= ~mask;
3214 }
3215 
3216 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
3217 {
3218 	if (cur_level > PG_LEVEL_4K &&
3219 	    cur_level == fault->goal_level &&
3220 	    is_shadow_present_pte(spte) &&
3221 	    !is_large_pte(spte) &&
3222 	    spte_to_child_sp(spte)->nx_huge_page_disallowed) {
3223 		/*
3224 		 * A small SPTE exists for this pfn, but FNAME(fetch),
3225 		 * direct_map(), or kvm_tdp_mmu_map() would like to create a
3226 		 * large PTE instead: just force them to go down another level,
3227 		 * patching back for them into pfn the next 9 bits of the
3228 		 * address.
3229 		 */
3230 		u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
3231 				KVM_PAGES_PER_HPAGE(cur_level - 1);
3232 		fault->pfn |= fault->gfn & page_mask;
3233 		fault->goal_level--;
3234 	}
3235 }
3236 
3237 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3238 {
3239 	struct kvm_shadow_walk_iterator it;
3240 	struct kvm_mmu_page *sp;
3241 	int ret;
3242 	gfn_t base_gfn = fault->gfn;
3243 
3244 	kvm_mmu_hugepage_adjust(vcpu, fault);
3245 
3246 	trace_kvm_mmu_spte_requested(fault);
3247 	for_each_shadow_entry(vcpu, fault->addr, it) {
3248 		/*
3249 		 * We cannot overwrite existing page tables with an NX
3250 		 * large page, as the leaf could be executable.
3251 		 */
3252 		if (fault->nx_huge_page_workaround_enabled)
3253 			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
3254 
3255 		base_gfn = gfn_round_for_level(fault->gfn, it.level);
3256 		if (it.level == fault->goal_level)
3257 			break;
3258 
3259 		sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL);
3260 		if (sp == ERR_PTR(-EEXIST))
3261 			continue;
3262 
3263 		link_shadow_page(vcpu, it.sptep, sp);
3264 		if (fault->huge_page_disallowed)
3265 			account_nx_huge_page(vcpu->kvm, sp,
3266 					     fault->req_level >= it.level);
3267 	}
3268 
3269 	if (WARN_ON_ONCE(it.level != fault->goal_level))
3270 		return -EFAULT;
3271 
3272 	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
3273 			   base_gfn, fault->pfn, fault);
3274 	if (ret == RET_PF_SPURIOUS)
3275 		return ret;
3276 
3277 	direct_pte_prefetch(vcpu, it.sptep);
3278 	return ret;
3279 }
3280 
3281 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn)
3282 {
3283 	unsigned long hva = gfn_to_hva_memslot(slot, gfn);
3284 
3285 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current);
3286 }
3287 
3288 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3289 {
3290 	if (is_sigpending_pfn(fault->pfn)) {
3291 		kvm_handle_signal_exit(vcpu);
3292 		return -EINTR;
3293 	}
3294 
3295 	/*
3296 	 * Do not cache the mmio info caused by writing the readonly gfn
3297 	 * into the spte otherwise read access on readonly gfn also can
3298 	 * caused mmio page fault and treat it as mmio access.
3299 	 */
3300 	if (fault->pfn == KVM_PFN_ERR_RO_FAULT)
3301 		return RET_PF_EMULATE;
3302 
3303 	if (fault->pfn == KVM_PFN_ERR_HWPOISON) {
3304 		kvm_send_hwpoison_signal(fault->slot, fault->gfn);
3305 		return RET_PF_RETRY;
3306 	}
3307 
3308 	return -EFAULT;
3309 }
3310 
3311 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu,
3312 				   struct kvm_page_fault *fault,
3313 				   unsigned int access)
3314 {
3315 	gva_t gva = fault->is_tdp ? 0 : fault->addr;
3316 
3317 	vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3318 			     access & shadow_mmio_access_mask);
3319 
3320 	/*
3321 	 * If MMIO caching is disabled, emulate immediately without
3322 	 * touching the shadow page tables as attempting to install an
3323 	 * MMIO SPTE will just be an expensive nop.
3324 	 */
3325 	if (unlikely(!enable_mmio_caching))
3326 		return RET_PF_EMULATE;
3327 
3328 	/*
3329 	 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR,
3330 	 * any guest that generates such gfns is running nested and is being
3331 	 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and
3332 	 * only if L1's MAXPHYADDR is inaccurate with respect to the
3333 	 * hardware's).
3334 	 */
3335 	if (unlikely(fault->gfn > kvm_mmu_max_gfn()))
3336 		return RET_PF_EMULATE;
3337 
3338 	return RET_PF_CONTINUE;
3339 }
3340 
3341 static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
3342 {
3343 	/*
3344 	 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only
3345 	 * reach the common page fault handler if the SPTE has an invalid MMIO
3346 	 * generation number.  Refreshing the MMIO generation needs to go down
3347 	 * the slow path.  Note, EPT Misconfigs do NOT set the PRESENT flag!
3348 	 */
3349 	if (fault->rsvd)
3350 		return false;
3351 
3352 	/*
3353 	 * #PF can be fast if:
3354 	 *
3355 	 * 1. The shadow page table entry is not present and A/D bits are
3356 	 *    disabled _by KVM_, which could mean that the fault is potentially
3357 	 *    caused by access tracking (if enabled).  If A/D bits are enabled
3358 	 *    by KVM, but disabled by L1 for L2, KVM is forced to disable A/D
3359 	 *    bits for L2 and employ access tracking, but the fast page fault
3360 	 *    mechanism only supports direct MMUs.
3361 	 * 2. The shadow page table entry is present, the access is a write,
3362 	 *    and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e.
3363 	 *    the fault was caused by a write-protection violation.  If the
3364 	 *    SPTE is MMU-writable (determined later), the fault can be fixed
3365 	 *    by setting the Writable bit, which can be done out of mmu_lock.
3366 	 */
3367 	if (!fault->present)
3368 		return !kvm_ad_enabled();
3369 
3370 	/*
3371 	 * Note, instruction fetches and writes are mutually exclusive, ignore
3372 	 * the "exec" flag.
3373 	 */
3374 	return fault->write;
3375 }
3376 
3377 /*
3378  * Returns true if the SPTE was fixed successfully. Otherwise,
3379  * someone else modified the SPTE from its original value.
3380  */
3381 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu,
3382 				    struct kvm_page_fault *fault,
3383 				    u64 *sptep, u64 old_spte, u64 new_spte)
3384 {
3385 	/*
3386 	 * Theoretically we could also set dirty bit (and flush TLB) here in
3387 	 * order to eliminate unnecessary PML logging. See comments in
3388 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
3389 	 * enabled, so we do not do this. This might result in the same GPA
3390 	 * to be logged in PML buffer again when the write really happens, and
3391 	 * eventually to be called by mark_page_dirty twice. But it's also no
3392 	 * harm. This also avoids the TLB flush needed after setting dirty bit
3393 	 * so non-PML cases won't be impacted.
3394 	 *
3395 	 * Compare with set_spte where instead shadow_dirty_mask is set.
3396 	 */
3397 	if (!try_cmpxchg64(sptep, &old_spte, new_spte))
3398 		return false;
3399 
3400 	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
3401 		mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3402 
3403 	return true;
3404 }
3405 
3406 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
3407 {
3408 	if (fault->exec)
3409 		return is_executable_pte(spte);
3410 
3411 	if (fault->write)
3412 		return is_writable_pte(spte);
3413 
3414 	/* Fault was on Read access */
3415 	return spte & PT_PRESENT_MASK;
3416 }
3417 
3418 /*
3419  * Returns the last level spte pointer of the shadow page walk for the given
3420  * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3421  * walk could be performed, returns NULL and *spte does not contain valid data.
3422  *
3423  * Contract:
3424  *  - Must be called between walk_shadow_page_lockless_{begin,end}.
3425  *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
3426  */
3427 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3428 {
3429 	struct kvm_shadow_walk_iterator iterator;
3430 	u64 old_spte;
3431 	u64 *sptep = NULL;
3432 
3433 	for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3434 		sptep = iterator.sptep;
3435 		*spte = old_spte;
3436 	}
3437 
3438 	return sptep;
3439 }
3440 
3441 /*
3442  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3443  */
3444 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3445 {
3446 	struct kvm_mmu_page *sp;
3447 	int ret = RET_PF_INVALID;
3448 	u64 spte;
3449 	u64 *sptep;
3450 	uint retry_count = 0;
3451 
3452 	if (!page_fault_can_be_fast(fault))
3453 		return ret;
3454 
3455 	walk_shadow_page_lockless_begin(vcpu);
3456 
3457 	do {
3458 		u64 new_spte;
3459 
3460 		if (tdp_mmu_enabled)
3461 			sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3462 		else
3463 			sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3464 
3465 		/*
3466 		 * It's entirely possible for the mapping to have been zapped
3467 		 * by a different task, but the root page should always be
3468 		 * available as the vCPU holds a reference to its root(s).
3469 		 */
3470 		if (WARN_ON_ONCE(!sptep))
3471 			spte = REMOVED_SPTE;
3472 
3473 		if (!is_shadow_present_pte(spte))
3474 			break;
3475 
3476 		sp = sptep_to_sp(sptep);
3477 		if (!is_last_spte(spte, sp->role.level))
3478 			break;
3479 
3480 		/*
3481 		 * Check whether the memory access that caused the fault would
3482 		 * still cause it if it were to be performed right now. If not,
3483 		 * then this is a spurious fault caused by TLB lazily flushed,
3484 		 * or some other CPU has already fixed the PTE after the
3485 		 * current CPU took the fault.
3486 		 *
3487 		 * Need not check the access of upper level table entries since
3488 		 * they are always ACC_ALL.
3489 		 */
3490 		if (is_access_allowed(fault, spte)) {
3491 			ret = RET_PF_SPURIOUS;
3492 			break;
3493 		}
3494 
3495 		new_spte = spte;
3496 
3497 		/*
3498 		 * KVM only supports fixing page faults outside of MMU lock for
3499 		 * direct MMUs, nested MMUs are always indirect, and KVM always
3500 		 * uses A/D bits for non-nested MMUs.  Thus, if A/D bits are
3501 		 * enabled, the SPTE can't be an access-tracked SPTE.
3502 		 */
3503 		if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte))
3504 			new_spte = restore_acc_track_spte(new_spte);
3505 
3506 		/*
3507 		 * To keep things simple, only SPTEs that are MMU-writable can
3508 		 * be made fully writable outside of mmu_lock, e.g. only SPTEs
3509 		 * that were write-protected for dirty-logging or access
3510 		 * tracking are handled here.  Don't bother checking if the
3511 		 * SPTE is writable to prioritize running with A/D bits enabled.
3512 		 * The is_access_allowed() check above handles the common case
3513 		 * of the fault being spurious, and the SPTE is known to be
3514 		 * shadow-present, i.e. except for access tracking restoration
3515 		 * making the new SPTE writable, the check is wasteful.
3516 		 */
3517 		if (fault->write && is_mmu_writable_spte(spte)) {
3518 			new_spte |= PT_WRITABLE_MASK;
3519 
3520 			/*
3521 			 * Do not fix write-permission on the large spte when
3522 			 * dirty logging is enabled. Since we only dirty the
3523 			 * first page into the dirty-bitmap in
3524 			 * fast_pf_fix_direct_spte(), other pages are missed
3525 			 * if its slot has dirty logging enabled.
3526 			 *
3527 			 * Instead, we let the slow page fault path create a
3528 			 * normal spte to fix the access.
3529 			 */
3530 			if (sp->role.level > PG_LEVEL_4K &&
3531 			    kvm_slot_dirty_track_enabled(fault->slot))
3532 				break;
3533 		}
3534 
3535 		/* Verify that the fault can be handled in the fast path */
3536 		if (new_spte == spte ||
3537 		    !is_access_allowed(fault, new_spte))
3538 			break;
3539 
3540 		/*
3541 		 * Currently, fast page fault only works for direct mapping
3542 		 * since the gfn is not stable for indirect shadow page. See
3543 		 * Documentation/virt/kvm/locking.rst to get more detail.
3544 		 */
3545 		if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3546 			ret = RET_PF_FIXED;
3547 			break;
3548 		}
3549 
3550 		if (++retry_count > 4) {
3551 			pr_warn_once("Fast #PF retrying more than 4 times.\n");
3552 			break;
3553 		}
3554 
3555 	} while (true);
3556 
3557 	trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3558 	walk_shadow_page_lockless_end(vcpu);
3559 
3560 	if (ret != RET_PF_INVALID)
3561 		vcpu->stat.pf_fast++;
3562 
3563 	return ret;
3564 }
3565 
3566 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3567 			       struct list_head *invalid_list)
3568 {
3569 	struct kvm_mmu_page *sp;
3570 
3571 	if (!VALID_PAGE(*root_hpa))
3572 		return;
3573 
3574 	sp = root_to_sp(*root_hpa);
3575 	if (WARN_ON_ONCE(!sp))
3576 		return;
3577 
3578 	if (is_tdp_mmu_page(sp)) {
3579 		lockdep_assert_held_read(&kvm->mmu_lock);
3580 		kvm_tdp_mmu_put_root(kvm, sp);
3581 	} else {
3582 		lockdep_assert_held_write(&kvm->mmu_lock);
3583 		if (!--sp->root_count && sp->role.invalid)
3584 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3585 	}
3586 
3587 	*root_hpa = INVALID_PAGE;
3588 }
3589 
3590 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3591 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
3592 			ulong roots_to_free)
3593 {
3594 	bool is_tdp_mmu = tdp_mmu_enabled && mmu->root_role.direct;
3595 	int i;
3596 	LIST_HEAD(invalid_list);
3597 	bool free_active_root;
3598 
3599 	WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL);
3600 
3601 	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3602 
3603 	/* Before acquiring the MMU lock, see if we need to do any real work. */
3604 	free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
3605 		&& VALID_PAGE(mmu->root.hpa);
3606 
3607 	if (!free_active_root) {
3608 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3609 			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3610 			    VALID_PAGE(mmu->prev_roots[i].hpa))
3611 				break;
3612 
3613 		if (i == KVM_MMU_NUM_PREV_ROOTS)
3614 			return;
3615 	}
3616 
3617 	if (is_tdp_mmu)
3618 		read_lock(&kvm->mmu_lock);
3619 	else
3620 		write_lock(&kvm->mmu_lock);
3621 
3622 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3623 		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3624 			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3625 					   &invalid_list);
3626 
3627 	if (free_active_root) {
3628 		if (kvm_mmu_is_dummy_root(mmu->root.hpa)) {
3629 			/* Nothing to cleanup for dummy roots. */
3630 		} else if (root_to_sp(mmu->root.hpa)) {
3631 			mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
3632 		} else if (mmu->pae_root) {
3633 			for (i = 0; i < 4; ++i) {
3634 				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3635 					continue;
3636 
3637 				mmu_free_root_page(kvm, &mmu->pae_root[i],
3638 						   &invalid_list);
3639 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3640 			}
3641 		}
3642 		mmu->root.hpa = INVALID_PAGE;
3643 		mmu->root.pgd = 0;
3644 	}
3645 
3646 	if (is_tdp_mmu) {
3647 		read_unlock(&kvm->mmu_lock);
3648 		WARN_ON_ONCE(!list_empty(&invalid_list));
3649 	} else {
3650 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
3651 		write_unlock(&kvm->mmu_lock);
3652 	}
3653 }
3654 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3655 
3656 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
3657 {
3658 	unsigned long roots_to_free = 0;
3659 	struct kvm_mmu_page *sp;
3660 	hpa_t root_hpa;
3661 	int i;
3662 
3663 	/*
3664 	 * This should not be called while L2 is active, L2 can't invalidate
3665 	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
3666 	 */
3667 	WARN_ON_ONCE(mmu->root_role.guest_mode);
3668 
3669 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3670 		root_hpa = mmu->prev_roots[i].hpa;
3671 		if (!VALID_PAGE(root_hpa))
3672 			continue;
3673 
3674 		sp = root_to_sp(root_hpa);
3675 		if (!sp || sp->role.guest_mode)
3676 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3677 	}
3678 
3679 	kvm_mmu_free_roots(kvm, mmu, roots_to_free);
3680 }
3681 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3682 
3683 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant,
3684 			    u8 level)
3685 {
3686 	union kvm_mmu_page_role role = vcpu->arch.mmu->root_role;
3687 	struct kvm_mmu_page *sp;
3688 
3689 	role.level = level;
3690 	role.quadrant = quadrant;
3691 
3692 	WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte);
3693 	WARN_ON_ONCE(role.direct && role.has_4_byte_gpte);
3694 
3695 	sp = kvm_mmu_get_shadow_page(vcpu, gfn, role);
3696 	++sp->root_count;
3697 
3698 	return __pa(sp->spt);
3699 }
3700 
3701 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3702 {
3703 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3704 	u8 shadow_root_level = mmu->root_role.level;
3705 	hpa_t root;
3706 	unsigned i;
3707 	int r;
3708 
3709 	if (tdp_mmu_enabled)
3710 		return kvm_tdp_mmu_alloc_root(vcpu);
3711 
3712 	write_lock(&vcpu->kvm->mmu_lock);
3713 	r = make_mmu_pages_available(vcpu);
3714 	if (r < 0)
3715 		goto out_unlock;
3716 
3717 	if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3718 		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level);
3719 		mmu->root.hpa = root;
3720 	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3721 		if (WARN_ON_ONCE(!mmu->pae_root)) {
3722 			r = -EIO;
3723 			goto out_unlock;
3724 		}
3725 
3726 		for (i = 0; i < 4; ++i) {
3727 			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3728 
3729 			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0,
3730 					      PT32_ROOT_LEVEL);
3731 			mmu->pae_root[i] = root | PT_PRESENT_MASK |
3732 					   shadow_me_value;
3733 		}
3734 		mmu->root.hpa = __pa(mmu->pae_root);
3735 	} else {
3736 		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3737 		r = -EIO;
3738 		goto out_unlock;
3739 	}
3740 
3741 	/* root.pgd is ignored for direct MMUs. */
3742 	mmu->root.pgd = 0;
3743 out_unlock:
3744 	write_unlock(&vcpu->kvm->mmu_lock);
3745 	return r;
3746 }
3747 
3748 static int mmu_first_shadow_root_alloc(struct kvm *kvm)
3749 {
3750 	struct kvm_memslots *slots;
3751 	struct kvm_memory_slot *slot;
3752 	int r = 0, i, bkt;
3753 
3754 	/*
3755 	 * Check if this is the first shadow root being allocated before
3756 	 * taking the lock.
3757 	 */
3758 	if (kvm_shadow_root_allocated(kvm))
3759 		return 0;
3760 
3761 	mutex_lock(&kvm->slots_arch_lock);
3762 
3763 	/* Recheck, under the lock, whether this is the first shadow root. */
3764 	if (kvm_shadow_root_allocated(kvm))
3765 		goto out_unlock;
3766 
3767 	/*
3768 	 * Check if anything actually needs to be allocated, e.g. all metadata
3769 	 * will be allocated upfront if TDP is disabled.
3770 	 */
3771 	if (kvm_memslots_have_rmaps(kvm) &&
3772 	    kvm_page_track_write_tracking_enabled(kvm))
3773 		goto out_success;
3774 
3775 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
3776 		slots = __kvm_memslots(kvm, i);
3777 		kvm_for_each_memslot(slot, bkt, slots) {
3778 			/*
3779 			 * Both of these functions are no-ops if the target is
3780 			 * already allocated, so unconditionally calling both
3781 			 * is safe.  Intentionally do NOT free allocations on
3782 			 * failure to avoid having to track which allocations
3783 			 * were made now versus when the memslot was created.
3784 			 * The metadata is guaranteed to be freed when the slot
3785 			 * is freed, and will be kept/used if userspace retries
3786 			 * KVM_RUN instead of killing the VM.
3787 			 */
3788 			r = memslot_rmap_alloc(slot, slot->npages);
3789 			if (r)
3790 				goto out_unlock;
3791 			r = kvm_page_track_write_tracking_alloc(slot);
3792 			if (r)
3793 				goto out_unlock;
3794 		}
3795 	}
3796 
3797 	/*
3798 	 * Ensure that shadow_root_allocated becomes true strictly after
3799 	 * all the related pointers are set.
3800 	 */
3801 out_success:
3802 	smp_store_release(&kvm->arch.shadow_root_allocated, true);
3803 
3804 out_unlock:
3805 	mutex_unlock(&kvm->slots_arch_lock);
3806 	return r;
3807 }
3808 
3809 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3810 {
3811 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3812 	u64 pdptrs[4], pm_mask;
3813 	gfn_t root_gfn, root_pgd;
3814 	int quadrant, i, r;
3815 	hpa_t root;
3816 
3817 	root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu);
3818 	root_gfn = (root_pgd & __PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
3819 
3820 	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3821 		mmu->root.hpa = kvm_mmu_get_dummy_root();
3822 		return 0;
3823 	}
3824 
3825 	/*
3826 	 * On SVM, reading PDPTRs might access guest memory, which might fault
3827 	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3828 	 */
3829 	if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3830 		for (i = 0; i < 4; ++i) {
3831 			pdptrs[i] = mmu->get_pdptr(vcpu, i);
3832 			if (!(pdptrs[i] & PT_PRESENT_MASK))
3833 				continue;
3834 
3835 			if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT))
3836 				pdptrs[i] = 0;
3837 		}
3838 	}
3839 
3840 	r = mmu_first_shadow_root_alloc(vcpu->kvm);
3841 	if (r)
3842 		return r;
3843 
3844 	write_lock(&vcpu->kvm->mmu_lock);
3845 	r = make_mmu_pages_available(vcpu);
3846 	if (r < 0)
3847 		goto out_unlock;
3848 
3849 	/*
3850 	 * Do we shadow a long mode page table? If so we need to
3851 	 * write-protect the guests page table root.
3852 	 */
3853 	if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
3854 		root = mmu_alloc_root(vcpu, root_gfn, 0,
3855 				      mmu->root_role.level);
3856 		mmu->root.hpa = root;
3857 		goto set_root_pgd;
3858 	}
3859 
3860 	if (WARN_ON_ONCE(!mmu->pae_root)) {
3861 		r = -EIO;
3862 		goto out_unlock;
3863 	}
3864 
3865 	/*
3866 	 * We shadow a 32 bit page table. This may be a legacy 2-level
3867 	 * or a PAE 3-level page table. In either case we need to be aware that
3868 	 * the shadow page table may be a PAE or a long mode page table.
3869 	 */
3870 	pm_mask = PT_PRESENT_MASK | shadow_me_value;
3871 	if (mmu->root_role.level >= PT64_ROOT_4LEVEL) {
3872 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3873 
3874 		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3875 			r = -EIO;
3876 			goto out_unlock;
3877 		}
3878 		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3879 
3880 		if (mmu->root_role.level == PT64_ROOT_5LEVEL) {
3881 			if (WARN_ON_ONCE(!mmu->pml5_root)) {
3882 				r = -EIO;
3883 				goto out_unlock;
3884 			}
3885 			mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
3886 		}
3887 	}
3888 
3889 	for (i = 0; i < 4; ++i) {
3890 		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3891 
3892 		if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3893 			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3894 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3895 				continue;
3896 			}
3897 			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3898 		}
3899 
3900 		/*
3901 		 * If shadowing 32-bit non-PAE page tables, each PAE page
3902 		 * directory maps one quarter of the guest's non-PAE page
3903 		 * directory. Othwerise each PAE page direct shadows one guest
3904 		 * PAE page directory so that quadrant should be 0.
3905 		 */
3906 		quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0;
3907 
3908 		root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL);
3909 		mmu->pae_root[i] = root | pm_mask;
3910 	}
3911 
3912 	if (mmu->root_role.level == PT64_ROOT_5LEVEL)
3913 		mmu->root.hpa = __pa(mmu->pml5_root);
3914 	else if (mmu->root_role.level == PT64_ROOT_4LEVEL)
3915 		mmu->root.hpa = __pa(mmu->pml4_root);
3916 	else
3917 		mmu->root.hpa = __pa(mmu->pae_root);
3918 
3919 set_root_pgd:
3920 	mmu->root.pgd = root_pgd;
3921 out_unlock:
3922 	write_unlock(&vcpu->kvm->mmu_lock);
3923 
3924 	return r;
3925 }
3926 
3927 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3928 {
3929 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3930 	bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL;
3931 	u64 *pml5_root = NULL;
3932 	u64 *pml4_root = NULL;
3933 	u64 *pae_root;
3934 
3935 	/*
3936 	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3937 	 * tables are allocated and initialized at root creation as there is no
3938 	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
3939 	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3940 	 */
3941 	if (mmu->root_role.direct ||
3942 	    mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL ||
3943 	    mmu->root_role.level < PT64_ROOT_4LEVEL)
3944 		return 0;
3945 
3946 	/*
3947 	 * NPT, the only paging mode that uses this horror, uses a fixed number
3948 	 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
3949 	 * all MMus are 5-level.  Thus, this can safely require that pml5_root
3950 	 * is allocated if the other roots are valid and pml5 is needed, as any
3951 	 * prior MMU would also have required pml5.
3952 	 */
3953 	if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3954 		return 0;
3955 
3956 	/*
3957 	 * The special roots should always be allocated in concert.  Yell and
3958 	 * bail if KVM ends up in a state where only one of the roots is valid.
3959 	 */
3960 	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3961 			 (need_pml5 && mmu->pml5_root)))
3962 		return -EIO;
3963 
3964 	/*
3965 	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3966 	 * doesn't need to be decrypted.
3967 	 */
3968 	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3969 	if (!pae_root)
3970 		return -ENOMEM;
3971 
3972 #ifdef CONFIG_X86_64
3973 	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3974 	if (!pml4_root)
3975 		goto err_pml4;
3976 
3977 	if (need_pml5) {
3978 		pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3979 		if (!pml5_root)
3980 			goto err_pml5;
3981 	}
3982 #endif
3983 
3984 	mmu->pae_root = pae_root;
3985 	mmu->pml4_root = pml4_root;
3986 	mmu->pml5_root = pml5_root;
3987 
3988 	return 0;
3989 
3990 #ifdef CONFIG_X86_64
3991 err_pml5:
3992 	free_page((unsigned long)pml4_root);
3993 err_pml4:
3994 	free_page((unsigned long)pae_root);
3995 	return -ENOMEM;
3996 #endif
3997 }
3998 
3999 static bool is_unsync_root(hpa_t root)
4000 {
4001 	struct kvm_mmu_page *sp;
4002 
4003 	if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root))
4004 		return false;
4005 
4006 	/*
4007 	 * The read barrier orders the CPU's read of SPTE.W during the page table
4008 	 * walk before the reads of sp->unsync/sp->unsync_children here.
4009 	 *
4010 	 * Even if another CPU was marking the SP as unsync-ed simultaneously,
4011 	 * any guest page table changes are not guaranteed to be visible anyway
4012 	 * until this VCPU issues a TLB flush strictly after those changes are
4013 	 * made.  We only need to ensure that the other CPU sets these flags
4014 	 * before any actual changes to the page tables are made.  The comments
4015 	 * in mmu_try_to_unsync_pages() describe what could go wrong if this
4016 	 * requirement isn't satisfied.
4017 	 */
4018 	smp_rmb();
4019 	sp = root_to_sp(root);
4020 
4021 	/*
4022 	 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
4023 	 * PDPTEs for a given PAE root need to be synchronized individually.
4024 	 */
4025 	if (WARN_ON_ONCE(!sp))
4026 		return false;
4027 
4028 	if (sp->unsync || sp->unsync_children)
4029 		return true;
4030 
4031 	return false;
4032 }
4033 
4034 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
4035 {
4036 	int i;
4037 	struct kvm_mmu_page *sp;
4038 
4039 	if (vcpu->arch.mmu->root_role.direct)
4040 		return;
4041 
4042 	if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
4043 		return;
4044 
4045 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4046 
4047 	if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
4048 		hpa_t root = vcpu->arch.mmu->root.hpa;
4049 
4050 		if (!is_unsync_root(root))
4051 			return;
4052 
4053 		sp = root_to_sp(root);
4054 
4055 		write_lock(&vcpu->kvm->mmu_lock);
4056 		mmu_sync_children(vcpu, sp, true);
4057 		write_unlock(&vcpu->kvm->mmu_lock);
4058 		return;
4059 	}
4060 
4061 	write_lock(&vcpu->kvm->mmu_lock);
4062 
4063 	for (i = 0; i < 4; ++i) {
4064 		hpa_t root = vcpu->arch.mmu->pae_root[i];
4065 
4066 		if (IS_VALID_PAE_ROOT(root)) {
4067 			sp = spte_to_child_sp(root);
4068 			mmu_sync_children(vcpu, sp, true);
4069 		}
4070 	}
4071 
4072 	write_unlock(&vcpu->kvm->mmu_lock);
4073 }
4074 
4075 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
4076 {
4077 	unsigned long roots_to_free = 0;
4078 	int i;
4079 
4080 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4081 		if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
4082 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
4083 
4084 	/* sync prev_roots by simply freeing them */
4085 	kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
4086 }
4087 
4088 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4089 				  gpa_t vaddr, u64 access,
4090 				  struct x86_exception *exception)
4091 {
4092 	if (exception)
4093 		exception->error_code = 0;
4094 	return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
4095 }
4096 
4097 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4098 {
4099 	/*
4100 	 * A nested guest cannot use the MMIO cache if it is using nested
4101 	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
4102 	 */
4103 	if (mmu_is_nested(vcpu))
4104 		return false;
4105 
4106 	if (direct)
4107 		return vcpu_match_mmio_gpa(vcpu, addr);
4108 
4109 	return vcpu_match_mmio_gva(vcpu, addr);
4110 }
4111 
4112 /*
4113  * Return the level of the lowest level SPTE added to sptes.
4114  * That SPTE may be non-present.
4115  *
4116  * Must be called between walk_shadow_page_lockless_{begin,end}.
4117  */
4118 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
4119 {
4120 	struct kvm_shadow_walk_iterator iterator;
4121 	int leaf = -1;
4122 	u64 spte;
4123 
4124 	for (shadow_walk_init(&iterator, vcpu, addr),
4125 	     *root_level = iterator.level;
4126 	     shadow_walk_okay(&iterator);
4127 	     __shadow_walk_next(&iterator, spte)) {
4128 		leaf = iterator.level;
4129 		spte = mmu_spte_get_lockless(iterator.sptep);
4130 
4131 		sptes[leaf] = spte;
4132 	}
4133 
4134 	return leaf;
4135 }
4136 
4137 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
4138 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
4139 {
4140 	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
4141 	struct rsvd_bits_validate *rsvd_check;
4142 	int root, leaf, level;
4143 	bool reserved = false;
4144 
4145 	walk_shadow_page_lockless_begin(vcpu);
4146 
4147 	if (is_tdp_mmu_active(vcpu))
4148 		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
4149 	else
4150 		leaf = get_walk(vcpu, addr, sptes, &root);
4151 
4152 	walk_shadow_page_lockless_end(vcpu);
4153 
4154 	if (unlikely(leaf < 0)) {
4155 		*sptep = 0ull;
4156 		return reserved;
4157 	}
4158 
4159 	*sptep = sptes[leaf];
4160 
4161 	/*
4162 	 * Skip reserved bits checks on the terminal leaf if it's not a valid
4163 	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
4164 	 * design, always have reserved bits set.  The purpose of the checks is
4165 	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
4166 	 */
4167 	if (!is_shadow_present_pte(sptes[leaf]))
4168 		leaf++;
4169 
4170 	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
4171 
4172 	for (level = root; level >= leaf; level--)
4173 		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
4174 
4175 	if (reserved) {
4176 		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
4177 		       __func__, addr);
4178 		for (level = root; level >= leaf; level--)
4179 			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
4180 			       sptes[level], level,
4181 			       get_rsvd_bits(rsvd_check, sptes[level], level));
4182 	}
4183 
4184 	return reserved;
4185 }
4186 
4187 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4188 {
4189 	u64 spte;
4190 	bool reserved;
4191 
4192 	if (mmio_info_in_cache(vcpu, addr, direct))
4193 		return RET_PF_EMULATE;
4194 
4195 	reserved = get_mmio_spte(vcpu, addr, &spte);
4196 	if (WARN_ON_ONCE(reserved))
4197 		return -EINVAL;
4198 
4199 	if (is_mmio_spte(spte)) {
4200 		gfn_t gfn = get_mmio_spte_gfn(spte);
4201 		unsigned int access = get_mmio_spte_access(spte);
4202 
4203 		if (!check_mmio_spte(vcpu, spte))
4204 			return RET_PF_INVALID;
4205 
4206 		if (direct)
4207 			addr = 0;
4208 
4209 		trace_handle_mmio_page_fault(addr, gfn, access);
4210 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4211 		return RET_PF_EMULATE;
4212 	}
4213 
4214 	/*
4215 	 * If the page table is zapped by other cpus, let CPU fault again on
4216 	 * the address.
4217 	 */
4218 	return RET_PF_RETRY;
4219 }
4220 
4221 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4222 					 struct kvm_page_fault *fault)
4223 {
4224 	if (unlikely(fault->rsvd))
4225 		return false;
4226 
4227 	if (!fault->present || !fault->write)
4228 		return false;
4229 
4230 	/*
4231 	 * guest is writing the page which is write tracked which can
4232 	 * not be fixed by page fault handler.
4233 	 */
4234 	if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn))
4235 		return true;
4236 
4237 	return false;
4238 }
4239 
4240 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4241 {
4242 	struct kvm_shadow_walk_iterator iterator;
4243 	u64 spte;
4244 
4245 	walk_shadow_page_lockless_begin(vcpu);
4246 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
4247 		clear_sp_write_flooding_count(iterator.sptep);
4248 	walk_shadow_page_lockless_end(vcpu);
4249 }
4250 
4251 static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
4252 {
4253 	/* make sure the token value is not 0 */
4254 	u32 id = vcpu->arch.apf.id;
4255 
4256 	if (id << 12 == 0)
4257 		vcpu->arch.apf.id = 1;
4258 
4259 	return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4260 }
4261 
4262 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4263 				    gfn_t gfn)
4264 {
4265 	struct kvm_arch_async_pf arch;
4266 
4267 	arch.token = alloc_apf_token(vcpu);
4268 	arch.gfn = gfn;
4269 	arch.direct_map = vcpu->arch.mmu->root_role.direct;
4270 	arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu);
4271 
4272 	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4273 				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4274 }
4275 
4276 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
4277 {
4278 	int r;
4279 
4280 	if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) ||
4281 	      work->wakeup_all)
4282 		return;
4283 
4284 	r = kvm_mmu_reload(vcpu);
4285 	if (unlikely(r))
4286 		return;
4287 
4288 	if (!vcpu->arch.mmu->root_role.direct &&
4289 	      work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu))
4290 		return;
4291 
4292 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true, NULL);
4293 }
4294 
4295 static inline u8 kvm_max_level_for_order(int order)
4296 {
4297 	BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G);
4298 
4299 	KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) &&
4300 			order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) &&
4301 			order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K));
4302 
4303 	if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G))
4304 		return PG_LEVEL_1G;
4305 
4306 	if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M))
4307 		return PG_LEVEL_2M;
4308 
4309 	return PG_LEVEL_4K;
4310 }
4311 
4312 static void kvm_mmu_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
4313 					      struct kvm_page_fault *fault)
4314 {
4315 	kvm_prepare_memory_fault_exit(vcpu, fault->gfn << PAGE_SHIFT,
4316 				      PAGE_SIZE, fault->write, fault->exec,
4317 				      fault->is_private);
4318 }
4319 
4320 static int kvm_faultin_pfn_private(struct kvm_vcpu *vcpu,
4321 				   struct kvm_page_fault *fault)
4322 {
4323 	int max_order, r;
4324 
4325 	if (!kvm_slot_can_be_private(fault->slot)) {
4326 		kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4327 		return -EFAULT;
4328 	}
4329 
4330 	r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn,
4331 			     &max_order);
4332 	if (r) {
4333 		kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4334 		return r;
4335 	}
4336 
4337 	fault->max_level = min(kvm_max_level_for_order(max_order),
4338 			       fault->max_level);
4339 	fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY);
4340 
4341 	return RET_PF_CONTINUE;
4342 }
4343 
4344 static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4345 {
4346 	struct kvm_memory_slot *slot = fault->slot;
4347 	bool async;
4348 
4349 	/*
4350 	 * Retry the page fault if the gfn hit a memslot that is being deleted
4351 	 * or moved.  This ensures any existing SPTEs for the old memslot will
4352 	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
4353 	 */
4354 	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
4355 		return RET_PF_RETRY;
4356 
4357 	if (!kvm_is_visible_memslot(slot)) {
4358 		/* Don't expose private memslots to L2. */
4359 		if (is_guest_mode(vcpu)) {
4360 			fault->slot = NULL;
4361 			fault->pfn = KVM_PFN_NOSLOT;
4362 			fault->map_writable = false;
4363 			return RET_PF_CONTINUE;
4364 		}
4365 		/*
4366 		 * If the APIC access page exists but is disabled, go directly
4367 		 * to emulation without caching the MMIO access or creating a
4368 		 * MMIO SPTE.  That way the cache doesn't need to be purged
4369 		 * when the AVIC is re-enabled.
4370 		 */
4371 		if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
4372 		    !kvm_apicv_activated(vcpu->kvm))
4373 			return RET_PF_EMULATE;
4374 	}
4375 
4376 	if (fault->is_private != kvm_mem_is_private(vcpu->kvm, fault->gfn)) {
4377 		kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4378 		return -EFAULT;
4379 	}
4380 
4381 	if (fault->is_private)
4382 		return kvm_faultin_pfn_private(vcpu, fault);
4383 
4384 	async = false;
4385 	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, false, &async,
4386 					  fault->write, &fault->map_writable,
4387 					  &fault->hva);
4388 	if (!async)
4389 		return RET_PF_CONTINUE; /* *pfn has correct page already */
4390 
4391 	if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
4392 		trace_kvm_try_async_get_page(fault->addr, fault->gfn);
4393 		if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
4394 			trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn);
4395 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4396 			return RET_PF_RETRY;
4397 		} else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) {
4398 			return RET_PF_RETRY;
4399 		}
4400 	}
4401 
4402 	/*
4403 	 * Allow gup to bail on pending non-fatal signals when it's also allowed
4404 	 * to wait for IO.  Note, gup always bails if it is unable to quickly
4405 	 * get a page and a fatal signal, i.e. SIGKILL, is pending.
4406 	 */
4407 	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, true, NULL,
4408 					  fault->write, &fault->map_writable,
4409 					  &fault->hva);
4410 	return RET_PF_CONTINUE;
4411 }
4412 
4413 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
4414 			   unsigned int access)
4415 {
4416 	int ret;
4417 
4418 	fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq;
4419 	smp_rmb();
4420 
4421 	/*
4422 	 * Check for a relevant mmu_notifier invalidation event before getting
4423 	 * the pfn from the primary MMU, and before acquiring mmu_lock.
4424 	 *
4425 	 * For mmu_lock, if there is an in-progress invalidation and the kernel
4426 	 * allows preemption, the invalidation task may drop mmu_lock and yield
4427 	 * in response to mmu_lock being contended, which is *very* counter-
4428 	 * productive as this vCPU can't actually make forward progress until
4429 	 * the invalidation completes.
4430 	 *
4431 	 * Retrying now can also avoid unnessary lock contention in the primary
4432 	 * MMU, as the primary MMU doesn't necessarily hold a single lock for
4433 	 * the duration of the invalidation, i.e. faulting in a conflicting pfn
4434 	 * can cause the invalidation to take longer by holding locks that are
4435 	 * needed to complete the invalidation.
4436 	 *
4437 	 * Do the pre-check even for non-preemtible kernels, i.e. even if KVM
4438 	 * will never yield mmu_lock in response to contention, as this vCPU is
4439 	 * *guaranteed* to need to retry, i.e. waiting until mmu_lock is held
4440 	 * to detect retry guarantees the worst case latency for the vCPU.
4441 	 */
4442 	if (fault->slot &&
4443 	    mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn))
4444 		return RET_PF_RETRY;
4445 
4446 	ret = __kvm_faultin_pfn(vcpu, fault);
4447 	if (ret != RET_PF_CONTINUE)
4448 		return ret;
4449 
4450 	if (unlikely(is_error_pfn(fault->pfn)))
4451 		return kvm_handle_error_pfn(vcpu, fault);
4452 
4453 	if (unlikely(!fault->slot))
4454 		return kvm_handle_noslot_fault(vcpu, fault, access);
4455 
4456 	/*
4457 	 * Check again for a relevant mmu_notifier invalidation event purely to
4458 	 * avoid contending mmu_lock.  Most invalidations will be detected by
4459 	 * the previous check, but checking is extremely cheap relative to the
4460 	 * overall cost of failing to detect the invalidation until after
4461 	 * mmu_lock is acquired.
4462 	 */
4463 	if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) {
4464 		kvm_release_pfn_clean(fault->pfn);
4465 		return RET_PF_RETRY;
4466 	}
4467 
4468 	return RET_PF_CONTINUE;
4469 }
4470 
4471 /*
4472  * Returns true if the page fault is stale and needs to be retried, i.e. if the
4473  * root was invalidated by a memslot update or a relevant mmu_notifier fired.
4474  */
4475 static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
4476 				struct kvm_page_fault *fault)
4477 {
4478 	struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa);
4479 
4480 	/* Special roots, e.g. pae_root, are not backed by shadow pages. */
4481 	if (sp && is_obsolete_sp(vcpu->kvm, sp))
4482 		return true;
4483 
4484 	/*
4485 	 * Roots without an associated shadow page are considered invalid if
4486 	 * there is a pending request to free obsolete roots.  The request is
4487 	 * only a hint that the current root _may_ be obsolete and needs to be
4488 	 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
4489 	 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
4490 	 * to reload even if no vCPU is actively using the root.
4491 	 */
4492 	if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
4493 		return true;
4494 
4495 	/*
4496 	 * Check for a relevant mmu_notifier invalidation event one last time
4497 	 * now that mmu_lock is held, as the "unsafe" checks performed without
4498 	 * holding mmu_lock can get false negatives.
4499 	 */
4500 	return fault->slot &&
4501 	       mmu_invalidate_retry_gfn(vcpu->kvm, fault->mmu_seq, fault->gfn);
4502 }
4503 
4504 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4505 {
4506 	int r;
4507 
4508 	/* Dummy roots are used only for shadowing bad guest roots. */
4509 	if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa)))
4510 		return RET_PF_RETRY;
4511 
4512 	if (page_fault_handle_page_track(vcpu, fault))
4513 		return RET_PF_EMULATE;
4514 
4515 	r = fast_page_fault(vcpu, fault);
4516 	if (r != RET_PF_INVALID)
4517 		return r;
4518 
4519 	r = mmu_topup_memory_caches(vcpu, false);
4520 	if (r)
4521 		return r;
4522 
4523 	r = kvm_faultin_pfn(vcpu, fault, ACC_ALL);
4524 	if (r != RET_PF_CONTINUE)
4525 		return r;
4526 
4527 	r = RET_PF_RETRY;
4528 	write_lock(&vcpu->kvm->mmu_lock);
4529 
4530 	if (is_page_fault_stale(vcpu, fault))
4531 		goto out_unlock;
4532 
4533 	r = make_mmu_pages_available(vcpu);
4534 	if (r)
4535 		goto out_unlock;
4536 
4537 	r = direct_map(vcpu, fault);
4538 
4539 out_unlock:
4540 	write_unlock(&vcpu->kvm->mmu_lock);
4541 	kvm_release_pfn_clean(fault->pfn);
4542 	return r;
4543 }
4544 
4545 static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
4546 				struct kvm_page_fault *fault)
4547 {
4548 	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4549 	fault->max_level = PG_LEVEL_2M;
4550 	return direct_page_fault(vcpu, fault);
4551 }
4552 
4553 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4554 				u64 fault_address, char *insn, int insn_len)
4555 {
4556 	int r = 1;
4557 	u32 flags = vcpu->arch.apf.host_apf_flags;
4558 
4559 #ifndef CONFIG_X86_64
4560 	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
4561 	if (WARN_ON_ONCE(fault_address >> 32))
4562 		return -EFAULT;
4563 #endif
4564 
4565 	vcpu->arch.l1tf_flush_l1d = true;
4566 	if (!flags) {
4567 		trace_kvm_page_fault(vcpu, fault_address, error_code);
4568 
4569 		if (kvm_event_needs_reinjection(vcpu))
4570 			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4571 		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4572 				insn_len);
4573 	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4574 		vcpu->arch.apf.host_apf_flags = 0;
4575 		local_irq_disable();
4576 		kvm_async_pf_task_wait_schedule(fault_address);
4577 		local_irq_enable();
4578 	} else {
4579 		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4580 	}
4581 
4582 	return r;
4583 }
4584 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4585 
4586 #ifdef CONFIG_X86_64
4587 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu,
4588 				  struct kvm_page_fault *fault)
4589 {
4590 	int r;
4591 
4592 	if (page_fault_handle_page_track(vcpu, fault))
4593 		return RET_PF_EMULATE;
4594 
4595 	r = fast_page_fault(vcpu, fault);
4596 	if (r != RET_PF_INVALID)
4597 		return r;
4598 
4599 	r = mmu_topup_memory_caches(vcpu, false);
4600 	if (r)
4601 		return r;
4602 
4603 	r = kvm_faultin_pfn(vcpu, fault, ACC_ALL);
4604 	if (r != RET_PF_CONTINUE)
4605 		return r;
4606 
4607 	r = RET_PF_RETRY;
4608 	read_lock(&vcpu->kvm->mmu_lock);
4609 
4610 	if (is_page_fault_stale(vcpu, fault))
4611 		goto out_unlock;
4612 
4613 	r = kvm_tdp_mmu_map(vcpu, fault);
4614 
4615 out_unlock:
4616 	read_unlock(&vcpu->kvm->mmu_lock);
4617 	kvm_release_pfn_clean(fault->pfn);
4618 	return r;
4619 }
4620 #endif
4621 
4622 bool __kvm_mmu_honors_guest_mtrrs(bool vm_has_noncoherent_dma)
4623 {
4624 	/*
4625 	 * If host MTRRs are ignored (shadow_memtype_mask is non-zero), and the
4626 	 * VM has non-coherent DMA (DMA doesn't snoop CPU caches), KVM's ABI is
4627 	 * to honor the memtype from the guest's MTRRs so that guest accesses
4628 	 * to memory that is DMA'd aren't cached against the guest's wishes.
4629 	 *
4630 	 * Note, KVM may still ultimately ignore guest MTRRs for certain PFNs,
4631 	 * e.g. KVM will force UC memtype for host MMIO.
4632 	 */
4633 	return vm_has_noncoherent_dma && shadow_memtype_mask;
4634 }
4635 
4636 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4637 {
4638 	/*
4639 	 * If the guest's MTRRs may be used to compute the "real" memtype,
4640 	 * restrict the mapping level to ensure KVM uses a consistent memtype
4641 	 * across the entire mapping.
4642 	 */
4643 	if (kvm_mmu_honors_guest_mtrrs(vcpu->kvm)) {
4644 		for ( ; fault->max_level > PG_LEVEL_4K; --fault->max_level) {
4645 			int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
4646 			gfn_t base = gfn_round_for_level(fault->gfn,
4647 							 fault->max_level);
4648 
4649 			if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4650 				break;
4651 		}
4652 	}
4653 
4654 #ifdef CONFIG_X86_64
4655 	if (tdp_mmu_enabled)
4656 		return kvm_tdp_mmu_page_fault(vcpu, fault);
4657 #endif
4658 
4659 	return direct_page_fault(vcpu, fault);
4660 }
4661 
4662 static void nonpaging_init_context(struct kvm_mmu *context)
4663 {
4664 	context->page_fault = nonpaging_page_fault;
4665 	context->gva_to_gpa = nonpaging_gva_to_gpa;
4666 	context->sync_spte = NULL;
4667 }
4668 
4669 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4670 				  union kvm_mmu_page_role role)
4671 {
4672 	struct kvm_mmu_page *sp;
4673 
4674 	if (!VALID_PAGE(root->hpa))
4675 		return false;
4676 
4677 	if (!role.direct && pgd != root->pgd)
4678 		return false;
4679 
4680 	sp = root_to_sp(root->hpa);
4681 	if (WARN_ON_ONCE(!sp))
4682 		return false;
4683 
4684 	return role.word == sp->role.word;
4685 }
4686 
4687 /*
4688  * Find out if a previously cached root matching the new pgd/role is available,
4689  * and insert the current root as the MRU in the cache.
4690  * If a matching root is found, it is assigned to kvm_mmu->root and
4691  * true is returned.
4692  * If no match is found, kvm_mmu->root is left invalid, the LRU root is
4693  * evicted to make room for the current root, and false is returned.
4694  */
4695 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu,
4696 					      gpa_t new_pgd,
4697 					      union kvm_mmu_page_role new_role)
4698 {
4699 	uint i;
4700 
4701 	if (is_root_usable(&mmu->root, new_pgd, new_role))
4702 		return true;
4703 
4704 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4705 		/*
4706 		 * The swaps end up rotating the cache like this:
4707 		 *   C   0 1 2 3   (on entry to the function)
4708 		 *   0   C 1 2 3
4709 		 *   1   C 0 2 3
4710 		 *   2   C 0 1 3
4711 		 *   3   C 0 1 2   (on exit from the loop)
4712 		 */
4713 		swap(mmu->root, mmu->prev_roots[i]);
4714 		if (is_root_usable(&mmu->root, new_pgd, new_role))
4715 			return true;
4716 	}
4717 
4718 	kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4719 	return false;
4720 }
4721 
4722 /*
4723  * Find out if a previously cached root matching the new pgd/role is available.
4724  * On entry, mmu->root is invalid.
4725  * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
4726  * of the cache becomes invalid, and true is returned.
4727  * If no match is found, kvm_mmu->root is left invalid and false is returned.
4728  */
4729 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu,
4730 					     gpa_t new_pgd,
4731 					     union kvm_mmu_page_role new_role)
4732 {
4733 	uint i;
4734 
4735 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4736 		if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role))
4737 			goto hit;
4738 
4739 	return false;
4740 
4741 hit:
4742 	swap(mmu->root, mmu->prev_roots[i]);
4743 	/* Bubble up the remaining roots.  */
4744 	for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++)
4745 		mmu->prev_roots[i] = mmu->prev_roots[i + 1];
4746 	mmu->prev_roots[i].hpa = INVALID_PAGE;
4747 	return true;
4748 }
4749 
4750 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu,
4751 			    gpa_t new_pgd, union kvm_mmu_page_role new_role)
4752 {
4753 	/*
4754 	 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to
4755 	 * avoid having to deal with PDPTEs and other complexities.
4756 	 */
4757 	if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa))
4758 		kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4759 
4760 	if (VALID_PAGE(mmu->root.hpa))
4761 		return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role);
4762 	else
4763 		return cached_root_find_without_current(kvm, mmu, new_pgd, new_role);
4764 }
4765 
4766 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4767 {
4768 	struct kvm_mmu *mmu = vcpu->arch.mmu;
4769 	union kvm_mmu_page_role new_role = mmu->root_role;
4770 
4771 	/*
4772 	 * Return immediately if no usable root was found, kvm_mmu_reload()
4773 	 * will establish a valid root prior to the next VM-Enter.
4774 	 */
4775 	if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role))
4776 		return;
4777 
4778 	/*
4779 	 * It's possible that the cached previous root page is obsolete because
4780 	 * of a change in the MMU generation number. However, changing the
4781 	 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS,
4782 	 * which will free the root set here and allocate a new one.
4783 	 */
4784 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4785 
4786 	if (force_flush_and_sync_on_reuse) {
4787 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4788 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4789 	}
4790 
4791 	/*
4792 	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4793 	 * switching to a new CR3, that GVA->GPA mapping may no longer be
4794 	 * valid. So clear any cached MMIO info even when we don't need to sync
4795 	 * the shadow page tables.
4796 	 */
4797 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4798 
4799 	/*
4800 	 * If this is a direct root page, it doesn't have a write flooding
4801 	 * count. Otherwise, clear the write flooding count.
4802 	 */
4803 	if (!new_role.direct) {
4804 		struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa);
4805 
4806 		if (!WARN_ON_ONCE(!sp))
4807 			__clear_sp_write_flooding_count(sp);
4808 	}
4809 }
4810 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4811 
4812 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4813 			   unsigned int access)
4814 {
4815 	if (unlikely(is_mmio_spte(*sptep))) {
4816 		if (gfn != get_mmio_spte_gfn(*sptep)) {
4817 			mmu_spte_clear_no_track(sptep);
4818 			return true;
4819 		}
4820 
4821 		mark_mmio_spte(vcpu, sptep, gfn, access);
4822 		return true;
4823 	}
4824 
4825 	return false;
4826 }
4827 
4828 #define PTTYPE_EPT 18 /* arbitrary */
4829 #define PTTYPE PTTYPE_EPT
4830 #include "paging_tmpl.h"
4831 #undef PTTYPE
4832 
4833 #define PTTYPE 64
4834 #include "paging_tmpl.h"
4835 #undef PTTYPE
4836 
4837 #define PTTYPE 32
4838 #include "paging_tmpl.h"
4839 #undef PTTYPE
4840 
4841 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4842 				    u64 pa_bits_rsvd, int level, bool nx,
4843 				    bool gbpages, bool pse, bool amd)
4844 {
4845 	u64 gbpages_bit_rsvd = 0;
4846 	u64 nonleaf_bit8_rsvd = 0;
4847 	u64 high_bits_rsvd;
4848 
4849 	rsvd_check->bad_mt_xwr = 0;
4850 
4851 	if (!gbpages)
4852 		gbpages_bit_rsvd = rsvd_bits(7, 7);
4853 
4854 	if (level == PT32E_ROOT_LEVEL)
4855 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4856 	else
4857 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4858 
4859 	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
4860 	if (!nx)
4861 		high_bits_rsvd |= rsvd_bits(63, 63);
4862 
4863 	/*
4864 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4865 	 * leaf entries) on AMD CPUs only.
4866 	 */
4867 	if (amd)
4868 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4869 
4870 	switch (level) {
4871 	case PT32_ROOT_LEVEL:
4872 		/* no rsvd bits for 2 level 4K page table entries */
4873 		rsvd_check->rsvd_bits_mask[0][1] = 0;
4874 		rsvd_check->rsvd_bits_mask[0][0] = 0;
4875 		rsvd_check->rsvd_bits_mask[1][0] =
4876 			rsvd_check->rsvd_bits_mask[0][0];
4877 
4878 		if (!pse) {
4879 			rsvd_check->rsvd_bits_mask[1][1] = 0;
4880 			break;
4881 		}
4882 
4883 		if (is_cpuid_PSE36())
4884 			/* 36bits PSE 4MB page */
4885 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4886 		else
4887 			/* 32 bits PSE 4MB page */
4888 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4889 		break;
4890 	case PT32E_ROOT_LEVEL:
4891 		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4892 						   high_bits_rsvd |
4893 						   rsvd_bits(5, 8) |
4894 						   rsvd_bits(1, 2);	/* PDPTE */
4895 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
4896 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
4897 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4898 						   rsvd_bits(13, 20);	/* large page */
4899 		rsvd_check->rsvd_bits_mask[1][0] =
4900 			rsvd_check->rsvd_bits_mask[0][0];
4901 		break;
4902 	case PT64_ROOT_5LEVEL:
4903 		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4904 						   nonleaf_bit8_rsvd |
4905 						   rsvd_bits(7, 7);
4906 		rsvd_check->rsvd_bits_mask[1][4] =
4907 			rsvd_check->rsvd_bits_mask[0][4];
4908 		fallthrough;
4909 	case PT64_ROOT_4LEVEL:
4910 		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4911 						   nonleaf_bit8_rsvd |
4912 						   rsvd_bits(7, 7);
4913 		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4914 						   gbpages_bit_rsvd;
4915 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4916 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4917 		rsvd_check->rsvd_bits_mask[1][3] =
4918 			rsvd_check->rsvd_bits_mask[0][3];
4919 		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4920 						   gbpages_bit_rsvd |
4921 						   rsvd_bits(13, 29);
4922 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4923 						   rsvd_bits(13, 20); /* large page */
4924 		rsvd_check->rsvd_bits_mask[1][0] =
4925 			rsvd_check->rsvd_bits_mask[0][0];
4926 		break;
4927 	}
4928 }
4929 
4930 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4931 					struct kvm_mmu *context)
4932 {
4933 	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4934 				vcpu->arch.reserved_gpa_bits,
4935 				context->cpu_role.base.level, is_efer_nx(context),
4936 				guest_can_use(vcpu, X86_FEATURE_GBPAGES),
4937 				is_cr4_pse(context),
4938 				guest_cpuid_is_amd_compatible(vcpu));
4939 }
4940 
4941 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4942 					u64 pa_bits_rsvd, bool execonly,
4943 					int huge_page_level)
4944 {
4945 	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4946 	u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
4947 	u64 bad_mt_xwr;
4948 
4949 	if (huge_page_level < PG_LEVEL_1G)
4950 		large_1g_rsvd = rsvd_bits(7, 7);
4951 	if (huge_page_level < PG_LEVEL_2M)
4952 		large_2m_rsvd = rsvd_bits(7, 7);
4953 
4954 	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4955 	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4956 	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
4957 	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
4958 	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4959 
4960 	/* large page */
4961 	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4962 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4963 	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
4964 	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
4965 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4966 
4967 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
4968 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
4969 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
4970 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
4971 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
4972 	if (!execonly) {
4973 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
4974 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4975 	}
4976 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4977 }
4978 
4979 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4980 		struct kvm_mmu *context, bool execonly, int huge_page_level)
4981 {
4982 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4983 				    vcpu->arch.reserved_gpa_bits, execonly,
4984 				    huge_page_level);
4985 }
4986 
4987 static inline u64 reserved_hpa_bits(void)
4988 {
4989 	return rsvd_bits(shadow_phys_bits, 63);
4990 }
4991 
4992 /*
4993  * the page table on host is the shadow page table for the page
4994  * table in guest or amd nested guest, its mmu features completely
4995  * follow the features in guest.
4996  */
4997 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4998 					struct kvm_mmu *context)
4999 {
5000 	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
5001 	bool is_amd = true;
5002 	/* KVM doesn't use 2-level page tables for the shadow MMU. */
5003 	bool is_pse = false;
5004 	struct rsvd_bits_validate *shadow_zero_check;
5005 	int i;
5006 
5007 	WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL);
5008 
5009 	shadow_zero_check = &context->shadow_zero_check;
5010 	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
5011 				context->root_role.level,
5012 				context->root_role.efer_nx,
5013 				guest_can_use(vcpu, X86_FEATURE_GBPAGES),
5014 				is_pse, is_amd);
5015 
5016 	if (!shadow_me_mask)
5017 		return;
5018 
5019 	for (i = context->root_role.level; --i >= 0;) {
5020 		/*
5021 		 * So far shadow_me_value is a constant during KVM's life
5022 		 * time.  Bits in shadow_me_value are allowed to be set.
5023 		 * Bits in shadow_me_mask but not in shadow_me_value are
5024 		 * not allowed to be set.
5025 		 */
5026 		shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask;
5027 		shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask;
5028 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value;
5029 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value;
5030 	}
5031 
5032 }
5033 
5034 static inline bool boot_cpu_is_amd(void)
5035 {
5036 	WARN_ON_ONCE(!tdp_enabled);
5037 	return shadow_x_mask == 0;
5038 }
5039 
5040 /*
5041  * the direct page table on host, use as much mmu features as
5042  * possible, however, kvm currently does not do execution-protection.
5043  */
5044 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
5045 {
5046 	struct rsvd_bits_validate *shadow_zero_check;
5047 	int i;
5048 
5049 	shadow_zero_check = &context->shadow_zero_check;
5050 
5051 	if (boot_cpu_is_amd())
5052 		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
5053 					context->root_role.level, true,
5054 					boot_cpu_has(X86_FEATURE_GBPAGES),
5055 					false, true);
5056 	else
5057 		__reset_rsvds_bits_mask_ept(shadow_zero_check,
5058 					    reserved_hpa_bits(), false,
5059 					    max_huge_page_level);
5060 
5061 	if (!shadow_me_mask)
5062 		return;
5063 
5064 	for (i = context->root_role.level; --i >= 0;) {
5065 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
5066 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
5067 	}
5068 }
5069 
5070 /*
5071  * as the comments in reset_shadow_zero_bits_mask() except it
5072  * is the shadow page table for intel nested guest.
5073  */
5074 static void
5075 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
5076 {
5077 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
5078 				    reserved_hpa_bits(), execonly,
5079 				    max_huge_page_level);
5080 }
5081 
5082 #define BYTE_MASK(access) \
5083 	((1 & (access) ? 2 : 0) | \
5084 	 (2 & (access) ? 4 : 0) | \
5085 	 (3 & (access) ? 8 : 0) | \
5086 	 (4 & (access) ? 16 : 0) | \
5087 	 (5 & (access) ? 32 : 0) | \
5088 	 (6 & (access) ? 64 : 0) | \
5089 	 (7 & (access) ? 128 : 0))
5090 
5091 
5092 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
5093 {
5094 	unsigned byte;
5095 
5096 	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
5097 	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
5098 	const u8 u = BYTE_MASK(ACC_USER_MASK);
5099 
5100 	bool cr4_smep = is_cr4_smep(mmu);
5101 	bool cr4_smap = is_cr4_smap(mmu);
5102 	bool cr0_wp = is_cr0_wp(mmu);
5103 	bool efer_nx = is_efer_nx(mmu);
5104 
5105 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
5106 		unsigned pfec = byte << 1;
5107 
5108 		/*
5109 		 * Each "*f" variable has a 1 bit for each UWX value
5110 		 * that causes a fault with the given PFEC.
5111 		 */
5112 
5113 		/* Faults from writes to non-writable pages */
5114 		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
5115 		/* Faults from user mode accesses to supervisor pages */
5116 		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
5117 		/* Faults from fetches of non-executable pages*/
5118 		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
5119 		/* Faults from kernel mode fetches of user pages */
5120 		u8 smepf = 0;
5121 		/* Faults from kernel mode accesses of user pages */
5122 		u8 smapf = 0;
5123 
5124 		if (!ept) {
5125 			/* Faults from kernel mode accesses to user pages */
5126 			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
5127 
5128 			/* Not really needed: !nx will cause pte.nx to fault */
5129 			if (!efer_nx)
5130 				ff = 0;
5131 
5132 			/* Allow supervisor writes if !cr0.wp */
5133 			if (!cr0_wp)
5134 				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
5135 
5136 			/* Disallow supervisor fetches of user code if cr4.smep */
5137 			if (cr4_smep)
5138 				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
5139 
5140 			/*
5141 			 * SMAP:kernel-mode data accesses from user-mode
5142 			 * mappings should fault. A fault is considered
5143 			 * as a SMAP violation if all of the following
5144 			 * conditions are true:
5145 			 *   - X86_CR4_SMAP is set in CR4
5146 			 *   - A user page is accessed
5147 			 *   - The access is not a fetch
5148 			 *   - The access is supervisor mode
5149 			 *   - If implicit supervisor access or X86_EFLAGS_AC is clear
5150 			 *
5151 			 * Here, we cover the first four conditions.
5152 			 * The fifth is computed dynamically in permission_fault();
5153 			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
5154 			 * *not* subject to SMAP restrictions.
5155 			 */
5156 			if (cr4_smap)
5157 				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
5158 		}
5159 
5160 		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
5161 	}
5162 }
5163 
5164 /*
5165 * PKU is an additional mechanism by which the paging controls access to
5166 * user-mode addresses based on the value in the PKRU register.  Protection
5167 * key violations are reported through a bit in the page fault error code.
5168 * Unlike other bits of the error code, the PK bit is not known at the
5169 * call site of e.g. gva_to_gpa; it must be computed directly in
5170 * permission_fault based on two bits of PKRU, on some machine state (CR4,
5171 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
5172 *
5173 * In particular the following conditions come from the error code, the
5174 * page tables and the machine state:
5175 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
5176 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
5177 * - PK is always zero if U=0 in the page tables
5178 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
5179 *
5180 * The PKRU bitmask caches the result of these four conditions.  The error
5181 * code (minus the P bit) and the page table's U bit form an index into the
5182 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
5183 * with the two bits of the PKRU register corresponding to the protection key.
5184 * For the first three conditions above the bits will be 00, thus masking
5185 * away both AD and WD.  For all reads or if the last condition holds, WD
5186 * only will be masked away.
5187 */
5188 static void update_pkru_bitmask(struct kvm_mmu *mmu)
5189 {
5190 	unsigned bit;
5191 	bool wp;
5192 
5193 	mmu->pkru_mask = 0;
5194 
5195 	if (!is_cr4_pke(mmu))
5196 		return;
5197 
5198 	wp = is_cr0_wp(mmu);
5199 
5200 	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
5201 		unsigned pfec, pkey_bits;
5202 		bool check_pkey, check_write, ff, uf, wf, pte_user;
5203 
5204 		pfec = bit << 1;
5205 		ff = pfec & PFERR_FETCH_MASK;
5206 		uf = pfec & PFERR_USER_MASK;
5207 		wf = pfec & PFERR_WRITE_MASK;
5208 
5209 		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
5210 		pte_user = pfec & PFERR_RSVD_MASK;
5211 
5212 		/*
5213 		 * Only need to check the access which is not an
5214 		 * instruction fetch and is to a user page.
5215 		 */
5216 		check_pkey = (!ff && pte_user);
5217 		/*
5218 		 * write access is controlled by PKRU if it is a
5219 		 * user access or CR0.WP = 1.
5220 		 */
5221 		check_write = check_pkey && wf && (uf || wp);
5222 
5223 		/* PKRU.AD stops both read and write access. */
5224 		pkey_bits = !!check_pkey;
5225 		/* PKRU.WD stops write access. */
5226 		pkey_bits |= (!!check_write) << 1;
5227 
5228 		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
5229 	}
5230 }
5231 
5232 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
5233 					struct kvm_mmu *mmu)
5234 {
5235 	if (!is_cr0_pg(mmu))
5236 		return;
5237 
5238 	reset_guest_rsvds_bits_mask(vcpu, mmu);
5239 	update_permission_bitmask(mmu, false);
5240 	update_pkru_bitmask(mmu);
5241 }
5242 
5243 static void paging64_init_context(struct kvm_mmu *context)
5244 {
5245 	context->page_fault = paging64_page_fault;
5246 	context->gva_to_gpa = paging64_gva_to_gpa;
5247 	context->sync_spte = paging64_sync_spte;
5248 }
5249 
5250 static void paging32_init_context(struct kvm_mmu *context)
5251 {
5252 	context->page_fault = paging32_page_fault;
5253 	context->gva_to_gpa = paging32_gva_to_gpa;
5254 	context->sync_spte = paging32_sync_spte;
5255 }
5256 
5257 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu,
5258 					    const struct kvm_mmu_role_regs *regs)
5259 {
5260 	union kvm_cpu_role role = {0};
5261 
5262 	role.base.access = ACC_ALL;
5263 	role.base.smm = is_smm(vcpu);
5264 	role.base.guest_mode = is_guest_mode(vcpu);
5265 	role.ext.valid = 1;
5266 
5267 	if (!____is_cr0_pg(regs)) {
5268 		role.base.direct = 1;
5269 		return role;
5270 	}
5271 
5272 	role.base.efer_nx = ____is_efer_nx(regs);
5273 	role.base.cr0_wp = ____is_cr0_wp(regs);
5274 	role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs);
5275 	role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs);
5276 	role.base.has_4_byte_gpte = !____is_cr4_pae(regs);
5277 
5278 	if (____is_efer_lma(regs))
5279 		role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL
5280 							: PT64_ROOT_4LEVEL;
5281 	else if (____is_cr4_pae(regs))
5282 		role.base.level = PT32E_ROOT_LEVEL;
5283 	else
5284 		role.base.level = PT32_ROOT_LEVEL;
5285 
5286 	role.ext.cr4_smep = ____is_cr4_smep(regs);
5287 	role.ext.cr4_smap = ____is_cr4_smap(regs);
5288 	role.ext.cr4_pse = ____is_cr4_pse(regs);
5289 
5290 	/* PKEY and LA57 are active iff long mode is active. */
5291 	role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
5292 	role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
5293 	role.ext.efer_lma = ____is_efer_lma(regs);
5294 	return role;
5295 }
5296 
5297 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
5298 					struct kvm_mmu *mmu)
5299 {
5300 	const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP);
5301 
5302 	BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP);
5303 	BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS));
5304 
5305 	if (is_cr0_wp(mmu) == cr0_wp)
5306 		return;
5307 
5308 	mmu->cpu_role.base.cr0_wp = cr0_wp;
5309 	reset_guest_paging_metadata(vcpu, mmu);
5310 }
5311 
5312 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
5313 {
5314 	/* tdp_root_level is architecture forced level, use it if nonzero */
5315 	if (tdp_root_level)
5316 		return tdp_root_level;
5317 
5318 	/* Use 5-level TDP if and only if it's useful/necessary. */
5319 	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
5320 		return 4;
5321 
5322 	return max_tdp_level;
5323 }
5324 
5325 static union kvm_mmu_page_role
5326 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
5327 				union kvm_cpu_role cpu_role)
5328 {
5329 	union kvm_mmu_page_role role = {0};
5330 
5331 	role.access = ACC_ALL;
5332 	role.cr0_wp = true;
5333 	role.efer_nx = true;
5334 	role.smm = cpu_role.base.smm;
5335 	role.guest_mode = cpu_role.base.guest_mode;
5336 	role.ad_disabled = !kvm_ad_enabled();
5337 	role.level = kvm_mmu_get_tdp_level(vcpu);
5338 	role.direct = true;
5339 	role.has_4_byte_gpte = false;
5340 
5341 	return role;
5342 }
5343 
5344 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu,
5345 			     union kvm_cpu_role cpu_role)
5346 {
5347 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
5348 	union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role);
5349 
5350 	if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5351 	    root_role.word == context->root_role.word)
5352 		return;
5353 
5354 	context->cpu_role.as_u64 = cpu_role.as_u64;
5355 	context->root_role.word = root_role.word;
5356 	context->page_fault = kvm_tdp_page_fault;
5357 	context->sync_spte = NULL;
5358 	context->get_guest_pgd = get_guest_cr3;
5359 	context->get_pdptr = kvm_pdptr_read;
5360 	context->inject_page_fault = kvm_inject_page_fault;
5361 
5362 	if (!is_cr0_pg(context))
5363 		context->gva_to_gpa = nonpaging_gva_to_gpa;
5364 	else if (is_cr4_pae(context))
5365 		context->gva_to_gpa = paging64_gva_to_gpa;
5366 	else
5367 		context->gva_to_gpa = paging32_gva_to_gpa;
5368 
5369 	reset_guest_paging_metadata(vcpu, context);
5370 	reset_tdp_shadow_zero_bits_mask(context);
5371 }
5372 
5373 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
5374 				    union kvm_cpu_role cpu_role,
5375 				    union kvm_mmu_page_role root_role)
5376 {
5377 	if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5378 	    root_role.word == context->root_role.word)
5379 		return;
5380 
5381 	context->cpu_role.as_u64 = cpu_role.as_u64;
5382 	context->root_role.word = root_role.word;
5383 
5384 	if (!is_cr0_pg(context))
5385 		nonpaging_init_context(context);
5386 	else if (is_cr4_pae(context))
5387 		paging64_init_context(context);
5388 	else
5389 		paging32_init_context(context);
5390 
5391 	reset_guest_paging_metadata(vcpu, context);
5392 	reset_shadow_zero_bits_mask(vcpu, context);
5393 }
5394 
5395 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
5396 				union kvm_cpu_role cpu_role)
5397 {
5398 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
5399 	union kvm_mmu_page_role root_role;
5400 
5401 	root_role = cpu_role.base;
5402 
5403 	/* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */
5404 	root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL);
5405 
5406 	/*
5407 	 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role.
5408 	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
5409 	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
5410 	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
5411 	 * The iTLB multi-hit workaround can be toggled at any time, so assume
5412 	 * NX can be used by any non-nested shadow MMU to avoid having to reset
5413 	 * MMU contexts.
5414 	 */
5415 	root_role.efer_nx = true;
5416 
5417 	shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5418 }
5419 
5420 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
5421 			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
5422 {
5423 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5424 	struct kvm_mmu_role_regs regs = {
5425 		.cr0 = cr0,
5426 		.cr4 = cr4 & ~X86_CR4_PKE,
5427 		.efer = efer,
5428 	};
5429 	union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5430 	union kvm_mmu_page_role root_role;
5431 
5432 	/* NPT requires CR0.PG=1. */
5433 	WARN_ON_ONCE(cpu_role.base.direct);
5434 
5435 	root_role = cpu_role.base;
5436 	root_role.level = kvm_mmu_get_tdp_level(vcpu);
5437 	if (root_role.level == PT64_ROOT_5LEVEL &&
5438 	    cpu_role.base.level == PT64_ROOT_4LEVEL)
5439 		root_role.passthrough = 1;
5440 
5441 	shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5442 	kvm_mmu_new_pgd(vcpu, nested_cr3);
5443 }
5444 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
5445 
5446 static union kvm_cpu_role
5447 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5448 				   bool execonly, u8 level)
5449 {
5450 	union kvm_cpu_role role = {0};
5451 
5452 	/*
5453 	 * KVM does not support SMM transfer monitors, and consequently does not
5454 	 * support the "entry to SMM" control either.  role.base.smm is always 0.
5455 	 */
5456 	WARN_ON_ONCE(is_smm(vcpu));
5457 	role.base.level = level;
5458 	role.base.has_4_byte_gpte = false;
5459 	role.base.direct = false;
5460 	role.base.ad_disabled = !accessed_dirty;
5461 	role.base.guest_mode = true;
5462 	role.base.access = ACC_ALL;
5463 
5464 	role.ext.word = 0;
5465 	role.ext.execonly = execonly;
5466 	role.ext.valid = 1;
5467 
5468 	return role;
5469 }
5470 
5471 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5472 			     int huge_page_level, bool accessed_dirty,
5473 			     gpa_t new_eptp)
5474 {
5475 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5476 	u8 level = vmx_eptp_page_walk_level(new_eptp);
5477 	union kvm_cpu_role new_mode =
5478 		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5479 						   execonly, level);
5480 
5481 	if (new_mode.as_u64 != context->cpu_role.as_u64) {
5482 		/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
5483 		context->cpu_role.as_u64 = new_mode.as_u64;
5484 		context->root_role.word = new_mode.base.word;
5485 
5486 		context->page_fault = ept_page_fault;
5487 		context->gva_to_gpa = ept_gva_to_gpa;
5488 		context->sync_spte = ept_sync_spte;
5489 
5490 		update_permission_bitmask(context, true);
5491 		context->pkru_mask = 0;
5492 		reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
5493 		reset_ept_shadow_zero_bits_mask(context, execonly);
5494 	}
5495 
5496 	kvm_mmu_new_pgd(vcpu, new_eptp);
5497 }
5498 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5499 
5500 static void init_kvm_softmmu(struct kvm_vcpu *vcpu,
5501 			     union kvm_cpu_role cpu_role)
5502 {
5503 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
5504 
5505 	kvm_init_shadow_mmu(vcpu, cpu_role);
5506 
5507 	context->get_guest_pgd     = get_guest_cr3;
5508 	context->get_pdptr         = kvm_pdptr_read;
5509 	context->inject_page_fault = kvm_inject_page_fault;
5510 }
5511 
5512 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu,
5513 				union kvm_cpu_role new_mode)
5514 {
5515 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5516 
5517 	if (new_mode.as_u64 == g_context->cpu_role.as_u64)
5518 		return;
5519 
5520 	g_context->cpu_role.as_u64   = new_mode.as_u64;
5521 	g_context->get_guest_pgd     = get_guest_cr3;
5522 	g_context->get_pdptr         = kvm_pdptr_read;
5523 	g_context->inject_page_fault = kvm_inject_page_fault;
5524 
5525 	/*
5526 	 * L2 page tables are never shadowed, so there is no need to sync
5527 	 * SPTEs.
5528 	 */
5529 	g_context->sync_spte         = NULL;
5530 
5531 	/*
5532 	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5533 	 * L1's nested page tables (e.g. EPT12). The nested translation
5534 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5535 	 * L2's page tables as the first level of translation and L1's
5536 	 * nested page tables as the second level of translation. Basically
5537 	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5538 	 */
5539 	if (!is_paging(vcpu))
5540 		g_context->gva_to_gpa = nonpaging_gva_to_gpa;
5541 	else if (is_long_mode(vcpu))
5542 		g_context->gva_to_gpa = paging64_gva_to_gpa;
5543 	else if (is_pae(vcpu))
5544 		g_context->gva_to_gpa = paging64_gva_to_gpa;
5545 	else
5546 		g_context->gva_to_gpa = paging32_gva_to_gpa;
5547 
5548 	reset_guest_paging_metadata(vcpu, g_context);
5549 }
5550 
5551 void kvm_init_mmu(struct kvm_vcpu *vcpu)
5552 {
5553 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5554 	union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5555 
5556 	if (mmu_is_nested(vcpu))
5557 		init_kvm_nested_mmu(vcpu, cpu_role);
5558 	else if (tdp_enabled)
5559 		init_kvm_tdp_mmu(vcpu, cpu_role);
5560 	else
5561 		init_kvm_softmmu(vcpu, cpu_role);
5562 }
5563 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5564 
5565 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
5566 {
5567 	/*
5568 	 * Invalidate all MMU roles to force them to reinitialize as CPUID
5569 	 * information is factored into reserved bit calculations.
5570 	 *
5571 	 * Correctly handling multiple vCPU models with respect to paging and
5572 	 * physical address properties) in a single VM would require tracking
5573 	 * all relevant CPUID information in kvm_mmu_page_role. That is very
5574 	 * undesirable as it would increase the memory requirements for
5575 	 * gfn_write_track (see struct kvm_mmu_page_role comments).  For now
5576 	 * that problem is swept under the rug; KVM's CPUID API is horrific and
5577 	 * it's all but impossible to solve it without introducing a new API.
5578 	 */
5579 	vcpu->arch.root_mmu.root_role.invalid = 1;
5580 	vcpu->arch.guest_mmu.root_role.invalid = 1;
5581 	vcpu->arch.nested_mmu.root_role.invalid = 1;
5582 	vcpu->arch.root_mmu.cpu_role.ext.valid = 0;
5583 	vcpu->arch.guest_mmu.cpu_role.ext.valid = 0;
5584 	vcpu->arch.nested_mmu.cpu_role.ext.valid = 0;
5585 	kvm_mmu_reset_context(vcpu);
5586 
5587 	/*
5588 	 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
5589 	 * kvm_arch_vcpu_ioctl().
5590 	 */
5591 	KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm);
5592 }
5593 
5594 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5595 {
5596 	kvm_mmu_unload(vcpu);
5597 	kvm_init_mmu(vcpu);
5598 }
5599 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5600 
5601 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5602 {
5603 	int r;
5604 
5605 	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct);
5606 	if (r)
5607 		goto out;
5608 	r = mmu_alloc_special_roots(vcpu);
5609 	if (r)
5610 		goto out;
5611 	if (vcpu->arch.mmu->root_role.direct)
5612 		r = mmu_alloc_direct_roots(vcpu);
5613 	else
5614 		r = mmu_alloc_shadow_roots(vcpu);
5615 	if (r)
5616 		goto out;
5617 
5618 	kvm_mmu_sync_roots(vcpu);
5619 
5620 	kvm_mmu_load_pgd(vcpu);
5621 
5622 	/*
5623 	 * Flush any TLB entries for the new root, the provenance of the root
5624 	 * is unknown.  Even if KVM ensures there are no stale TLB entries
5625 	 * for a freed root, in theory another hypervisor could have left
5626 	 * stale entries.  Flushing on alloc also allows KVM to skip the TLB
5627 	 * flush when freeing a root (see kvm_tdp_mmu_put_root()).
5628 	 */
5629 	static_call(kvm_x86_flush_tlb_current)(vcpu);
5630 out:
5631 	return r;
5632 }
5633 
5634 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5635 {
5636 	struct kvm *kvm = vcpu->kvm;
5637 
5638 	kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5639 	WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
5640 	kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5641 	WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
5642 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
5643 }
5644 
5645 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
5646 {
5647 	struct kvm_mmu_page *sp;
5648 
5649 	if (!VALID_PAGE(root_hpa))
5650 		return false;
5651 
5652 	/*
5653 	 * When freeing obsolete roots, treat roots as obsolete if they don't
5654 	 * have an associated shadow page, as it's impossible to determine if
5655 	 * such roots are fresh or stale.  This does mean KVM will get false
5656 	 * positives and free roots that don't strictly need to be freed, but
5657 	 * such false positives are relatively rare:
5658 	 *
5659 	 *  (a) only PAE paging and nested NPT have roots without shadow pages
5660 	 *      (or any shadow paging flavor with a dummy root, see note below)
5661 	 *  (b) remote reloads due to a memslot update obsoletes _all_ roots
5662 	 *  (c) KVM doesn't track previous roots for PAE paging, and the guest
5663 	 *      is unlikely to zap an in-use PGD.
5664 	 *
5665 	 * Note!  Dummy roots are unique in that they are obsoleted by memslot
5666 	 * _creation_!  See also FNAME(fetch).
5667 	 */
5668 	sp = root_to_sp(root_hpa);
5669 	return !sp || is_obsolete_sp(kvm, sp);
5670 }
5671 
5672 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
5673 {
5674 	unsigned long roots_to_free = 0;
5675 	int i;
5676 
5677 	if (is_obsolete_root(kvm, mmu->root.hpa))
5678 		roots_to_free |= KVM_MMU_ROOT_CURRENT;
5679 
5680 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5681 		if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa))
5682 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5683 	}
5684 
5685 	if (roots_to_free)
5686 		kvm_mmu_free_roots(kvm, mmu, roots_to_free);
5687 }
5688 
5689 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
5690 {
5691 	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5692 	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
5693 }
5694 
5695 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5696 				    int *bytes)
5697 {
5698 	u64 gentry = 0;
5699 	int r;
5700 
5701 	/*
5702 	 * Assume that the pte write on a page table of the same type
5703 	 * as the current vcpu paging mode since we update the sptes only
5704 	 * when they have the same mode.
5705 	 */
5706 	if (is_pae(vcpu) && *bytes == 4) {
5707 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5708 		*gpa &= ~(gpa_t)7;
5709 		*bytes = 8;
5710 	}
5711 
5712 	if (*bytes == 4 || *bytes == 8) {
5713 		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5714 		if (r)
5715 			gentry = 0;
5716 	}
5717 
5718 	return gentry;
5719 }
5720 
5721 /*
5722  * If we're seeing too many writes to a page, it may no longer be a page table,
5723  * or we may be forking, in which case it is better to unmap the page.
5724  */
5725 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5726 {
5727 	/*
5728 	 * Skip write-flooding detected for the sp whose level is 1, because
5729 	 * it can become unsync, then the guest page is not write-protected.
5730 	 */
5731 	if (sp->role.level == PG_LEVEL_4K)
5732 		return false;
5733 
5734 	atomic_inc(&sp->write_flooding_count);
5735 	return atomic_read(&sp->write_flooding_count) >= 3;
5736 }
5737 
5738 /*
5739  * Misaligned accesses are too much trouble to fix up; also, they usually
5740  * indicate a page is not used as a page table.
5741  */
5742 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5743 				    int bytes)
5744 {
5745 	unsigned offset, pte_size, misaligned;
5746 
5747 	offset = offset_in_page(gpa);
5748 	pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
5749 
5750 	/*
5751 	 * Sometimes, the OS only writes the last one bytes to update status
5752 	 * bits, for example, in linux, andb instruction is used in clear_bit().
5753 	 */
5754 	if (!(offset & (pte_size - 1)) && bytes == 1)
5755 		return false;
5756 
5757 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5758 	misaligned |= bytes < 4;
5759 
5760 	return misaligned;
5761 }
5762 
5763 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5764 {
5765 	unsigned page_offset, quadrant;
5766 	u64 *spte;
5767 	int level;
5768 
5769 	page_offset = offset_in_page(gpa);
5770 	level = sp->role.level;
5771 	*nspte = 1;
5772 	if (sp->role.has_4_byte_gpte) {
5773 		page_offset <<= 1;	/* 32->64 */
5774 		/*
5775 		 * A 32-bit pde maps 4MB while the shadow pdes map
5776 		 * only 2MB.  So we need to double the offset again
5777 		 * and zap two pdes instead of one.
5778 		 */
5779 		if (level == PT32_ROOT_LEVEL) {
5780 			page_offset &= ~7; /* kill rounding error */
5781 			page_offset <<= 1;
5782 			*nspte = 2;
5783 		}
5784 		quadrant = page_offset >> PAGE_SHIFT;
5785 		page_offset &= ~PAGE_MASK;
5786 		if (quadrant != sp->role.quadrant)
5787 			return NULL;
5788 	}
5789 
5790 	spte = &sp->spt[page_offset / sizeof(*spte)];
5791 	return spte;
5792 }
5793 
5794 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new,
5795 			 int bytes)
5796 {
5797 	gfn_t gfn = gpa >> PAGE_SHIFT;
5798 	struct kvm_mmu_page *sp;
5799 	LIST_HEAD(invalid_list);
5800 	u64 entry, gentry, *spte;
5801 	int npte;
5802 	bool flush = false;
5803 
5804 	/*
5805 	 * If we don't have indirect shadow pages, it means no page is
5806 	 * write-protected, so we can exit simply.
5807 	 */
5808 	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5809 		return;
5810 
5811 	write_lock(&vcpu->kvm->mmu_lock);
5812 
5813 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5814 
5815 	++vcpu->kvm->stat.mmu_pte_write;
5816 
5817 	for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) {
5818 		if (detect_write_misaligned(sp, gpa, bytes) ||
5819 		      detect_write_flooding(sp)) {
5820 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5821 			++vcpu->kvm->stat.mmu_flooded;
5822 			continue;
5823 		}
5824 
5825 		spte = get_written_sptes(sp, gpa, &npte);
5826 		if (!spte)
5827 			continue;
5828 
5829 		while (npte--) {
5830 			entry = *spte;
5831 			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5832 			if (gentry && sp->role.level != PG_LEVEL_4K)
5833 				++vcpu->kvm->stat.mmu_pde_zapped;
5834 			if (is_shadow_present_pte(entry))
5835 				flush = true;
5836 			++spte;
5837 		}
5838 	}
5839 	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
5840 	write_unlock(&vcpu->kvm->mmu_lock);
5841 }
5842 
5843 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5844 		       void *insn, int insn_len)
5845 {
5846 	int r, emulation_type = EMULTYPE_PF;
5847 	bool direct = vcpu->arch.mmu->root_role.direct;
5848 
5849 	/*
5850 	 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP
5851 	 * checks when emulating instructions that triggers implicit access.
5852 	 * WARN if hardware generates a fault with an error code that collides
5853 	 * with the KVM-defined value.  Clear the flag and continue on, i.e.
5854 	 * don't terminate the VM, as KVM can't possibly be relying on a flag
5855 	 * that KVM doesn't know about.
5856 	 */
5857 	if (WARN_ON_ONCE(error_code & PFERR_IMPLICIT_ACCESS))
5858 		error_code &= ~PFERR_IMPLICIT_ACCESS;
5859 
5860 	if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
5861 		return RET_PF_RETRY;
5862 
5863 	r = RET_PF_INVALID;
5864 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5865 		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5866 		if (r == RET_PF_EMULATE)
5867 			goto emulate;
5868 	}
5869 
5870 	if (r == RET_PF_INVALID) {
5871 		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5872 					  lower_32_bits(error_code), false,
5873 					  &emulation_type);
5874 		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5875 			return -EIO;
5876 	}
5877 
5878 	if (r < 0)
5879 		return r;
5880 	if (r != RET_PF_EMULATE)
5881 		return 1;
5882 
5883 	/*
5884 	 * Before emulating the instruction, check if the error code
5885 	 * was due to a RO violation while translating the guest page.
5886 	 * This can occur when using nested virtualization with nested
5887 	 * paging in both guests. If true, we simply unprotect the page
5888 	 * and resume the guest.
5889 	 */
5890 	if (vcpu->arch.mmu->root_role.direct &&
5891 	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5892 		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5893 		return 1;
5894 	}
5895 
5896 	/*
5897 	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5898 	 * optimistically try to just unprotect the page and let the processor
5899 	 * re-execute the instruction that caused the page fault.  Do not allow
5900 	 * retrying MMIO emulation, as it's not only pointless but could also
5901 	 * cause us to enter an infinite loop because the processor will keep
5902 	 * faulting on the non-existent MMIO address.  Retrying an instruction
5903 	 * from a nested guest is also pointless and dangerous as we are only
5904 	 * explicitly shadowing L1's page tables, i.e. unprotecting something
5905 	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5906 	 */
5907 	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5908 		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5909 emulate:
5910 	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5911 				       insn_len);
5912 }
5913 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5914 
5915 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5916 				      u64 addr, hpa_t root_hpa)
5917 {
5918 	struct kvm_shadow_walk_iterator iterator;
5919 
5920 	vcpu_clear_mmio_info(vcpu, addr);
5921 
5922 	/*
5923 	 * Walking and synchronizing SPTEs both assume they are operating in
5924 	 * the context of the current MMU, and would need to be reworked if
5925 	 * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT.
5926 	 */
5927 	if (WARN_ON_ONCE(mmu != vcpu->arch.mmu))
5928 		return;
5929 
5930 	if (!VALID_PAGE(root_hpa))
5931 		return;
5932 
5933 	write_lock(&vcpu->kvm->mmu_lock);
5934 	for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) {
5935 		struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep);
5936 
5937 		if (sp->unsync) {
5938 			int ret = kvm_sync_spte(vcpu, sp, iterator.index);
5939 
5940 			if (ret < 0)
5941 				mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL);
5942 			if (ret)
5943 				kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep);
5944 		}
5945 
5946 		if (!sp->unsync_children)
5947 			break;
5948 	}
5949 	write_unlock(&vcpu->kvm->mmu_lock);
5950 }
5951 
5952 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5953 			     u64 addr, unsigned long roots)
5954 {
5955 	int i;
5956 
5957 	WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL);
5958 
5959 	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
5960 	if (mmu != &vcpu->arch.guest_mmu) {
5961 		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5962 		if (is_noncanonical_address(addr, vcpu))
5963 			return;
5964 
5965 		static_call(kvm_x86_flush_tlb_gva)(vcpu, addr);
5966 	}
5967 
5968 	if (!mmu->sync_spte)
5969 		return;
5970 
5971 	if (roots & KVM_MMU_ROOT_CURRENT)
5972 		__kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa);
5973 
5974 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5975 		if (roots & KVM_MMU_ROOT_PREVIOUS(i))
5976 			__kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa);
5977 	}
5978 }
5979 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr);
5980 
5981 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5982 {
5983 	/*
5984 	 * INVLPG is required to invalidate any global mappings for the VA,
5985 	 * irrespective of PCID.  Blindly sync all roots as it would take
5986 	 * roughly the same amount of work/time to determine whether any of the
5987 	 * previous roots have a global mapping.
5988 	 *
5989 	 * Mappings not reachable via the current or previous cached roots will
5990 	 * be synced when switching to that new cr3, so nothing needs to be
5991 	 * done here for them.
5992 	 */
5993 	kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL);
5994 	++vcpu->stat.invlpg;
5995 }
5996 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5997 
5998 
5999 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
6000 {
6001 	struct kvm_mmu *mmu = vcpu->arch.mmu;
6002 	unsigned long roots = 0;
6003 	uint i;
6004 
6005 	if (pcid == kvm_get_active_pcid(vcpu))
6006 		roots |= KVM_MMU_ROOT_CURRENT;
6007 
6008 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
6009 		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
6010 		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd))
6011 			roots |= KVM_MMU_ROOT_PREVIOUS(i);
6012 	}
6013 
6014 	if (roots)
6015 		kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots);
6016 	++vcpu->stat.invlpg;
6017 
6018 	/*
6019 	 * Mappings not reachable via the current cr3 or the prev_roots will be
6020 	 * synced when switching to that cr3, so nothing needs to be done here
6021 	 * for them.
6022 	 */
6023 }
6024 
6025 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
6026 		       int tdp_max_root_level, int tdp_huge_page_level)
6027 {
6028 	tdp_enabled = enable_tdp;
6029 	tdp_root_level = tdp_forced_root_level;
6030 	max_tdp_level = tdp_max_root_level;
6031 
6032 #ifdef CONFIG_X86_64
6033 	tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled;
6034 #endif
6035 	/*
6036 	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
6037 	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
6038 	 * the kernel is not.  But, KVM never creates a page size greater than
6039 	 * what is used by the kernel for any given HVA, i.e. the kernel's
6040 	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
6041 	 */
6042 	if (tdp_enabled)
6043 		max_huge_page_level = tdp_huge_page_level;
6044 	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
6045 		max_huge_page_level = PG_LEVEL_1G;
6046 	else
6047 		max_huge_page_level = PG_LEVEL_2M;
6048 }
6049 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
6050 
6051 /* The return value indicates if tlb flush on all vcpus is needed. */
6052 typedef bool (*slot_rmaps_handler) (struct kvm *kvm,
6053 				    struct kvm_rmap_head *rmap_head,
6054 				    const struct kvm_memory_slot *slot);
6055 
6056 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm,
6057 					      const struct kvm_memory_slot *slot,
6058 					      slot_rmaps_handler fn,
6059 					      int start_level, int end_level,
6060 					      gfn_t start_gfn, gfn_t end_gfn,
6061 					      bool flush_on_yield, bool flush)
6062 {
6063 	struct slot_rmap_walk_iterator iterator;
6064 
6065 	lockdep_assert_held_write(&kvm->mmu_lock);
6066 
6067 	for_each_slot_rmap_range(slot, start_level, end_level, start_gfn,
6068 			end_gfn, &iterator) {
6069 		if (iterator.rmap)
6070 			flush |= fn(kvm, iterator.rmap, slot);
6071 
6072 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6073 			if (flush && flush_on_yield) {
6074 				kvm_flush_remote_tlbs_range(kvm, start_gfn,
6075 							    iterator.gfn - start_gfn + 1);
6076 				flush = false;
6077 			}
6078 			cond_resched_rwlock_write(&kvm->mmu_lock);
6079 		}
6080 	}
6081 
6082 	return flush;
6083 }
6084 
6085 static __always_inline bool walk_slot_rmaps(struct kvm *kvm,
6086 					    const struct kvm_memory_slot *slot,
6087 					    slot_rmaps_handler fn,
6088 					    int start_level, int end_level,
6089 					    bool flush_on_yield)
6090 {
6091 	return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level,
6092 				 slot->base_gfn, slot->base_gfn + slot->npages - 1,
6093 				 flush_on_yield, false);
6094 }
6095 
6096 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm,
6097 					       const struct kvm_memory_slot *slot,
6098 					       slot_rmaps_handler fn,
6099 					       bool flush_on_yield)
6100 {
6101 	return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield);
6102 }
6103 
6104 static void free_mmu_pages(struct kvm_mmu *mmu)
6105 {
6106 	if (!tdp_enabled && mmu->pae_root)
6107 		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
6108 	free_page((unsigned long)mmu->pae_root);
6109 	free_page((unsigned long)mmu->pml4_root);
6110 	free_page((unsigned long)mmu->pml5_root);
6111 }
6112 
6113 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6114 {
6115 	struct page *page;
6116 	int i;
6117 
6118 	mmu->root.hpa = INVALID_PAGE;
6119 	mmu->root.pgd = 0;
6120 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
6121 		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
6122 
6123 	/* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
6124 	if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
6125 		return 0;
6126 
6127 	/*
6128 	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
6129 	 * while the PDP table is a per-vCPU construct that's allocated at MMU
6130 	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
6131 	 * x86_64.  Therefore we need to allocate the PDP table in the first
6132 	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
6133 	 * generally doesn't use PAE paging and can skip allocating the PDP
6134 	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
6135 	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
6136 	 * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
6137 	 */
6138 	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
6139 		return 0;
6140 
6141 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
6142 	if (!page)
6143 		return -ENOMEM;
6144 
6145 	mmu->pae_root = page_address(page);
6146 
6147 	/*
6148 	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
6149 	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
6150 	 * that KVM's writes and the CPU's reads get along.  Note, this is
6151 	 * only necessary when using shadow paging, as 64-bit NPT can get at
6152 	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
6153 	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
6154 	 */
6155 	if (!tdp_enabled)
6156 		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
6157 	else
6158 		WARN_ON_ONCE(shadow_me_value);
6159 
6160 	for (i = 0; i < 4; ++i)
6161 		mmu->pae_root[i] = INVALID_PAE_ROOT;
6162 
6163 	return 0;
6164 }
6165 
6166 int kvm_mmu_create(struct kvm_vcpu *vcpu)
6167 {
6168 	int ret;
6169 
6170 	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
6171 	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
6172 
6173 	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
6174 	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
6175 
6176 	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
6177 
6178 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
6179 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6180 
6181 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
6182 	if (ret)
6183 		return ret;
6184 
6185 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
6186 	if (ret)
6187 		goto fail_allocate_root;
6188 
6189 	return ret;
6190  fail_allocate_root:
6191 	free_mmu_pages(&vcpu->arch.guest_mmu);
6192 	return ret;
6193 }
6194 
6195 #define BATCH_ZAP_PAGES	10
6196 static void kvm_zap_obsolete_pages(struct kvm *kvm)
6197 {
6198 	struct kvm_mmu_page *sp, *node;
6199 	int nr_zapped, batch = 0;
6200 	bool unstable;
6201 
6202 restart:
6203 	list_for_each_entry_safe_reverse(sp, node,
6204 	      &kvm->arch.active_mmu_pages, link) {
6205 		/*
6206 		 * No obsolete valid page exists before a newly created page
6207 		 * since active_mmu_pages is a FIFO list.
6208 		 */
6209 		if (!is_obsolete_sp(kvm, sp))
6210 			break;
6211 
6212 		/*
6213 		 * Invalid pages should never land back on the list of active
6214 		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
6215 		 * infinite loop if the page gets put back on the list (again).
6216 		 */
6217 		if (WARN_ON_ONCE(sp->role.invalid))
6218 			continue;
6219 
6220 		/*
6221 		 * No need to flush the TLB since we're only zapping shadow
6222 		 * pages with an obsolete generation number and all vCPUS have
6223 		 * loaded a new root, i.e. the shadow pages being zapped cannot
6224 		 * be in active use by the guest.
6225 		 */
6226 		if (batch >= BATCH_ZAP_PAGES &&
6227 		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
6228 			batch = 0;
6229 			goto restart;
6230 		}
6231 
6232 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
6233 				&kvm->arch.zapped_obsolete_pages, &nr_zapped);
6234 		batch += nr_zapped;
6235 
6236 		if (unstable)
6237 			goto restart;
6238 	}
6239 
6240 	/*
6241 	 * Kick all vCPUs (via remote TLB flush) before freeing the page tables
6242 	 * to ensure KVM is not in the middle of a lockless shadow page table
6243 	 * walk, which may reference the pages.  The remote TLB flush itself is
6244 	 * not required and is simply a convenient way to kick vCPUs as needed.
6245 	 * KVM performs a local TLB flush when allocating a new root (see
6246 	 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
6247 	 * running with an obsolete MMU.
6248 	 */
6249 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
6250 }
6251 
6252 /*
6253  * Fast invalidate all shadow pages and use lock-break technique
6254  * to zap obsolete pages.
6255  *
6256  * It's required when memslot is being deleted or VM is being
6257  * destroyed, in these cases, we should ensure that KVM MMU does
6258  * not use any resource of the being-deleted slot or all slots
6259  * after calling the function.
6260  */
6261 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
6262 {
6263 	lockdep_assert_held(&kvm->slots_lock);
6264 
6265 	write_lock(&kvm->mmu_lock);
6266 	trace_kvm_mmu_zap_all_fast(kvm);
6267 
6268 	/*
6269 	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
6270 	 * held for the entire duration of zapping obsolete pages, it's
6271 	 * impossible for there to be multiple invalid generations associated
6272 	 * with *valid* shadow pages at any given time, i.e. there is exactly
6273 	 * one valid generation and (at most) one invalid generation.
6274 	 */
6275 	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
6276 
6277 	/*
6278 	 * In order to ensure all vCPUs drop their soon-to-be invalid roots,
6279 	 * invalidating TDP MMU roots must be done while holding mmu_lock for
6280 	 * write and in the same critical section as making the reload request,
6281 	 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
6282 	 */
6283 	if (tdp_mmu_enabled)
6284 		kvm_tdp_mmu_invalidate_all_roots(kvm);
6285 
6286 	/*
6287 	 * Notify all vcpus to reload its shadow page table and flush TLB.
6288 	 * Then all vcpus will switch to new shadow page table with the new
6289 	 * mmu_valid_gen.
6290 	 *
6291 	 * Note: we need to do this under the protection of mmu_lock,
6292 	 * otherwise, vcpu would purge shadow page but miss tlb flush.
6293 	 */
6294 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
6295 
6296 	kvm_zap_obsolete_pages(kvm);
6297 
6298 	write_unlock(&kvm->mmu_lock);
6299 
6300 	/*
6301 	 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before
6302 	 * returning to the caller, e.g. if the zap is in response to a memslot
6303 	 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs
6304 	 * associated with the deleted memslot once the update completes, and
6305 	 * Deferring the zap until the final reference to the root is put would
6306 	 * lead to use-after-free.
6307 	 */
6308 	if (tdp_mmu_enabled)
6309 		kvm_tdp_mmu_zap_invalidated_roots(kvm);
6310 }
6311 
6312 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
6313 {
6314 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
6315 }
6316 
6317 void kvm_mmu_init_vm(struct kvm *kvm)
6318 {
6319 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6320 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
6321 	INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages);
6322 	spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
6323 
6324 	if (tdp_mmu_enabled)
6325 		kvm_mmu_init_tdp_mmu(kvm);
6326 
6327 	kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache;
6328 	kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO;
6329 
6330 	kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO;
6331 
6332 	kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache;
6333 	kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO;
6334 }
6335 
6336 static void mmu_free_vm_memory_caches(struct kvm *kvm)
6337 {
6338 	kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache);
6339 	kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache);
6340 	kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache);
6341 }
6342 
6343 void kvm_mmu_uninit_vm(struct kvm *kvm)
6344 {
6345 	if (tdp_mmu_enabled)
6346 		kvm_mmu_uninit_tdp_mmu(kvm);
6347 
6348 	mmu_free_vm_memory_caches(kvm);
6349 }
6350 
6351 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6352 {
6353 	const struct kvm_memory_slot *memslot;
6354 	struct kvm_memslots *slots;
6355 	struct kvm_memslot_iter iter;
6356 	bool flush = false;
6357 	gfn_t start, end;
6358 	int i;
6359 
6360 	if (!kvm_memslots_have_rmaps(kvm))
6361 		return flush;
6362 
6363 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
6364 		slots = __kvm_memslots(kvm, i);
6365 
6366 		kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
6367 			memslot = iter.slot;
6368 			start = max(gfn_start, memslot->base_gfn);
6369 			end = min(gfn_end, memslot->base_gfn + memslot->npages);
6370 			if (WARN_ON_ONCE(start >= end))
6371 				continue;
6372 
6373 			flush = __walk_slot_rmaps(kvm, memslot, __kvm_zap_rmap,
6374 						  PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
6375 						  start, end - 1, true, flush);
6376 		}
6377 	}
6378 
6379 	return flush;
6380 }
6381 
6382 /*
6383  * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
6384  * (not including it)
6385  */
6386 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6387 {
6388 	bool flush;
6389 
6390 	if (WARN_ON_ONCE(gfn_end <= gfn_start))
6391 		return;
6392 
6393 	write_lock(&kvm->mmu_lock);
6394 
6395 	kvm_mmu_invalidate_begin(kvm);
6396 
6397 	kvm_mmu_invalidate_range_add(kvm, gfn_start, gfn_end);
6398 
6399 	flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end);
6400 
6401 	if (tdp_mmu_enabled)
6402 		flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush);
6403 
6404 	if (flush)
6405 		kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start);
6406 
6407 	kvm_mmu_invalidate_end(kvm);
6408 
6409 	write_unlock(&kvm->mmu_lock);
6410 }
6411 
6412 static bool slot_rmap_write_protect(struct kvm *kvm,
6413 				    struct kvm_rmap_head *rmap_head,
6414 				    const struct kvm_memory_slot *slot)
6415 {
6416 	return rmap_write_protect(rmap_head, false);
6417 }
6418 
6419 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
6420 				      const struct kvm_memory_slot *memslot,
6421 				      int start_level)
6422 {
6423 	if (kvm_memslots_have_rmaps(kvm)) {
6424 		write_lock(&kvm->mmu_lock);
6425 		walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect,
6426 				start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
6427 		write_unlock(&kvm->mmu_lock);
6428 	}
6429 
6430 	if (tdp_mmu_enabled) {
6431 		read_lock(&kvm->mmu_lock);
6432 		kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
6433 		read_unlock(&kvm->mmu_lock);
6434 	}
6435 }
6436 
6437 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min)
6438 {
6439 	return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
6440 }
6441 
6442 static bool need_topup_split_caches_or_resched(struct kvm *kvm)
6443 {
6444 	if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
6445 		return true;
6446 
6447 	/*
6448 	 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed
6449 	 * to split a single huge page. Calculating how many are actually needed
6450 	 * is possible but not worth the complexity.
6451 	 */
6452 	return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) ||
6453 	       need_topup(&kvm->arch.split_page_header_cache, 1) ||
6454 	       need_topup(&kvm->arch.split_shadow_page_cache, 1);
6455 }
6456 
6457 static int topup_split_caches(struct kvm *kvm)
6458 {
6459 	/*
6460 	 * Allocating rmap list entries when splitting huge pages for nested
6461 	 * MMUs is uncommon as KVM needs to use a list if and only if there is
6462 	 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be
6463 	 * aliased by multiple L2 gfns and/or from multiple nested roots with
6464 	 * different roles.  Aliasing gfns when using TDP is atypical for VMMs;
6465 	 * a few gfns are often aliased during boot, e.g. when remapping BIOS,
6466 	 * but aliasing rarely occurs post-boot or for many gfns.  If there is
6467 	 * only one rmap entry, rmap->val points directly at that one entry and
6468 	 * doesn't need to allocate a list.  Buffer the cache by the default
6469 	 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM
6470 	 * encounters an aliased gfn or two.
6471 	 */
6472 	const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS +
6473 			     KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE;
6474 	int r;
6475 
6476 	lockdep_assert_held(&kvm->slots_lock);
6477 
6478 	r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity,
6479 					 SPLIT_DESC_CACHE_MIN_NR_OBJECTS);
6480 	if (r)
6481 		return r;
6482 
6483 	r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1);
6484 	if (r)
6485 		return r;
6486 
6487 	return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1);
6488 }
6489 
6490 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep)
6491 {
6492 	struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
6493 	struct shadow_page_caches caches = {};
6494 	union kvm_mmu_page_role role;
6495 	unsigned int access;
6496 	gfn_t gfn;
6497 
6498 	gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
6499 	access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep));
6500 
6501 	/*
6502 	 * Note, huge page splitting always uses direct shadow pages, regardless
6503 	 * of whether the huge page itself is mapped by a direct or indirect
6504 	 * shadow page, since the huge page region itself is being directly
6505 	 * mapped with smaller pages.
6506 	 */
6507 	role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access);
6508 
6509 	/* Direct SPs do not require a shadowed_info_cache. */
6510 	caches.page_header_cache = &kvm->arch.split_page_header_cache;
6511 	caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache;
6512 
6513 	/* Safe to pass NULL for vCPU since requesting a direct SP. */
6514 	return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role);
6515 }
6516 
6517 static void shadow_mmu_split_huge_page(struct kvm *kvm,
6518 				       const struct kvm_memory_slot *slot,
6519 				       u64 *huge_sptep)
6520 
6521 {
6522 	struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache;
6523 	u64 huge_spte = READ_ONCE(*huge_sptep);
6524 	struct kvm_mmu_page *sp;
6525 	bool flush = false;
6526 	u64 *sptep, spte;
6527 	gfn_t gfn;
6528 	int index;
6529 
6530 	sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep);
6531 
6532 	for (index = 0; index < SPTE_ENT_PER_PAGE; index++) {
6533 		sptep = &sp->spt[index];
6534 		gfn = kvm_mmu_page_get_gfn(sp, index);
6535 
6536 		/*
6537 		 * The SP may already have populated SPTEs, e.g. if this huge
6538 		 * page is aliased by multiple sptes with the same access
6539 		 * permissions. These entries are guaranteed to map the same
6540 		 * gfn-to-pfn translation since the SP is direct, so no need to
6541 		 * modify them.
6542 		 *
6543 		 * However, if a given SPTE points to a lower level page table,
6544 		 * that lower level page table may only be partially populated.
6545 		 * Installing such SPTEs would effectively unmap a potion of the
6546 		 * huge page. Unmapping guest memory always requires a TLB flush
6547 		 * since a subsequent operation on the unmapped regions would
6548 		 * fail to detect the need to flush.
6549 		 */
6550 		if (is_shadow_present_pte(*sptep)) {
6551 			flush |= !is_last_spte(*sptep, sp->role.level);
6552 			continue;
6553 		}
6554 
6555 		spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index);
6556 		mmu_spte_set(sptep, spte);
6557 		__rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access);
6558 	}
6559 
6560 	__link_shadow_page(kvm, cache, huge_sptep, sp, flush);
6561 }
6562 
6563 static int shadow_mmu_try_split_huge_page(struct kvm *kvm,
6564 					  const struct kvm_memory_slot *slot,
6565 					  u64 *huge_sptep)
6566 {
6567 	struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
6568 	int level, r = 0;
6569 	gfn_t gfn;
6570 	u64 spte;
6571 
6572 	/* Grab information for the tracepoint before dropping the MMU lock. */
6573 	gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
6574 	level = huge_sp->role.level;
6575 	spte = *huge_sptep;
6576 
6577 	if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) {
6578 		r = -ENOSPC;
6579 		goto out;
6580 	}
6581 
6582 	if (need_topup_split_caches_or_resched(kvm)) {
6583 		write_unlock(&kvm->mmu_lock);
6584 		cond_resched();
6585 		/*
6586 		 * If the topup succeeds, return -EAGAIN to indicate that the
6587 		 * rmap iterator should be restarted because the MMU lock was
6588 		 * dropped.
6589 		 */
6590 		r = topup_split_caches(kvm) ?: -EAGAIN;
6591 		write_lock(&kvm->mmu_lock);
6592 		goto out;
6593 	}
6594 
6595 	shadow_mmu_split_huge_page(kvm, slot, huge_sptep);
6596 
6597 out:
6598 	trace_kvm_mmu_split_huge_page(gfn, spte, level, r);
6599 	return r;
6600 }
6601 
6602 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm,
6603 					    struct kvm_rmap_head *rmap_head,
6604 					    const struct kvm_memory_slot *slot)
6605 {
6606 	struct rmap_iterator iter;
6607 	struct kvm_mmu_page *sp;
6608 	u64 *huge_sptep;
6609 	int r;
6610 
6611 restart:
6612 	for_each_rmap_spte(rmap_head, &iter, huge_sptep) {
6613 		sp = sptep_to_sp(huge_sptep);
6614 
6615 		/* TDP MMU is enabled, so rmap only contains nested MMU SPs. */
6616 		if (WARN_ON_ONCE(!sp->role.guest_mode))
6617 			continue;
6618 
6619 		/* The rmaps should never contain non-leaf SPTEs. */
6620 		if (WARN_ON_ONCE(!is_large_pte(*huge_sptep)))
6621 			continue;
6622 
6623 		/* SPs with level >PG_LEVEL_4K should never by unsync. */
6624 		if (WARN_ON_ONCE(sp->unsync))
6625 			continue;
6626 
6627 		/* Don't bother splitting huge pages on invalid SPs. */
6628 		if (sp->role.invalid)
6629 			continue;
6630 
6631 		r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep);
6632 
6633 		/*
6634 		 * The split succeeded or needs to be retried because the MMU
6635 		 * lock was dropped. Either way, restart the iterator to get it
6636 		 * back into a consistent state.
6637 		 */
6638 		if (!r || r == -EAGAIN)
6639 			goto restart;
6640 
6641 		/* The split failed and shouldn't be retried (e.g. -ENOMEM). */
6642 		break;
6643 	}
6644 
6645 	return false;
6646 }
6647 
6648 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm,
6649 						const struct kvm_memory_slot *slot,
6650 						gfn_t start, gfn_t end,
6651 						int target_level)
6652 {
6653 	int level;
6654 
6655 	/*
6656 	 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working
6657 	 * down to the target level. This ensures pages are recursively split
6658 	 * all the way to the target level. There's no need to split pages
6659 	 * already at the target level.
6660 	 */
6661 	for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--)
6662 		__walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages,
6663 				  level, level, start, end - 1, true, false);
6664 }
6665 
6666 /* Must be called with the mmu_lock held in write-mode. */
6667 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
6668 				   const struct kvm_memory_slot *memslot,
6669 				   u64 start, u64 end,
6670 				   int target_level)
6671 {
6672 	if (!tdp_mmu_enabled)
6673 		return;
6674 
6675 	if (kvm_memslots_have_rmaps(kvm))
6676 		kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
6677 
6678 	kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false);
6679 
6680 	/*
6681 	 * A TLB flush is unnecessary at this point for the same reasons as in
6682 	 * kvm_mmu_slot_try_split_huge_pages().
6683 	 */
6684 }
6685 
6686 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
6687 					const struct kvm_memory_slot *memslot,
6688 					int target_level)
6689 {
6690 	u64 start = memslot->base_gfn;
6691 	u64 end = start + memslot->npages;
6692 
6693 	if (!tdp_mmu_enabled)
6694 		return;
6695 
6696 	if (kvm_memslots_have_rmaps(kvm)) {
6697 		write_lock(&kvm->mmu_lock);
6698 		kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
6699 		write_unlock(&kvm->mmu_lock);
6700 	}
6701 
6702 	read_lock(&kvm->mmu_lock);
6703 	kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
6704 	read_unlock(&kvm->mmu_lock);
6705 
6706 	/*
6707 	 * No TLB flush is necessary here. KVM will flush TLBs after
6708 	 * write-protecting and/or clearing dirty on the newly split SPTEs to
6709 	 * ensure that guest writes are reflected in the dirty log before the
6710 	 * ioctl to enable dirty logging on this memslot completes. Since the
6711 	 * split SPTEs retain the write and dirty bits of the huge SPTE, it is
6712 	 * safe for KVM to decide if a TLB flush is necessary based on the split
6713 	 * SPTEs.
6714 	 */
6715 }
6716 
6717 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
6718 					 struct kvm_rmap_head *rmap_head,
6719 					 const struct kvm_memory_slot *slot)
6720 {
6721 	u64 *sptep;
6722 	struct rmap_iterator iter;
6723 	int need_tlb_flush = 0;
6724 	struct kvm_mmu_page *sp;
6725 
6726 restart:
6727 	for_each_rmap_spte(rmap_head, &iter, sptep) {
6728 		sp = sptep_to_sp(sptep);
6729 
6730 		/*
6731 		 * We cannot do huge page mapping for indirect shadow pages,
6732 		 * which are found on the last rmap (level = 1) when not using
6733 		 * tdp; such shadow pages are synced with the page table in
6734 		 * the guest, and the guest page table is using 4K page size
6735 		 * mapping if the indirect sp has level = 1.
6736 		 */
6737 		if (sp->role.direct &&
6738 		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
6739 							       PG_LEVEL_NUM)) {
6740 			kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
6741 
6742 			if (kvm_available_flush_remote_tlbs_range())
6743 				kvm_flush_remote_tlbs_sptep(kvm, sptep);
6744 			else
6745 				need_tlb_flush = 1;
6746 
6747 			goto restart;
6748 		}
6749 	}
6750 
6751 	return need_tlb_flush;
6752 }
6753 
6754 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm,
6755 					   const struct kvm_memory_slot *slot)
6756 {
6757 	/*
6758 	 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap
6759 	 * pages that are already mapped at the maximum hugepage level.
6760 	 */
6761 	if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte,
6762 			    PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true))
6763 		kvm_flush_remote_tlbs_memslot(kvm, slot);
6764 }
6765 
6766 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
6767 				   const struct kvm_memory_slot *slot)
6768 {
6769 	if (kvm_memslots_have_rmaps(kvm)) {
6770 		write_lock(&kvm->mmu_lock);
6771 		kvm_rmap_zap_collapsible_sptes(kvm, slot);
6772 		write_unlock(&kvm->mmu_lock);
6773 	}
6774 
6775 	if (tdp_mmu_enabled) {
6776 		read_lock(&kvm->mmu_lock);
6777 		kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
6778 		read_unlock(&kvm->mmu_lock);
6779 	}
6780 }
6781 
6782 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
6783 				   const struct kvm_memory_slot *memslot)
6784 {
6785 	if (kvm_memslots_have_rmaps(kvm)) {
6786 		write_lock(&kvm->mmu_lock);
6787 		/*
6788 		 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
6789 		 * support dirty logging at a 4k granularity.
6790 		 */
6791 		walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false);
6792 		write_unlock(&kvm->mmu_lock);
6793 	}
6794 
6795 	if (tdp_mmu_enabled) {
6796 		read_lock(&kvm->mmu_lock);
6797 		kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
6798 		read_unlock(&kvm->mmu_lock);
6799 	}
6800 
6801 	/*
6802 	 * The caller will flush the TLBs after this function returns.
6803 	 *
6804 	 * It's also safe to flush TLBs out of mmu lock here as currently this
6805 	 * function is only used for dirty logging, in which case flushing TLB
6806 	 * out of mmu lock also guarantees no dirty pages will be lost in
6807 	 * dirty_bitmap.
6808 	 */
6809 }
6810 
6811 static void kvm_mmu_zap_all(struct kvm *kvm)
6812 {
6813 	struct kvm_mmu_page *sp, *node;
6814 	LIST_HEAD(invalid_list);
6815 	int ign;
6816 
6817 	write_lock(&kvm->mmu_lock);
6818 restart:
6819 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6820 		if (WARN_ON_ONCE(sp->role.invalid))
6821 			continue;
6822 		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6823 			goto restart;
6824 		if (cond_resched_rwlock_write(&kvm->mmu_lock))
6825 			goto restart;
6826 	}
6827 
6828 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6829 
6830 	if (tdp_mmu_enabled)
6831 		kvm_tdp_mmu_zap_all(kvm);
6832 
6833 	write_unlock(&kvm->mmu_lock);
6834 }
6835 
6836 void kvm_arch_flush_shadow_all(struct kvm *kvm)
6837 {
6838 	kvm_mmu_zap_all(kvm);
6839 }
6840 
6841 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
6842 				   struct kvm_memory_slot *slot)
6843 {
6844 	kvm_mmu_zap_all_fast(kvm);
6845 }
6846 
6847 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6848 {
6849 	WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6850 
6851 	gen &= MMIO_SPTE_GEN_MASK;
6852 
6853 	/*
6854 	 * Generation numbers are incremented in multiples of the number of
6855 	 * address spaces in order to provide unique generations across all
6856 	 * address spaces.  Strip what is effectively the address space
6857 	 * modifier prior to checking for a wrap of the MMIO generation so
6858 	 * that a wrap in any address space is detected.
6859 	 */
6860 	gen &= ~((u64)kvm_arch_nr_memslot_as_ids(kvm) - 1);
6861 
6862 	/*
6863 	 * The very rare case: if the MMIO generation number has wrapped,
6864 	 * zap all shadow pages.
6865 	 */
6866 	if (unlikely(gen == 0)) {
6867 		kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n");
6868 		kvm_mmu_zap_all_fast(kvm);
6869 	}
6870 }
6871 
6872 static unsigned long mmu_shrink_scan(struct shrinker *shrink,
6873 				     struct shrink_control *sc)
6874 {
6875 	struct kvm *kvm;
6876 	int nr_to_scan = sc->nr_to_scan;
6877 	unsigned long freed = 0;
6878 
6879 	mutex_lock(&kvm_lock);
6880 
6881 	list_for_each_entry(kvm, &vm_list, vm_list) {
6882 		int idx;
6883 		LIST_HEAD(invalid_list);
6884 
6885 		/*
6886 		 * Never scan more than sc->nr_to_scan VM instances.
6887 		 * Will not hit this condition practically since we do not try
6888 		 * to shrink more than one VM and it is very unlikely to see
6889 		 * !n_used_mmu_pages so many times.
6890 		 */
6891 		if (!nr_to_scan--)
6892 			break;
6893 		/*
6894 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6895 		 * here. We may skip a VM instance errorneosly, but we do not
6896 		 * want to shrink a VM that only started to populate its MMU
6897 		 * anyway.
6898 		 */
6899 		if (!kvm->arch.n_used_mmu_pages &&
6900 		    !kvm_has_zapped_obsolete_pages(kvm))
6901 			continue;
6902 
6903 		idx = srcu_read_lock(&kvm->srcu);
6904 		write_lock(&kvm->mmu_lock);
6905 
6906 		if (kvm_has_zapped_obsolete_pages(kvm)) {
6907 			kvm_mmu_commit_zap_page(kvm,
6908 			      &kvm->arch.zapped_obsolete_pages);
6909 			goto unlock;
6910 		}
6911 
6912 		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6913 
6914 unlock:
6915 		write_unlock(&kvm->mmu_lock);
6916 		srcu_read_unlock(&kvm->srcu, idx);
6917 
6918 		/*
6919 		 * unfair on small ones
6920 		 * per-vm shrinkers cry out
6921 		 * sadness comes quickly
6922 		 */
6923 		list_move_tail(&kvm->vm_list, &vm_list);
6924 		break;
6925 	}
6926 
6927 	mutex_unlock(&kvm_lock);
6928 	return freed;
6929 }
6930 
6931 static unsigned long mmu_shrink_count(struct shrinker *shrink,
6932 				      struct shrink_control *sc)
6933 {
6934 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6935 }
6936 
6937 static struct shrinker *mmu_shrinker;
6938 
6939 static void mmu_destroy_caches(void)
6940 {
6941 	kmem_cache_destroy(pte_list_desc_cache);
6942 	kmem_cache_destroy(mmu_page_header_cache);
6943 }
6944 
6945 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp)
6946 {
6947 	if (nx_hugepage_mitigation_hard_disabled)
6948 		return sysfs_emit(buffer, "never\n");
6949 
6950 	return param_get_bool(buffer, kp);
6951 }
6952 
6953 static bool get_nx_auto_mode(void)
6954 {
6955 	/* Return true when CPU has the bug, and mitigations are ON */
6956 	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6957 }
6958 
6959 static void __set_nx_huge_pages(bool val)
6960 {
6961 	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6962 }
6963 
6964 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6965 {
6966 	bool old_val = nx_huge_pages;
6967 	bool new_val;
6968 
6969 	if (nx_hugepage_mitigation_hard_disabled)
6970 		return -EPERM;
6971 
6972 	/* In "auto" mode deploy workaround only if CPU has the bug. */
6973 	if (sysfs_streq(val, "off")) {
6974 		new_val = 0;
6975 	} else if (sysfs_streq(val, "force")) {
6976 		new_val = 1;
6977 	} else if (sysfs_streq(val, "auto")) {
6978 		new_val = get_nx_auto_mode();
6979 	} else if (sysfs_streq(val, "never")) {
6980 		new_val = 0;
6981 
6982 		mutex_lock(&kvm_lock);
6983 		if (!list_empty(&vm_list)) {
6984 			mutex_unlock(&kvm_lock);
6985 			return -EBUSY;
6986 		}
6987 		nx_hugepage_mitigation_hard_disabled = true;
6988 		mutex_unlock(&kvm_lock);
6989 	} else if (kstrtobool(val, &new_val) < 0) {
6990 		return -EINVAL;
6991 	}
6992 
6993 	__set_nx_huge_pages(new_val);
6994 
6995 	if (new_val != old_val) {
6996 		struct kvm *kvm;
6997 
6998 		mutex_lock(&kvm_lock);
6999 
7000 		list_for_each_entry(kvm, &vm_list, vm_list) {
7001 			mutex_lock(&kvm->slots_lock);
7002 			kvm_mmu_zap_all_fast(kvm);
7003 			mutex_unlock(&kvm->slots_lock);
7004 
7005 			wake_up_process(kvm->arch.nx_huge_page_recovery_thread);
7006 		}
7007 		mutex_unlock(&kvm_lock);
7008 	}
7009 
7010 	return 0;
7011 }
7012 
7013 /*
7014  * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
7015  * its default value of -1 is technically undefined behavior for a boolean.
7016  * Forward the module init call to SPTE code so that it too can handle module
7017  * params that need to be resolved/snapshot.
7018  */
7019 void __init kvm_mmu_x86_module_init(void)
7020 {
7021 	if (nx_huge_pages == -1)
7022 		__set_nx_huge_pages(get_nx_auto_mode());
7023 
7024 	/*
7025 	 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the
7026 	 * TDP MMU is actually enabled is determined in kvm_configure_mmu()
7027 	 * when the vendor module is loaded.
7028 	 */
7029 	tdp_mmu_allowed = tdp_mmu_enabled;
7030 
7031 	kvm_mmu_spte_module_init();
7032 }
7033 
7034 /*
7035  * The bulk of the MMU initialization is deferred until the vendor module is
7036  * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
7037  * to be reset when a potentially different vendor module is loaded.
7038  */
7039 int kvm_mmu_vendor_module_init(void)
7040 {
7041 	int ret = -ENOMEM;
7042 
7043 	/*
7044 	 * MMU roles use union aliasing which is, generally speaking, an
7045 	 * undefined behavior. However, we supposedly know how compilers behave
7046 	 * and the current status quo is unlikely to change. Guardians below are
7047 	 * supposed to let us know if the assumption becomes false.
7048 	 */
7049 	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
7050 	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
7051 	BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64));
7052 
7053 	kvm_mmu_reset_all_pte_masks();
7054 
7055 	pte_list_desc_cache = KMEM_CACHE(pte_list_desc, SLAB_ACCOUNT);
7056 	if (!pte_list_desc_cache)
7057 		goto out;
7058 
7059 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
7060 						  sizeof(struct kvm_mmu_page),
7061 						  0, SLAB_ACCOUNT, NULL);
7062 	if (!mmu_page_header_cache)
7063 		goto out;
7064 
7065 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
7066 		goto out;
7067 
7068 	mmu_shrinker = shrinker_alloc(0, "x86-mmu");
7069 	if (!mmu_shrinker)
7070 		goto out_shrinker;
7071 
7072 	mmu_shrinker->count_objects = mmu_shrink_count;
7073 	mmu_shrinker->scan_objects = mmu_shrink_scan;
7074 	mmu_shrinker->seeks = DEFAULT_SEEKS * 10;
7075 
7076 	shrinker_register(mmu_shrinker);
7077 
7078 	return 0;
7079 
7080 out_shrinker:
7081 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
7082 out:
7083 	mmu_destroy_caches();
7084 	return ret;
7085 }
7086 
7087 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
7088 {
7089 	kvm_mmu_unload(vcpu);
7090 	free_mmu_pages(&vcpu->arch.root_mmu);
7091 	free_mmu_pages(&vcpu->arch.guest_mmu);
7092 	mmu_free_memory_caches(vcpu);
7093 }
7094 
7095 void kvm_mmu_vendor_module_exit(void)
7096 {
7097 	mmu_destroy_caches();
7098 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
7099 	shrinker_free(mmu_shrinker);
7100 }
7101 
7102 /*
7103  * Calculate the effective recovery period, accounting for '0' meaning "let KVM
7104  * select a halving time of 1 hour".  Returns true if recovery is enabled.
7105  */
7106 static bool calc_nx_huge_pages_recovery_period(uint *period)
7107 {
7108 	/*
7109 	 * Use READ_ONCE to get the params, this may be called outside of the
7110 	 * param setters, e.g. by the kthread to compute its next timeout.
7111 	 */
7112 	bool enabled = READ_ONCE(nx_huge_pages);
7113 	uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
7114 
7115 	if (!enabled || !ratio)
7116 		return false;
7117 
7118 	*period = READ_ONCE(nx_huge_pages_recovery_period_ms);
7119 	if (!*period) {
7120 		/* Make sure the period is not less than one second.  */
7121 		ratio = min(ratio, 3600u);
7122 		*period = 60 * 60 * 1000 / ratio;
7123 	}
7124 	return true;
7125 }
7126 
7127 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
7128 {
7129 	bool was_recovery_enabled, is_recovery_enabled;
7130 	uint old_period, new_period;
7131 	int err;
7132 
7133 	if (nx_hugepage_mitigation_hard_disabled)
7134 		return -EPERM;
7135 
7136 	was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
7137 
7138 	err = param_set_uint(val, kp);
7139 	if (err)
7140 		return err;
7141 
7142 	is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
7143 
7144 	if (is_recovery_enabled &&
7145 	    (!was_recovery_enabled || old_period > new_period)) {
7146 		struct kvm *kvm;
7147 
7148 		mutex_lock(&kvm_lock);
7149 
7150 		list_for_each_entry(kvm, &vm_list, vm_list)
7151 			wake_up_process(kvm->arch.nx_huge_page_recovery_thread);
7152 
7153 		mutex_unlock(&kvm_lock);
7154 	}
7155 
7156 	return err;
7157 }
7158 
7159 static void kvm_recover_nx_huge_pages(struct kvm *kvm)
7160 {
7161 	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
7162 	struct kvm_memory_slot *slot;
7163 	int rcu_idx;
7164 	struct kvm_mmu_page *sp;
7165 	unsigned int ratio;
7166 	LIST_HEAD(invalid_list);
7167 	bool flush = false;
7168 	ulong to_zap;
7169 
7170 	rcu_idx = srcu_read_lock(&kvm->srcu);
7171 	write_lock(&kvm->mmu_lock);
7172 
7173 	/*
7174 	 * Zapping TDP MMU shadow pages, including the remote TLB flush, must
7175 	 * be done under RCU protection, because the pages are freed via RCU
7176 	 * callback.
7177 	 */
7178 	rcu_read_lock();
7179 
7180 	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
7181 	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
7182 	for ( ; to_zap; --to_zap) {
7183 		if (list_empty(&kvm->arch.possible_nx_huge_pages))
7184 			break;
7185 
7186 		/*
7187 		 * We use a separate list instead of just using active_mmu_pages
7188 		 * because the number of shadow pages that be replaced with an
7189 		 * NX huge page is expected to be relatively small compared to
7190 		 * the total number of shadow pages.  And because the TDP MMU
7191 		 * doesn't use active_mmu_pages.
7192 		 */
7193 		sp = list_first_entry(&kvm->arch.possible_nx_huge_pages,
7194 				      struct kvm_mmu_page,
7195 				      possible_nx_huge_page_link);
7196 		WARN_ON_ONCE(!sp->nx_huge_page_disallowed);
7197 		WARN_ON_ONCE(!sp->role.direct);
7198 
7199 		/*
7200 		 * Unaccount and do not attempt to recover any NX Huge Pages
7201 		 * that are being dirty tracked, as they would just be faulted
7202 		 * back in as 4KiB pages. The NX Huge Pages in this slot will be
7203 		 * recovered, along with all the other huge pages in the slot,
7204 		 * when dirty logging is disabled.
7205 		 *
7206 		 * Since gfn_to_memslot() is relatively expensive, it helps to
7207 		 * skip it if it the test cannot possibly return true.  On the
7208 		 * other hand, if any memslot has logging enabled, chances are
7209 		 * good that all of them do, in which case unaccount_nx_huge_page()
7210 		 * is much cheaper than zapping the page.
7211 		 *
7212 		 * If a memslot update is in progress, reading an incorrect value
7213 		 * of kvm->nr_memslots_dirty_logging is not a problem: if it is
7214 		 * becoming zero, gfn_to_memslot() will be done unnecessarily; if
7215 		 * it is becoming nonzero, the page will be zapped unnecessarily.
7216 		 * Either way, this only affects efficiency in racy situations,
7217 		 * and not correctness.
7218 		 */
7219 		slot = NULL;
7220 		if (atomic_read(&kvm->nr_memslots_dirty_logging)) {
7221 			struct kvm_memslots *slots;
7222 
7223 			slots = kvm_memslots_for_spte_role(kvm, sp->role);
7224 			slot = __gfn_to_memslot(slots, sp->gfn);
7225 			WARN_ON_ONCE(!slot);
7226 		}
7227 
7228 		if (slot && kvm_slot_dirty_track_enabled(slot))
7229 			unaccount_nx_huge_page(kvm, sp);
7230 		else if (is_tdp_mmu_page(sp))
7231 			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
7232 		else
7233 			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7234 		WARN_ON_ONCE(sp->nx_huge_page_disallowed);
7235 
7236 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
7237 			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7238 			rcu_read_unlock();
7239 
7240 			cond_resched_rwlock_write(&kvm->mmu_lock);
7241 			flush = false;
7242 
7243 			rcu_read_lock();
7244 		}
7245 	}
7246 	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7247 
7248 	rcu_read_unlock();
7249 
7250 	write_unlock(&kvm->mmu_lock);
7251 	srcu_read_unlock(&kvm->srcu, rcu_idx);
7252 }
7253 
7254 static long get_nx_huge_page_recovery_timeout(u64 start_time)
7255 {
7256 	bool enabled;
7257 	uint period;
7258 
7259 	enabled = calc_nx_huge_pages_recovery_period(&period);
7260 
7261 	return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
7262 		       : MAX_SCHEDULE_TIMEOUT;
7263 }
7264 
7265 static int kvm_nx_huge_page_recovery_worker(struct kvm *kvm, uintptr_t data)
7266 {
7267 	u64 start_time;
7268 	long remaining_time;
7269 
7270 	while (true) {
7271 		start_time = get_jiffies_64();
7272 		remaining_time = get_nx_huge_page_recovery_timeout(start_time);
7273 
7274 		set_current_state(TASK_INTERRUPTIBLE);
7275 		while (!kthread_should_stop() && remaining_time > 0) {
7276 			schedule_timeout(remaining_time);
7277 			remaining_time = get_nx_huge_page_recovery_timeout(start_time);
7278 			set_current_state(TASK_INTERRUPTIBLE);
7279 		}
7280 
7281 		set_current_state(TASK_RUNNING);
7282 
7283 		if (kthread_should_stop())
7284 			return 0;
7285 
7286 		kvm_recover_nx_huge_pages(kvm);
7287 	}
7288 }
7289 
7290 int kvm_mmu_post_init_vm(struct kvm *kvm)
7291 {
7292 	int err;
7293 
7294 	if (nx_hugepage_mitigation_hard_disabled)
7295 		return 0;
7296 
7297 	err = kvm_vm_create_worker_thread(kvm, kvm_nx_huge_page_recovery_worker, 0,
7298 					  "kvm-nx-lpage-recovery",
7299 					  &kvm->arch.nx_huge_page_recovery_thread);
7300 	if (!err)
7301 		kthread_unpark(kvm->arch.nx_huge_page_recovery_thread);
7302 
7303 	return err;
7304 }
7305 
7306 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
7307 {
7308 	if (kvm->arch.nx_huge_page_recovery_thread)
7309 		kthread_stop(kvm->arch.nx_huge_page_recovery_thread);
7310 }
7311 
7312 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
7313 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
7314 					struct kvm_gfn_range *range)
7315 {
7316 	/*
7317 	 * Zap SPTEs even if the slot can't be mapped PRIVATE.  KVM x86 only
7318 	 * supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM
7319 	 * can simply ignore such slots.  But if userspace is making memory
7320 	 * PRIVATE, then KVM must prevent the guest from accessing the memory
7321 	 * as shared.  And if userspace is making memory SHARED and this point
7322 	 * is reached, then at least one page within the range was previously
7323 	 * PRIVATE, i.e. the slot's possible hugepage ranges are changing.
7324 	 * Zapping SPTEs in this case ensures KVM will reassess whether or not
7325 	 * a hugepage can be used for affected ranges.
7326 	 */
7327 	if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm)))
7328 		return false;
7329 
7330 	return kvm_unmap_gfn_range(kvm, range);
7331 }
7332 
7333 static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7334 				int level)
7335 {
7336 	return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG;
7337 }
7338 
7339 static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7340 				 int level)
7341 {
7342 	lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG;
7343 }
7344 
7345 static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7346 			       int level)
7347 {
7348 	lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG;
7349 }
7350 
7351 static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot,
7352 			       gfn_t gfn, int level, unsigned long attrs)
7353 {
7354 	const unsigned long start = gfn;
7355 	const unsigned long end = start + KVM_PAGES_PER_HPAGE(level);
7356 
7357 	if (level == PG_LEVEL_2M)
7358 		return kvm_range_has_memory_attributes(kvm, start, end, attrs);
7359 
7360 	for (gfn = start; gfn < end; gfn += KVM_PAGES_PER_HPAGE(level - 1)) {
7361 		if (hugepage_test_mixed(slot, gfn, level - 1) ||
7362 		    attrs != kvm_get_memory_attributes(kvm, gfn))
7363 			return false;
7364 	}
7365 	return true;
7366 }
7367 
7368 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
7369 					 struct kvm_gfn_range *range)
7370 {
7371 	unsigned long attrs = range->arg.attributes;
7372 	struct kvm_memory_slot *slot = range->slot;
7373 	int level;
7374 
7375 	lockdep_assert_held_write(&kvm->mmu_lock);
7376 	lockdep_assert_held(&kvm->slots_lock);
7377 
7378 	/*
7379 	 * Calculate which ranges can be mapped with hugepages even if the slot
7380 	 * can't map memory PRIVATE.  KVM mustn't create a SHARED hugepage over
7381 	 * a range that has PRIVATE GFNs, and conversely converting a range to
7382 	 * SHARED may now allow hugepages.
7383 	 */
7384 	if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm)))
7385 		return false;
7386 
7387 	/*
7388 	 * The sequence matters here: upper levels consume the result of lower
7389 	 * level's scanning.
7390 	 */
7391 	for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
7392 		gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level);
7393 		gfn_t gfn = gfn_round_for_level(range->start, level);
7394 
7395 		/* Process the head page if it straddles the range. */
7396 		if (gfn != range->start || gfn + nr_pages > range->end) {
7397 			/*
7398 			 * Skip mixed tracking if the aligned gfn isn't covered
7399 			 * by the memslot, KVM can't use a hugepage due to the
7400 			 * misaligned address regardless of memory attributes.
7401 			 */
7402 			if (gfn >= slot->base_gfn &&
7403 			    gfn + nr_pages <= slot->base_gfn + slot->npages) {
7404 				if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
7405 					hugepage_clear_mixed(slot, gfn, level);
7406 				else
7407 					hugepage_set_mixed(slot, gfn, level);
7408 			}
7409 			gfn += nr_pages;
7410 		}
7411 
7412 		/*
7413 		 * Pages entirely covered by the range are guaranteed to have
7414 		 * only the attributes which were just set.
7415 		 */
7416 		for ( ; gfn + nr_pages <= range->end; gfn += nr_pages)
7417 			hugepage_clear_mixed(slot, gfn, level);
7418 
7419 		/*
7420 		 * Process the last tail page if it straddles the range and is
7421 		 * contained by the memslot.  Like the head page, KVM can't
7422 		 * create a hugepage if the slot size is misaligned.
7423 		 */
7424 		if (gfn < range->end &&
7425 		    (gfn + nr_pages) <= (slot->base_gfn + slot->npages)) {
7426 			if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
7427 				hugepage_clear_mixed(slot, gfn, level);
7428 			else
7429 				hugepage_set_mixed(slot, gfn, level);
7430 		}
7431 	}
7432 	return false;
7433 }
7434 
7435 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
7436 					    struct kvm_memory_slot *slot)
7437 {
7438 	int level;
7439 
7440 	if (!kvm_arch_has_private_mem(kvm))
7441 		return;
7442 
7443 	for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
7444 		/*
7445 		 * Don't bother tracking mixed attributes for pages that can't
7446 		 * be huge due to alignment, i.e. process only pages that are
7447 		 * entirely contained by the memslot.
7448 		 */
7449 		gfn_t end = gfn_round_for_level(slot->base_gfn + slot->npages, level);
7450 		gfn_t start = gfn_round_for_level(slot->base_gfn, level);
7451 		gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level);
7452 		gfn_t gfn;
7453 
7454 		if (start < slot->base_gfn)
7455 			start += nr_pages;
7456 
7457 		/*
7458 		 * Unlike setting attributes, every potential hugepage needs to
7459 		 * be manually checked as the attributes may already be mixed.
7460 		 */
7461 		for (gfn = start; gfn < end; gfn += nr_pages) {
7462 			unsigned long attrs = kvm_get_memory_attributes(kvm, gfn);
7463 
7464 			if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
7465 				hugepage_clear_mixed(slot, gfn, level);
7466 			else
7467 				hugepage_set_mixed(slot, gfn, level);
7468 		}
7469 	}
7470 }
7471 #endif
7472