xref: /linux/arch/x86/kvm/pmu.c (revision 0be3ff0c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4  *
5  * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6  *
7  * Authors:
8  *   Avi Kivity   <avi@redhat.com>
9  *   Gleb Natapov <gleb@redhat.com>
10  *   Wei Huang    <wei@redhat.com>
11  */
12 
13 #include <linux/types.h>
14 #include <linux/kvm_host.h>
15 #include <linux/perf_event.h>
16 #include <linux/bsearch.h>
17 #include <linux/sort.h>
18 #include <asm/perf_event.h>
19 #include "x86.h"
20 #include "cpuid.h"
21 #include "lapic.h"
22 #include "pmu.h"
23 
24 /* This is enough to filter the vast majority of currently defined events. */
25 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
26 
27 /* NOTE:
28  * - Each perf counter is defined as "struct kvm_pmc";
29  * - There are two types of perf counters: general purpose (gp) and fixed.
30  *   gp counters are stored in gp_counters[] and fixed counters are stored
31  *   in fixed_counters[] respectively. Both of them are part of "struct
32  *   kvm_pmu";
33  * - pmu.c understands the difference between gp counters and fixed counters.
34  *   However AMD doesn't support fixed-counters;
35  * - There are three types of index to access perf counters (PMC):
36  *     1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
37  *        has MSR_K7_PERFCTRn.
38  *     2. MSR Index (named idx): This normally is used by RDPMC instruction.
39  *        For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
40  *        C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
41  *        that it also supports fixed counters. idx can be used to as index to
42  *        gp and fixed counters.
43  *     3. Global PMC Index (named pmc): pmc is an index specific to PMU
44  *        code. Each pmc, stored in kvm_pmc.idx field, is unique across
45  *        all perf counters (both gp and fixed). The mapping relationship
46  *        between pmc and perf counters is as the following:
47  *        * Intel: [0 .. INTEL_PMC_MAX_GENERIC-1] <=> gp counters
48  *                 [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
49  *        * AMD:   [0 .. AMD64_NUM_COUNTERS-1] <=> gp counters
50  */
51 
52 static void kvm_pmi_trigger_fn(struct irq_work *irq_work)
53 {
54 	struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work);
55 	struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
56 
57 	kvm_pmu_deliver_pmi(vcpu);
58 }
59 
60 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
61 {
62 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
63 
64 	/* Ignore counters that have been reprogrammed already. */
65 	if (test_and_set_bit(pmc->idx, pmu->reprogram_pmi))
66 		return;
67 
68 	__set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
69 	kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
70 
71 	if (!pmc->intr)
72 		return;
73 
74 	/*
75 	 * Inject PMI. If vcpu was in a guest mode during NMI PMI
76 	 * can be ejected on a guest mode re-entry. Otherwise we can't
77 	 * be sure that vcpu wasn't executing hlt instruction at the
78 	 * time of vmexit and is not going to re-enter guest mode until
79 	 * woken up. So we should wake it, but this is impossible from
80 	 * NMI context. Do it from irq work instead.
81 	 */
82 	if (in_pmi && !kvm_handling_nmi_from_guest(pmc->vcpu))
83 		irq_work_queue(&pmc_to_pmu(pmc)->irq_work);
84 	else
85 		kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
86 }
87 
88 static void kvm_perf_overflow(struct perf_event *perf_event,
89 			      struct perf_sample_data *data,
90 			      struct pt_regs *regs)
91 {
92 	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
93 
94 	__kvm_perf_overflow(pmc, true);
95 }
96 
97 static void pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type,
98 				  u64 config, bool exclude_user,
99 				  bool exclude_kernel, bool intr)
100 {
101 	struct perf_event *event;
102 	struct perf_event_attr attr = {
103 		.type = type,
104 		.size = sizeof(attr),
105 		.pinned = true,
106 		.exclude_idle = true,
107 		.exclude_host = 1,
108 		.exclude_user = exclude_user,
109 		.exclude_kernel = exclude_kernel,
110 		.config = config,
111 	};
112 
113 	if (type == PERF_TYPE_HARDWARE && config >= PERF_COUNT_HW_MAX)
114 		return;
115 
116 	attr.sample_period = get_sample_period(pmc, pmc->counter);
117 
118 	if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
119 	    guest_cpuid_is_intel(pmc->vcpu)) {
120 		/*
121 		 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
122 		 * period. Just clear the sample period so at least
123 		 * allocating the counter doesn't fail.
124 		 */
125 		attr.sample_period = 0;
126 	}
127 
128 	event = perf_event_create_kernel_counter(&attr, -1, current,
129 						 kvm_perf_overflow, pmc);
130 	if (IS_ERR(event)) {
131 		pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
132 			    PTR_ERR(event), pmc->idx);
133 		return;
134 	}
135 
136 	pmc->perf_event = event;
137 	pmc_to_pmu(pmc)->event_count++;
138 	clear_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi);
139 	pmc->is_paused = false;
140 	pmc->intr = intr;
141 }
142 
143 static void pmc_pause_counter(struct kvm_pmc *pmc)
144 {
145 	u64 counter = pmc->counter;
146 
147 	if (!pmc->perf_event || pmc->is_paused)
148 		return;
149 
150 	/* update counter, reset event value to avoid redundant accumulation */
151 	counter += perf_event_pause(pmc->perf_event, true);
152 	pmc->counter = counter & pmc_bitmask(pmc);
153 	pmc->is_paused = true;
154 }
155 
156 static bool pmc_resume_counter(struct kvm_pmc *pmc)
157 {
158 	if (!pmc->perf_event)
159 		return false;
160 
161 	/* recalibrate sample period and check if it's accepted by perf core */
162 	if (perf_event_period(pmc->perf_event,
163 			      get_sample_period(pmc, pmc->counter)))
164 		return false;
165 
166 	/* reuse perf_event to serve as pmc_reprogram_counter() does*/
167 	perf_event_enable(pmc->perf_event);
168 	pmc->is_paused = false;
169 
170 	clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
171 	return true;
172 }
173 
174 static int cmp_u64(const void *pa, const void *pb)
175 {
176 	u64 a = *(u64 *)pa;
177 	u64 b = *(u64 *)pb;
178 
179 	return (a > b) - (a < b);
180 }
181 
182 void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel)
183 {
184 	u64 config;
185 	u32 type = PERF_TYPE_RAW;
186 	struct kvm *kvm = pmc->vcpu->kvm;
187 	struct kvm_pmu_event_filter *filter;
188 	struct kvm_pmu *pmu = vcpu_to_pmu(pmc->vcpu);
189 	bool allow_event = true;
190 
191 	if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
192 		printk_once("kvm pmu: pin control bit is ignored\n");
193 
194 	pmc->eventsel = eventsel;
195 
196 	pmc_pause_counter(pmc);
197 
198 	if (!(eventsel & ARCH_PERFMON_EVENTSEL_ENABLE) || !pmc_is_enabled(pmc))
199 		return;
200 
201 	filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
202 	if (filter) {
203 		__u64 key = eventsel & AMD64_RAW_EVENT_MASK_NB;
204 
205 		if (bsearch(&key, filter->events, filter->nevents,
206 			    sizeof(__u64), cmp_u64))
207 			allow_event = filter->action == KVM_PMU_EVENT_ALLOW;
208 		else
209 			allow_event = filter->action == KVM_PMU_EVENT_DENY;
210 	}
211 	if (!allow_event)
212 		return;
213 
214 	if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE |
215 			  ARCH_PERFMON_EVENTSEL_INV |
216 			  ARCH_PERFMON_EVENTSEL_CMASK |
217 			  HSW_IN_TX |
218 			  HSW_IN_TX_CHECKPOINTED))) {
219 		config = kvm_x86_ops.pmu_ops->pmc_perf_hw_id(pmc);
220 		if (config != PERF_COUNT_HW_MAX)
221 			type = PERF_TYPE_HARDWARE;
222 	}
223 
224 	if (type == PERF_TYPE_RAW)
225 		config = eventsel & pmu->raw_event_mask;
226 
227 	if (pmc->current_config == eventsel && pmc_resume_counter(pmc))
228 		return;
229 
230 	pmc_release_perf_event(pmc);
231 
232 	pmc->current_config = eventsel;
233 	pmc_reprogram_counter(pmc, type, config,
234 			      !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
235 			      !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
236 			      eventsel & ARCH_PERFMON_EVENTSEL_INT);
237 }
238 EXPORT_SYMBOL_GPL(reprogram_gp_counter);
239 
240 void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 ctrl, int idx)
241 {
242 	unsigned en_field = ctrl & 0x3;
243 	bool pmi = ctrl & 0x8;
244 	struct kvm_pmu_event_filter *filter;
245 	struct kvm *kvm = pmc->vcpu->kvm;
246 
247 	pmc_pause_counter(pmc);
248 
249 	if (!en_field || !pmc_is_enabled(pmc))
250 		return;
251 
252 	filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
253 	if (filter) {
254 		if (filter->action == KVM_PMU_EVENT_DENY &&
255 		    test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
256 			return;
257 		if (filter->action == KVM_PMU_EVENT_ALLOW &&
258 		    !test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
259 			return;
260 	}
261 
262 	if (pmc->current_config == (u64)ctrl && pmc_resume_counter(pmc))
263 		return;
264 
265 	pmc_release_perf_event(pmc);
266 
267 	pmc->current_config = (u64)ctrl;
268 	pmc_reprogram_counter(pmc, PERF_TYPE_HARDWARE,
269 			      kvm_x86_ops.pmu_ops->pmc_perf_hw_id(pmc),
270 			      !(en_field & 0x2), /* exclude user */
271 			      !(en_field & 0x1), /* exclude kernel */
272 			      pmi);
273 }
274 EXPORT_SYMBOL_GPL(reprogram_fixed_counter);
275 
276 void reprogram_counter(struct kvm_pmu *pmu, int pmc_idx)
277 {
278 	struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, pmc_idx);
279 
280 	if (!pmc)
281 		return;
282 
283 	if (pmc_is_gp(pmc))
284 		reprogram_gp_counter(pmc, pmc->eventsel);
285 	else {
286 		int idx = pmc_idx - INTEL_PMC_IDX_FIXED;
287 		u8 ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, idx);
288 
289 		reprogram_fixed_counter(pmc, ctrl, idx);
290 	}
291 }
292 EXPORT_SYMBOL_GPL(reprogram_counter);
293 
294 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
295 {
296 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
297 	int bit;
298 
299 	for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
300 		struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, bit);
301 
302 		if (unlikely(!pmc || !pmc->perf_event)) {
303 			clear_bit(bit, pmu->reprogram_pmi);
304 			continue;
305 		}
306 
307 		reprogram_counter(pmu, bit);
308 	}
309 
310 	/*
311 	 * Unused perf_events are only released if the corresponding MSRs
312 	 * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
313 	 * triggers KVM_REQ_PMU if cleanup is needed.
314 	 */
315 	if (unlikely(pmu->need_cleanup))
316 		kvm_pmu_cleanup(vcpu);
317 }
318 
319 /* check if idx is a valid index to access PMU */
320 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
321 {
322 	return kvm_x86_ops.pmu_ops->is_valid_rdpmc_ecx(vcpu, idx);
323 }
324 
325 bool is_vmware_backdoor_pmc(u32 pmc_idx)
326 {
327 	switch (pmc_idx) {
328 	case VMWARE_BACKDOOR_PMC_HOST_TSC:
329 	case VMWARE_BACKDOOR_PMC_REAL_TIME:
330 	case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
331 		return true;
332 	}
333 	return false;
334 }
335 
336 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
337 {
338 	u64 ctr_val;
339 
340 	switch (idx) {
341 	case VMWARE_BACKDOOR_PMC_HOST_TSC:
342 		ctr_val = rdtsc();
343 		break;
344 	case VMWARE_BACKDOOR_PMC_REAL_TIME:
345 		ctr_val = ktime_get_boottime_ns();
346 		break;
347 	case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
348 		ctr_val = ktime_get_boottime_ns() +
349 			vcpu->kvm->arch.kvmclock_offset;
350 		break;
351 	default:
352 		return 1;
353 	}
354 
355 	*data = ctr_val;
356 	return 0;
357 }
358 
359 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
360 {
361 	bool fast_mode = idx & (1u << 31);
362 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
363 	struct kvm_pmc *pmc;
364 	u64 mask = fast_mode ? ~0u : ~0ull;
365 
366 	if (!pmu->version)
367 		return 1;
368 
369 	if (is_vmware_backdoor_pmc(idx))
370 		return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
371 
372 	pmc = kvm_x86_ops.pmu_ops->rdpmc_ecx_to_pmc(vcpu, idx, &mask);
373 	if (!pmc)
374 		return 1;
375 
376 	if (!(kvm_read_cr4(vcpu) & X86_CR4_PCE) &&
377 	    (static_call(kvm_x86_get_cpl)(vcpu) != 0) &&
378 	    (kvm_read_cr0(vcpu) & X86_CR0_PE))
379 		return 1;
380 
381 	*data = pmc_read_counter(pmc) & mask;
382 	return 0;
383 }
384 
385 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
386 {
387 	if (lapic_in_kernel(vcpu)) {
388 		if (kvm_x86_ops.pmu_ops->deliver_pmi)
389 			kvm_x86_ops.pmu_ops->deliver_pmi(vcpu);
390 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
391 	}
392 }
393 
394 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
395 {
396 	return kvm_x86_ops.pmu_ops->msr_idx_to_pmc(vcpu, msr) ||
397 		kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, msr);
398 }
399 
400 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
401 {
402 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
403 	struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->msr_idx_to_pmc(vcpu, msr);
404 
405 	if (pmc)
406 		__set_bit(pmc->idx, pmu->pmc_in_use);
407 }
408 
409 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
410 {
411 	return kvm_x86_ops.pmu_ops->get_msr(vcpu, msr_info);
412 }
413 
414 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
415 {
416 	kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
417 	return kvm_x86_ops.pmu_ops->set_msr(vcpu, msr_info);
418 }
419 
420 /* refresh PMU settings. This function generally is called when underlying
421  * settings are changed (such as changes of PMU CPUID by guest VMs), which
422  * should rarely happen.
423  */
424 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
425 {
426 	kvm_x86_ops.pmu_ops->refresh(vcpu);
427 }
428 
429 void kvm_pmu_reset(struct kvm_vcpu *vcpu)
430 {
431 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
432 
433 	irq_work_sync(&pmu->irq_work);
434 	kvm_x86_ops.pmu_ops->reset(vcpu);
435 }
436 
437 void kvm_pmu_init(struct kvm_vcpu *vcpu)
438 {
439 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
440 
441 	memset(pmu, 0, sizeof(*pmu));
442 	kvm_x86_ops.pmu_ops->init(vcpu);
443 	init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn);
444 	pmu->event_count = 0;
445 	pmu->need_cleanup = false;
446 	kvm_pmu_refresh(vcpu);
447 }
448 
449 static inline bool pmc_speculative_in_use(struct kvm_pmc *pmc)
450 {
451 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
452 
453 	if (pmc_is_fixed(pmc))
454 		return fixed_ctrl_field(pmu->fixed_ctr_ctrl,
455 			pmc->idx - INTEL_PMC_IDX_FIXED) & 0x3;
456 
457 	return pmc->eventsel & ARCH_PERFMON_EVENTSEL_ENABLE;
458 }
459 
460 /* Release perf_events for vPMCs that have been unused for a full time slice.  */
461 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
462 {
463 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
464 	struct kvm_pmc *pmc = NULL;
465 	DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
466 	int i;
467 
468 	pmu->need_cleanup = false;
469 
470 	bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
471 		      pmu->pmc_in_use, X86_PMC_IDX_MAX);
472 
473 	for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
474 		pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, i);
475 
476 		if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
477 			pmc_stop_counter(pmc);
478 	}
479 
480 	if (kvm_x86_ops.pmu_ops->cleanup)
481 		kvm_x86_ops.pmu_ops->cleanup(vcpu);
482 
483 	bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
484 }
485 
486 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
487 {
488 	kvm_pmu_reset(vcpu);
489 }
490 
491 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
492 {
493 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
494 	u64 prev_count;
495 
496 	prev_count = pmc->counter;
497 	pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc);
498 
499 	reprogram_counter(pmu, pmc->idx);
500 	if (pmc->counter < prev_count)
501 		__kvm_perf_overflow(pmc, false);
502 }
503 
504 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc,
505 	unsigned int perf_hw_id)
506 {
507 	u64 old_eventsel = pmc->eventsel;
508 	unsigned int config;
509 
510 	pmc->eventsel &= (ARCH_PERFMON_EVENTSEL_EVENT | ARCH_PERFMON_EVENTSEL_UMASK);
511 	config = kvm_x86_ops.pmu_ops->pmc_perf_hw_id(pmc);
512 	pmc->eventsel = old_eventsel;
513 	return config == perf_hw_id;
514 }
515 
516 static inline bool cpl_is_matched(struct kvm_pmc *pmc)
517 {
518 	bool select_os, select_user;
519 	u64 config = pmc->current_config;
520 
521 	if (pmc_is_gp(pmc)) {
522 		select_os = config & ARCH_PERFMON_EVENTSEL_OS;
523 		select_user = config & ARCH_PERFMON_EVENTSEL_USR;
524 	} else {
525 		select_os = config & 0x1;
526 		select_user = config & 0x2;
527 	}
528 
529 	return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user;
530 }
531 
532 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id)
533 {
534 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
535 	struct kvm_pmc *pmc;
536 	int i;
537 
538 	for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
539 		pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, i);
540 
541 		if (!pmc || !pmc_is_enabled(pmc) || !pmc_speculative_in_use(pmc))
542 			continue;
543 
544 		/* Ignore checks for edge detect, pin control, invert and CMASK bits */
545 		if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc))
546 			kvm_pmu_incr_counter(pmc);
547 	}
548 }
549 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);
550 
551 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
552 {
553 	struct kvm_pmu_event_filter tmp, *filter;
554 	size_t size;
555 	int r;
556 
557 	if (copy_from_user(&tmp, argp, sizeof(tmp)))
558 		return -EFAULT;
559 
560 	if (tmp.action != KVM_PMU_EVENT_ALLOW &&
561 	    tmp.action != KVM_PMU_EVENT_DENY)
562 		return -EINVAL;
563 
564 	if (tmp.flags != 0)
565 		return -EINVAL;
566 
567 	if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
568 		return -E2BIG;
569 
570 	size = struct_size(filter, events, tmp.nevents);
571 	filter = kmalloc(size, GFP_KERNEL_ACCOUNT);
572 	if (!filter)
573 		return -ENOMEM;
574 
575 	r = -EFAULT;
576 	if (copy_from_user(filter, argp, size))
577 		goto cleanup;
578 
579 	/* Ensure nevents can't be changed between the user copies. */
580 	*filter = tmp;
581 
582 	/*
583 	 * Sort the in-kernel list so that we can search it with bsearch.
584 	 */
585 	sort(&filter->events, filter->nevents, sizeof(__u64), cmp_u64, NULL);
586 
587 	mutex_lock(&kvm->lock);
588 	filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
589 				     mutex_is_locked(&kvm->lock));
590 	mutex_unlock(&kvm->lock);
591 
592 	synchronize_srcu_expedited(&kvm->srcu);
593 	r = 0;
594 cleanup:
595 	kfree(filter);
596 	return r;
597 }
598