xref: /linux/arch/x86/kvm/vmx/vmx.c (revision 6c8c1406)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31 
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/api.h>
39 #include <asm/fpu/xstate.h>
40 #include <asm/idtentry.h>
41 #include <asm/io.h>
42 #include <asm/irq_remapping.h>
43 #include <asm/kexec.h>
44 #include <asm/perf_event.h>
45 #include <asm/mmu_context.h>
46 #include <asm/mshyperv.h>
47 #include <asm/mwait.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/virtext.h>
50 #include <asm/vmx.h>
51 
52 #include "capabilities.h"
53 #include "cpuid.h"
54 #include "evmcs.h"
55 #include "hyperv.h"
56 #include "kvm_onhyperv.h"
57 #include "irq.h"
58 #include "kvm_cache_regs.h"
59 #include "lapic.h"
60 #include "mmu.h"
61 #include "nested.h"
62 #include "pmu.h"
63 #include "sgx.h"
64 #include "trace.h"
65 #include "vmcs.h"
66 #include "vmcs12.h"
67 #include "vmx.h"
68 #include "x86.h"
69 
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72 
73 #ifdef MODULE
74 static const struct x86_cpu_id vmx_cpu_id[] = {
75 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
76 	{}
77 };
78 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
79 #endif
80 
81 bool __read_mostly enable_vpid = 1;
82 module_param_named(vpid, enable_vpid, bool, 0444);
83 
84 static bool __read_mostly enable_vnmi = 1;
85 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
86 
87 bool __read_mostly flexpriority_enabled = 1;
88 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
89 
90 bool __read_mostly enable_ept = 1;
91 module_param_named(ept, enable_ept, bool, S_IRUGO);
92 
93 bool __read_mostly enable_unrestricted_guest = 1;
94 module_param_named(unrestricted_guest,
95 			enable_unrestricted_guest, bool, S_IRUGO);
96 
97 bool __read_mostly enable_ept_ad_bits = 1;
98 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
99 
100 static bool __read_mostly emulate_invalid_guest_state = true;
101 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
102 
103 static bool __read_mostly fasteoi = 1;
104 module_param(fasteoi, bool, S_IRUGO);
105 
106 module_param(enable_apicv, bool, S_IRUGO);
107 
108 bool __read_mostly enable_ipiv = true;
109 module_param(enable_ipiv, bool, 0444);
110 
111 /*
112  * If nested=1, nested virtualization is supported, i.e., guests may use
113  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
114  * use VMX instructions.
115  */
116 static bool __read_mostly nested = 1;
117 module_param(nested, bool, S_IRUGO);
118 
119 bool __read_mostly enable_pml = 1;
120 module_param_named(pml, enable_pml, bool, S_IRUGO);
121 
122 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
123 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
124 
125 static bool __read_mostly dump_invalid_vmcs = 0;
126 module_param(dump_invalid_vmcs, bool, 0644);
127 
128 #define MSR_BITMAP_MODE_X2APIC		1
129 #define MSR_BITMAP_MODE_X2APIC_APICV	2
130 
131 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
132 
133 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
134 static int __read_mostly cpu_preemption_timer_multi;
135 static bool __read_mostly enable_preemption_timer = 1;
136 #ifdef CONFIG_X86_64
137 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
138 #endif
139 
140 extern bool __read_mostly allow_smaller_maxphyaddr;
141 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
142 
143 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
144 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
145 #define KVM_VM_CR0_ALWAYS_ON				\
146 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
147 
148 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
149 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
150 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
151 
152 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
153 
154 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
155 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
156 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
157 	RTIT_STATUS_BYTECNT))
158 
159 /*
160  * List of MSRs that can be directly passed to the guest.
161  * In addition to these x2apic and PT MSRs are handled specially.
162  */
163 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
164 	MSR_IA32_SPEC_CTRL,
165 	MSR_IA32_PRED_CMD,
166 	MSR_IA32_TSC,
167 #ifdef CONFIG_X86_64
168 	MSR_FS_BASE,
169 	MSR_GS_BASE,
170 	MSR_KERNEL_GS_BASE,
171 	MSR_IA32_XFD,
172 	MSR_IA32_XFD_ERR,
173 #endif
174 	MSR_IA32_SYSENTER_CS,
175 	MSR_IA32_SYSENTER_ESP,
176 	MSR_IA32_SYSENTER_EIP,
177 	MSR_CORE_C1_RES,
178 	MSR_CORE_C3_RESIDENCY,
179 	MSR_CORE_C6_RESIDENCY,
180 	MSR_CORE_C7_RESIDENCY,
181 };
182 
183 /*
184  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
185  * ple_gap:    upper bound on the amount of time between two successive
186  *             executions of PAUSE in a loop. Also indicate if ple enabled.
187  *             According to test, this time is usually smaller than 128 cycles.
188  * ple_window: upper bound on the amount of time a guest is allowed to execute
189  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
190  *             less than 2^12 cycles
191  * Time is measured based on a counter that runs at the same rate as the TSC,
192  * refer SDM volume 3b section 21.6.13 & 22.1.3.
193  */
194 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
195 module_param(ple_gap, uint, 0444);
196 
197 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
198 module_param(ple_window, uint, 0444);
199 
200 /* Default doubles per-vcpu window every exit. */
201 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
202 module_param(ple_window_grow, uint, 0444);
203 
204 /* Default resets per-vcpu window every exit to ple_window. */
205 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
206 module_param(ple_window_shrink, uint, 0444);
207 
208 /* Default is to compute the maximum so we can never overflow. */
209 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
210 module_param(ple_window_max, uint, 0444);
211 
212 /* Default is SYSTEM mode, 1 for host-guest mode */
213 int __read_mostly pt_mode = PT_MODE_SYSTEM;
214 module_param(pt_mode, int, S_IRUGO);
215 
216 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
217 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
218 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
219 
220 /* Storage for pre module init parameter parsing */
221 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
222 
223 static const struct {
224 	const char *option;
225 	bool for_parse;
226 } vmentry_l1d_param[] = {
227 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
228 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
229 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
230 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
231 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
232 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
233 };
234 
235 #define L1D_CACHE_ORDER 4
236 static void *vmx_l1d_flush_pages;
237 
238 /* Control for disabling CPU Fill buffer clear */
239 static bool __read_mostly vmx_fb_clear_ctrl_available;
240 
241 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
242 {
243 	struct page *page;
244 	unsigned int i;
245 
246 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
247 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
248 		return 0;
249 	}
250 
251 	if (!enable_ept) {
252 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
253 		return 0;
254 	}
255 
256 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
257 		u64 msr;
258 
259 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
260 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
261 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
262 			return 0;
263 		}
264 	}
265 
266 	/* If set to auto use the default l1tf mitigation method */
267 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
268 		switch (l1tf_mitigation) {
269 		case L1TF_MITIGATION_OFF:
270 			l1tf = VMENTER_L1D_FLUSH_NEVER;
271 			break;
272 		case L1TF_MITIGATION_FLUSH_NOWARN:
273 		case L1TF_MITIGATION_FLUSH:
274 		case L1TF_MITIGATION_FLUSH_NOSMT:
275 			l1tf = VMENTER_L1D_FLUSH_COND;
276 			break;
277 		case L1TF_MITIGATION_FULL:
278 		case L1TF_MITIGATION_FULL_FORCE:
279 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
280 			break;
281 		}
282 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
283 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
284 	}
285 
286 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
287 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
288 		/*
289 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
290 		 * lifetime and so should not be charged to a memcg.
291 		 */
292 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
293 		if (!page)
294 			return -ENOMEM;
295 		vmx_l1d_flush_pages = page_address(page);
296 
297 		/*
298 		 * Initialize each page with a different pattern in
299 		 * order to protect against KSM in the nested
300 		 * virtualization case.
301 		 */
302 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
303 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
304 			       PAGE_SIZE);
305 		}
306 	}
307 
308 	l1tf_vmx_mitigation = l1tf;
309 
310 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
311 		static_branch_enable(&vmx_l1d_should_flush);
312 	else
313 		static_branch_disable(&vmx_l1d_should_flush);
314 
315 	if (l1tf == VMENTER_L1D_FLUSH_COND)
316 		static_branch_enable(&vmx_l1d_flush_cond);
317 	else
318 		static_branch_disable(&vmx_l1d_flush_cond);
319 	return 0;
320 }
321 
322 static int vmentry_l1d_flush_parse(const char *s)
323 {
324 	unsigned int i;
325 
326 	if (s) {
327 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
328 			if (vmentry_l1d_param[i].for_parse &&
329 			    sysfs_streq(s, vmentry_l1d_param[i].option))
330 				return i;
331 		}
332 	}
333 	return -EINVAL;
334 }
335 
336 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
337 {
338 	int l1tf, ret;
339 
340 	l1tf = vmentry_l1d_flush_parse(s);
341 	if (l1tf < 0)
342 		return l1tf;
343 
344 	if (!boot_cpu_has(X86_BUG_L1TF))
345 		return 0;
346 
347 	/*
348 	 * Has vmx_init() run already? If not then this is the pre init
349 	 * parameter parsing. In that case just store the value and let
350 	 * vmx_init() do the proper setup after enable_ept has been
351 	 * established.
352 	 */
353 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
354 		vmentry_l1d_flush_param = l1tf;
355 		return 0;
356 	}
357 
358 	mutex_lock(&vmx_l1d_flush_mutex);
359 	ret = vmx_setup_l1d_flush(l1tf);
360 	mutex_unlock(&vmx_l1d_flush_mutex);
361 	return ret;
362 }
363 
364 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
365 {
366 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
367 		return sprintf(s, "???\n");
368 
369 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
370 }
371 
372 static void vmx_setup_fb_clear_ctrl(void)
373 {
374 	u64 msr;
375 
376 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) &&
377 	    !boot_cpu_has_bug(X86_BUG_MDS) &&
378 	    !boot_cpu_has_bug(X86_BUG_TAA)) {
379 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
380 		if (msr & ARCH_CAP_FB_CLEAR_CTRL)
381 			vmx_fb_clear_ctrl_available = true;
382 	}
383 }
384 
385 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
386 {
387 	u64 msr;
388 
389 	if (!vmx->disable_fb_clear)
390 		return;
391 
392 	msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
393 	msr |= FB_CLEAR_DIS;
394 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
395 	/* Cache the MSR value to avoid reading it later */
396 	vmx->msr_ia32_mcu_opt_ctrl = msr;
397 }
398 
399 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
400 {
401 	if (!vmx->disable_fb_clear)
402 		return;
403 
404 	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
405 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
406 }
407 
408 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
409 {
410 	vmx->disable_fb_clear = vmx_fb_clear_ctrl_available;
411 
412 	/*
413 	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
414 	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
415 	 * execute VERW.
416 	 */
417 	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
418 	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
419 	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
420 	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
421 	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
422 	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
423 		vmx->disable_fb_clear = false;
424 }
425 
426 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
427 	.set = vmentry_l1d_flush_set,
428 	.get = vmentry_l1d_flush_get,
429 };
430 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
431 
432 static u32 vmx_segment_access_rights(struct kvm_segment *var);
433 
434 void vmx_vmexit(void);
435 
436 #define vmx_insn_failed(fmt...)		\
437 do {					\
438 	WARN_ONCE(1, fmt);		\
439 	pr_warn_ratelimited(fmt);	\
440 } while (0)
441 
442 void vmread_error(unsigned long field, bool fault)
443 {
444 	if (fault)
445 		kvm_spurious_fault();
446 	else
447 		vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
448 }
449 
450 noinline void vmwrite_error(unsigned long field, unsigned long value)
451 {
452 	vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%u\n",
453 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
454 }
455 
456 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
457 {
458 	vmx_insn_failed("kvm: vmclear failed: %p/%llx err=%u\n",
459 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
460 }
461 
462 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
463 {
464 	vmx_insn_failed("kvm: vmptrld failed: %p/%llx err=%u\n",
465 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
466 }
467 
468 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
469 {
470 	vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
471 			ext, vpid, gva);
472 }
473 
474 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
475 {
476 	vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
477 			ext, eptp, gpa);
478 }
479 
480 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
481 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
482 /*
483  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
484  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
485  */
486 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
487 
488 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
489 static DEFINE_SPINLOCK(vmx_vpid_lock);
490 
491 struct vmcs_config vmcs_config;
492 struct vmx_capability vmx_capability;
493 
494 #define VMX_SEGMENT_FIELD(seg)					\
495 	[VCPU_SREG_##seg] = {                                   \
496 		.selector = GUEST_##seg##_SELECTOR,		\
497 		.base = GUEST_##seg##_BASE,		   	\
498 		.limit = GUEST_##seg##_LIMIT,		   	\
499 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
500 	}
501 
502 static const struct kvm_vmx_segment_field {
503 	unsigned selector;
504 	unsigned base;
505 	unsigned limit;
506 	unsigned ar_bytes;
507 } kvm_vmx_segment_fields[] = {
508 	VMX_SEGMENT_FIELD(CS),
509 	VMX_SEGMENT_FIELD(DS),
510 	VMX_SEGMENT_FIELD(ES),
511 	VMX_SEGMENT_FIELD(FS),
512 	VMX_SEGMENT_FIELD(GS),
513 	VMX_SEGMENT_FIELD(SS),
514 	VMX_SEGMENT_FIELD(TR),
515 	VMX_SEGMENT_FIELD(LDTR),
516 };
517 
518 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
519 {
520 	vmx->segment_cache.bitmask = 0;
521 }
522 
523 static unsigned long host_idt_base;
524 
525 #if IS_ENABLED(CONFIG_HYPERV)
526 static bool __read_mostly enlightened_vmcs = true;
527 module_param(enlightened_vmcs, bool, 0444);
528 
529 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
530 {
531 	struct hv_enlightened_vmcs *evmcs;
532 	struct hv_partition_assist_pg **p_hv_pa_pg =
533 			&to_kvm_hv(vcpu->kvm)->hv_pa_pg;
534 	/*
535 	 * Synthetic VM-Exit is not enabled in current code and so All
536 	 * evmcs in singe VM shares same assist page.
537 	 */
538 	if (!*p_hv_pa_pg)
539 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
540 
541 	if (!*p_hv_pa_pg)
542 		return -ENOMEM;
543 
544 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
545 
546 	evmcs->partition_assist_page =
547 		__pa(*p_hv_pa_pg);
548 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
549 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
550 
551 	return 0;
552 }
553 
554 #endif /* IS_ENABLED(CONFIG_HYPERV) */
555 
556 /*
557  * Comment's format: document - errata name - stepping - processor name.
558  * Refer from
559  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
560  */
561 static u32 vmx_preemption_cpu_tfms[] = {
562 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
563 0x000206E6,
564 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
565 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
566 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
567 0x00020652,
568 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
569 0x00020655,
570 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
571 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
572 /*
573  * 320767.pdf - AAP86  - B1 -
574  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
575  */
576 0x000106E5,
577 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
578 0x000106A0,
579 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
580 0x000106A1,
581 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
582 0x000106A4,
583  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
584  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
585  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
586 0x000106A5,
587  /* Xeon E3-1220 V2 */
588 0x000306A8,
589 };
590 
591 static inline bool cpu_has_broken_vmx_preemption_timer(void)
592 {
593 	u32 eax = cpuid_eax(0x00000001), i;
594 
595 	/* Clear the reserved bits */
596 	eax &= ~(0x3U << 14 | 0xfU << 28);
597 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
598 		if (eax == vmx_preemption_cpu_tfms[i])
599 			return true;
600 
601 	return false;
602 }
603 
604 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
605 {
606 	return flexpriority_enabled && lapic_in_kernel(vcpu);
607 }
608 
609 static int possible_passthrough_msr_slot(u32 msr)
610 {
611 	u32 i;
612 
613 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
614 		if (vmx_possible_passthrough_msrs[i] == msr)
615 			return i;
616 
617 	return -ENOENT;
618 }
619 
620 static bool is_valid_passthrough_msr(u32 msr)
621 {
622 	bool r;
623 
624 	switch (msr) {
625 	case 0x800 ... 0x8ff:
626 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
627 		return true;
628 	case MSR_IA32_RTIT_STATUS:
629 	case MSR_IA32_RTIT_OUTPUT_BASE:
630 	case MSR_IA32_RTIT_OUTPUT_MASK:
631 	case MSR_IA32_RTIT_CR3_MATCH:
632 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
633 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
634 	case MSR_LBR_SELECT:
635 	case MSR_LBR_TOS:
636 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
637 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
638 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
639 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
640 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
641 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
642 		return true;
643 	}
644 
645 	r = possible_passthrough_msr_slot(msr) != -ENOENT;
646 
647 	WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
648 
649 	return r;
650 }
651 
652 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
653 {
654 	int i;
655 
656 	i = kvm_find_user_return_msr(msr);
657 	if (i >= 0)
658 		return &vmx->guest_uret_msrs[i];
659 	return NULL;
660 }
661 
662 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
663 				  struct vmx_uret_msr *msr, u64 data)
664 {
665 	unsigned int slot = msr - vmx->guest_uret_msrs;
666 	int ret = 0;
667 
668 	if (msr->load_into_hardware) {
669 		preempt_disable();
670 		ret = kvm_set_user_return_msr(slot, data, msr->mask);
671 		preempt_enable();
672 	}
673 	if (!ret)
674 		msr->data = data;
675 	return ret;
676 }
677 
678 #ifdef CONFIG_KEXEC_CORE
679 static void crash_vmclear_local_loaded_vmcss(void)
680 {
681 	int cpu = raw_smp_processor_id();
682 	struct loaded_vmcs *v;
683 
684 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
685 			    loaded_vmcss_on_cpu_link)
686 		vmcs_clear(v->vmcs);
687 }
688 #endif /* CONFIG_KEXEC_CORE */
689 
690 static void __loaded_vmcs_clear(void *arg)
691 {
692 	struct loaded_vmcs *loaded_vmcs = arg;
693 	int cpu = raw_smp_processor_id();
694 
695 	if (loaded_vmcs->cpu != cpu)
696 		return; /* vcpu migration can race with cpu offline */
697 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
698 		per_cpu(current_vmcs, cpu) = NULL;
699 
700 	vmcs_clear(loaded_vmcs->vmcs);
701 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
702 		vmcs_clear(loaded_vmcs->shadow_vmcs);
703 
704 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
705 
706 	/*
707 	 * Ensure all writes to loaded_vmcs, including deleting it from its
708 	 * current percpu list, complete before setting loaded_vmcs->cpu to
709 	 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
710 	 * and add loaded_vmcs to its percpu list before it's deleted from this
711 	 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
712 	 */
713 	smp_wmb();
714 
715 	loaded_vmcs->cpu = -1;
716 	loaded_vmcs->launched = 0;
717 }
718 
719 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
720 {
721 	int cpu = loaded_vmcs->cpu;
722 
723 	if (cpu != -1)
724 		smp_call_function_single(cpu,
725 			 __loaded_vmcs_clear, loaded_vmcs, 1);
726 }
727 
728 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
729 				       unsigned field)
730 {
731 	bool ret;
732 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
733 
734 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
735 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
736 		vmx->segment_cache.bitmask = 0;
737 	}
738 	ret = vmx->segment_cache.bitmask & mask;
739 	vmx->segment_cache.bitmask |= mask;
740 	return ret;
741 }
742 
743 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
744 {
745 	u16 *p = &vmx->segment_cache.seg[seg].selector;
746 
747 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
748 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
749 	return *p;
750 }
751 
752 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
753 {
754 	ulong *p = &vmx->segment_cache.seg[seg].base;
755 
756 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
757 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
758 	return *p;
759 }
760 
761 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
762 {
763 	u32 *p = &vmx->segment_cache.seg[seg].limit;
764 
765 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
766 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
767 	return *p;
768 }
769 
770 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
771 {
772 	u32 *p = &vmx->segment_cache.seg[seg].ar;
773 
774 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
775 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
776 	return *p;
777 }
778 
779 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
780 {
781 	u32 eb;
782 
783 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
784 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
785 	/*
786 	 * Guest access to VMware backdoor ports could legitimately
787 	 * trigger #GP because of TSS I/O permission bitmap.
788 	 * We intercept those #GP and allow access to them anyway
789 	 * as VMware does.
790 	 */
791 	if (enable_vmware_backdoor)
792 		eb |= (1u << GP_VECTOR);
793 	if ((vcpu->guest_debug &
794 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
795 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
796 		eb |= 1u << BP_VECTOR;
797 	if (to_vmx(vcpu)->rmode.vm86_active)
798 		eb = ~0;
799 	if (!vmx_need_pf_intercept(vcpu))
800 		eb &= ~(1u << PF_VECTOR);
801 
802 	/* When we are running a nested L2 guest and L1 specified for it a
803 	 * certain exception bitmap, we must trap the same exceptions and pass
804 	 * them to L1. When running L2, we will only handle the exceptions
805 	 * specified above if L1 did not want them.
806 	 */
807 	if (is_guest_mode(vcpu))
808 		eb |= get_vmcs12(vcpu)->exception_bitmap;
809         else {
810 		int mask = 0, match = 0;
811 
812 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
813 			/*
814 			 * If EPT is enabled, #PF is currently only intercepted
815 			 * if MAXPHYADDR is smaller on the guest than on the
816 			 * host.  In that case we only care about present,
817 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
818 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
819 			 */
820 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
821 			match = PFERR_PRESENT_MASK;
822 		}
823 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
824 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
825 	}
826 
827 	/*
828 	 * Disabling xfd interception indicates that dynamic xfeatures
829 	 * might be used in the guest. Always trap #NM in this case
830 	 * to save guest xfd_err timely.
831 	 */
832 	if (vcpu->arch.xfd_no_write_intercept)
833 		eb |= (1u << NM_VECTOR);
834 
835 	vmcs_write32(EXCEPTION_BITMAP, eb);
836 }
837 
838 /*
839  * Check if MSR is intercepted for currently loaded MSR bitmap.
840  */
841 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
842 {
843 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
844 		return true;
845 
846 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
847 }
848 
849 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
850 {
851 	unsigned int flags = 0;
852 
853 	if (vmx->loaded_vmcs->launched)
854 		flags |= VMX_RUN_VMRESUME;
855 
856 	/*
857 	 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
858 	 * to change it directly without causing a vmexit.  In that case read
859 	 * it after vmexit and store it in vmx->spec_ctrl.
860 	 */
861 	if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)))
862 		flags |= VMX_RUN_SAVE_SPEC_CTRL;
863 
864 	return flags;
865 }
866 
867 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
868 		unsigned long entry, unsigned long exit)
869 {
870 	vm_entry_controls_clearbit(vmx, entry);
871 	vm_exit_controls_clearbit(vmx, exit);
872 }
873 
874 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
875 {
876 	unsigned int i;
877 
878 	for (i = 0; i < m->nr; ++i) {
879 		if (m->val[i].index == msr)
880 			return i;
881 	}
882 	return -ENOENT;
883 }
884 
885 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
886 {
887 	int i;
888 	struct msr_autoload *m = &vmx->msr_autoload;
889 
890 	switch (msr) {
891 	case MSR_EFER:
892 		if (cpu_has_load_ia32_efer()) {
893 			clear_atomic_switch_msr_special(vmx,
894 					VM_ENTRY_LOAD_IA32_EFER,
895 					VM_EXIT_LOAD_IA32_EFER);
896 			return;
897 		}
898 		break;
899 	case MSR_CORE_PERF_GLOBAL_CTRL:
900 		if (cpu_has_load_perf_global_ctrl()) {
901 			clear_atomic_switch_msr_special(vmx,
902 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
903 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
904 			return;
905 		}
906 		break;
907 	}
908 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
909 	if (i < 0)
910 		goto skip_guest;
911 	--m->guest.nr;
912 	m->guest.val[i] = m->guest.val[m->guest.nr];
913 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
914 
915 skip_guest:
916 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
917 	if (i < 0)
918 		return;
919 
920 	--m->host.nr;
921 	m->host.val[i] = m->host.val[m->host.nr];
922 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
923 }
924 
925 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
926 		unsigned long entry, unsigned long exit,
927 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
928 		u64 guest_val, u64 host_val)
929 {
930 	vmcs_write64(guest_val_vmcs, guest_val);
931 	if (host_val_vmcs != HOST_IA32_EFER)
932 		vmcs_write64(host_val_vmcs, host_val);
933 	vm_entry_controls_setbit(vmx, entry);
934 	vm_exit_controls_setbit(vmx, exit);
935 }
936 
937 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
938 				  u64 guest_val, u64 host_val, bool entry_only)
939 {
940 	int i, j = 0;
941 	struct msr_autoload *m = &vmx->msr_autoload;
942 
943 	switch (msr) {
944 	case MSR_EFER:
945 		if (cpu_has_load_ia32_efer()) {
946 			add_atomic_switch_msr_special(vmx,
947 					VM_ENTRY_LOAD_IA32_EFER,
948 					VM_EXIT_LOAD_IA32_EFER,
949 					GUEST_IA32_EFER,
950 					HOST_IA32_EFER,
951 					guest_val, host_val);
952 			return;
953 		}
954 		break;
955 	case MSR_CORE_PERF_GLOBAL_CTRL:
956 		if (cpu_has_load_perf_global_ctrl()) {
957 			add_atomic_switch_msr_special(vmx,
958 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
959 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
960 					GUEST_IA32_PERF_GLOBAL_CTRL,
961 					HOST_IA32_PERF_GLOBAL_CTRL,
962 					guest_val, host_val);
963 			return;
964 		}
965 		break;
966 	case MSR_IA32_PEBS_ENABLE:
967 		/* PEBS needs a quiescent period after being disabled (to write
968 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
969 		 * provide that period, so a CPU could write host's record into
970 		 * guest's memory.
971 		 */
972 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
973 	}
974 
975 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
976 	if (!entry_only)
977 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
978 
979 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
980 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
981 		printk_once(KERN_WARNING "Not enough msr switch entries. "
982 				"Can't add msr %x\n", msr);
983 		return;
984 	}
985 	if (i < 0) {
986 		i = m->guest.nr++;
987 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
988 	}
989 	m->guest.val[i].index = msr;
990 	m->guest.val[i].value = guest_val;
991 
992 	if (entry_only)
993 		return;
994 
995 	if (j < 0) {
996 		j = m->host.nr++;
997 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
998 	}
999 	m->host.val[j].index = msr;
1000 	m->host.val[j].value = host_val;
1001 }
1002 
1003 static bool update_transition_efer(struct vcpu_vmx *vmx)
1004 {
1005 	u64 guest_efer = vmx->vcpu.arch.efer;
1006 	u64 ignore_bits = 0;
1007 	int i;
1008 
1009 	/* Shadow paging assumes NX to be available.  */
1010 	if (!enable_ept)
1011 		guest_efer |= EFER_NX;
1012 
1013 	/*
1014 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1015 	 */
1016 	ignore_bits |= EFER_SCE;
1017 #ifdef CONFIG_X86_64
1018 	ignore_bits |= EFER_LMA | EFER_LME;
1019 	/* SCE is meaningful only in long mode on Intel */
1020 	if (guest_efer & EFER_LMA)
1021 		ignore_bits &= ~(u64)EFER_SCE;
1022 #endif
1023 
1024 	/*
1025 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1026 	 * On CPUs that support "load IA32_EFER", always switch EFER
1027 	 * atomically, since it's faster than switching it manually.
1028 	 */
1029 	if (cpu_has_load_ia32_efer() ||
1030 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1031 		if (!(guest_efer & EFER_LMA))
1032 			guest_efer &= ~EFER_LME;
1033 		if (guest_efer != host_efer)
1034 			add_atomic_switch_msr(vmx, MSR_EFER,
1035 					      guest_efer, host_efer, false);
1036 		else
1037 			clear_atomic_switch_msr(vmx, MSR_EFER);
1038 		return false;
1039 	}
1040 
1041 	i = kvm_find_user_return_msr(MSR_EFER);
1042 	if (i < 0)
1043 		return false;
1044 
1045 	clear_atomic_switch_msr(vmx, MSR_EFER);
1046 
1047 	guest_efer &= ~ignore_bits;
1048 	guest_efer |= host_efer & ignore_bits;
1049 
1050 	vmx->guest_uret_msrs[i].data = guest_efer;
1051 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1052 
1053 	return true;
1054 }
1055 
1056 #ifdef CONFIG_X86_32
1057 /*
1058  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1059  * VMCS rather than the segment table.  KVM uses this helper to figure
1060  * out the current bases to poke them into the VMCS before entry.
1061  */
1062 static unsigned long segment_base(u16 selector)
1063 {
1064 	struct desc_struct *table;
1065 	unsigned long v;
1066 
1067 	if (!(selector & ~SEGMENT_RPL_MASK))
1068 		return 0;
1069 
1070 	table = get_current_gdt_ro();
1071 
1072 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1073 		u16 ldt_selector = kvm_read_ldt();
1074 
1075 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1076 			return 0;
1077 
1078 		table = (struct desc_struct *)segment_base(ldt_selector);
1079 	}
1080 	v = get_desc_base(&table[selector >> 3]);
1081 	return v;
1082 }
1083 #endif
1084 
1085 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1086 {
1087 	return vmx_pt_mode_is_host_guest() &&
1088 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1089 }
1090 
1091 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1092 {
1093 	/* The base must be 128-byte aligned and a legal physical address. */
1094 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1095 }
1096 
1097 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1098 {
1099 	u32 i;
1100 
1101 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1102 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1103 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1104 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1105 	for (i = 0; i < addr_range; i++) {
1106 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1107 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1108 	}
1109 }
1110 
1111 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1112 {
1113 	u32 i;
1114 
1115 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1116 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1117 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1118 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1119 	for (i = 0; i < addr_range; i++) {
1120 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1121 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1122 	}
1123 }
1124 
1125 static void pt_guest_enter(struct vcpu_vmx *vmx)
1126 {
1127 	if (vmx_pt_mode_is_system())
1128 		return;
1129 
1130 	/*
1131 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1132 	 * Save host state before VM entry.
1133 	 */
1134 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1135 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1136 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1137 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1138 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1139 	}
1140 }
1141 
1142 static void pt_guest_exit(struct vcpu_vmx *vmx)
1143 {
1144 	if (vmx_pt_mode_is_system())
1145 		return;
1146 
1147 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1148 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1149 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1150 	}
1151 
1152 	/*
1153 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1154 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1155 	 */
1156 	if (vmx->pt_desc.host.ctl)
1157 		wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1158 }
1159 
1160 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1161 			unsigned long fs_base, unsigned long gs_base)
1162 {
1163 	if (unlikely(fs_sel != host->fs_sel)) {
1164 		if (!(fs_sel & 7))
1165 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1166 		else
1167 			vmcs_write16(HOST_FS_SELECTOR, 0);
1168 		host->fs_sel = fs_sel;
1169 	}
1170 	if (unlikely(gs_sel != host->gs_sel)) {
1171 		if (!(gs_sel & 7))
1172 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1173 		else
1174 			vmcs_write16(HOST_GS_SELECTOR, 0);
1175 		host->gs_sel = gs_sel;
1176 	}
1177 	if (unlikely(fs_base != host->fs_base)) {
1178 		vmcs_writel(HOST_FS_BASE, fs_base);
1179 		host->fs_base = fs_base;
1180 	}
1181 	if (unlikely(gs_base != host->gs_base)) {
1182 		vmcs_writel(HOST_GS_BASE, gs_base);
1183 		host->gs_base = gs_base;
1184 	}
1185 }
1186 
1187 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1188 {
1189 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1190 	struct vmcs_host_state *host_state;
1191 #ifdef CONFIG_X86_64
1192 	int cpu = raw_smp_processor_id();
1193 #endif
1194 	unsigned long fs_base, gs_base;
1195 	u16 fs_sel, gs_sel;
1196 	int i;
1197 
1198 	vmx->req_immediate_exit = false;
1199 
1200 	/*
1201 	 * Note that guest MSRs to be saved/restored can also be changed
1202 	 * when guest state is loaded. This happens when guest transitions
1203 	 * to/from long-mode by setting MSR_EFER.LMA.
1204 	 */
1205 	if (!vmx->guest_uret_msrs_loaded) {
1206 		vmx->guest_uret_msrs_loaded = true;
1207 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1208 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1209 				continue;
1210 
1211 			kvm_set_user_return_msr(i,
1212 						vmx->guest_uret_msrs[i].data,
1213 						vmx->guest_uret_msrs[i].mask);
1214 		}
1215 	}
1216 
1217     	if (vmx->nested.need_vmcs12_to_shadow_sync)
1218 		nested_sync_vmcs12_to_shadow(vcpu);
1219 
1220 	if (vmx->guest_state_loaded)
1221 		return;
1222 
1223 	host_state = &vmx->loaded_vmcs->host_state;
1224 
1225 	/*
1226 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1227 	 * allow segment selectors with cpl > 0 or ti == 1.
1228 	 */
1229 	host_state->ldt_sel = kvm_read_ldt();
1230 
1231 #ifdef CONFIG_X86_64
1232 	savesegment(ds, host_state->ds_sel);
1233 	savesegment(es, host_state->es_sel);
1234 
1235 	gs_base = cpu_kernelmode_gs_base(cpu);
1236 	if (likely(is_64bit_mm(current->mm))) {
1237 		current_save_fsgs();
1238 		fs_sel = current->thread.fsindex;
1239 		gs_sel = current->thread.gsindex;
1240 		fs_base = current->thread.fsbase;
1241 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1242 	} else {
1243 		savesegment(fs, fs_sel);
1244 		savesegment(gs, gs_sel);
1245 		fs_base = read_msr(MSR_FS_BASE);
1246 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1247 	}
1248 
1249 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1250 #else
1251 	savesegment(fs, fs_sel);
1252 	savesegment(gs, gs_sel);
1253 	fs_base = segment_base(fs_sel);
1254 	gs_base = segment_base(gs_sel);
1255 #endif
1256 
1257 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1258 	vmx->guest_state_loaded = true;
1259 }
1260 
1261 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1262 {
1263 	struct vmcs_host_state *host_state;
1264 
1265 	if (!vmx->guest_state_loaded)
1266 		return;
1267 
1268 	host_state = &vmx->loaded_vmcs->host_state;
1269 
1270 	++vmx->vcpu.stat.host_state_reload;
1271 
1272 #ifdef CONFIG_X86_64
1273 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1274 #endif
1275 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1276 		kvm_load_ldt(host_state->ldt_sel);
1277 #ifdef CONFIG_X86_64
1278 		load_gs_index(host_state->gs_sel);
1279 #else
1280 		loadsegment(gs, host_state->gs_sel);
1281 #endif
1282 	}
1283 	if (host_state->fs_sel & 7)
1284 		loadsegment(fs, host_state->fs_sel);
1285 #ifdef CONFIG_X86_64
1286 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1287 		loadsegment(ds, host_state->ds_sel);
1288 		loadsegment(es, host_state->es_sel);
1289 	}
1290 #endif
1291 	invalidate_tss_limit();
1292 #ifdef CONFIG_X86_64
1293 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1294 #endif
1295 	load_fixmap_gdt(raw_smp_processor_id());
1296 	vmx->guest_state_loaded = false;
1297 	vmx->guest_uret_msrs_loaded = false;
1298 }
1299 
1300 #ifdef CONFIG_X86_64
1301 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1302 {
1303 	preempt_disable();
1304 	if (vmx->guest_state_loaded)
1305 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1306 	preempt_enable();
1307 	return vmx->msr_guest_kernel_gs_base;
1308 }
1309 
1310 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1311 {
1312 	preempt_disable();
1313 	if (vmx->guest_state_loaded)
1314 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1315 	preempt_enable();
1316 	vmx->msr_guest_kernel_gs_base = data;
1317 }
1318 #endif
1319 
1320 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1321 			struct loaded_vmcs *buddy)
1322 {
1323 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1324 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1325 	struct vmcs *prev;
1326 
1327 	if (!already_loaded) {
1328 		loaded_vmcs_clear(vmx->loaded_vmcs);
1329 		local_irq_disable();
1330 
1331 		/*
1332 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1333 		 * this cpu's percpu list, otherwise it may not yet be deleted
1334 		 * from its previous cpu's percpu list.  Pairs with the
1335 		 * smb_wmb() in __loaded_vmcs_clear().
1336 		 */
1337 		smp_rmb();
1338 
1339 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1340 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1341 		local_irq_enable();
1342 	}
1343 
1344 	prev = per_cpu(current_vmcs, cpu);
1345 	if (prev != vmx->loaded_vmcs->vmcs) {
1346 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1347 		vmcs_load(vmx->loaded_vmcs->vmcs);
1348 
1349 		/*
1350 		 * No indirect branch prediction barrier needed when switching
1351 		 * the active VMCS within a guest, e.g. on nested VM-Enter.
1352 		 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1353 		 */
1354 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1355 			indirect_branch_prediction_barrier();
1356 	}
1357 
1358 	if (!already_loaded) {
1359 		void *gdt = get_current_gdt_ro();
1360 
1361 		/*
1362 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1363 		 * TLB entries from its previous association with the vCPU.
1364 		 */
1365 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1366 
1367 		/*
1368 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1369 		 * processors.  See 22.2.4.
1370 		 */
1371 		vmcs_writel(HOST_TR_BASE,
1372 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1373 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1374 
1375 		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1376 			/* 22.2.3 */
1377 			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1378 				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1379 		}
1380 
1381 		vmx->loaded_vmcs->cpu = cpu;
1382 	}
1383 }
1384 
1385 /*
1386  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1387  * vcpu mutex is already taken.
1388  */
1389 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1390 {
1391 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1392 
1393 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1394 
1395 	vmx_vcpu_pi_load(vcpu, cpu);
1396 
1397 	vmx->host_debugctlmsr = get_debugctlmsr();
1398 }
1399 
1400 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1401 {
1402 	vmx_vcpu_pi_put(vcpu);
1403 
1404 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1405 }
1406 
1407 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1408 {
1409 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1410 }
1411 
1412 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1413 {
1414 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1415 	unsigned long rflags, save_rflags;
1416 
1417 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1418 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1419 		rflags = vmcs_readl(GUEST_RFLAGS);
1420 		if (vmx->rmode.vm86_active) {
1421 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1422 			save_rflags = vmx->rmode.save_rflags;
1423 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1424 		}
1425 		vmx->rflags = rflags;
1426 	}
1427 	return vmx->rflags;
1428 }
1429 
1430 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1431 {
1432 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1433 	unsigned long old_rflags;
1434 
1435 	if (is_unrestricted_guest(vcpu)) {
1436 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1437 		vmx->rflags = rflags;
1438 		vmcs_writel(GUEST_RFLAGS, rflags);
1439 		return;
1440 	}
1441 
1442 	old_rflags = vmx_get_rflags(vcpu);
1443 	vmx->rflags = rflags;
1444 	if (vmx->rmode.vm86_active) {
1445 		vmx->rmode.save_rflags = rflags;
1446 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1447 	}
1448 	vmcs_writel(GUEST_RFLAGS, rflags);
1449 
1450 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1451 		vmx->emulation_required = vmx_emulation_required(vcpu);
1452 }
1453 
1454 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1455 {
1456 	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1457 }
1458 
1459 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1460 {
1461 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1462 	int ret = 0;
1463 
1464 	if (interruptibility & GUEST_INTR_STATE_STI)
1465 		ret |= KVM_X86_SHADOW_INT_STI;
1466 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1467 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1468 
1469 	return ret;
1470 }
1471 
1472 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1473 {
1474 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1475 	u32 interruptibility = interruptibility_old;
1476 
1477 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1478 
1479 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1480 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1481 	else if (mask & KVM_X86_SHADOW_INT_STI)
1482 		interruptibility |= GUEST_INTR_STATE_STI;
1483 
1484 	if ((interruptibility != interruptibility_old))
1485 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1486 }
1487 
1488 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1489 {
1490 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1491 	unsigned long value;
1492 
1493 	/*
1494 	 * Any MSR write that attempts to change bits marked reserved will
1495 	 * case a #GP fault.
1496 	 */
1497 	if (data & vmx->pt_desc.ctl_bitmask)
1498 		return 1;
1499 
1500 	/*
1501 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1502 	 * result in a #GP unless the same write also clears TraceEn.
1503 	 */
1504 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1505 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1506 		return 1;
1507 
1508 	/*
1509 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1510 	 * and FabricEn would cause #GP, if
1511 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1512 	 */
1513 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1514 		!(data & RTIT_CTL_FABRIC_EN) &&
1515 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1516 					PT_CAP_single_range_output))
1517 		return 1;
1518 
1519 	/*
1520 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1521 	 * utilize encodings marked reserved will cause a #GP fault.
1522 	 */
1523 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1524 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1525 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1526 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1527 		return 1;
1528 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1529 						PT_CAP_cycle_thresholds);
1530 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1531 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1532 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1533 		return 1;
1534 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1535 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1536 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1537 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1538 		return 1;
1539 
1540 	/*
1541 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1542 	 * cause a #GP fault.
1543 	 */
1544 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1545 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1546 		return 1;
1547 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1548 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1549 		return 1;
1550 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1551 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1552 		return 1;
1553 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1554 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1555 		return 1;
1556 
1557 	return 0;
1558 }
1559 
1560 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1561 					void *insn, int insn_len)
1562 {
1563 	/*
1564 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1565 	 * not point at the failing instruction, and even if it did, the code
1566 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1567 	 * so that guest userspace can't DoS the guest simply by triggering
1568 	 * emulation (enclaves are CPL3 only).
1569 	 */
1570 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1571 		kvm_queue_exception(vcpu, UD_VECTOR);
1572 		return false;
1573 	}
1574 	return true;
1575 }
1576 
1577 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1578 {
1579 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1580 	unsigned long rip, orig_rip;
1581 	u32 instr_len;
1582 
1583 	/*
1584 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1585 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1586 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1587 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1588 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1589 	 * i.e. we end up advancing IP with some random value.
1590 	 */
1591 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1592 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1593 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1594 
1595 		/*
1596 		 * Emulating an enclave's instructions isn't supported as KVM
1597 		 * cannot access the enclave's memory or its true RIP, e.g. the
1598 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1599 		 * the RIP that actually triggered the VM-Exit.  But, because
1600 		 * most instructions that cause VM-Exit will #UD in an enclave,
1601 		 * most instruction-based VM-Exits simply do not occur.
1602 		 *
1603 		 * There are a few exceptions, notably the debug instructions
1604 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1605 		 * and generate #DB/#BP as expected, which KVM might intercept.
1606 		 * But again, the CPU does the dirty work and saves an instr
1607 		 * length of zero so VMMs don't shoot themselves in the foot.
1608 		 * WARN if KVM tries to skip a non-zero length instruction on
1609 		 * a VM-Exit from an enclave.
1610 		 */
1611 		if (!instr_len)
1612 			goto rip_updated;
1613 
1614 		WARN(exit_reason.enclave_mode,
1615 		     "KVM: skipping instruction after SGX enclave VM-Exit");
1616 
1617 		orig_rip = kvm_rip_read(vcpu);
1618 		rip = orig_rip + instr_len;
1619 #ifdef CONFIG_X86_64
1620 		/*
1621 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1622 		 * mode, but just finding out that we are in 64-bit mode is
1623 		 * quite expensive.  Only do it if there was a carry.
1624 		 */
1625 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1626 			rip = (u32)rip;
1627 #endif
1628 		kvm_rip_write(vcpu, rip);
1629 	} else {
1630 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1631 			return 0;
1632 	}
1633 
1634 rip_updated:
1635 	/* skipping an emulated instruction also counts */
1636 	vmx_set_interrupt_shadow(vcpu, 0);
1637 
1638 	return 1;
1639 }
1640 
1641 /*
1642  * Recognizes a pending MTF VM-exit and records the nested state for later
1643  * delivery.
1644  */
1645 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1646 {
1647 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1648 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1649 
1650 	if (!is_guest_mode(vcpu))
1651 		return;
1652 
1653 	/*
1654 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1655 	 * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1656 	 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1657 	 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1658 	 * as ICEBP is higher priority than both.  As instruction emulation is
1659 	 * completed at this point (i.e. KVM is at the instruction boundary),
1660 	 * any #DB exception pending delivery must be a debug-trap of lower
1661 	 * priority than MTF.  Record the pending MTF state to be delivered in
1662 	 * vmx_check_nested_events().
1663 	 */
1664 	if (nested_cpu_has_mtf(vmcs12) &&
1665 	    (!vcpu->arch.exception.pending ||
1666 	     vcpu->arch.exception.vector == DB_VECTOR) &&
1667 	    (!vcpu->arch.exception_vmexit.pending ||
1668 	     vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1669 		vmx->nested.mtf_pending = true;
1670 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1671 	} else {
1672 		vmx->nested.mtf_pending = false;
1673 	}
1674 }
1675 
1676 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1677 {
1678 	vmx_update_emulated_instruction(vcpu);
1679 	return skip_emulated_instruction(vcpu);
1680 }
1681 
1682 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1683 {
1684 	/*
1685 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1686 	 * explicitly skip the instruction because if the HLT state is set,
1687 	 * then the instruction is already executing and RIP has already been
1688 	 * advanced.
1689 	 */
1690 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1691 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1692 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1693 }
1694 
1695 static void vmx_inject_exception(struct kvm_vcpu *vcpu)
1696 {
1697 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
1698 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1699 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1700 
1701 	kvm_deliver_exception_payload(vcpu, ex);
1702 
1703 	if (ex->has_error_code) {
1704 		/*
1705 		 * Despite the error code being architecturally defined as 32
1706 		 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1707 		 * VMX don't actually supporting setting bits 31:16.  Hardware
1708 		 * will (should) never provide a bogus error code, but AMD CPUs
1709 		 * do generate error codes with bits 31:16 set, and so KVM's
1710 		 * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1711 		 * the upper bits to avoid VM-Fail, losing information that
1712 		 * does't really exist is preferable to killing the VM.
1713 		 */
1714 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1715 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1716 	}
1717 
1718 	if (vmx->rmode.vm86_active) {
1719 		int inc_eip = 0;
1720 		if (kvm_exception_is_soft(ex->vector))
1721 			inc_eip = vcpu->arch.event_exit_inst_len;
1722 		kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1723 		return;
1724 	}
1725 
1726 	WARN_ON_ONCE(vmx->emulation_required);
1727 
1728 	if (kvm_exception_is_soft(ex->vector)) {
1729 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1730 			     vmx->vcpu.arch.event_exit_inst_len);
1731 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1732 	} else
1733 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1734 
1735 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1736 
1737 	vmx_clear_hlt(vcpu);
1738 }
1739 
1740 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1741 			       bool load_into_hardware)
1742 {
1743 	struct vmx_uret_msr *uret_msr;
1744 
1745 	uret_msr = vmx_find_uret_msr(vmx, msr);
1746 	if (!uret_msr)
1747 		return;
1748 
1749 	uret_msr->load_into_hardware = load_into_hardware;
1750 }
1751 
1752 /*
1753  * Configuring user return MSRs to automatically save, load, and restore MSRs
1754  * that need to be shoved into hardware when running the guest.  Note, omitting
1755  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1756  * loaded into hardware when running the guest.
1757  */
1758 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1759 {
1760 #ifdef CONFIG_X86_64
1761 	bool load_syscall_msrs;
1762 
1763 	/*
1764 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1765 	 * when EFER.SCE is set.
1766 	 */
1767 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1768 			    (vmx->vcpu.arch.efer & EFER_SCE);
1769 
1770 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1771 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1772 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1773 #endif
1774 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1775 
1776 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1777 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1778 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1779 
1780 	/*
1781 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1782 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1783 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1784 	 * so that TSX remains always disabled.
1785 	 */
1786 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1787 
1788 	/*
1789 	 * The set of MSRs to load may have changed, reload MSRs before the
1790 	 * next VM-Enter.
1791 	 */
1792 	vmx->guest_uret_msrs_loaded = false;
1793 }
1794 
1795 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1796 {
1797 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1798 
1799 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1800 		return vmcs12->tsc_offset;
1801 
1802 	return 0;
1803 }
1804 
1805 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1806 {
1807 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1808 
1809 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1810 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1811 		return vmcs12->tsc_multiplier;
1812 
1813 	return kvm_caps.default_tsc_scaling_ratio;
1814 }
1815 
1816 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1817 {
1818 	vmcs_write64(TSC_OFFSET, offset);
1819 }
1820 
1821 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1822 {
1823 	vmcs_write64(TSC_MULTIPLIER, multiplier);
1824 }
1825 
1826 /*
1827  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1828  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1829  * all guests if the "nested" module option is off, and can also be disabled
1830  * for a single guest by disabling its VMX cpuid bit.
1831  */
1832 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1833 {
1834 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1835 }
1836 
1837 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1838 						 uint64_t val)
1839 {
1840 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1841 
1842 	return !(val & ~valid_bits);
1843 }
1844 
1845 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1846 {
1847 	switch (msr->index) {
1848 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1849 		if (!nested)
1850 			return 1;
1851 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1852 	case MSR_IA32_PERF_CAPABILITIES:
1853 		msr->data = vmx_get_perf_capabilities();
1854 		return 0;
1855 	default:
1856 		return KVM_MSR_RET_INVALID;
1857 	}
1858 }
1859 
1860 /*
1861  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1862  * Returns 0 on success, non-0 otherwise.
1863  * Assumes vcpu_load() was already called.
1864  */
1865 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1866 {
1867 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1868 	struct vmx_uret_msr *msr;
1869 	u32 index;
1870 
1871 	switch (msr_info->index) {
1872 #ifdef CONFIG_X86_64
1873 	case MSR_FS_BASE:
1874 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1875 		break;
1876 	case MSR_GS_BASE:
1877 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1878 		break;
1879 	case MSR_KERNEL_GS_BASE:
1880 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1881 		break;
1882 #endif
1883 	case MSR_EFER:
1884 		return kvm_get_msr_common(vcpu, msr_info);
1885 	case MSR_IA32_TSX_CTRL:
1886 		if (!msr_info->host_initiated &&
1887 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1888 			return 1;
1889 		goto find_uret_msr;
1890 	case MSR_IA32_UMWAIT_CONTROL:
1891 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1892 			return 1;
1893 
1894 		msr_info->data = vmx->msr_ia32_umwait_control;
1895 		break;
1896 	case MSR_IA32_SPEC_CTRL:
1897 		if (!msr_info->host_initiated &&
1898 		    !guest_has_spec_ctrl_msr(vcpu))
1899 			return 1;
1900 
1901 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1902 		break;
1903 	case MSR_IA32_SYSENTER_CS:
1904 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1905 		break;
1906 	case MSR_IA32_SYSENTER_EIP:
1907 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1908 		break;
1909 	case MSR_IA32_SYSENTER_ESP:
1910 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1911 		break;
1912 	case MSR_IA32_BNDCFGS:
1913 		if (!kvm_mpx_supported() ||
1914 		    (!msr_info->host_initiated &&
1915 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1916 			return 1;
1917 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1918 		break;
1919 	case MSR_IA32_MCG_EXT_CTL:
1920 		if (!msr_info->host_initiated &&
1921 		    !(vmx->msr_ia32_feature_control &
1922 		      FEAT_CTL_LMCE_ENABLED))
1923 			return 1;
1924 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1925 		break;
1926 	case MSR_IA32_FEAT_CTL:
1927 		msr_info->data = vmx->msr_ia32_feature_control;
1928 		break;
1929 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
1930 		if (!msr_info->host_initiated &&
1931 		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
1932 			return 1;
1933 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
1934 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
1935 		break;
1936 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1937 		if (!nested_vmx_allowed(vcpu))
1938 			return 1;
1939 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1940 				    &msr_info->data))
1941 			return 1;
1942 		/*
1943 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
1944 		 * instead of just ignoring the features, different Hyper-V
1945 		 * versions are either trying to use them and fail or do some
1946 		 * sanity checking and refuse to boot. Filter all unsupported
1947 		 * features out.
1948 		 */
1949 		if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
1950 			nested_evmcs_filter_control_msr(vcpu, msr_info->index,
1951 							&msr_info->data);
1952 		break;
1953 	case MSR_IA32_RTIT_CTL:
1954 		if (!vmx_pt_mode_is_host_guest())
1955 			return 1;
1956 		msr_info->data = vmx->pt_desc.guest.ctl;
1957 		break;
1958 	case MSR_IA32_RTIT_STATUS:
1959 		if (!vmx_pt_mode_is_host_guest())
1960 			return 1;
1961 		msr_info->data = vmx->pt_desc.guest.status;
1962 		break;
1963 	case MSR_IA32_RTIT_CR3_MATCH:
1964 		if (!vmx_pt_mode_is_host_guest() ||
1965 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1966 						PT_CAP_cr3_filtering))
1967 			return 1;
1968 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1969 		break;
1970 	case MSR_IA32_RTIT_OUTPUT_BASE:
1971 		if (!vmx_pt_mode_is_host_guest() ||
1972 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1973 					PT_CAP_topa_output) &&
1974 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1975 					PT_CAP_single_range_output)))
1976 			return 1;
1977 		msr_info->data = vmx->pt_desc.guest.output_base;
1978 		break;
1979 	case MSR_IA32_RTIT_OUTPUT_MASK:
1980 		if (!vmx_pt_mode_is_host_guest() ||
1981 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1982 					PT_CAP_topa_output) &&
1983 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1984 					PT_CAP_single_range_output)))
1985 			return 1;
1986 		msr_info->data = vmx->pt_desc.guest.output_mask;
1987 		break;
1988 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1989 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1990 		if (!vmx_pt_mode_is_host_guest() ||
1991 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
1992 			return 1;
1993 		if (index % 2)
1994 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1995 		else
1996 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1997 		break;
1998 	case MSR_IA32_DEBUGCTLMSR:
1999 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2000 		break;
2001 	default:
2002 	find_uret_msr:
2003 		msr = vmx_find_uret_msr(vmx, msr_info->index);
2004 		if (msr) {
2005 			msr_info->data = msr->data;
2006 			break;
2007 		}
2008 		return kvm_get_msr_common(vcpu, msr_info);
2009 	}
2010 
2011 	return 0;
2012 }
2013 
2014 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2015 						    u64 data)
2016 {
2017 #ifdef CONFIG_X86_64
2018 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2019 		return (u32)data;
2020 #endif
2021 	return (unsigned long)data;
2022 }
2023 
2024 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2025 {
2026 	u64 debugctl = 0;
2027 
2028 	if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2029 	    (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2030 		debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2031 
2032 	if ((vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT) &&
2033 	    (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2034 		debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2035 
2036 	return debugctl;
2037 }
2038 
2039 /*
2040  * Writes msr value into the appropriate "register".
2041  * Returns 0 on success, non-0 otherwise.
2042  * Assumes vcpu_load() was already called.
2043  */
2044 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2045 {
2046 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2047 	struct vmx_uret_msr *msr;
2048 	int ret = 0;
2049 	u32 msr_index = msr_info->index;
2050 	u64 data = msr_info->data;
2051 	u32 index;
2052 
2053 	switch (msr_index) {
2054 	case MSR_EFER:
2055 		ret = kvm_set_msr_common(vcpu, msr_info);
2056 		break;
2057 #ifdef CONFIG_X86_64
2058 	case MSR_FS_BASE:
2059 		vmx_segment_cache_clear(vmx);
2060 		vmcs_writel(GUEST_FS_BASE, data);
2061 		break;
2062 	case MSR_GS_BASE:
2063 		vmx_segment_cache_clear(vmx);
2064 		vmcs_writel(GUEST_GS_BASE, data);
2065 		break;
2066 	case MSR_KERNEL_GS_BASE:
2067 		vmx_write_guest_kernel_gs_base(vmx, data);
2068 		break;
2069 	case MSR_IA32_XFD:
2070 		ret = kvm_set_msr_common(vcpu, msr_info);
2071 		/*
2072 		 * Always intercepting WRMSR could incur non-negligible
2073 		 * overhead given xfd might be changed frequently in
2074 		 * guest context switch. Disable write interception
2075 		 * upon the first write with a non-zero value (indicating
2076 		 * potential usage on dynamic xfeatures). Also update
2077 		 * exception bitmap to trap #NM for proper virtualization
2078 		 * of guest xfd_err.
2079 		 */
2080 		if (!ret && data) {
2081 			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2082 						      MSR_TYPE_RW);
2083 			vcpu->arch.xfd_no_write_intercept = true;
2084 			vmx_update_exception_bitmap(vcpu);
2085 		}
2086 		break;
2087 #endif
2088 	case MSR_IA32_SYSENTER_CS:
2089 		if (is_guest_mode(vcpu))
2090 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2091 		vmcs_write32(GUEST_SYSENTER_CS, data);
2092 		break;
2093 	case MSR_IA32_SYSENTER_EIP:
2094 		if (is_guest_mode(vcpu)) {
2095 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2096 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2097 		}
2098 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2099 		break;
2100 	case MSR_IA32_SYSENTER_ESP:
2101 		if (is_guest_mode(vcpu)) {
2102 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2103 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2104 		}
2105 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2106 		break;
2107 	case MSR_IA32_DEBUGCTLMSR: {
2108 		u64 invalid;
2109 
2110 		invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2111 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2112 			if (report_ignored_msrs)
2113 				vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
2114 					    __func__, data);
2115 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2116 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2117 		}
2118 
2119 		if (invalid)
2120 			return 1;
2121 
2122 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2123 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2124 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2125 
2126 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2127 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2128 		    (data & DEBUGCTLMSR_LBR))
2129 			intel_pmu_create_guest_lbr_event(vcpu);
2130 		return 0;
2131 	}
2132 	case MSR_IA32_BNDCFGS:
2133 		if (!kvm_mpx_supported() ||
2134 		    (!msr_info->host_initiated &&
2135 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2136 			return 1;
2137 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2138 		    (data & MSR_IA32_BNDCFGS_RSVD))
2139 			return 1;
2140 
2141 		if (is_guest_mode(vcpu) &&
2142 		    ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2143 		     (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2144 			get_vmcs12(vcpu)->guest_bndcfgs = data;
2145 
2146 		vmcs_write64(GUEST_BNDCFGS, data);
2147 		break;
2148 	case MSR_IA32_UMWAIT_CONTROL:
2149 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2150 			return 1;
2151 
2152 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2153 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2154 			return 1;
2155 
2156 		vmx->msr_ia32_umwait_control = data;
2157 		break;
2158 	case MSR_IA32_SPEC_CTRL:
2159 		if (!msr_info->host_initiated &&
2160 		    !guest_has_spec_ctrl_msr(vcpu))
2161 			return 1;
2162 
2163 		if (kvm_spec_ctrl_test_value(data))
2164 			return 1;
2165 
2166 		vmx->spec_ctrl = data;
2167 		if (!data)
2168 			break;
2169 
2170 		/*
2171 		 * For non-nested:
2172 		 * When it's written (to non-zero) for the first time, pass
2173 		 * it through.
2174 		 *
2175 		 * For nested:
2176 		 * The handling of the MSR bitmap for L2 guests is done in
2177 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2178 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2179 		 * in the merging. We update the vmcs01 here for L1 as well
2180 		 * since it will end up touching the MSR anyway now.
2181 		 */
2182 		vmx_disable_intercept_for_msr(vcpu,
2183 					      MSR_IA32_SPEC_CTRL,
2184 					      MSR_TYPE_RW);
2185 		break;
2186 	case MSR_IA32_TSX_CTRL:
2187 		if (!msr_info->host_initiated &&
2188 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2189 			return 1;
2190 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2191 			return 1;
2192 		goto find_uret_msr;
2193 	case MSR_IA32_PRED_CMD:
2194 		if (!msr_info->host_initiated &&
2195 		    !guest_has_pred_cmd_msr(vcpu))
2196 			return 1;
2197 
2198 		if (data & ~PRED_CMD_IBPB)
2199 			return 1;
2200 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2201 			return 1;
2202 		if (!data)
2203 			break;
2204 
2205 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2206 
2207 		/*
2208 		 * For non-nested:
2209 		 * When it's written (to non-zero) for the first time, pass
2210 		 * it through.
2211 		 *
2212 		 * For nested:
2213 		 * The handling of the MSR bitmap for L2 guests is done in
2214 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2215 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2216 		 * in the merging.
2217 		 */
2218 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2219 		break;
2220 	case MSR_IA32_CR_PAT:
2221 		if (!kvm_pat_valid(data))
2222 			return 1;
2223 
2224 		if (is_guest_mode(vcpu) &&
2225 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2226 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2227 
2228 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2229 			vmcs_write64(GUEST_IA32_PAT, data);
2230 			vcpu->arch.pat = data;
2231 			break;
2232 		}
2233 		ret = kvm_set_msr_common(vcpu, msr_info);
2234 		break;
2235 	case MSR_IA32_MCG_EXT_CTL:
2236 		if ((!msr_info->host_initiated &&
2237 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2238 		       FEAT_CTL_LMCE_ENABLED)) ||
2239 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2240 			return 1;
2241 		vcpu->arch.mcg_ext_ctl = data;
2242 		break;
2243 	case MSR_IA32_FEAT_CTL:
2244 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
2245 		    (to_vmx(vcpu)->msr_ia32_feature_control &
2246 		     FEAT_CTL_LOCKED && !msr_info->host_initiated))
2247 			return 1;
2248 		vmx->msr_ia32_feature_control = data;
2249 		if (msr_info->host_initiated && data == 0)
2250 			vmx_leave_nested(vcpu);
2251 
2252 		/* SGX may be enabled/disabled by guest's firmware */
2253 		vmx_write_encls_bitmap(vcpu, NULL);
2254 		break;
2255 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2256 		/*
2257 		 * On real hardware, the LE hash MSRs are writable before
2258 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2259 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2260 		 * become writable.
2261 		 *
2262 		 * KVM does not emulate SGX activation for simplicity, so
2263 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2264 		 * is unlocked.  This is technically not architectural
2265 		 * behavior, but it's close enough.
2266 		 */
2267 		if (!msr_info->host_initiated &&
2268 		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2269 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2270 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2271 			return 1;
2272 		vmx->msr_ia32_sgxlepubkeyhash
2273 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2274 		break;
2275 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2276 		if (!msr_info->host_initiated)
2277 			return 1; /* they are read-only */
2278 		if (!nested_vmx_allowed(vcpu))
2279 			return 1;
2280 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2281 	case MSR_IA32_RTIT_CTL:
2282 		if (!vmx_pt_mode_is_host_guest() ||
2283 			vmx_rtit_ctl_check(vcpu, data) ||
2284 			vmx->nested.vmxon)
2285 			return 1;
2286 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2287 		vmx->pt_desc.guest.ctl = data;
2288 		pt_update_intercept_for_msr(vcpu);
2289 		break;
2290 	case MSR_IA32_RTIT_STATUS:
2291 		if (!pt_can_write_msr(vmx))
2292 			return 1;
2293 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2294 			return 1;
2295 		vmx->pt_desc.guest.status = data;
2296 		break;
2297 	case MSR_IA32_RTIT_CR3_MATCH:
2298 		if (!pt_can_write_msr(vmx))
2299 			return 1;
2300 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2301 					   PT_CAP_cr3_filtering))
2302 			return 1;
2303 		vmx->pt_desc.guest.cr3_match = data;
2304 		break;
2305 	case MSR_IA32_RTIT_OUTPUT_BASE:
2306 		if (!pt_can_write_msr(vmx))
2307 			return 1;
2308 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2309 					   PT_CAP_topa_output) &&
2310 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2311 					   PT_CAP_single_range_output))
2312 			return 1;
2313 		if (!pt_output_base_valid(vcpu, data))
2314 			return 1;
2315 		vmx->pt_desc.guest.output_base = data;
2316 		break;
2317 	case MSR_IA32_RTIT_OUTPUT_MASK:
2318 		if (!pt_can_write_msr(vmx))
2319 			return 1;
2320 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2321 					   PT_CAP_topa_output) &&
2322 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2323 					   PT_CAP_single_range_output))
2324 			return 1;
2325 		vmx->pt_desc.guest.output_mask = data;
2326 		break;
2327 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2328 		if (!pt_can_write_msr(vmx))
2329 			return 1;
2330 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2331 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2332 			return 1;
2333 		if (is_noncanonical_address(data, vcpu))
2334 			return 1;
2335 		if (index % 2)
2336 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2337 		else
2338 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2339 		break;
2340 	case MSR_IA32_PERF_CAPABILITIES:
2341 		if (data && !vcpu_to_pmu(vcpu)->version)
2342 			return 1;
2343 		if (data & PMU_CAP_LBR_FMT) {
2344 			if ((data & PMU_CAP_LBR_FMT) !=
2345 			    (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2346 				return 1;
2347 			if (!cpuid_model_is_consistent(vcpu))
2348 				return 1;
2349 		}
2350 		if (data & PERF_CAP_PEBS_FORMAT) {
2351 			if ((data & PERF_CAP_PEBS_MASK) !=
2352 			    (vmx_get_perf_capabilities() & PERF_CAP_PEBS_MASK))
2353 				return 1;
2354 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2355 				return 1;
2356 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2357 				return 1;
2358 			if (!cpuid_model_is_consistent(vcpu))
2359 				return 1;
2360 		}
2361 		ret = kvm_set_msr_common(vcpu, msr_info);
2362 		break;
2363 
2364 	default:
2365 	find_uret_msr:
2366 		msr = vmx_find_uret_msr(vmx, msr_index);
2367 		if (msr)
2368 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2369 		else
2370 			ret = kvm_set_msr_common(vcpu, msr_info);
2371 	}
2372 
2373 	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2374 	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2375 		vmx_update_fb_clear_dis(vcpu, vmx);
2376 
2377 	return ret;
2378 }
2379 
2380 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2381 {
2382 	unsigned long guest_owned_bits;
2383 
2384 	kvm_register_mark_available(vcpu, reg);
2385 
2386 	switch (reg) {
2387 	case VCPU_REGS_RSP:
2388 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2389 		break;
2390 	case VCPU_REGS_RIP:
2391 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2392 		break;
2393 	case VCPU_EXREG_PDPTR:
2394 		if (enable_ept)
2395 			ept_save_pdptrs(vcpu);
2396 		break;
2397 	case VCPU_EXREG_CR0:
2398 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2399 
2400 		vcpu->arch.cr0 &= ~guest_owned_bits;
2401 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2402 		break;
2403 	case VCPU_EXREG_CR3:
2404 		/*
2405 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2406 		 * CR3 is loaded into hardware, not the guest's CR3.
2407 		 */
2408 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2409 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2410 		break;
2411 	case VCPU_EXREG_CR4:
2412 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2413 
2414 		vcpu->arch.cr4 &= ~guest_owned_bits;
2415 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2416 		break;
2417 	default:
2418 		KVM_BUG_ON(1, vcpu->kvm);
2419 		break;
2420 	}
2421 }
2422 
2423 static __init int cpu_has_kvm_support(void)
2424 {
2425 	return cpu_has_vmx();
2426 }
2427 
2428 static __init int vmx_disabled_by_bios(void)
2429 {
2430 	return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2431 	       !boot_cpu_has(X86_FEATURE_VMX);
2432 }
2433 
2434 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2435 {
2436 	u64 msr;
2437 
2438 	cr4_set_bits(X86_CR4_VMXE);
2439 
2440 	asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2441 			  _ASM_EXTABLE(1b, %l[fault])
2442 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2443 			  : : fault);
2444 	return 0;
2445 
2446 fault:
2447 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2448 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2449 	cr4_clear_bits(X86_CR4_VMXE);
2450 
2451 	return -EFAULT;
2452 }
2453 
2454 static int vmx_hardware_enable(void)
2455 {
2456 	int cpu = raw_smp_processor_id();
2457 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2458 	int r;
2459 
2460 	if (cr4_read_shadow() & X86_CR4_VMXE)
2461 		return -EBUSY;
2462 
2463 	/*
2464 	 * This can happen if we hot-added a CPU but failed to allocate
2465 	 * VP assist page for it.
2466 	 */
2467 	if (static_branch_unlikely(&enable_evmcs) &&
2468 	    !hv_get_vp_assist_page(cpu))
2469 		return -EFAULT;
2470 
2471 	intel_pt_handle_vmx(1);
2472 
2473 	r = kvm_cpu_vmxon(phys_addr);
2474 	if (r) {
2475 		intel_pt_handle_vmx(0);
2476 		return r;
2477 	}
2478 
2479 	if (enable_ept)
2480 		ept_sync_global();
2481 
2482 	return 0;
2483 }
2484 
2485 static void vmclear_local_loaded_vmcss(void)
2486 {
2487 	int cpu = raw_smp_processor_id();
2488 	struct loaded_vmcs *v, *n;
2489 
2490 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2491 				 loaded_vmcss_on_cpu_link)
2492 		__loaded_vmcs_clear(v);
2493 }
2494 
2495 static void vmx_hardware_disable(void)
2496 {
2497 	vmclear_local_loaded_vmcss();
2498 
2499 	if (cpu_vmxoff())
2500 		kvm_spurious_fault();
2501 
2502 	intel_pt_handle_vmx(0);
2503 }
2504 
2505 /*
2506  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2507  * directly instead of going through cpu_has(), to ensure KVM is trapping
2508  * ENCLS whenever it's supported in hardware.  It does not matter whether
2509  * the host OS supports or has enabled SGX.
2510  */
2511 static bool cpu_has_sgx(void)
2512 {
2513 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2514 }
2515 
2516 /*
2517  * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2518  * can't be used due to errata where VM Exit may incorrectly clear
2519  * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2520  * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2521  */
2522 static bool cpu_has_perf_global_ctrl_bug(void)
2523 {
2524 	if (boot_cpu_data.x86 == 0x6) {
2525 		switch (boot_cpu_data.x86_model) {
2526 		case INTEL_FAM6_NEHALEM_EP:	/* AAK155 */
2527 		case INTEL_FAM6_NEHALEM:	/* AAP115 */
2528 		case INTEL_FAM6_WESTMERE:	/* AAT100 */
2529 		case INTEL_FAM6_WESTMERE_EP:	/* BC86,AAY89,BD102 */
2530 		case INTEL_FAM6_NEHALEM_EX:	/* BA97 */
2531 			return true;
2532 		default:
2533 			break;
2534 		}
2535 	}
2536 
2537 	return false;
2538 }
2539 
2540 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2541 				      u32 msr, u32 *result)
2542 {
2543 	u32 vmx_msr_low, vmx_msr_high;
2544 	u32 ctl = ctl_min | ctl_opt;
2545 
2546 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2547 
2548 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2549 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2550 
2551 	/* Ensure minimum (required) set of control bits are supported. */
2552 	if (ctl_min & ~ctl)
2553 		return -EIO;
2554 
2555 	*result = ctl;
2556 	return 0;
2557 }
2558 
2559 static __init u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2560 {
2561 	u64 allowed;
2562 
2563 	rdmsrl(msr, allowed);
2564 
2565 	return  ctl_opt & allowed;
2566 }
2567 
2568 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2569 				    struct vmx_capability *vmx_cap)
2570 {
2571 	u32 vmx_msr_low, vmx_msr_high;
2572 	u32 _pin_based_exec_control = 0;
2573 	u32 _cpu_based_exec_control = 0;
2574 	u32 _cpu_based_2nd_exec_control = 0;
2575 	u64 _cpu_based_3rd_exec_control = 0;
2576 	u32 _vmexit_control = 0;
2577 	u32 _vmentry_control = 0;
2578 	u64 misc_msr;
2579 	int i;
2580 
2581 	/*
2582 	 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2583 	 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2584 	 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2585 	 */
2586 	struct {
2587 		u32 entry_control;
2588 		u32 exit_control;
2589 	} const vmcs_entry_exit_pairs[] = {
2590 		{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,	VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2591 		{ VM_ENTRY_LOAD_IA32_PAT,		VM_EXIT_LOAD_IA32_PAT },
2592 		{ VM_ENTRY_LOAD_IA32_EFER,		VM_EXIT_LOAD_IA32_EFER },
2593 		{ VM_ENTRY_LOAD_BNDCFGS,		VM_EXIT_CLEAR_BNDCFGS },
2594 		{ VM_ENTRY_LOAD_IA32_RTIT_CTL,		VM_EXIT_CLEAR_IA32_RTIT_CTL },
2595 	};
2596 
2597 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2598 
2599 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2600 				KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2601 				MSR_IA32_VMX_PROCBASED_CTLS,
2602 				&_cpu_based_exec_control))
2603 		return -EIO;
2604 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2605 		if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2606 					KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2607 					MSR_IA32_VMX_PROCBASED_CTLS2,
2608 					&_cpu_based_2nd_exec_control))
2609 			return -EIO;
2610 	}
2611 #ifndef CONFIG_X86_64
2612 	if (!(_cpu_based_2nd_exec_control &
2613 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2614 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2615 #endif
2616 
2617 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2618 		_cpu_based_2nd_exec_control &= ~(
2619 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2620 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2621 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2622 
2623 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2624 		&vmx_cap->ept, &vmx_cap->vpid);
2625 
2626 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2627 	    vmx_cap->ept) {
2628 		pr_warn_once("EPT CAP should not exist if not support "
2629 				"1-setting enable EPT VM-execution control\n");
2630 
2631 		if (error_on_inconsistent_vmcs_config)
2632 			return -EIO;
2633 
2634 		vmx_cap->ept = 0;
2635 	}
2636 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2637 	    vmx_cap->vpid) {
2638 		pr_warn_once("VPID CAP should not exist if not support "
2639 				"1-setting enable VPID VM-execution control\n");
2640 
2641 		if (error_on_inconsistent_vmcs_config)
2642 			return -EIO;
2643 
2644 		vmx_cap->vpid = 0;
2645 	}
2646 
2647 	if (!cpu_has_sgx())
2648 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2649 
2650 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2651 		_cpu_based_3rd_exec_control =
2652 			adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2653 					      MSR_IA32_VMX_PROCBASED_CTLS3);
2654 
2655 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2656 				KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2657 				MSR_IA32_VMX_EXIT_CTLS,
2658 				&_vmexit_control))
2659 		return -EIO;
2660 
2661 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2662 				KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2663 				MSR_IA32_VMX_PINBASED_CTLS,
2664 				&_pin_based_exec_control))
2665 		return -EIO;
2666 
2667 	if (cpu_has_broken_vmx_preemption_timer())
2668 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2669 	if (!(_cpu_based_2nd_exec_control &
2670 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2671 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2672 
2673 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2674 				KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2675 				MSR_IA32_VMX_ENTRY_CTLS,
2676 				&_vmentry_control))
2677 		return -EIO;
2678 
2679 	for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2680 		u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2681 		u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2682 
2683 		if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2684 			continue;
2685 
2686 		pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2687 			     _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2688 
2689 		if (error_on_inconsistent_vmcs_config)
2690 			return -EIO;
2691 
2692 		_vmentry_control &= ~n_ctrl;
2693 		_vmexit_control &= ~x_ctrl;
2694 	}
2695 
2696 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2697 
2698 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2699 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2700 		return -EIO;
2701 
2702 #ifdef CONFIG_X86_64
2703 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2704 	if (vmx_msr_high & (1u<<16))
2705 		return -EIO;
2706 #endif
2707 
2708 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2709 	if (((vmx_msr_high >> 18) & 15) != 6)
2710 		return -EIO;
2711 
2712 	rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2713 
2714 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2715 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2716 
2717 	vmcs_conf->revision_id = vmx_msr_low;
2718 
2719 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2720 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2721 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2722 	vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2723 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2724 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2725 	vmcs_conf->misc	= misc_msr;
2726 
2727 	return 0;
2728 }
2729 
2730 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2731 {
2732 	int node = cpu_to_node(cpu);
2733 	struct page *pages;
2734 	struct vmcs *vmcs;
2735 
2736 	pages = __alloc_pages_node(node, flags, 0);
2737 	if (!pages)
2738 		return NULL;
2739 	vmcs = page_address(pages);
2740 	memset(vmcs, 0, vmcs_config.size);
2741 
2742 	/* KVM supports Enlightened VMCS v1 only */
2743 	if (static_branch_unlikely(&enable_evmcs))
2744 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2745 	else
2746 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2747 
2748 	if (shadow)
2749 		vmcs->hdr.shadow_vmcs = 1;
2750 	return vmcs;
2751 }
2752 
2753 void free_vmcs(struct vmcs *vmcs)
2754 {
2755 	free_page((unsigned long)vmcs);
2756 }
2757 
2758 /*
2759  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2760  */
2761 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2762 {
2763 	if (!loaded_vmcs->vmcs)
2764 		return;
2765 	loaded_vmcs_clear(loaded_vmcs);
2766 	free_vmcs(loaded_vmcs->vmcs);
2767 	loaded_vmcs->vmcs = NULL;
2768 	if (loaded_vmcs->msr_bitmap)
2769 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2770 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2771 }
2772 
2773 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2774 {
2775 	loaded_vmcs->vmcs = alloc_vmcs(false);
2776 	if (!loaded_vmcs->vmcs)
2777 		return -ENOMEM;
2778 
2779 	vmcs_clear(loaded_vmcs->vmcs);
2780 
2781 	loaded_vmcs->shadow_vmcs = NULL;
2782 	loaded_vmcs->hv_timer_soft_disabled = false;
2783 	loaded_vmcs->cpu = -1;
2784 	loaded_vmcs->launched = 0;
2785 
2786 	if (cpu_has_vmx_msr_bitmap()) {
2787 		loaded_vmcs->msr_bitmap = (unsigned long *)
2788 				__get_free_page(GFP_KERNEL_ACCOUNT);
2789 		if (!loaded_vmcs->msr_bitmap)
2790 			goto out_vmcs;
2791 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2792 	}
2793 
2794 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2795 	memset(&loaded_vmcs->controls_shadow, 0,
2796 		sizeof(struct vmcs_controls_shadow));
2797 
2798 	return 0;
2799 
2800 out_vmcs:
2801 	free_loaded_vmcs(loaded_vmcs);
2802 	return -ENOMEM;
2803 }
2804 
2805 static void free_kvm_area(void)
2806 {
2807 	int cpu;
2808 
2809 	for_each_possible_cpu(cpu) {
2810 		free_vmcs(per_cpu(vmxarea, cpu));
2811 		per_cpu(vmxarea, cpu) = NULL;
2812 	}
2813 }
2814 
2815 static __init int alloc_kvm_area(void)
2816 {
2817 	int cpu;
2818 
2819 	for_each_possible_cpu(cpu) {
2820 		struct vmcs *vmcs;
2821 
2822 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2823 		if (!vmcs) {
2824 			free_kvm_area();
2825 			return -ENOMEM;
2826 		}
2827 
2828 		/*
2829 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2830 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2831 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2832 		 *
2833 		 * However, even though not explicitly documented by
2834 		 * TLFS, VMXArea passed as VMXON argument should
2835 		 * still be marked with revision_id reported by
2836 		 * physical CPU.
2837 		 */
2838 		if (static_branch_unlikely(&enable_evmcs))
2839 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2840 
2841 		per_cpu(vmxarea, cpu) = vmcs;
2842 	}
2843 	return 0;
2844 }
2845 
2846 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2847 		struct kvm_segment *save)
2848 {
2849 	if (!emulate_invalid_guest_state) {
2850 		/*
2851 		 * CS and SS RPL should be equal during guest entry according
2852 		 * to VMX spec, but in reality it is not always so. Since vcpu
2853 		 * is in the middle of the transition from real mode to
2854 		 * protected mode it is safe to assume that RPL 0 is a good
2855 		 * default value.
2856 		 */
2857 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2858 			save->selector &= ~SEGMENT_RPL_MASK;
2859 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2860 		save->s = 1;
2861 	}
2862 	__vmx_set_segment(vcpu, save, seg);
2863 }
2864 
2865 static void enter_pmode(struct kvm_vcpu *vcpu)
2866 {
2867 	unsigned long flags;
2868 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2869 
2870 	/*
2871 	 * Update real mode segment cache. It may be not up-to-date if segment
2872 	 * register was written while vcpu was in a guest mode.
2873 	 */
2874 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2875 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2876 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2877 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2878 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2879 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2880 
2881 	vmx->rmode.vm86_active = 0;
2882 
2883 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2884 
2885 	flags = vmcs_readl(GUEST_RFLAGS);
2886 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2887 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2888 	vmcs_writel(GUEST_RFLAGS, flags);
2889 
2890 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2891 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2892 
2893 	vmx_update_exception_bitmap(vcpu);
2894 
2895 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2896 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2897 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2898 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2899 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2900 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2901 }
2902 
2903 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2904 {
2905 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2906 	struct kvm_segment var = *save;
2907 
2908 	var.dpl = 0x3;
2909 	if (seg == VCPU_SREG_CS)
2910 		var.type = 0x3;
2911 
2912 	if (!emulate_invalid_guest_state) {
2913 		var.selector = var.base >> 4;
2914 		var.base = var.base & 0xffff0;
2915 		var.limit = 0xffff;
2916 		var.g = 0;
2917 		var.db = 0;
2918 		var.present = 1;
2919 		var.s = 1;
2920 		var.l = 0;
2921 		var.unusable = 0;
2922 		var.type = 0x3;
2923 		var.avl = 0;
2924 		if (save->base & 0xf)
2925 			printk_once(KERN_WARNING "kvm: segment base is not "
2926 					"paragraph aligned when entering "
2927 					"protected mode (seg=%d)", seg);
2928 	}
2929 
2930 	vmcs_write16(sf->selector, var.selector);
2931 	vmcs_writel(sf->base, var.base);
2932 	vmcs_write32(sf->limit, var.limit);
2933 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2934 }
2935 
2936 static void enter_rmode(struct kvm_vcpu *vcpu)
2937 {
2938 	unsigned long flags;
2939 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2940 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2941 
2942 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2943 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2944 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2945 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2946 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2947 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2948 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2949 
2950 	vmx->rmode.vm86_active = 1;
2951 
2952 	/*
2953 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2954 	 * vcpu. Warn the user that an update is overdue.
2955 	 */
2956 	if (!kvm_vmx->tss_addr)
2957 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2958 			     "called before entering vcpu\n");
2959 
2960 	vmx_segment_cache_clear(vmx);
2961 
2962 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2963 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2964 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2965 
2966 	flags = vmcs_readl(GUEST_RFLAGS);
2967 	vmx->rmode.save_rflags = flags;
2968 
2969 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2970 
2971 	vmcs_writel(GUEST_RFLAGS, flags);
2972 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2973 	vmx_update_exception_bitmap(vcpu);
2974 
2975 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2976 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2977 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2978 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2979 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2980 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2981 }
2982 
2983 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2984 {
2985 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2986 
2987 	/* Nothing to do if hardware doesn't support EFER. */
2988 	if (!vmx_find_uret_msr(vmx, MSR_EFER))
2989 		return 0;
2990 
2991 	vcpu->arch.efer = efer;
2992 #ifdef CONFIG_X86_64
2993 	if (efer & EFER_LMA)
2994 		vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
2995 	else
2996 		vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
2997 #else
2998 	if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
2999 		return 1;
3000 #endif
3001 
3002 	vmx_setup_uret_msrs(vmx);
3003 	return 0;
3004 }
3005 
3006 #ifdef CONFIG_X86_64
3007 
3008 static void enter_lmode(struct kvm_vcpu *vcpu)
3009 {
3010 	u32 guest_tr_ar;
3011 
3012 	vmx_segment_cache_clear(to_vmx(vcpu));
3013 
3014 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3015 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3016 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3017 				     __func__);
3018 		vmcs_write32(GUEST_TR_AR_BYTES,
3019 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3020 			     | VMX_AR_TYPE_BUSY_64_TSS);
3021 	}
3022 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3023 }
3024 
3025 static void exit_lmode(struct kvm_vcpu *vcpu)
3026 {
3027 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3028 }
3029 
3030 #endif
3031 
3032 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3033 {
3034 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3035 
3036 	/*
3037 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3038 	 * the CPU is not required to invalidate guest-physical mappings on
3039 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3040 	 * associated with the root EPT structure and not any particular VPID
3041 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
3042 	 */
3043 	if (enable_ept) {
3044 		ept_sync_global();
3045 	} else if (enable_vpid) {
3046 		if (cpu_has_vmx_invvpid_global()) {
3047 			vpid_sync_vcpu_global();
3048 		} else {
3049 			vpid_sync_vcpu_single(vmx->vpid);
3050 			vpid_sync_vcpu_single(vmx->nested.vpid02);
3051 		}
3052 	}
3053 }
3054 
3055 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3056 {
3057 	if (is_guest_mode(vcpu))
3058 		return nested_get_vpid02(vcpu);
3059 	return to_vmx(vcpu)->vpid;
3060 }
3061 
3062 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3063 {
3064 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3065 	u64 root_hpa = mmu->root.hpa;
3066 
3067 	/* No flush required if the current context is invalid. */
3068 	if (!VALID_PAGE(root_hpa))
3069 		return;
3070 
3071 	if (enable_ept)
3072 		ept_sync_context(construct_eptp(vcpu, root_hpa,
3073 						mmu->root_role.level));
3074 	else
3075 		vpid_sync_context(vmx_get_current_vpid(vcpu));
3076 }
3077 
3078 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3079 {
3080 	/*
3081 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3082 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3083 	 */
3084 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3085 }
3086 
3087 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3088 {
3089 	/*
3090 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3091 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3092 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3093 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3094 	 * i.e. no explicit INVVPID is necessary.
3095 	 */
3096 	vpid_sync_context(vmx_get_current_vpid(vcpu));
3097 }
3098 
3099 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3100 {
3101 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3102 
3103 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3104 		return;
3105 
3106 	if (is_pae_paging(vcpu)) {
3107 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3108 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3109 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3110 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3111 	}
3112 }
3113 
3114 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3115 {
3116 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3117 
3118 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3119 		return;
3120 
3121 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3122 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3123 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3124 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3125 
3126 	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3127 }
3128 
3129 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3130 			  CPU_BASED_CR3_STORE_EXITING)
3131 
3132 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3133 {
3134 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3135 	unsigned long hw_cr0, old_cr0_pg;
3136 	u32 tmp;
3137 
3138 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3139 
3140 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3141 	if (is_unrestricted_guest(vcpu))
3142 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3143 	else {
3144 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3145 		if (!enable_ept)
3146 			hw_cr0 |= X86_CR0_WP;
3147 
3148 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3149 			enter_pmode(vcpu);
3150 
3151 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3152 			enter_rmode(vcpu);
3153 	}
3154 
3155 	vmcs_writel(CR0_READ_SHADOW, cr0);
3156 	vmcs_writel(GUEST_CR0, hw_cr0);
3157 	vcpu->arch.cr0 = cr0;
3158 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3159 
3160 #ifdef CONFIG_X86_64
3161 	if (vcpu->arch.efer & EFER_LME) {
3162 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3163 			enter_lmode(vcpu);
3164 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3165 			exit_lmode(vcpu);
3166 	}
3167 #endif
3168 
3169 	if (enable_ept && !is_unrestricted_guest(vcpu)) {
3170 		/*
3171 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3172 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3173 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3174 		 * KVM's CR3 is installed.
3175 		 */
3176 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3177 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3178 
3179 		/*
3180 		 * When running with EPT but not unrestricted guest, KVM must
3181 		 * intercept CR3 accesses when paging is _disabled_.  This is
3182 		 * necessary because restricted guests can't actually run with
3183 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3184 		 * run the guest when identity mapped page tables.
3185 		 *
3186 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3187 		 * update, it may be stale with respect to CR3 interception,
3188 		 * e.g. after nested VM-Enter.
3189 		 *
3190 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3191 		 * stores to forward them to L1, even if KVM does not need to
3192 		 * intercept them to preserve its identity mapped page tables.
3193 		 */
3194 		if (!(cr0 & X86_CR0_PG)) {
3195 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3196 		} else if (!is_guest_mode(vcpu)) {
3197 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3198 		} else {
3199 			tmp = exec_controls_get(vmx);
3200 			tmp &= ~CR3_EXITING_BITS;
3201 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3202 			exec_controls_set(vmx, tmp);
3203 		}
3204 
3205 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3206 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3207 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3208 
3209 		/*
3210 		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3211 		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3212 		 */
3213 		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3214 			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3215 	}
3216 
3217 	/* depends on vcpu->arch.cr0 to be set to a new value */
3218 	vmx->emulation_required = vmx_emulation_required(vcpu);
3219 }
3220 
3221 static int vmx_get_max_tdp_level(void)
3222 {
3223 	if (cpu_has_vmx_ept_5levels())
3224 		return 5;
3225 	return 4;
3226 }
3227 
3228 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3229 {
3230 	u64 eptp = VMX_EPTP_MT_WB;
3231 
3232 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3233 
3234 	if (enable_ept_ad_bits &&
3235 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3236 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3237 	eptp |= root_hpa;
3238 
3239 	return eptp;
3240 }
3241 
3242 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3243 			     int root_level)
3244 {
3245 	struct kvm *kvm = vcpu->kvm;
3246 	bool update_guest_cr3 = true;
3247 	unsigned long guest_cr3;
3248 	u64 eptp;
3249 
3250 	if (enable_ept) {
3251 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3252 		vmcs_write64(EPT_POINTER, eptp);
3253 
3254 		hv_track_root_tdp(vcpu, root_hpa);
3255 
3256 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3257 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3258 		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3259 			guest_cr3 = vcpu->arch.cr3;
3260 		else /* vmcs.GUEST_CR3 is already up-to-date. */
3261 			update_guest_cr3 = false;
3262 		vmx_ept_load_pdptrs(vcpu);
3263 	} else {
3264 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3265 	}
3266 
3267 	if (update_guest_cr3)
3268 		vmcs_writel(GUEST_CR3, guest_cr3);
3269 }
3270 
3271 
3272 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3273 {
3274 	/*
3275 	 * We operate under the default treatment of SMM, so VMX cannot be
3276 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3277 	 * i.e. is a reserved bit, is handled by common x86 code.
3278 	 */
3279 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3280 		return false;
3281 
3282 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3283 		return false;
3284 
3285 	return true;
3286 }
3287 
3288 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3289 {
3290 	unsigned long old_cr4 = vcpu->arch.cr4;
3291 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3292 	/*
3293 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3294 	 * is in force while we are in guest mode.  Do not let guests control
3295 	 * this bit, even if host CR4.MCE == 0.
3296 	 */
3297 	unsigned long hw_cr4;
3298 
3299 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3300 	if (is_unrestricted_guest(vcpu))
3301 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3302 	else if (vmx->rmode.vm86_active)
3303 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3304 	else
3305 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3306 
3307 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3308 		if (cr4 & X86_CR4_UMIP) {
3309 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3310 			hw_cr4 &= ~X86_CR4_UMIP;
3311 		} else if (!is_guest_mode(vcpu) ||
3312 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3313 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3314 		}
3315 	}
3316 
3317 	vcpu->arch.cr4 = cr4;
3318 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3319 
3320 	if (!is_unrestricted_guest(vcpu)) {
3321 		if (enable_ept) {
3322 			if (!is_paging(vcpu)) {
3323 				hw_cr4 &= ~X86_CR4_PAE;
3324 				hw_cr4 |= X86_CR4_PSE;
3325 			} else if (!(cr4 & X86_CR4_PAE)) {
3326 				hw_cr4 &= ~X86_CR4_PAE;
3327 			}
3328 		}
3329 
3330 		/*
3331 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3332 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3333 		 * to be manually disabled when guest switches to non-paging
3334 		 * mode.
3335 		 *
3336 		 * If !enable_unrestricted_guest, the CPU is always running
3337 		 * with CR0.PG=1 and CR4 needs to be modified.
3338 		 * If enable_unrestricted_guest, the CPU automatically
3339 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3340 		 */
3341 		if (!is_paging(vcpu))
3342 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3343 	}
3344 
3345 	vmcs_writel(CR4_READ_SHADOW, cr4);
3346 	vmcs_writel(GUEST_CR4, hw_cr4);
3347 
3348 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3349 		kvm_update_cpuid_runtime(vcpu);
3350 }
3351 
3352 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3353 {
3354 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3355 	u32 ar;
3356 
3357 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3358 		*var = vmx->rmode.segs[seg];
3359 		if (seg == VCPU_SREG_TR
3360 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3361 			return;
3362 		var->base = vmx_read_guest_seg_base(vmx, seg);
3363 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3364 		return;
3365 	}
3366 	var->base = vmx_read_guest_seg_base(vmx, seg);
3367 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3368 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3369 	ar = vmx_read_guest_seg_ar(vmx, seg);
3370 	var->unusable = (ar >> 16) & 1;
3371 	var->type = ar & 15;
3372 	var->s = (ar >> 4) & 1;
3373 	var->dpl = (ar >> 5) & 3;
3374 	/*
3375 	 * Some userspaces do not preserve unusable property. Since usable
3376 	 * segment has to be present according to VMX spec we can use present
3377 	 * property to amend userspace bug by making unusable segment always
3378 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3379 	 * segment as unusable.
3380 	 */
3381 	var->present = !var->unusable;
3382 	var->avl = (ar >> 12) & 1;
3383 	var->l = (ar >> 13) & 1;
3384 	var->db = (ar >> 14) & 1;
3385 	var->g = (ar >> 15) & 1;
3386 }
3387 
3388 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3389 {
3390 	struct kvm_segment s;
3391 
3392 	if (to_vmx(vcpu)->rmode.vm86_active) {
3393 		vmx_get_segment(vcpu, &s, seg);
3394 		return s.base;
3395 	}
3396 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3397 }
3398 
3399 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3400 {
3401 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3402 
3403 	if (unlikely(vmx->rmode.vm86_active))
3404 		return 0;
3405 	else {
3406 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3407 		return VMX_AR_DPL(ar);
3408 	}
3409 }
3410 
3411 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3412 {
3413 	u32 ar;
3414 
3415 	if (var->unusable || !var->present)
3416 		ar = 1 << 16;
3417 	else {
3418 		ar = var->type & 15;
3419 		ar |= (var->s & 1) << 4;
3420 		ar |= (var->dpl & 3) << 5;
3421 		ar |= (var->present & 1) << 7;
3422 		ar |= (var->avl & 1) << 12;
3423 		ar |= (var->l & 1) << 13;
3424 		ar |= (var->db & 1) << 14;
3425 		ar |= (var->g & 1) << 15;
3426 	}
3427 
3428 	return ar;
3429 }
3430 
3431 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3432 {
3433 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3434 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3435 
3436 	vmx_segment_cache_clear(vmx);
3437 
3438 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3439 		vmx->rmode.segs[seg] = *var;
3440 		if (seg == VCPU_SREG_TR)
3441 			vmcs_write16(sf->selector, var->selector);
3442 		else if (var->s)
3443 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3444 		return;
3445 	}
3446 
3447 	vmcs_writel(sf->base, var->base);
3448 	vmcs_write32(sf->limit, var->limit);
3449 	vmcs_write16(sf->selector, var->selector);
3450 
3451 	/*
3452 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3453 	 * qemu binaries.
3454 	 *   IA32 arch specifies that at the time of processor reset the
3455 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3456 	 * is setting it to 0 in the userland code. This causes invalid guest
3457 	 * state vmexit when "unrestricted guest" mode is turned on.
3458 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3459 	 * tree. Newer qemu binaries with that qemu fix would not need this
3460 	 * kvm hack.
3461 	 */
3462 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3463 		var->type |= 0x1; /* Accessed */
3464 
3465 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3466 }
3467 
3468 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3469 {
3470 	__vmx_set_segment(vcpu, var, seg);
3471 
3472 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3473 }
3474 
3475 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3476 {
3477 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3478 
3479 	*db = (ar >> 14) & 1;
3480 	*l = (ar >> 13) & 1;
3481 }
3482 
3483 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3484 {
3485 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3486 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3487 }
3488 
3489 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3490 {
3491 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3492 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3493 }
3494 
3495 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3496 {
3497 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3498 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3499 }
3500 
3501 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3502 {
3503 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3504 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3505 }
3506 
3507 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3508 {
3509 	struct kvm_segment var;
3510 	u32 ar;
3511 
3512 	vmx_get_segment(vcpu, &var, seg);
3513 	var.dpl = 0x3;
3514 	if (seg == VCPU_SREG_CS)
3515 		var.type = 0x3;
3516 	ar = vmx_segment_access_rights(&var);
3517 
3518 	if (var.base != (var.selector << 4))
3519 		return false;
3520 	if (var.limit != 0xffff)
3521 		return false;
3522 	if (ar != 0xf3)
3523 		return false;
3524 
3525 	return true;
3526 }
3527 
3528 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3529 {
3530 	struct kvm_segment cs;
3531 	unsigned int cs_rpl;
3532 
3533 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3534 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3535 
3536 	if (cs.unusable)
3537 		return false;
3538 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3539 		return false;
3540 	if (!cs.s)
3541 		return false;
3542 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3543 		if (cs.dpl > cs_rpl)
3544 			return false;
3545 	} else {
3546 		if (cs.dpl != cs_rpl)
3547 			return false;
3548 	}
3549 	if (!cs.present)
3550 		return false;
3551 
3552 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3553 	return true;
3554 }
3555 
3556 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3557 {
3558 	struct kvm_segment ss;
3559 	unsigned int ss_rpl;
3560 
3561 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3562 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3563 
3564 	if (ss.unusable)
3565 		return true;
3566 	if (ss.type != 3 && ss.type != 7)
3567 		return false;
3568 	if (!ss.s)
3569 		return false;
3570 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3571 		return false;
3572 	if (!ss.present)
3573 		return false;
3574 
3575 	return true;
3576 }
3577 
3578 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3579 {
3580 	struct kvm_segment var;
3581 	unsigned int rpl;
3582 
3583 	vmx_get_segment(vcpu, &var, seg);
3584 	rpl = var.selector & SEGMENT_RPL_MASK;
3585 
3586 	if (var.unusable)
3587 		return true;
3588 	if (!var.s)
3589 		return false;
3590 	if (!var.present)
3591 		return false;
3592 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3593 		if (var.dpl < rpl) /* DPL < RPL */
3594 			return false;
3595 	}
3596 
3597 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3598 	 * rights flags
3599 	 */
3600 	return true;
3601 }
3602 
3603 static bool tr_valid(struct kvm_vcpu *vcpu)
3604 {
3605 	struct kvm_segment tr;
3606 
3607 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3608 
3609 	if (tr.unusable)
3610 		return false;
3611 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3612 		return false;
3613 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3614 		return false;
3615 	if (!tr.present)
3616 		return false;
3617 
3618 	return true;
3619 }
3620 
3621 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3622 {
3623 	struct kvm_segment ldtr;
3624 
3625 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3626 
3627 	if (ldtr.unusable)
3628 		return true;
3629 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3630 		return false;
3631 	if (ldtr.type != 2)
3632 		return false;
3633 	if (!ldtr.present)
3634 		return false;
3635 
3636 	return true;
3637 }
3638 
3639 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3640 {
3641 	struct kvm_segment cs, ss;
3642 
3643 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3644 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3645 
3646 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3647 		 (ss.selector & SEGMENT_RPL_MASK));
3648 }
3649 
3650 /*
3651  * Check if guest state is valid. Returns true if valid, false if
3652  * not.
3653  * We assume that registers are always usable
3654  */
3655 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3656 {
3657 	/* real mode guest state checks */
3658 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3659 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3660 			return false;
3661 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3662 			return false;
3663 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3664 			return false;
3665 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3666 			return false;
3667 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3668 			return false;
3669 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3670 			return false;
3671 	} else {
3672 	/* protected mode guest state checks */
3673 		if (!cs_ss_rpl_check(vcpu))
3674 			return false;
3675 		if (!code_segment_valid(vcpu))
3676 			return false;
3677 		if (!stack_segment_valid(vcpu))
3678 			return false;
3679 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3680 			return false;
3681 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3682 			return false;
3683 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3684 			return false;
3685 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3686 			return false;
3687 		if (!tr_valid(vcpu))
3688 			return false;
3689 		if (!ldtr_valid(vcpu))
3690 			return false;
3691 	}
3692 	/* TODO:
3693 	 * - Add checks on RIP
3694 	 * - Add checks on RFLAGS
3695 	 */
3696 
3697 	return true;
3698 }
3699 
3700 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3701 {
3702 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3703 	u16 data;
3704 	int i;
3705 
3706 	for (i = 0; i < 3; i++) {
3707 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3708 			return -EFAULT;
3709 	}
3710 
3711 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3712 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3713 		return -EFAULT;
3714 
3715 	data = ~0;
3716 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3717 		return -EFAULT;
3718 
3719 	return 0;
3720 }
3721 
3722 static int init_rmode_identity_map(struct kvm *kvm)
3723 {
3724 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3725 	int i, r = 0;
3726 	void __user *uaddr;
3727 	u32 tmp;
3728 
3729 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3730 	mutex_lock(&kvm->slots_lock);
3731 
3732 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3733 		goto out;
3734 
3735 	if (!kvm_vmx->ept_identity_map_addr)
3736 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3737 
3738 	uaddr = __x86_set_memory_region(kvm,
3739 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3740 					kvm_vmx->ept_identity_map_addr,
3741 					PAGE_SIZE);
3742 	if (IS_ERR(uaddr)) {
3743 		r = PTR_ERR(uaddr);
3744 		goto out;
3745 	}
3746 
3747 	/* Set up identity-mapping pagetable for EPT in real mode */
3748 	for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3749 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3750 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3751 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3752 			r = -EFAULT;
3753 			goto out;
3754 		}
3755 	}
3756 	kvm_vmx->ept_identity_pagetable_done = true;
3757 
3758 out:
3759 	mutex_unlock(&kvm->slots_lock);
3760 	return r;
3761 }
3762 
3763 static void seg_setup(int seg)
3764 {
3765 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3766 	unsigned int ar;
3767 
3768 	vmcs_write16(sf->selector, 0);
3769 	vmcs_writel(sf->base, 0);
3770 	vmcs_write32(sf->limit, 0xffff);
3771 	ar = 0x93;
3772 	if (seg == VCPU_SREG_CS)
3773 		ar |= 0x08; /* code segment */
3774 
3775 	vmcs_write32(sf->ar_bytes, ar);
3776 }
3777 
3778 static int alloc_apic_access_page(struct kvm *kvm)
3779 {
3780 	struct page *page;
3781 	void __user *hva;
3782 	int ret = 0;
3783 
3784 	mutex_lock(&kvm->slots_lock);
3785 	if (kvm->arch.apic_access_memslot_enabled)
3786 		goto out;
3787 	hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3788 				      APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3789 	if (IS_ERR(hva)) {
3790 		ret = PTR_ERR(hva);
3791 		goto out;
3792 	}
3793 
3794 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3795 	if (is_error_page(page)) {
3796 		ret = -EFAULT;
3797 		goto out;
3798 	}
3799 
3800 	/*
3801 	 * Do not pin the page in memory, so that memory hot-unplug
3802 	 * is able to migrate it.
3803 	 */
3804 	put_page(page);
3805 	kvm->arch.apic_access_memslot_enabled = true;
3806 out:
3807 	mutex_unlock(&kvm->slots_lock);
3808 	return ret;
3809 }
3810 
3811 int allocate_vpid(void)
3812 {
3813 	int vpid;
3814 
3815 	if (!enable_vpid)
3816 		return 0;
3817 	spin_lock(&vmx_vpid_lock);
3818 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3819 	if (vpid < VMX_NR_VPIDS)
3820 		__set_bit(vpid, vmx_vpid_bitmap);
3821 	else
3822 		vpid = 0;
3823 	spin_unlock(&vmx_vpid_lock);
3824 	return vpid;
3825 }
3826 
3827 void free_vpid(int vpid)
3828 {
3829 	if (!enable_vpid || vpid == 0)
3830 		return;
3831 	spin_lock(&vmx_vpid_lock);
3832 	__clear_bit(vpid, vmx_vpid_bitmap);
3833 	spin_unlock(&vmx_vpid_lock);
3834 }
3835 
3836 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3837 {
3838 	/*
3839 	 * When KVM is a nested hypervisor on top of Hyper-V and uses
3840 	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3841 	 * bitmap has changed.
3842 	 */
3843 	if (static_branch_unlikely(&enable_evmcs))
3844 		evmcs_touch_msr_bitmap();
3845 
3846 	vmx->nested.force_msr_bitmap_recalc = true;
3847 }
3848 
3849 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3850 {
3851 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3852 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3853 
3854 	if (!cpu_has_vmx_msr_bitmap())
3855 		return;
3856 
3857 	vmx_msr_bitmap_l01_changed(vmx);
3858 
3859 	/*
3860 	 * Mark the desired intercept state in shadow bitmap, this is needed
3861 	 * for resync when the MSR filters change.
3862 	*/
3863 	if (is_valid_passthrough_msr(msr)) {
3864 		int idx = possible_passthrough_msr_slot(msr);
3865 
3866 		if (idx != -ENOENT) {
3867 			if (type & MSR_TYPE_R)
3868 				clear_bit(idx, vmx->shadow_msr_intercept.read);
3869 			if (type & MSR_TYPE_W)
3870 				clear_bit(idx, vmx->shadow_msr_intercept.write);
3871 		}
3872 	}
3873 
3874 	if ((type & MSR_TYPE_R) &&
3875 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3876 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3877 		type &= ~MSR_TYPE_R;
3878 	}
3879 
3880 	if ((type & MSR_TYPE_W) &&
3881 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3882 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3883 		type &= ~MSR_TYPE_W;
3884 	}
3885 
3886 	if (type & MSR_TYPE_R)
3887 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3888 
3889 	if (type & MSR_TYPE_W)
3890 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3891 }
3892 
3893 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3894 {
3895 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3896 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3897 
3898 	if (!cpu_has_vmx_msr_bitmap())
3899 		return;
3900 
3901 	vmx_msr_bitmap_l01_changed(vmx);
3902 
3903 	/*
3904 	 * Mark the desired intercept state in shadow bitmap, this is needed
3905 	 * for resync when the MSR filter changes.
3906 	*/
3907 	if (is_valid_passthrough_msr(msr)) {
3908 		int idx = possible_passthrough_msr_slot(msr);
3909 
3910 		if (idx != -ENOENT) {
3911 			if (type & MSR_TYPE_R)
3912 				set_bit(idx, vmx->shadow_msr_intercept.read);
3913 			if (type & MSR_TYPE_W)
3914 				set_bit(idx, vmx->shadow_msr_intercept.write);
3915 		}
3916 	}
3917 
3918 	if (type & MSR_TYPE_R)
3919 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3920 
3921 	if (type & MSR_TYPE_W)
3922 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3923 }
3924 
3925 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3926 {
3927 	unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3928 	unsigned long read_intercept;
3929 	int msr;
3930 
3931 	read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3932 
3933 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3934 		unsigned int read_idx = msr / BITS_PER_LONG;
3935 		unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3936 
3937 		msr_bitmap[read_idx] = read_intercept;
3938 		msr_bitmap[write_idx] = ~0ul;
3939 	}
3940 }
3941 
3942 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3943 {
3944 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3945 	u8 mode;
3946 
3947 	if (!cpu_has_vmx_msr_bitmap())
3948 		return;
3949 
3950 	if (cpu_has_secondary_exec_ctrls() &&
3951 	    (secondary_exec_controls_get(vmx) &
3952 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3953 		mode = MSR_BITMAP_MODE_X2APIC;
3954 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3955 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3956 	} else {
3957 		mode = 0;
3958 	}
3959 
3960 	if (mode == vmx->x2apic_msr_bitmap_mode)
3961 		return;
3962 
3963 	vmx->x2apic_msr_bitmap_mode = mode;
3964 
3965 	vmx_reset_x2apic_msrs(vcpu, mode);
3966 
3967 	/*
3968 	 * TPR reads and writes can be virtualized even if virtual interrupt
3969 	 * delivery is not in use.
3970 	 */
3971 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3972 				  !(mode & MSR_BITMAP_MODE_X2APIC));
3973 
3974 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3975 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3976 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3977 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3978 		if (enable_ipiv)
3979 			vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
3980 	}
3981 }
3982 
3983 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3984 {
3985 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3986 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3987 	u32 i;
3988 
3989 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3990 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3991 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3992 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3993 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
3994 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3995 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3996 	}
3997 }
3998 
3999 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
4000 {
4001 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4002 	void *vapic_page;
4003 	u32 vppr;
4004 	int rvi;
4005 
4006 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
4007 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4008 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
4009 		return false;
4010 
4011 	rvi = vmx_get_rvi();
4012 
4013 	vapic_page = vmx->nested.virtual_apic_map.hva;
4014 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4015 
4016 	return ((rvi & 0xf0) > (vppr & 0xf0));
4017 }
4018 
4019 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4020 {
4021 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4022 	u32 i;
4023 
4024 	/*
4025 	 * Redo intercept permissions for MSRs that KVM is passing through to
4026 	 * the guest.  Disabling interception will check the new MSR filter and
4027 	 * ensure that KVM enables interception if usersepace wants to filter
4028 	 * the MSR.  MSRs that KVM is already intercepting don't need to be
4029 	 * refreshed since KVM is going to intercept them regardless of what
4030 	 * userspace wants.
4031 	 */
4032 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4033 		u32 msr = vmx_possible_passthrough_msrs[i];
4034 
4035 		if (!test_bit(i, vmx->shadow_msr_intercept.read))
4036 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4037 
4038 		if (!test_bit(i, vmx->shadow_msr_intercept.write))
4039 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4040 	}
4041 
4042 	/* PT MSRs can be passed through iff PT is exposed to the guest. */
4043 	if (vmx_pt_mode_is_host_guest())
4044 		pt_update_intercept_for_msr(vcpu);
4045 }
4046 
4047 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4048 						     int pi_vec)
4049 {
4050 #ifdef CONFIG_SMP
4051 	if (vcpu->mode == IN_GUEST_MODE) {
4052 		/*
4053 		 * The vector of the virtual has already been set in the PIR.
4054 		 * Send a notification event to deliver the virtual interrupt
4055 		 * unless the vCPU is the currently running vCPU, i.e. the
4056 		 * event is being sent from a fastpath VM-Exit handler, in
4057 		 * which case the PIR will be synced to the vIRR before
4058 		 * re-entering the guest.
4059 		 *
4060 		 * When the target is not the running vCPU, the following
4061 		 * possibilities emerge:
4062 		 *
4063 		 * Case 1: vCPU stays in non-root mode. Sending a notification
4064 		 * event posts the interrupt to the vCPU.
4065 		 *
4066 		 * Case 2: vCPU exits to root mode and is still runnable. The
4067 		 * PIR will be synced to the vIRR before re-entering the guest.
4068 		 * Sending a notification event is ok as the host IRQ handler
4069 		 * will ignore the spurious event.
4070 		 *
4071 		 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4072 		 * has already synced PIR to vIRR and never blocks the vCPU if
4073 		 * the vIRR is not empty. Therefore, a blocked vCPU here does
4074 		 * not wait for any requested interrupts in PIR, and sending a
4075 		 * notification event also results in a benign, spurious event.
4076 		 */
4077 
4078 		if (vcpu != kvm_get_running_vcpu())
4079 			apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4080 		return;
4081 	}
4082 #endif
4083 	/*
4084 	 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4085 	 * otherwise do nothing as KVM will grab the highest priority pending
4086 	 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4087 	 */
4088 	kvm_vcpu_wake_up(vcpu);
4089 }
4090 
4091 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4092 						int vector)
4093 {
4094 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4095 
4096 	if (is_guest_mode(vcpu) &&
4097 	    vector == vmx->nested.posted_intr_nv) {
4098 		/*
4099 		 * If a posted intr is not recognized by hardware,
4100 		 * we will accomplish it in the next vmentry.
4101 		 */
4102 		vmx->nested.pi_pending = true;
4103 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4104 
4105 		/*
4106 		 * This pairs with the smp_mb_*() after setting vcpu->mode in
4107 		 * vcpu_enter_guest() to guarantee the vCPU sees the event
4108 		 * request if triggering a posted interrupt "fails" because
4109 		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4110 		 * the smb_wmb() in kvm_make_request() only ensures everything
4111 		 * done before making the request is visible when the request
4112 		 * is visible, it doesn't ensure ordering between the store to
4113 		 * vcpu->requests and the load from vcpu->mode.
4114 		 */
4115 		smp_mb__after_atomic();
4116 
4117 		/* the PIR and ON have been set by L1. */
4118 		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4119 		return 0;
4120 	}
4121 	return -1;
4122 }
4123 /*
4124  * Send interrupt to vcpu via posted interrupt way.
4125  * 1. If target vcpu is running(non-root mode), send posted interrupt
4126  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4127  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4128  * interrupt from PIR in next vmentry.
4129  */
4130 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4131 {
4132 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4133 	int r;
4134 
4135 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4136 	if (!r)
4137 		return 0;
4138 
4139 	/* Note, this is called iff the local APIC is in-kernel. */
4140 	if (!vcpu->arch.apic->apicv_active)
4141 		return -1;
4142 
4143 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4144 		return 0;
4145 
4146 	/* If a previous notification has sent the IPI, nothing to do.  */
4147 	if (pi_test_and_set_on(&vmx->pi_desc))
4148 		return 0;
4149 
4150 	/*
4151 	 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4152 	 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4153 	 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4154 	 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4155 	 */
4156 	kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4157 	return 0;
4158 }
4159 
4160 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4161 				  int trig_mode, int vector)
4162 {
4163 	struct kvm_vcpu *vcpu = apic->vcpu;
4164 
4165 	if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4166 		kvm_lapic_set_irr(vector, apic);
4167 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4168 		kvm_vcpu_kick(vcpu);
4169 	} else {
4170 		trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4171 					   trig_mode, vector);
4172 	}
4173 }
4174 
4175 /*
4176  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4177  * will not change in the lifetime of the guest.
4178  * Note that host-state that does change is set elsewhere. E.g., host-state
4179  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4180  */
4181 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4182 {
4183 	u32 low32, high32;
4184 	unsigned long tmpl;
4185 	unsigned long cr0, cr3, cr4;
4186 
4187 	cr0 = read_cr0();
4188 	WARN_ON(cr0 & X86_CR0_TS);
4189 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4190 
4191 	/*
4192 	 * Save the most likely value for this task's CR3 in the VMCS.
4193 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4194 	 */
4195 	cr3 = __read_cr3();
4196 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4197 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4198 
4199 	/* Save the most likely value for this task's CR4 in the VMCS. */
4200 	cr4 = cr4_read_shadow();
4201 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4202 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4203 
4204 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4205 #ifdef CONFIG_X86_64
4206 	/*
4207 	 * Load null selectors, so we can avoid reloading them in
4208 	 * vmx_prepare_switch_to_host(), in case userspace uses
4209 	 * the null selectors too (the expected case).
4210 	 */
4211 	vmcs_write16(HOST_DS_SELECTOR, 0);
4212 	vmcs_write16(HOST_ES_SELECTOR, 0);
4213 #else
4214 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4215 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4216 #endif
4217 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4218 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4219 
4220 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4221 
4222 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4223 
4224 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4225 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4226 
4227 	/*
4228 	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4229 	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4230 	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4231 	 * have already done so!).
4232 	 */
4233 	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4234 		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4235 
4236 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4237 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4238 
4239 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4240 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4241 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4242 	}
4243 
4244 	if (cpu_has_load_ia32_efer())
4245 		vmcs_write64(HOST_IA32_EFER, host_efer);
4246 }
4247 
4248 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4249 {
4250 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4251 
4252 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4253 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4254 	if (!enable_ept) {
4255 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4256 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4257 	}
4258 	if (is_guest_mode(&vmx->vcpu))
4259 		vcpu->arch.cr4_guest_owned_bits &=
4260 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4261 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4262 }
4263 
4264 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4265 {
4266 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4267 
4268 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4269 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4270 
4271 	if (!enable_vnmi)
4272 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4273 
4274 	if (!enable_preemption_timer)
4275 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4276 
4277 	return pin_based_exec_ctrl;
4278 }
4279 
4280 static u32 vmx_vmentry_ctrl(void)
4281 {
4282 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4283 
4284 	if (vmx_pt_mode_is_system())
4285 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4286 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4287 	/*
4288 	 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4289 	 */
4290 	vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4291 			  VM_ENTRY_LOAD_IA32_EFER |
4292 			  VM_ENTRY_IA32E_MODE);
4293 
4294 	if (cpu_has_perf_global_ctrl_bug())
4295 		vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4296 
4297 	return vmentry_ctrl;
4298 }
4299 
4300 static u32 vmx_vmexit_ctrl(void)
4301 {
4302 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4303 
4304 	/*
4305 	 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4306 	 * nested virtualization and thus allowed to be set in vmcs12.
4307 	 */
4308 	vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4309 			 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4310 
4311 	if (vmx_pt_mode_is_system())
4312 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4313 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4314 
4315 	if (cpu_has_perf_global_ctrl_bug())
4316 		vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4317 
4318 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4319 	return vmexit_ctrl &
4320 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4321 }
4322 
4323 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4324 {
4325 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4326 
4327 	if (is_guest_mode(vcpu)) {
4328 		vmx->nested.update_vmcs01_apicv_status = true;
4329 		return;
4330 	}
4331 
4332 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4333 
4334 	if (kvm_vcpu_apicv_active(vcpu)) {
4335 		secondary_exec_controls_setbit(vmx,
4336 					       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4337 					       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4338 		if (enable_ipiv)
4339 			tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4340 	} else {
4341 		secondary_exec_controls_clearbit(vmx,
4342 						 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4343 						 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4344 		if (enable_ipiv)
4345 			tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4346 	}
4347 
4348 	vmx_update_msr_bitmap_x2apic(vcpu);
4349 }
4350 
4351 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4352 {
4353 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4354 
4355 	/*
4356 	 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4357 	 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4358 	 */
4359 	exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4360 			  CPU_BASED_USE_IO_BITMAPS |
4361 			  CPU_BASED_MONITOR_TRAP_FLAG |
4362 			  CPU_BASED_PAUSE_EXITING);
4363 
4364 	/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4365 	exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4366 			  CPU_BASED_NMI_WINDOW_EXITING);
4367 
4368 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4369 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4370 
4371 	if (!cpu_need_tpr_shadow(&vmx->vcpu))
4372 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4373 
4374 #ifdef CONFIG_X86_64
4375 	if (exec_control & CPU_BASED_TPR_SHADOW)
4376 		exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4377 				  CPU_BASED_CR8_STORE_EXITING);
4378 	else
4379 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4380 				CPU_BASED_CR8_LOAD_EXITING;
4381 #endif
4382 	/* No need to intercept CR3 access or INVPLG when using EPT. */
4383 	if (enable_ept)
4384 		exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4385 				  CPU_BASED_CR3_STORE_EXITING |
4386 				  CPU_BASED_INVLPG_EXITING);
4387 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4388 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4389 				CPU_BASED_MONITOR_EXITING);
4390 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4391 		exec_control &= ~CPU_BASED_HLT_EXITING;
4392 	return exec_control;
4393 }
4394 
4395 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4396 {
4397 	u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4398 
4399 	/*
4400 	 * IPI virtualization relies on APICv. Disable IPI virtualization if
4401 	 * APICv is inhibited.
4402 	 */
4403 	if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4404 		exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4405 
4406 	return exec_control;
4407 }
4408 
4409 /*
4410  * Adjust a single secondary execution control bit to intercept/allow an
4411  * instruction in the guest.  This is usually done based on whether or not a
4412  * feature has been exposed to the guest in order to correctly emulate faults.
4413  */
4414 static inline void
4415 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4416 				  u32 control, bool enabled, bool exiting)
4417 {
4418 	/*
4419 	 * If the control is for an opt-in feature, clear the control if the
4420 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4421 	 * control is opt-out, i.e. an exiting control, clear the control if
4422 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4423 	 * disabled for the associated instruction.  Note, the caller is
4424 	 * responsible presetting exec_control to set all supported bits.
4425 	 */
4426 	if (enabled == exiting)
4427 		*exec_control &= ~control;
4428 
4429 	/*
4430 	 * Update the nested MSR settings so that a nested VMM can/can't set
4431 	 * controls for features that are/aren't exposed to the guest.
4432 	 */
4433 	if (nested) {
4434 		if (enabled)
4435 			vmx->nested.msrs.secondary_ctls_high |= control;
4436 		else
4437 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4438 	}
4439 }
4440 
4441 /*
4442  * Wrapper macro for the common case of adjusting a secondary execution control
4443  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4444  * verifies that the control is actually supported by KVM and hardware.
4445  */
4446 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4447 ({									 \
4448 	bool __enabled;							 \
4449 									 \
4450 	if (cpu_has_vmx_##name()) {					 \
4451 		__enabled = guest_cpuid_has(&(vmx)->vcpu,		 \
4452 					    X86_FEATURE_##feat_name);	 \
4453 		vmx_adjust_secondary_exec_control(vmx, exec_control,	 \
4454 			SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4455 	}								 \
4456 })
4457 
4458 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4459 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4460 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4461 
4462 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4463 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4464 
4465 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4466 {
4467 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4468 
4469 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4470 
4471 	if (vmx_pt_mode_is_system())
4472 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4473 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4474 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4475 	if (vmx->vpid == 0)
4476 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4477 	if (!enable_ept) {
4478 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4479 		enable_unrestricted_guest = 0;
4480 	}
4481 	if (!enable_unrestricted_guest)
4482 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4483 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4484 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4485 	if (!kvm_vcpu_apicv_active(vcpu))
4486 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4487 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4488 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4489 
4490 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4491 	 * in vmx_set_cr4.  */
4492 	exec_control &= ~SECONDARY_EXEC_DESC;
4493 
4494 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4495 	   (handle_vmptrld).
4496 	   We can NOT enable shadow_vmcs here because we don't have yet
4497 	   a current VMCS12
4498 	*/
4499 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4500 
4501 	/*
4502 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4503 	 * it needs to be set here when dirty logging is already active, e.g.
4504 	 * if this vCPU was created after dirty logging was enabled.
4505 	 */
4506 	if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4507 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4508 
4509 	if (cpu_has_vmx_xsaves()) {
4510 		/* Exposing XSAVES only when XSAVE is exposed */
4511 		bool xsaves_enabled =
4512 			boot_cpu_has(X86_FEATURE_XSAVE) &&
4513 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4514 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4515 
4516 		vcpu->arch.xsaves_enabled = xsaves_enabled;
4517 
4518 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4519 						  SECONDARY_EXEC_XSAVES,
4520 						  xsaves_enabled, false);
4521 	}
4522 
4523 	/*
4524 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4525 	 * feature is exposed to the guest.  This creates a virtualization hole
4526 	 * if both are supported in hardware but only one is exposed to the
4527 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4528 	 * is advertised is preferable to emulating the advertised instruction
4529 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4530 	 */
4531 	if (cpu_has_vmx_rdtscp()) {
4532 		bool rdpid_or_rdtscp_enabled =
4533 			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4534 			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4535 
4536 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4537 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4538 						  rdpid_or_rdtscp_enabled, false);
4539 	}
4540 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4541 
4542 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4543 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4544 
4545 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4546 				    ENABLE_USR_WAIT_PAUSE, false);
4547 
4548 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4549 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4550 
4551 	if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4552 		exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4553 
4554 	return exec_control;
4555 }
4556 
4557 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4558 {
4559 	return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4560 }
4561 
4562 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4563 {
4564 	struct page *pages;
4565 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4566 
4567 	if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4568 		return 0;
4569 
4570 	if (kvm_vmx->pid_table)
4571 		return 0;
4572 
4573 	pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, vmx_get_pid_table_order(kvm));
4574 	if (!pages)
4575 		return -ENOMEM;
4576 
4577 	kvm_vmx->pid_table = (void *)page_address(pages);
4578 	return 0;
4579 }
4580 
4581 static int vmx_vcpu_precreate(struct kvm *kvm)
4582 {
4583 	return vmx_alloc_ipiv_pid_table(kvm);
4584 }
4585 
4586 #define VMX_XSS_EXIT_BITMAP 0
4587 
4588 static void init_vmcs(struct vcpu_vmx *vmx)
4589 {
4590 	struct kvm *kvm = vmx->vcpu.kvm;
4591 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4592 
4593 	if (nested)
4594 		nested_vmx_set_vmcs_shadowing_bitmap();
4595 
4596 	if (cpu_has_vmx_msr_bitmap())
4597 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4598 
4599 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4600 
4601 	/* Control */
4602 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4603 
4604 	exec_controls_set(vmx, vmx_exec_control(vmx));
4605 
4606 	if (cpu_has_secondary_exec_ctrls())
4607 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4608 
4609 	if (cpu_has_tertiary_exec_ctrls())
4610 		tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4611 
4612 	if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4613 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4614 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4615 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4616 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4617 
4618 		vmcs_write16(GUEST_INTR_STATUS, 0);
4619 
4620 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4621 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4622 	}
4623 
4624 	if (vmx_can_use_ipiv(&vmx->vcpu)) {
4625 		vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4626 		vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4627 	}
4628 
4629 	if (!kvm_pause_in_guest(kvm)) {
4630 		vmcs_write32(PLE_GAP, ple_gap);
4631 		vmx->ple_window = ple_window;
4632 		vmx->ple_window_dirty = true;
4633 	}
4634 
4635 	if (kvm_notify_vmexit_enabled(kvm))
4636 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4637 
4638 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4639 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4640 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4641 
4642 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4643 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4644 	vmx_set_constant_host_state(vmx);
4645 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4646 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4647 
4648 	if (cpu_has_vmx_vmfunc())
4649 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4650 
4651 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4652 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4653 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4654 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4655 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4656 
4657 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4658 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4659 
4660 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4661 
4662 	/* 22.2.1, 20.8.1 */
4663 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4664 
4665 	vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4666 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4667 
4668 	set_cr4_guest_host_mask(vmx);
4669 
4670 	if (vmx->vpid != 0)
4671 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4672 
4673 	if (cpu_has_vmx_xsaves())
4674 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4675 
4676 	if (enable_pml) {
4677 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4678 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4679 	}
4680 
4681 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4682 
4683 	if (vmx_pt_mode_is_host_guest()) {
4684 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4685 		/* Bit[6~0] are forced to 1, writes are ignored. */
4686 		vmx->pt_desc.guest.output_mask = 0x7F;
4687 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4688 	}
4689 
4690 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4691 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4692 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4693 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4694 
4695 	if (cpu_has_vmx_tpr_shadow()) {
4696 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4697 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4698 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4699 				     __pa(vmx->vcpu.arch.apic->regs));
4700 		vmcs_write32(TPR_THRESHOLD, 0);
4701 	}
4702 
4703 	vmx_setup_uret_msrs(vmx);
4704 }
4705 
4706 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4707 {
4708 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4709 
4710 	init_vmcs(vmx);
4711 
4712 	if (nested)
4713 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4714 
4715 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4716 
4717 	vmx->nested.posted_intr_nv = -1;
4718 	vmx->nested.vmxon_ptr = INVALID_GPA;
4719 	vmx->nested.current_vmptr = INVALID_GPA;
4720 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4721 
4722 	vcpu->arch.microcode_version = 0x100000000ULL;
4723 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4724 
4725 	/*
4726 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4727 	 * or POSTED_INTR_WAKEUP_VECTOR.
4728 	 */
4729 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4730 	vmx->pi_desc.sn = 1;
4731 }
4732 
4733 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4734 {
4735 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4736 
4737 	if (!init_event)
4738 		__vmx_vcpu_reset(vcpu);
4739 
4740 	vmx->rmode.vm86_active = 0;
4741 	vmx->spec_ctrl = 0;
4742 
4743 	vmx->msr_ia32_umwait_control = 0;
4744 
4745 	vmx->hv_deadline_tsc = -1;
4746 	kvm_set_cr8(vcpu, 0);
4747 
4748 	vmx_segment_cache_clear(vmx);
4749 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4750 
4751 	seg_setup(VCPU_SREG_CS);
4752 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4753 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4754 
4755 	seg_setup(VCPU_SREG_DS);
4756 	seg_setup(VCPU_SREG_ES);
4757 	seg_setup(VCPU_SREG_FS);
4758 	seg_setup(VCPU_SREG_GS);
4759 	seg_setup(VCPU_SREG_SS);
4760 
4761 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4762 	vmcs_writel(GUEST_TR_BASE, 0);
4763 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4764 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4765 
4766 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4767 	vmcs_writel(GUEST_LDTR_BASE, 0);
4768 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4769 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4770 
4771 	vmcs_writel(GUEST_GDTR_BASE, 0);
4772 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4773 
4774 	vmcs_writel(GUEST_IDTR_BASE, 0);
4775 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4776 
4777 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4778 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4779 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4780 	if (kvm_mpx_supported())
4781 		vmcs_write64(GUEST_BNDCFGS, 0);
4782 
4783 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4784 
4785 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4786 
4787 	vpid_sync_context(vmx->vpid);
4788 
4789 	vmx_update_fb_clear_dis(vcpu, vmx);
4790 }
4791 
4792 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4793 {
4794 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4795 }
4796 
4797 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4798 {
4799 	if (!enable_vnmi ||
4800 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4801 		vmx_enable_irq_window(vcpu);
4802 		return;
4803 	}
4804 
4805 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4806 }
4807 
4808 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4809 {
4810 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4811 	uint32_t intr;
4812 	int irq = vcpu->arch.interrupt.nr;
4813 
4814 	trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4815 
4816 	++vcpu->stat.irq_injections;
4817 	if (vmx->rmode.vm86_active) {
4818 		int inc_eip = 0;
4819 		if (vcpu->arch.interrupt.soft)
4820 			inc_eip = vcpu->arch.event_exit_inst_len;
4821 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4822 		return;
4823 	}
4824 	intr = irq | INTR_INFO_VALID_MASK;
4825 	if (vcpu->arch.interrupt.soft) {
4826 		intr |= INTR_TYPE_SOFT_INTR;
4827 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4828 			     vmx->vcpu.arch.event_exit_inst_len);
4829 	} else
4830 		intr |= INTR_TYPE_EXT_INTR;
4831 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4832 
4833 	vmx_clear_hlt(vcpu);
4834 }
4835 
4836 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4837 {
4838 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4839 
4840 	if (!enable_vnmi) {
4841 		/*
4842 		 * Tracking the NMI-blocked state in software is built upon
4843 		 * finding the next open IRQ window. This, in turn, depends on
4844 		 * well-behaving guests: They have to keep IRQs disabled at
4845 		 * least as long as the NMI handler runs. Otherwise we may
4846 		 * cause NMI nesting, maybe breaking the guest. But as this is
4847 		 * highly unlikely, we can live with the residual risk.
4848 		 */
4849 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4850 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4851 	}
4852 
4853 	++vcpu->stat.nmi_injections;
4854 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4855 
4856 	if (vmx->rmode.vm86_active) {
4857 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4858 		return;
4859 	}
4860 
4861 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4862 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4863 
4864 	vmx_clear_hlt(vcpu);
4865 }
4866 
4867 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4868 {
4869 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4870 	bool masked;
4871 
4872 	if (!enable_vnmi)
4873 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4874 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4875 		return false;
4876 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4877 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4878 	return masked;
4879 }
4880 
4881 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4882 {
4883 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4884 
4885 	if (!enable_vnmi) {
4886 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4887 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4888 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4889 		}
4890 	} else {
4891 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4892 		if (masked)
4893 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4894 				      GUEST_INTR_STATE_NMI);
4895 		else
4896 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4897 					GUEST_INTR_STATE_NMI);
4898 	}
4899 }
4900 
4901 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4902 {
4903 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4904 		return false;
4905 
4906 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4907 		return true;
4908 
4909 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4910 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4911 		 GUEST_INTR_STATE_NMI));
4912 }
4913 
4914 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4915 {
4916 	if (to_vmx(vcpu)->nested.nested_run_pending)
4917 		return -EBUSY;
4918 
4919 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4920 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4921 		return -EBUSY;
4922 
4923 	return !vmx_nmi_blocked(vcpu);
4924 }
4925 
4926 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4927 {
4928 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4929 		return false;
4930 
4931 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4932 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4933 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4934 }
4935 
4936 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4937 {
4938 	if (to_vmx(vcpu)->nested.nested_run_pending)
4939 		return -EBUSY;
4940 
4941        /*
4942         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4943         * e.g. if the IRQ arrived asynchronously after checking nested events.
4944         */
4945 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4946 		return -EBUSY;
4947 
4948 	return !vmx_interrupt_blocked(vcpu);
4949 }
4950 
4951 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4952 {
4953 	void __user *ret;
4954 
4955 	if (enable_unrestricted_guest)
4956 		return 0;
4957 
4958 	mutex_lock(&kvm->slots_lock);
4959 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4960 				      PAGE_SIZE * 3);
4961 	mutex_unlock(&kvm->slots_lock);
4962 
4963 	if (IS_ERR(ret))
4964 		return PTR_ERR(ret);
4965 
4966 	to_kvm_vmx(kvm)->tss_addr = addr;
4967 
4968 	return init_rmode_tss(kvm, ret);
4969 }
4970 
4971 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4972 {
4973 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4974 	return 0;
4975 }
4976 
4977 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4978 {
4979 	switch (vec) {
4980 	case BP_VECTOR:
4981 		/*
4982 		 * Update instruction length as we may reinject the exception
4983 		 * from user space while in guest debugging mode.
4984 		 */
4985 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4986 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4987 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4988 			return false;
4989 		fallthrough;
4990 	case DB_VECTOR:
4991 		return !(vcpu->guest_debug &
4992 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4993 	case DE_VECTOR:
4994 	case OF_VECTOR:
4995 	case BR_VECTOR:
4996 	case UD_VECTOR:
4997 	case DF_VECTOR:
4998 	case SS_VECTOR:
4999 	case GP_VECTOR:
5000 	case MF_VECTOR:
5001 		return true;
5002 	}
5003 	return false;
5004 }
5005 
5006 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5007 				  int vec, u32 err_code)
5008 {
5009 	/*
5010 	 * Instruction with address size override prefix opcode 0x67
5011 	 * Cause the #SS fault with 0 error code in VM86 mode.
5012 	 */
5013 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5014 		if (kvm_emulate_instruction(vcpu, 0)) {
5015 			if (vcpu->arch.halt_request) {
5016 				vcpu->arch.halt_request = 0;
5017 				return kvm_emulate_halt_noskip(vcpu);
5018 			}
5019 			return 1;
5020 		}
5021 		return 0;
5022 	}
5023 
5024 	/*
5025 	 * Forward all other exceptions that are valid in real mode.
5026 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5027 	 *        the required debugging infrastructure rework.
5028 	 */
5029 	kvm_queue_exception(vcpu, vec);
5030 	return 1;
5031 }
5032 
5033 static int handle_machine_check(struct kvm_vcpu *vcpu)
5034 {
5035 	/* handled by vmx_vcpu_run() */
5036 	return 1;
5037 }
5038 
5039 /*
5040  * If the host has split lock detection disabled, then #AC is
5041  * unconditionally injected into the guest, which is the pre split lock
5042  * detection behaviour.
5043  *
5044  * If the host has split lock detection enabled then #AC is
5045  * only injected into the guest when:
5046  *  - Guest CPL == 3 (user mode)
5047  *  - Guest has #AC detection enabled in CR0
5048  *  - Guest EFLAGS has AC bit set
5049  */
5050 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5051 {
5052 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5053 		return true;
5054 
5055 	return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
5056 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5057 }
5058 
5059 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5060 {
5061 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5062 	struct kvm_run *kvm_run = vcpu->run;
5063 	u32 intr_info, ex_no, error_code;
5064 	unsigned long cr2, dr6;
5065 	u32 vect_info;
5066 
5067 	vect_info = vmx->idt_vectoring_info;
5068 	intr_info = vmx_get_intr_info(vcpu);
5069 
5070 	if (is_machine_check(intr_info) || is_nmi(intr_info))
5071 		return 1; /* handled by handle_exception_nmi_irqoff() */
5072 
5073 	/*
5074 	 * Queue the exception here instead of in handle_nm_fault_irqoff().
5075 	 * This ensures the nested_vmx check is not skipped so vmexit can
5076 	 * be reflected to L1 (when it intercepts #NM) before reaching this
5077 	 * point.
5078 	 */
5079 	if (is_nm_fault(intr_info)) {
5080 		kvm_queue_exception(vcpu, NM_VECTOR);
5081 		return 1;
5082 	}
5083 
5084 	if (is_invalid_opcode(intr_info))
5085 		return handle_ud(vcpu);
5086 
5087 	error_code = 0;
5088 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5089 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5090 
5091 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5092 		WARN_ON_ONCE(!enable_vmware_backdoor);
5093 
5094 		/*
5095 		 * VMware backdoor emulation on #GP interception only handles
5096 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5097 		 * error code on #GP.
5098 		 */
5099 		if (error_code) {
5100 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5101 			return 1;
5102 		}
5103 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5104 	}
5105 
5106 	/*
5107 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5108 	 * MMIO, it is better to report an internal error.
5109 	 * See the comments in vmx_handle_exit.
5110 	 */
5111 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5112 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5113 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5114 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5115 		vcpu->run->internal.ndata = 4;
5116 		vcpu->run->internal.data[0] = vect_info;
5117 		vcpu->run->internal.data[1] = intr_info;
5118 		vcpu->run->internal.data[2] = error_code;
5119 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5120 		return 0;
5121 	}
5122 
5123 	if (is_page_fault(intr_info)) {
5124 		cr2 = vmx_get_exit_qual(vcpu);
5125 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5126 			/*
5127 			 * EPT will cause page fault only if we need to
5128 			 * detect illegal GPAs.
5129 			 */
5130 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5131 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5132 			return 1;
5133 		} else
5134 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5135 	}
5136 
5137 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5138 
5139 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5140 		return handle_rmode_exception(vcpu, ex_no, error_code);
5141 
5142 	switch (ex_no) {
5143 	case DB_VECTOR:
5144 		dr6 = vmx_get_exit_qual(vcpu);
5145 		if (!(vcpu->guest_debug &
5146 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5147 			/*
5148 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5149 			 * instruction.  ICEBP generates a trap-like #DB, but
5150 			 * despite its interception control being tied to #DB,
5151 			 * is an instruction intercept, i.e. the VM-Exit occurs
5152 			 * on the ICEBP itself.  Use the inner "skip" helper to
5153 			 * avoid single-step #DB and MTF updates, as ICEBP is
5154 			 * higher priority.  Note, skipping ICEBP still clears
5155 			 * STI and MOVSS blocking.
5156 			 *
5157 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5158 			 * if single-step is enabled in RFLAGS and STI or MOVSS
5159 			 * blocking is active, as the CPU doesn't set the bit
5160 			 * on VM-Exit due to #DB interception.  VM-Entry has a
5161 			 * consistency check that a single-step #DB is pending
5162 			 * in this scenario as the previous instruction cannot
5163 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5164 			 * don't modify RFLAGS), therefore the one instruction
5165 			 * delay when activating single-step breakpoints must
5166 			 * have already expired.  Note, the CPU sets/clears BS
5167 			 * as appropriate for all other VM-Exits types.
5168 			 */
5169 			if (is_icebp(intr_info))
5170 				WARN_ON(!skip_emulated_instruction(vcpu));
5171 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5172 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5173 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5174 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5175 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5176 
5177 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5178 			return 1;
5179 		}
5180 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5181 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5182 		fallthrough;
5183 	case BP_VECTOR:
5184 		/*
5185 		 * Update instruction length as we may reinject #BP from
5186 		 * user space while in guest debugging mode. Reading it for
5187 		 * #DB as well causes no harm, it is not used in that case.
5188 		 */
5189 		vmx->vcpu.arch.event_exit_inst_len =
5190 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5191 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5192 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5193 		kvm_run->debug.arch.exception = ex_no;
5194 		break;
5195 	case AC_VECTOR:
5196 		if (vmx_guest_inject_ac(vcpu)) {
5197 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5198 			return 1;
5199 		}
5200 
5201 		/*
5202 		 * Handle split lock. Depending on detection mode this will
5203 		 * either warn and disable split lock detection for this
5204 		 * task or force SIGBUS on it.
5205 		 */
5206 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5207 			return 1;
5208 		fallthrough;
5209 	default:
5210 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5211 		kvm_run->ex.exception = ex_no;
5212 		kvm_run->ex.error_code = error_code;
5213 		break;
5214 	}
5215 	return 0;
5216 }
5217 
5218 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5219 {
5220 	++vcpu->stat.irq_exits;
5221 	return 1;
5222 }
5223 
5224 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5225 {
5226 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5227 	vcpu->mmio_needed = 0;
5228 	return 0;
5229 }
5230 
5231 static int handle_io(struct kvm_vcpu *vcpu)
5232 {
5233 	unsigned long exit_qualification;
5234 	int size, in, string;
5235 	unsigned port;
5236 
5237 	exit_qualification = vmx_get_exit_qual(vcpu);
5238 	string = (exit_qualification & 16) != 0;
5239 
5240 	++vcpu->stat.io_exits;
5241 
5242 	if (string)
5243 		return kvm_emulate_instruction(vcpu, 0);
5244 
5245 	port = exit_qualification >> 16;
5246 	size = (exit_qualification & 7) + 1;
5247 	in = (exit_qualification & 8) != 0;
5248 
5249 	return kvm_fast_pio(vcpu, size, port, in);
5250 }
5251 
5252 static void
5253 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5254 {
5255 	/*
5256 	 * Patch in the VMCALL instruction:
5257 	 */
5258 	hypercall[0] = 0x0f;
5259 	hypercall[1] = 0x01;
5260 	hypercall[2] = 0xc1;
5261 }
5262 
5263 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5264 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5265 {
5266 	if (is_guest_mode(vcpu)) {
5267 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5268 		unsigned long orig_val = val;
5269 
5270 		/*
5271 		 * We get here when L2 changed cr0 in a way that did not change
5272 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5273 		 * but did change L0 shadowed bits. So we first calculate the
5274 		 * effective cr0 value that L1 would like to write into the
5275 		 * hardware. It consists of the L2-owned bits from the new
5276 		 * value combined with the L1-owned bits from L1's guest_cr0.
5277 		 */
5278 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5279 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5280 
5281 		if (!nested_guest_cr0_valid(vcpu, val))
5282 			return 1;
5283 
5284 		if (kvm_set_cr0(vcpu, val))
5285 			return 1;
5286 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5287 		return 0;
5288 	} else {
5289 		if (to_vmx(vcpu)->nested.vmxon &&
5290 		    !nested_host_cr0_valid(vcpu, val))
5291 			return 1;
5292 
5293 		return kvm_set_cr0(vcpu, val);
5294 	}
5295 }
5296 
5297 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5298 {
5299 	if (is_guest_mode(vcpu)) {
5300 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5301 		unsigned long orig_val = val;
5302 
5303 		/* analogously to handle_set_cr0 */
5304 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5305 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5306 		if (kvm_set_cr4(vcpu, val))
5307 			return 1;
5308 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5309 		return 0;
5310 	} else
5311 		return kvm_set_cr4(vcpu, val);
5312 }
5313 
5314 static int handle_desc(struct kvm_vcpu *vcpu)
5315 {
5316 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5317 	return kvm_emulate_instruction(vcpu, 0);
5318 }
5319 
5320 static int handle_cr(struct kvm_vcpu *vcpu)
5321 {
5322 	unsigned long exit_qualification, val;
5323 	int cr;
5324 	int reg;
5325 	int err;
5326 	int ret;
5327 
5328 	exit_qualification = vmx_get_exit_qual(vcpu);
5329 	cr = exit_qualification & 15;
5330 	reg = (exit_qualification >> 8) & 15;
5331 	switch ((exit_qualification >> 4) & 3) {
5332 	case 0: /* mov to cr */
5333 		val = kvm_register_read(vcpu, reg);
5334 		trace_kvm_cr_write(cr, val);
5335 		switch (cr) {
5336 		case 0:
5337 			err = handle_set_cr0(vcpu, val);
5338 			return kvm_complete_insn_gp(vcpu, err);
5339 		case 3:
5340 			WARN_ON_ONCE(enable_unrestricted_guest);
5341 
5342 			err = kvm_set_cr3(vcpu, val);
5343 			return kvm_complete_insn_gp(vcpu, err);
5344 		case 4:
5345 			err = handle_set_cr4(vcpu, val);
5346 			return kvm_complete_insn_gp(vcpu, err);
5347 		case 8: {
5348 				u8 cr8_prev = kvm_get_cr8(vcpu);
5349 				u8 cr8 = (u8)val;
5350 				err = kvm_set_cr8(vcpu, cr8);
5351 				ret = kvm_complete_insn_gp(vcpu, err);
5352 				if (lapic_in_kernel(vcpu))
5353 					return ret;
5354 				if (cr8_prev <= cr8)
5355 					return ret;
5356 				/*
5357 				 * TODO: we might be squashing a
5358 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5359 				 * KVM_EXIT_DEBUG here.
5360 				 */
5361 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5362 				return 0;
5363 			}
5364 		}
5365 		break;
5366 	case 2: /* clts */
5367 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5368 		return -EIO;
5369 	case 1: /*mov from cr*/
5370 		switch (cr) {
5371 		case 3:
5372 			WARN_ON_ONCE(enable_unrestricted_guest);
5373 
5374 			val = kvm_read_cr3(vcpu);
5375 			kvm_register_write(vcpu, reg, val);
5376 			trace_kvm_cr_read(cr, val);
5377 			return kvm_skip_emulated_instruction(vcpu);
5378 		case 8:
5379 			val = kvm_get_cr8(vcpu);
5380 			kvm_register_write(vcpu, reg, val);
5381 			trace_kvm_cr_read(cr, val);
5382 			return kvm_skip_emulated_instruction(vcpu);
5383 		}
5384 		break;
5385 	case 3: /* lmsw */
5386 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5387 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5388 		kvm_lmsw(vcpu, val);
5389 
5390 		return kvm_skip_emulated_instruction(vcpu);
5391 	default:
5392 		break;
5393 	}
5394 	vcpu->run->exit_reason = 0;
5395 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5396 	       (int)(exit_qualification >> 4) & 3, cr);
5397 	return 0;
5398 }
5399 
5400 static int handle_dr(struct kvm_vcpu *vcpu)
5401 {
5402 	unsigned long exit_qualification;
5403 	int dr, dr7, reg;
5404 	int err = 1;
5405 
5406 	exit_qualification = vmx_get_exit_qual(vcpu);
5407 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5408 
5409 	/* First, if DR does not exist, trigger UD */
5410 	if (!kvm_require_dr(vcpu, dr))
5411 		return 1;
5412 
5413 	if (vmx_get_cpl(vcpu) > 0)
5414 		goto out;
5415 
5416 	dr7 = vmcs_readl(GUEST_DR7);
5417 	if (dr7 & DR7_GD) {
5418 		/*
5419 		 * As the vm-exit takes precedence over the debug trap, we
5420 		 * need to emulate the latter, either for the host or the
5421 		 * guest debugging itself.
5422 		 */
5423 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5424 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5425 			vcpu->run->debug.arch.dr7 = dr7;
5426 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5427 			vcpu->run->debug.arch.exception = DB_VECTOR;
5428 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5429 			return 0;
5430 		} else {
5431 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5432 			return 1;
5433 		}
5434 	}
5435 
5436 	if (vcpu->guest_debug == 0) {
5437 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5438 
5439 		/*
5440 		 * No more DR vmexits; force a reload of the debug registers
5441 		 * and reenter on this instruction.  The next vmexit will
5442 		 * retrieve the full state of the debug registers.
5443 		 */
5444 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5445 		return 1;
5446 	}
5447 
5448 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5449 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5450 		unsigned long val;
5451 
5452 		kvm_get_dr(vcpu, dr, &val);
5453 		kvm_register_write(vcpu, reg, val);
5454 		err = 0;
5455 	} else {
5456 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5457 	}
5458 
5459 out:
5460 	return kvm_complete_insn_gp(vcpu, err);
5461 }
5462 
5463 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5464 {
5465 	get_debugreg(vcpu->arch.db[0], 0);
5466 	get_debugreg(vcpu->arch.db[1], 1);
5467 	get_debugreg(vcpu->arch.db[2], 2);
5468 	get_debugreg(vcpu->arch.db[3], 3);
5469 	get_debugreg(vcpu->arch.dr6, 6);
5470 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5471 
5472 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5473 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5474 
5475 	/*
5476 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5477 	 * a stale dr6 from the guest.
5478 	 */
5479 	set_debugreg(DR6_RESERVED, 6);
5480 }
5481 
5482 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5483 {
5484 	vmcs_writel(GUEST_DR7, val);
5485 }
5486 
5487 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5488 {
5489 	kvm_apic_update_ppr(vcpu);
5490 	return 1;
5491 }
5492 
5493 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5494 {
5495 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5496 
5497 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5498 
5499 	++vcpu->stat.irq_window_exits;
5500 	return 1;
5501 }
5502 
5503 static int handle_invlpg(struct kvm_vcpu *vcpu)
5504 {
5505 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5506 
5507 	kvm_mmu_invlpg(vcpu, exit_qualification);
5508 	return kvm_skip_emulated_instruction(vcpu);
5509 }
5510 
5511 static int handle_apic_access(struct kvm_vcpu *vcpu)
5512 {
5513 	if (likely(fasteoi)) {
5514 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5515 		int access_type, offset;
5516 
5517 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5518 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5519 		/*
5520 		 * Sane guest uses MOV to write EOI, with written value
5521 		 * not cared. So make a short-circuit here by avoiding
5522 		 * heavy instruction emulation.
5523 		 */
5524 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5525 		    (offset == APIC_EOI)) {
5526 			kvm_lapic_set_eoi(vcpu);
5527 			return kvm_skip_emulated_instruction(vcpu);
5528 		}
5529 	}
5530 	return kvm_emulate_instruction(vcpu, 0);
5531 }
5532 
5533 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5534 {
5535 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5536 	int vector = exit_qualification & 0xff;
5537 
5538 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5539 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5540 	return 1;
5541 }
5542 
5543 static int handle_apic_write(struct kvm_vcpu *vcpu)
5544 {
5545 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5546 
5547 	/*
5548 	 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5549 	 * hardware has done any necessary aliasing, offset adjustments, etc...
5550 	 * for the access.  I.e. the correct value has already been  written to
5551 	 * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5552 	 * retrieve the register value and emulate the access.
5553 	 */
5554 	u32 offset = exit_qualification & 0xff0;
5555 
5556 	kvm_apic_write_nodecode(vcpu, offset);
5557 	return 1;
5558 }
5559 
5560 static int handle_task_switch(struct kvm_vcpu *vcpu)
5561 {
5562 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5563 	unsigned long exit_qualification;
5564 	bool has_error_code = false;
5565 	u32 error_code = 0;
5566 	u16 tss_selector;
5567 	int reason, type, idt_v, idt_index;
5568 
5569 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5570 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5571 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5572 
5573 	exit_qualification = vmx_get_exit_qual(vcpu);
5574 
5575 	reason = (u32)exit_qualification >> 30;
5576 	if (reason == TASK_SWITCH_GATE && idt_v) {
5577 		switch (type) {
5578 		case INTR_TYPE_NMI_INTR:
5579 			vcpu->arch.nmi_injected = false;
5580 			vmx_set_nmi_mask(vcpu, true);
5581 			break;
5582 		case INTR_TYPE_EXT_INTR:
5583 		case INTR_TYPE_SOFT_INTR:
5584 			kvm_clear_interrupt_queue(vcpu);
5585 			break;
5586 		case INTR_TYPE_HARD_EXCEPTION:
5587 			if (vmx->idt_vectoring_info &
5588 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5589 				has_error_code = true;
5590 				error_code =
5591 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5592 			}
5593 			fallthrough;
5594 		case INTR_TYPE_SOFT_EXCEPTION:
5595 			kvm_clear_exception_queue(vcpu);
5596 			break;
5597 		default:
5598 			break;
5599 		}
5600 	}
5601 	tss_selector = exit_qualification;
5602 
5603 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5604 		       type != INTR_TYPE_EXT_INTR &&
5605 		       type != INTR_TYPE_NMI_INTR))
5606 		WARN_ON(!skip_emulated_instruction(vcpu));
5607 
5608 	/*
5609 	 * TODO: What about debug traps on tss switch?
5610 	 *       Are we supposed to inject them and update dr6?
5611 	 */
5612 	return kvm_task_switch(vcpu, tss_selector,
5613 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5614 			       reason, has_error_code, error_code);
5615 }
5616 
5617 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5618 {
5619 	unsigned long exit_qualification;
5620 	gpa_t gpa;
5621 	u64 error_code;
5622 
5623 	exit_qualification = vmx_get_exit_qual(vcpu);
5624 
5625 	/*
5626 	 * EPT violation happened while executing iret from NMI,
5627 	 * "blocked by NMI" bit has to be set before next VM entry.
5628 	 * There are errata that may cause this bit to not be set:
5629 	 * AAK134, BY25.
5630 	 */
5631 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5632 			enable_vnmi &&
5633 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5634 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5635 
5636 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5637 	trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5638 
5639 	/* Is it a read fault? */
5640 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5641 		     ? PFERR_USER_MASK : 0;
5642 	/* Is it a write fault? */
5643 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5644 		      ? PFERR_WRITE_MASK : 0;
5645 	/* Is it a fetch fault? */
5646 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5647 		      ? PFERR_FETCH_MASK : 0;
5648 	/* ept page table entry is present? */
5649 	error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5650 		      ? PFERR_PRESENT_MASK : 0;
5651 
5652 	error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5653 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5654 
5655 	vcpu->arch.exit_qualification = exit_qualification;
5656 
5657 	/*
5658 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5659 	 * a guest page fault.  We have to emulate the instruction here, because
5660 	 * if the illegal address is that of a paging structure, then
5661 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5662 	 * would also use advanced VM-exit information for EPT violations to
5663 	 * reconstruct the page fault error code.
5664 	 */
5665 	if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5666 		return kvm_emulate_instruction(vcpu, 0);
5667 
5668 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5669 }
5670 
5671 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5672 {
5673 	gpa_t gpa;
5674 
5675 	if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5676 		return 1;
5677 
5678 	/*
5679 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5680 	 * nGPA here instead of the required GPA.
5681 	 */
5682 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5683 	if (!is_guest_mode(vcpu) &&
5684 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5685 		trace_kvm_fast_mmio(gpa);
5686 		return kvm_skip_emulated_instruction(vcpu);
5687 	}
5688 
5689 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5690 }
5691 
5692 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5693 {
5694 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5695 		return -EIO;
5696 
5697 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5698 	++vcpu->stat.nmi_window_exits;
5699 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5700 
5701 	return 1;
5702 }
5703 
5704 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5705 {
5706 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5707 
5708 	return vmx->emulation_required && !vmx->rmode.vm86_active &&
5709 	       (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5710 }
5711 
5712 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5713 {
5714 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5715 	bool intr_window_requested;
5716 	unsigned count = 130;
5717 
5718 	intr_window_requested = exec_controls_get(vmx) &
5719 				CPU_BASED_INTR_WINDOW_EXITING;
5720 
5721 	while (vmx->emulation_required && count-- != 0) {
5722 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5723 			return handle_interrupt_window(&vmx->vcpu);
5724 
5725 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5726 			return 1;
5727 
5728 		if (!kvm_emulate_instruction(vcpu, 0))
5729 			return 0;
5730 
5731 		if (vmx_emulation_required_with_pending_exception(vcpu)) {
5732 			kvm_prepare_emulation_failure_exit(vcpu);
5733 			return 0;
5734 		}
5735 
5736 		if (vcpu->arch.halt_request) {
5737 			vcpu->arch.halt_request = 0;
5738 			return kvm_emulate_halt_noskip(vcpu);
5739 		}
5740 
5741 		/*
5742 		 * Note, return 1 and not 0, vcpu_run() will invoke
5743 		 * xfer_to_guest_mode() which will create a proper return
5744 		 * code.
5745 		 */
5746 		if (__xfer_to_guest_mode_work_pending())
5747 			return 1;
5748 	}
5749 
5750 	return 1;
5751 }
5752 
5753 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5754 {
5755 	if (vmx_emulation_required_with_pending_exception(vcpu)) {
5756 		kvm_prepare_emulation_failure_exit(vcpu);
5757 		return 0;
5758 	}
5759 
5760 	return 1;
5761 }
5762 
5763 static void grow_ple_window(struct kvm_vcpu *vcpu)
5764 {
5765 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5766 	unsigned int old = vmx->ple_window;
5767 
5768 	vmx->ple_window = __grow_ple_window(old, ple_window,
5769 					    ple_window_grow,
5770 					    ple_window_max);
5771 
5772 	if (vmx->ple_window != old) {
5773 		vmx->ple_window_dirty = true;
5774 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5775 					    vmx->ple_window, old);
5776 	}
5777 }
5778 
5779 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5780 {
5781 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5782 	unsigned int old = vmx->ple_window;
5783 
5784 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5785 					      ple_window_shrink,
5786 					      ple_window);
5787 
5788 	if (vmx->ple_window != old) {
5789 		vmx->ple_window_dirty = true;
5790 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5791 					    vmx->ple_window, old);
5792 	}
5793 }
5794 
5795 /*
5796  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5797  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5798  */
5799 static int handle_pause(struct kvm_vcpu *vcpu)
5800 {
5801 	if (!kvm_pause_in_guest(vcpu->kvm))
5802 		grow_ple_window(vcpu);
5803 
5804 	/*
5805 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5806 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5807 	 * never set PAUSE_EXITING and just set PLE if supported,
5808 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5809 	 */
5810 	kvm_vcpu_on_spin(vcpu, true);
5811 	return kvm_skip_emulated_instruction(vcpu);
5812 }
5813 
5814 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5815 {
5816 	return 1;
5817 }
5818 
5819 static int handle_invpcid(struct kvm_vcpu *vcpu)
5820 {
5821 	u32 vmx_instruction_info;
5822 	unsigned long type;
5823 	gva_t gva;
5824 	struct {
5825 		u64 pcid;
5826 		u64 gla;
5827 	} operand;
5828 	int gpr_index;
5829 
5830 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5831 		kvm_queue_exception(vcpu, UD_VECTOR);
5832 		return 1;
5833 	}
5834 
5835 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5836 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5837 	type = kvm_register_read(vcpu, gpr_index);
5838 
5839 	/* According to the Intel instruction reference, the memory operand
5840 	 * is read even if it isn't needed (e.g., for type==all)
5841 	 */
5842 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5843 				vmx_instruction_info, false,
5844 				sizeof(operand), &gva))
5845 		return 1;
5846 
5847 	return kvm_handle_invpcid(vcpu, type, gva);
5848 }
5849 
5850 static int handle_pml_full(struct kvm_vcpu *vcpu)
5851 {
5852 	unsigned long exit_qualification;
5853 
5854 	trace_kvm_pml_full(vcpu->vcpu_id);
5855 
5856 	exit_qualification = vmx_get_exit_qual(vcpu);
5857 
5858 	/*
5859 	 * PML buffer FULL happened while executing iret from NMI,
5860 	 * "blocked by NMI" bit has to be set before next VM entry.
5861 	 */
5862 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5863 			enable_vnmi &&
5864 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5865 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5866 				GUEST_INTR_STATE_NMI);
5867 
5868 	/*
5869 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5870 	 * here.., and there's no userspace involvement needed for PML.
5871 	 */
5872 	return 1;
5873 }
5874 
5875 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5876 {
5877 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5878 
5879 	if (!vmx->req_immediate_exit &&
5880 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5881 		kvm_lapic_expired_hv_timer(vcpu);
5882 		return EXIT_FASTPATH_REENTER_GUEST;
5883 	}
5884 
5885 	return EXIT_FASTPATH_NONE;
5886 }
5887 
5888 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5889 {
5890 	handle_fastpath_preemption_timer(vcpu);
5891 	return 1;
5892 }
5893 
5894 /*
5895  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5896  * are overwritten by nested_vmx_setup() when nested=1.
5897  */
5898 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5899 {
5900 	kvm_queue_exception(vcpu, UD_VECTOR);
5901 	return 1;
5902 }
5903 
5904 #ifndef CONFIG_X86_SGX_KVM
5905 static int handle_encls(struct kvm_vcpu *vcpu)
5906 {
5907 	/*
5908 	 * SGX virtualization is disabled.  There is no software enable bit for
5909 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5910 	 * the guest from executing ENCLS (when SGX is supported by hardware).
5911 	 */
5912 	kvm_queue_exception(vcpu, UD_VECTOR);
5913 	return 1;
5914 }
5915 #endif /* CONFIG_X86_SGX_KVM */
5916 
5917 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5918 {
5919 	/*
5920 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
5921 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
5922 	 * vmx_handle_exit().
5923 	 */
5924 	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
5925 	return 1;
5926 }
5927 
5928 static int handle_notify(struct kvm_vcpu *vcpu)
5929 {
5930 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5931 	bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
5932 
5933 	++vcpu->stat.notify_window_exits;
5934 
5935 	/*
5936 	 * Notify VM exit happened while executing iret from NMI,
5937 	 * "blocked by NMI" bit has to be set before next VM entry.
5938 	 */
5939 	if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
5940 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5941 			      GUEST_INTR_STATE_NMI);
5942 
5943 	if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
5944 	    context_invalid) {
5945 		vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
5946 		vcpu->run->notify.flags = context_invalid ?
5947 					  KVM_NOTIFY_CONTEXT_INVALID : 0;
5948 		return 0;
5949 	}
5950 
5951 	return 1;
5952 }
5953 
5954 /*
5955  * The exit handlers return 1 if the exit was handled fully and guest execution
5956  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5957  * to be done to userspace and return 0.
5958  */
5959 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5960 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5961 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5962 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5963 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5964 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5965 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5966 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5967 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5968 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5969 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5970 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5971 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
5972 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
5973 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5974 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
5975 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
5976 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5977 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5978 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5979 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5980 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5981 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5982 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5983 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5984 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5985 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5986 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5987 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5988 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5989 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
5990 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
5991 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5992 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5993 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5994 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5995 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5996 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5997 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5998 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
5999 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6000 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6001 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6002 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6003 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6004 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6005 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
6006 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
6007 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
6008 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
6009 	[EXIT_REASON_ENCLS]		      = handle_encls,
6010 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6011 	[EXIT_REASON_NOTIFY]		      = handle_notify,
6012 };
6013 
6014 static const int kvm_vmx_max_exit_handlers =
6015 	ARRAY_SIZE(kvm_vmx_exit_handlers);
6016 
6017 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6018 			      u64 *info1, u64 *info2,
6019 			      u32 *intr_info, u32 *error_code)
6020 {
6021 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6022 
6023 	*reason = vmx->exit_reason.full;
6024 	*info1 = vmx_get_exit_qual(vcpu);
6025 	if (!(vmx->exit_reason.failed_vmentry)) {
6026 		*info2 = vmx->idt_vectoring_info;
6027 		*intr_info = vmx_get_intr_info(vcpu);
6028 		if (is_exception_with_error_code(*intr_info))
6029 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6030 		else
6031 			*error_code = 0;
6032 	} else {
6033 		*info2 = 0;
6034 		*intr_info = 0;
6035 		*error_code = 0;
6036 	}
6037 }
6038 
6039 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6040 {
6041 	if (vmx->pml_pg) {
6042 		__free_page(vmx->pml_pg);
6043 		vmx->pml_pg = NULL;
6044 	}
6045 }
6046 
6047 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6048 {
6049 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6050 	u64 *pml_buf;
6051 	u16 pml_idx;
6052 
6053 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
6054 
6055 	/* Do nothing if PML buffer is empty */
6056 	if (pml_idx == (PML_ENTITY_NUM - 1))
6057 		return;
6058 
6059 	/* PML index always points to next available PML buffer entity */
6060 	if (pml_idx >= PML_ENTITY_NUM)
6061 		pml_idx = 0;
6062 	else
6063 		pml_idx++;
6064 
6065 	pml_buf = page_address(vmx->pml_pg);
6066 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6067 		u64 gpa;
6068 
6069 		gpa = pml_buf[pml_idx];
6070 		WARN_ON(gpa & (PAGE_SIZE - 1));
6071 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6072 	}
6073 
6074 	/* reset PML index */
6075 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6076 }
6077 
6078 static void vmx_dump_sel(char *name, uint32_t sel)
6079 {
6080 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6081 	       name, vmcs_read16(sel),
6082 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6083 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6084 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6085 }
6086 
6087 static void vmx_dump_dtsel(char *name, uint32_t limit)
6088 {
6089 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6090 	       name, vmcs_read32(limit),
6091 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6092 }
6093 
6094 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6095 {
6096 	unsigned int i;
6097 	struct vmx_msr_entry *e;
6098 
6099 	pr_err("MSR %s:\n", name);
6100 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6101 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6102 }
6103 
6104 void dump_vmcs(struct kvm_vcpu *vcpu)
6105 {
6106 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6107 	u32 vmentry_ctl, vmexit_ctl;
6108 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6109 	u64 tertiary_exec_control;
6110 	unsigned long cr4;
6111 	int efer_slot;
6112 
6113 	if (!dump_invalid_vmcs) {
6114 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6115 		return;
6116 	}
6117 
6118 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6119 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6120 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6121 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6122 	cr4 = vmcs_readl(GUEST_CR4);
6123 
6124 	if (cpu_has_secondary_exec_ctrls())
6125 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6126 	else
6127 		secondary_exec_control = 0;
6128 
6129 	if (cpu_has_tertiary_exec_ctrls())
6130 		tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6131 	else
6132 		tertiary_exec_control = 0;
6133 
6134 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6135 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6136 	pr_err("*** Guest State ***\n");
6137 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6138 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6139 	       vmcs_readl(CR0_GUEST_HOST_MASK));
6140 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6141 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6142 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6143 	if (cpu_has_vmx_ept()) {
6144 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6145 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6146 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6147 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6148 	}
6149 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6150 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6151 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6152 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6153 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6154 	       vmcs_readl(GUEST_SYSENTER_ESP),
6155 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6156 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6157 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6158 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6159 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6160 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6161 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6162 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6163 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6164 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6165 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6166 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6167 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6168 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6169 	else if (efer_slot >= 0)
6170 		pr_err("EFER= 0x%016llx (autoload)\n",
6171 		       vmx->msr_autoload.guest.val[efer_slot].value);
6172 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6173 		pr_err("EFER= 0x%016llx (effective)\n",
6174 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
6175 	else
6176 		pr_err("EFER= 0x%016llx (effective)\n",
6177 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6178 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6179 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6180 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6181 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
6182 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6183 	if (cpu_has_load_perf_global_ctrl() &&
6184 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6185 		pr_err("PerfGlobCtl = 0x%016llx\n",
6186 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6187 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6188 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6189 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6190 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6191 	       vmcs_read32(GUEST_ACTIVITY_STATE));
6192 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6193 		pr_err("InterruptStatus = %04x\n",
6194 		       vmcs_read16(GUEST_INTR_STATUS));
6195 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6196 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6197 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6198 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6199 
6200 	pr_err("*** Host State ***\n");
6201 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6202 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6203 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6204 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6205 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6206 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6207 	       vmcs_read16(HOST_TR_SELECTOR));
6208 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6209 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6210 	       vmcs_readl(HOST_TR_BASE));
6211 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6212 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6213 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6214 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6215 	       vmcs_readl(HOST_CR4));
6216 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6217 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
6218 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
6219 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
6220 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6221 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6222 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6223 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6224 	if (cpu_has_load_perf_global_ctrl() &&
6225 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6226 		pr_err("PerfGlobCtl = 0x%016llx\n",
6227 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6228 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6229 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6230 
6231 	pr_err("*** Control State ***\n");
6232 	pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6233 	       cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6234 	pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6235 	       pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6236 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6237 	       vmcs_read32(EXCEPTION_BITMAP),
6238 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6239 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6240 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6241 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6242 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6243 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6244 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6245 	       vmcs_read32(VM_EXIT_INTR_INFO),
6246 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6247 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6248 	pr_err("        reason=%08x qualification=%016lx\n",
6249 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6250 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6251 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6252 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6253 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6254 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6255 		pr_err("TSC Multiplier = 0x%016llx\n",
6256 		       vmcs_read64(TSC_MULTIPLIER));
6257 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6258 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6259 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6260 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6261 		}
6262 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6263 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6264 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6265 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6266 	}
6267 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6268 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6269 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6270 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6271 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6272 		pr_err("PLE Gap=%08x Window=%08x\n",
6273 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6274 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6275 		pr_err("Virtual processor ID = 0x%04x\n",
6276 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6277 }
6278 
6279 /*
6280  * The guest has exited.  See if we can fix it or if we need userspace
6281  * assistance.
6282  */
6283 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6284 {
6285 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6286 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6287 	u32 vectoring_info = vmx->idt_vectoring_info;
6288 	u16 exit_handler_index;
6289 
6290 	/*
6291 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6292 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6293 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6294 	 * mode as if vcpus is in root mode, the PML buffer must has been
6295 	 * flushed already.  Note, PML is never enabled in hardware while
6296 	 * running L2.
6297 	 */
6298 	if (enable_pml && !is_guest_mode(vcpu))
6299 		vmx_flush_pml_buffer(vcpu);
6300 
6301 	/*
6302 	 * KVM should never reach this point with a pending nested VM-Enter.
6303 	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6304 	 * invalid guest state should never happen as that means KVM knowingly
6305 	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6306 	 */
6307 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6308 		return -EIO;
6309 
6310 	if (is_guest_mode(vcpu)) {
6311 		/*
6312 		 * PML is never enabled when running L2, bail immediately if a
6313 		 * PML full exit occurs as something is horribly wrong.
6314 		 */
6315 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6316 			goto unexpected_vmexit;
6317 
6318 		/*
6319 		 * The host physical addresses of some pages of guest memory
6320 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6321 		 * Page). The CPU may write to these pages via their host
6322 		 * physical address while L2 is running, bypassing any
6323 		 * address-translation-based dirty tracking (e.g. EPT write
6324 		 * protection).
6325 		 *
6326 		 * Mark them dirty on every exit from L2 to prevent them from
6327 		 * getting out of sync with dirty tracking.
6328 		 */
6329 		nested_mark_vmcs12_pages_dirty(vcpu);
6330 
6331 		/*
6332 		 * Synthesize a triple fault if L2 state is invalid.  In normal
6333 		 * operation, nested VM-Enter rejects any attempt to enter L2
6334 		 * with invalid state.  However, those checks are skipped if
6335 		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6336 		 * L2 state is invalid, it means either L1 modified SMRAM state
6337 		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6338 		 * doing so is architecturally allowed in the RSM case, and is
6339 		 * the least awful solution for the userspace case without
6340 		 * risking false positives.
6341 		 */
6342 		if (vmx->emulation_required) {
6343 			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6344 			return 1;
6345 		}
6346 
6347 		if (nested_vmx_reflect_vmexit(vcpu))
6348 			return 1;
6349 	}
6350 
6351 	/* If guest state is invalid, start emulating.  L2 is handled above. */
6352 	if (vmx->emulation_required)
6353 		return handle_invalid_guest_state(vcpu);
6354 
6355 	if (exit_reason.failed_vmentry) {
6356 		dump_vmcs(vcpu);
6357 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6358 		vcpu->run->fail_entry.hardware_entry_failure_reason
6359 			= exit_reason.full;
6360 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6361 		return 0;
6362 	}
6363 
6364 	if (unlikely(vmx->fail)) {
6365 		dump_vmcs(vcpu);
6366 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6367 		vcpu->run->fail_entry.hardware_entry_failure_reason
6368 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6369 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6370 		return 0;
6371 	}
6372 
6373 	/*
6374 	 * Note:
6375 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6376 	 * delivery event since it indicates guest is accessing MMIO.
6377 	 * The vm-exit can be triggered again after return to guest that
6378 	 * will cause infinite loop.
6379 	 */
6380 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6381 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6382 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6383 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6384 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6385 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6386 	     exit_reason.basic != EXIT_REASON_NOTIFY)) {
6387 		int ndata = 3;
6388 
6389 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6390 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6391 		vcpu->run->internal.data[0] = vectoring_info;
6392 		vcpu->run->internal.data[1] = exit_reason.full;
6393 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6394 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6395 			vcpu->run->internal.data[ndata++] =
6396 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6397 		}
6398 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6399 		vcpu->run->internal.ndata = ndata;
6400 		return 0;
6401 	}
6402 
6403 	if (unlikely(!enable_vnmi &&
6404 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6405 		if (!vmx_interrupt_blocked(vcpu)) {
6406 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6407 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6408 			   vcpu->arch.nmi_pending) {
6409 			/*
6410 			 * This CPU don't support us in finding the end of an
6411 			 * NMI-blocked window if the guest runs with IRQs
6412 			 * disabled. So we pull the trigger after 1 s of
6413 			 * futile waiting, but inform the user about this.
6414 			 */
6415 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6416 			       "state on VCPU %d after 1 s timeout\n",
6417 			       __func__, vcpu->vcpu_id);
6418 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6419 		}
6420 	}
6421 
6422 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6423 		return 1;
6424 
6425 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6426 		goto unexpected_vmexit;
6427 #ifdef CONFIG_RETPOLINE
6428 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6429 		return kvm_emulate_wrmsr(vcpu);
6430 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6431 		return handle_preemption_timer(vcpu);
6432 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6433 		return handle_interrupt_window(vcpu);
6434 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6435 		return handle_external_interrupt(vcpu);
6436 	else if (exit_reason.basic == EXIT_REASON_HLT)
6437 		return kvm_emulate_halt(vcpu);
6438 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6439 		return handle_ept_misconfig(vcpu);
6440 #endif
6441 
6442 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6443 						kvm_vmx_max_exit_handlers);
6444 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6445 		goto unexpected_vmexit;
6446 
6447 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6448 
6449 unexpected_vmexit:
6450 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6451 		    exit_reason.full);
6452 	dump_vmcs(vcpu);
6453 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6454 	vcpu->run->internal.suberror =
6455 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6456 	vcpu->run->internal.ndata = 2;
6457 	vcpu->run->internal.data[0] = exit_reason.full;
6458 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6459 	return 0;
6460 }
6461 
6462 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6463 {
6464 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6465 
6466 	/*
6467 	 * Exit to user space when bus lock detected to inform that there is
6468 	 * a bus lock in guest.
6469 	 */
6470 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6471 		if (ret > 0)
6472 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6473 
6474 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6475 		return 0;
6476 	}
6477 	return ret;
6478 }
6479 
6480 /*
6481  * Software based L1D cache flush which is used when microcode providing
6482  * the cache control MSR is not loaded.
6483  *
6484  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6485  * flush it is required to read in 64 KiB because the replacement algorithm
6486  * is not exactly LRU. This could be sized at runtime via topology
6487  * information but as all relevant affected CPUs have 32KiB L1D cache size
6488  * there is no point in doing so.
6489  */
6490 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6491 {
6492 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6493 
6494 	/*
6495 	 * This code is only executed when the flush mode is 'cond' or
6496 	 * 'always'
6497 	 */
6498 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6499 		bool flush_l1d;
6500 
6501 		/*
6502 		 * Clear the per-vcpu flush bit, it gets set again
6503 		 * either from vcpu_run() or from one of the unsafe
6504 		 * VMEXIT handlers.
6505 		 */
6506 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6507 		vcpu->arch.l1tf_flush_l1d = false;
6508 
6509 		/*
6510 		 * Clear the per-cpu flush bit, it gets set again from
6511 		 * the interrupt handlers.
6512 		 */
6513 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6514 		kvm_clear_cpu_l1tf_flush_l1d();
6515 
6516 		if (!flush_l1d)
6517 			return;
6518 	}
6519 
6520 	vcpu->stat.l1d_flush++;
6521 
6522 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6523 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6524 		return;
6525 	}
6526 
6527 	asm volatile(
6528 		/* First ensure the pages are in the TLB */
6529 		"xorl	%%eax, %%eax\n"
6530 		".Lpopulate_tlb:\n\t"
6531 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6532 		"addl	$4096, %%eax\n\t"
6533 		"cmpl	%%eax, %[size]\n\t"
6534 		"jne	.Lpopulate_tlb\n\t"
6535 		"xorl	%%eax, %%eax\n\t"
6536 		"cpuid\n\t"
6537 		/* Now fill the cache */
6538 		"xorl	%%eax, %%eax\n"
6539 		".Lfill_cache:\n"
6540 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6541 		"addl	$64, %%eax\n\t"
6542 		"cmpl	%%eax, %[size]\n\t"
6543 		"jne	.Lfill_cache\n\t"
6544 		"lfence\n"
6545 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6546 		    [size] "r" (size)
6547 		: "eax", "ebx", "ecx", "edx");
6548 }
6549 
6550 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6551 {
6552 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6553 	int tpr_threshold;
6554 
6555 	if (is_guest_mode(vcpu) &&
6556 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6557 		return;
6558 
6559 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6560 	if (is_guest_mode(vcpu))
6561 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6562 	else
6563 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6564 }
6565 
6566 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6567 {
6568 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6569 	u32 sec_exec_control;
6570 
6571 	if (!lapic_in_kernel(vcpu))
6572 		return;
6573 
6574 	if (!flexpriority_enabled &&
6575 	    !cpu_has_vmx_virtualize_x2apic_mode())
6576 		return;
6577 
6578 	/* Postpone execution until vmcs01 is the current VMCS. */
6579 	if (is_guest_mode(vcpu)) {
6580 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6581 		return;
6582 	}
6583 
6584 	sec_exec_control = secondary_exec_controls_get(vmx);
6585 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6586 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6587 
6588 	switch (kvm_get_apic_mode(vcpu)) {
6589 	case LAPIC_MODE_INVALID:
6590 		WARN_ONCE(true, "Invalid local APIC state");
6591 		break;
6592 	case LAPIC_MODE_DISABLED:
6593 		break;
6594 	case LAPIC_MODE_XAPIC:
6595 		if (flexpriority_enabled) {
6596 			sec_exec_control |=
6597 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6598 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6599 
6600 			/*
6601 			 * Flush the TLB, reloading the APIC access page will
6602 			 * only do so if its physical address has changed, but
6603 			 * the guest may have inserted a non-APIC mapping into
6604 			 * the TLB while the APIC access page was disabled.
6605 			 */
6606 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6607 		}
6608 		break;
6609 	case LAPIC_MODE_X2APIC:
6610 		if (cpu_has_vmx_virtualize_x2apic_mode())
6611 			sec_exec_control |=
6612 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6613 		break;
6614 	}
6615 	secondary_exec_controls_set(vmx, sec_exec_control);
6616 
6617 	vmx_update_msr_bitmap_x2apic(vcpu);
6618 }
6619 
6620 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6621 {
6622 	struct page *page;
6623 
6624 	/* Defer reload until vmcs01 is the current VMCS. */
6625 	if (is_guest_mode(vcpu)) {
6626 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6627 		return;
6628 	}
6629 
6630 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6631 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6632 		return;
6633 
6634 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6635 	if (is_error_page(page))
6636 		return;
6637 
6638 	vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6639 	vmx_flush_tlb_current(vcpu);
6640 
6641 	/*
6642 	 * Do not pin apic access page in memory, the MMU notifier
6643 	 * will call us again if it is migrated or swapped out.
6644 	 */
6645 	put_page(page);
6646 }
6647 
6648 static void vmx_hwapic_isr_update(int max_isr)
6649 {
6650 	u16 status;
6651 	u8 old;
6652 
6653 	if (max_isr == -1)
6654 		max_isr = 0;
6655 
6656 	status = vmcs_read16(GUEST_INTR_STATUS);
6657 	old = status >> 8;
6658 	if (max_isr != old) {
6659 		status &= 0xff;
6660 		status |= max_isr << 8;
6661 		vmcs_write16(GUEST_INTR_STATUS, status);
6662 	}
6663 }
6664 
6665 static void vmx_set_rvi(int vector)
6666 {
6667 	u16 status;
6668 	u8 old;
6669 
6670 	if (vector == -1)
6671 		vector = 0;
6672 
6673 	status = vmcs_read16(GUEST_INTR_STATUS);
6674 	old = (u8)status & 0xff;
6675 	if ((u8)vector != old) {
6676 		status &= ~0xff;
6677 		status |= (u8)vector;
6678 		vmcs_write16(GUEST_INTR_STATUS, status);
6679 	}
6680 }
6681 
6682 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6683 {
6684 	/*
6685 	 * When running L2, updating RVI is only relevant when
6686 	 * vmcs12 virtual-interrupt-delivery enabled.
6687 	 * However, it can be enabled only when L1 also
6688 	 * intercepts external-interrupts and in that case
6689 	 * we should not update vmcs02 RVI but instead intercept
6690 	 * interrupt. Therefore, do nothing when running L2.
6691 	 */
6692 	if (!is_guest_mode(vcpu))
6693 		vmx_set_rvi(max_irr);
6694 }
6695 
6696 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6697 {
6698 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6699 	int max_irr;
6700 	bool got_posted_interrupt;
6701 
6702 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6703 		return -EIO;
6704 
6705 	if (pi_test_on(&vmx->pi_desc)) {
6706 		pi_clear_on(&vmx->pi_desc);
6707 		/*
6708 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6709 		 * But on x86 this is just a compiler barrier anyway.
6710 		 */
6711 		smp_mb__after_atomic();
6712 		got_posted_interrupt =
6713 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6714 	} else {
6715 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6716 		got_posted_interrupt = false;
6717 	}
6718 
6719 	/*
6720 	 * Newly recognized interrupts are injected via either virtual interrupt
6721 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6722 	 * disabled in two cases:
6723 	 *
6724 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6725 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6726 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6727 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6728 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6729 	 *
6730 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
6731 	 * attempt to post interrupts.  The posted interrupt vector will cause
6732 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6733 	 */
6734 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6735 		vmx_set_rvi(max_irr);
6736 	else if (got_posted_interrupt)
6737 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6738 
6739 	return max_irr;
6740 }
6741 
6742 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6743 {
6744 	if (!kvm_vcpu_apicv_active(vcpu))
6745 		return;
6746 
6747 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6748 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6749 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6750 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6751 }
6752 
6753 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6754 {
6755 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6756 
6757 	pi_clear_on(&vmx->pi_desc);
6758 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6759 }
6760 
6761 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6762 
6763 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6764 					unsigned long entry)
6765 {
6766 	bool is_nmi = entry == (unsigned long)asm_exc_nmi_noist;
6767 
6768 	kvm_before_interrupt(vcpu, is_nmi ? KVM_HANDLING_NMI : KVM_HANDLING_IRQ);
6769 	vmx_do_interrupt_nmi_irqoff(entry);
6770 	kvm_after_interrupt(vcpu);
6771 }
6772 
6773 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6774 {
6775 	/*
6776 	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6777 	 * MSR value is not clobbered by the host activity before the guest
6778 	 * has chance to consume it.
6779 	 *
6780 	 * Do not blindly read xfd_err here, since this exception might
6781 	 * be caused by L1 interception on a platform which doesn't
6782 	 * support xfd at all.
6783 	 *
6784 	 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6785 	 * only when xfd contains a non-zero value.
6786 	 *
6787 	 * Queuing exception is done in vmx_handle_exit. See comment there.
6788 	 */
6789 	if (vcpu->arch.guest_fpu.fpstate->xfd)
6790 		rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6791 }
6792 
6793 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6794 {
6795 	const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6796 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6797 
6798 	/* if exit due to PF check for async PF */
6799 	if (is_page_fault(intr_info))
6800 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6801 	/* if exit due to NM, handle before interrupts are enabled */
6802 	else if (is_nm_fault(intr_info))
6803 		handle_nm_fault_irqoff(&vmx->vcpu);
6804 	/* Handle machine checks before interrupts are enabled */
6805 	else if (is_machine_check(intr_info))
6806 		kvm_machine_check();
6807 	/* We need to handle NMIs before interrupts are enabled */
6808 	else if (is_nmi(intr_info))
6809 		handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6810 }
6811 
6812 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6813 {
6814 	u32 intr_info = vmx_get_intr_info(vcpu);
6815 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6816 	gate_desc *desc = (gate_desc *)host_idt_base + vector;
6817 
6818 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6819 	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6820 		return;
6821 
6822 	handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6823 	vcpu->arch.at_instruction_boundary = true;
6824 }
6825 
6826 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6827 {
6828 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6829 
6830 	if (vmx->emulation_required)
6831 		return;
6832 
6833 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6834 		handle_external_interrupt_irqoff(vcpu);
6835 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6836 		handle_exception_nmi_irqoff(vmx);
6837 }
6838 
6839 /*
6840  * The kvm parameter can be NULL (module initialization, or invocation before
6841  * VM creation). Be sure to check the kvm parameter before using it.
6842  */
6843 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6844 {
6845 	switch (index) {
6846 	case MSR_IA32_SMBASE:
6847 		/*
6848 		 * We cannot do SMM unless we can run the guest in big
6849 		 * real mode.
6850 		 */
6851 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6852 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6853 		return nested;
6854 	case MSR_AMD64_VIRT_SPEC_CTRL:
6855 	case MSR_AMD64_TSC_RATIO:
6856 		/* This is AMD only.  */
6857 		return false;
6858 	default:
6859 		return true;
6860 	}
6861 }
6862 
6863 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6864 {
6865 	u32 exit_intr_info;
6866 	bool unblock_nmi;
6867 	u8 vector;
6868 	bool idtv_info_valid;
6869 
6870 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6871 
6872 	if (enable_vnmi) {
6873 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6874 			return;
6875 
6876 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6877 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6878 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6879 		/*
6880 		 * SDM 3: 27.7.1.2 (September 2008)
6881 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6882 		 * a guest IRET fault.
6883 		 * SDM 3: 23.2.2 (September 2008)
6884 		 * Bit 12 is undefined in any of the following cases:
6885 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6886 		 *   information field.
6887 		 *  If the VM exit is due to a double fault.
6888 		 */
6889 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6890 		    vector != DF_VECTOR && !idtv_info_valid)
6891 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6892 				      GUEST_INTR_STATE_NMI);
6893 		else
6894 			vmx->loaded_vmcs->nmi_known_unmasked =
6895 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6896 				  & GUEST_INTR_STATE_NMI);
6897 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6898 		vmx->loaded_vmcs->vnmi_blocked_time +=
6899 			ktime_to_ns(ktime_sub(ktime_get(),
6900 					      vmx->loaded_vmcs->entry_time));
6901 }
6902 
6903 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6904 				      u32 idt_vectoring_info,
6905 				      int instr_len_field,
6906 				      int error_code_field)
6907 {
6908 	u8 vector;
6909 	int type;
6910 	bool idtv_info_valid;
6911 
6912 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6913 
6914 	vcpu->arch.nmi_injected = false;
6915 	kvm_clear_exception_queue(vcpu);
6916 	kvm_clear_interrupt_queue(vcpu);
6917 
6918 	if (!idtv_info_valid)
6919 		return;
6920 
6921 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6922 
6923 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6924 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6925 
6926 	switch (type) {
6927 	case INTR_TYPE_NMI_INTR:
6928 		vcpu->arch.nmi_injected = true;
6929 		/*
6930 		 * SDM 3: 27.7.1.2 (September 2008)
6931 		 * Clear bit "block by NMI" before VM entry if a NMI
6932 		 * delivery faulted.
6933 		 */
6934 		vmx_set_nmi_mask(vcpu, false);
6935 		break;
6936 	case INTR_TYPE_SOFT_EXCEPTION:
6937 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6938 		fallthrough;
6939 	case INTR_TYPE_HARD_EXCEPTION:
6940 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6941 			u32 err = vmcs_read32(error_code_field);
6942 			kvm_requeue_exception_e(vcpu, vector, err);
6943 		} else
6944 			kvm_requeue_exception(vcpu, vector);
6945 		break;
6946 	case INTR_TYPE_SOFT_INTR:
6947 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6948 		fallthrough;
6949 	case INTR_TYPE_EXT_INTR:
6950 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6951 		break;
6952 	default:
6953 		break;
6954 	}
6955 }
6956 
6957 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6958 {
6959 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6960 				  VM_EXIT_INSTRUCTION_LEN,
6961 				  IDT_VECTORING_ERROR_CODE);
6962 }
6963 
6964 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6965 {
6966 	__vmx_complete_interrupts(vcpu,
6967 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6968 				  VM_ENTRY_INSTRUCTION_LEN,
6969 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6970 
6971 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6972 }
6973 
6974 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6975 {
6976 	int i, nr_msrs;
6977 	struct perf_guest_switch_msr *msrs;
6978 	struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
6979 
6980 	pmu->host_cross_mapped_mask = 0;
6981 	if (pmu->pebs_enable & pmu->global_ctrl)
6982 		intel_pmu_cross_mapped_check(pmu);
6983 
6984 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
6985 	msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
6986 	if (!msrs)
6987 		return;
6988 
6989 	for (i = 0; i < nr_msrs; i++)
6990 		if (msrs[i].host == msrs[i].guest)
6991 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6992 		else
6993 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6994 					msrs[i].host, false);
6995 }
6996 
6997 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6998 {
6999 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7000 	u64 tscl;
7001 	u32 delta_tsc;
7002 
7003 	if (vmx->req_immediate_exit) {
7004 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7005 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7006 	} else if (vmx->hv_deadline_tsc != -1) {
7007 		tscl = rdtsc();
7008 		if (vmx->hv_deadline_tsc > tscl)
7009 			/* set_hv_timer ensures the delta fits in 32-bits */
7010 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7011 				cpu_preemption_timer_multi);
7012 		else
7013 			delta_tsc = 0;
7014 
7015 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7016 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7017 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7018 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7019 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7020 	}
7021 }
7022 
7023 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7024 {
7025 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7026 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
7027 		vmcs_writel(HOST_RSP, host_rsp);
7028 	}
7029 }
7030 
7031 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7032 					unsigned int flags)
7033 {
7034 	u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7035 
7036 	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7037 		return;
7038 
7039 	if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7040 		vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7041 
7042 	/*
7043 	 * If the guest/host SPEC_CTRL values differ, restore the host value.
7044 	 *
7045 	 * For legacy IBRS, the IBRS bit always needs to be written after
7046 	 * transitioning from a less privileged predictor mode, regardless of
7047 	 * whether the guest/host values differ.
7048 	 */
7049 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7050 	    vmx->spec_ctrl != hostval)
7051 		native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7052 
7053 	barrier_nospec();
7054 }
7055 
7056 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
7057 {
7058 	switch (to_vmx(vcpu)->exit_reason.basic) {
7059 	case EXIT_REASON_MSR_WRITE:
7060 		return handle_fastpath_set_msr_irqoff(vcpu);
7061 	case EXIT_REASON_PREEMPTION_TIMER:
7062 		return handle_fastpath_preemption_timer(vcpu);
7063 	default:
7064 		return EXIT_FASTPATH_NONE;
7065 	}
7066 }
7067 
7068 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7069 					struct vcpu_vmx *vmx,
7070 					unsigned long flags)
7071 {
7072 	guest_state_enter_irqoff();
7073 
7074 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
7075 	if (static_branch_unlikely(&vmx_l1d_should_flush))
7076 		vmx_l1d_flush(vcpu);
7077 	else if (static_branch_unlikely(&mds_user_clear))
7078 		mds_clear_cpu_buffers();
7079 	else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7080 		 kvm_arch_has_assigned_device(vcpu->kvm))
7081 		mds_clear_cpu_buffers();
7082 
7083 	vmx_disable_fb_clear(vmx);
7084 
7085 	if (vcpu->arch.cr2 != native_read_cr2())
7086 		native_write_cr2(vcpu->arch.cr2);
7087 
7088 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7089 				   flags);
7090 
7091 	vcpu->arch.cr2 = native_read_cr2();
7092 
7093 	vmx_enable_fb_clear(vmx);
7094 
7095 	guest_state_exit_irqoff();
7096 }
7097 
7098 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
7099 {
7100 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7101 	unsigned long cr3, cr4;
7102 
7103 	/* Record the guest's net vcpu time for enforced NMI injections. */
7104 	if (unlikely(!enable_vnmi &&
7105 		     vmx->loaded_vmcs->soft_vnmi_blocked))
7106 		vmx->loaded_vmcs->entry_time = ktime_get();
7107 
7108 	/*
7109 	 * Don't enter VMX if guest state is invalid, let the exit handler
7110 	 * start emulation until we arrive back to a valid state.  Synthesize a
7111 	 * consistency check VM-Exit due to invalid guest state and bail.
7112 	 */
7113 	if (unlikely(vmx->emulation_required)) {
7114 		vmx->fail = 0;
7115 
7116 		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7117 		vmx->exit_reason.failed_vmentry = 1;
7118 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7119 		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7120 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7121 		vmx->exit_intr_info = 0;
7122 		return EXIT_FASTPATH_NONE;
7123 	}
7124 
7125 	trace_kvm_entry(vcpu);
7126 
7127 	if (vmx->ple_window_dirty) {
7128 		vmx->ple_window_dirty = false;
7129 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
7130 	}
7131 
7132 	/*
7133 	 * We did this in prepare_switch_to_guest, because it needs to
7134 	 * be within srcu_read_lock.
7135 	 */
7136 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7137 
7138 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7139 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7140 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7141 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7142 	vcpu->arch.regs_dirty = 0;
7143 
7144 	/*
7145 	 * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7146 	 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7147 	 * it switches back to the current->mm, which can occur in KVM context
7148 	 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7149 	 * toggles a static key while handling a VM-Exit.
7150 	 */
7151 	cr3 = __get_current_cr3_fast();
7152 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7153 		vmcs_writel(HOST_CR3, cr3);
7154 		vmx->loaded_vmcs->host_state.cr3 = cr3;
7155 	}
7156 
7157 	cr4 = cr4_read_shadow();
7158 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7159 		vmcs_writel(HOST_CR4, cr4);
7160 		vmx->loaded_vmcs->host_state.cr4 = cr4;
7161 	}
7162 
7163 	/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7164 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7165 		set_debugreg(vcpu->arch.dr6, 6);
7166 
7167 	/* When single-stepping over STI and MOV SS, we must clear the
7168 	 * corresponding interruptibility bits in the guest state. Otherwise
7169 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
7170 	 * exceptions being set, but that's not correct for the guest debugging
7171 	 * case. */
7172 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7173 		vmx_set_interrupt_shadow(vcpu, 0);
7174 
7175 	kvm_load_guest_xsave_state(vcpu);
7176 
7177 	pt_guest_enter(vmx);
7178 
7179 	atomic_switch_perf_msrs(vmx);
7180 	if (intel_pmu_lbr_is_enabled(vcpu))
7181 		vmx_passthrough_lbr_msrs(vcpu);
7182 
7183 	if (enable_preemption_timer)
7184 		vmx_update_hv_timer(vcpu);
7185 
7186 	kvm_wait_lapic_expire(vcpu);
7187 
7188 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
7189 	vmx_vcpu_enter_exit(vcpu, vmx, __vmx_vcpu_run_flags(vmx));
7190 
7191 	/* All fields are clean at this point */
7192 	if (static_branch_unlikely(&enable_evmcs)) {
7193 		current_evmcs->hv_clean_fields |=
7194 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7195 
7196 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7197 	}
7198 
7199 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7200 	if (vmx->host_debugctlmsr)
7201 		update_debugctlmsr(vmx->host_debugctlmsr);
7202 
7203 #ifndef CONFIG_X86_64
7204 	/*
7205 	 * The sysexit path does not restore ds/es, so we must set them to
7206 	 * a reasonable value ourselves.
7207 	 *
7208 	 * We can't defer this to vmx_prepare_switch_to_host() since that
7209 	 * function may be executed in interrupt context, which saves and
7210 	 * restore segments around it, nullifying its effect.
7211 	 */
7212 	loadsegment(ds, __USER_DS);
7213 	loadsegment(es, __USER_DS);
7214 #endif
7215 
7216 	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7217 
7218 	pt_guest_exit(vmx);
7219 
7220 	kvm_load_host_xsave_state(vcpu);
7221 
7222 	if (is_guest_mode(vcpu)) {
7223 		/*
7224 		 * Track VMLAUNCH/VMRESUME that have made past guest state
7225 		 * checking.
7226 		 */
7227 		if (vmx->nested.nested_run_pending &&
7228 		    !vmx->exit_reason.failed_vmentry)
7229 			++vcpu->stat.nested_run;
7230 
7231 		vmx->nested.nested_run_pending = 0;
7232 	}
7233 
7234 	vmx->idt_vectoring_info = 0;
7235 
7236 	if (unlikely(vmx->fail)) {
7237 		vmx->exit_reason.full = 0xdead;
7238 		return EXIT_FASTPATH_NONE;
7239 	}
7240 
7241 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7242 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7243 		kvm_machine_check();
7244 
7245 	if (likely(!vmx->exit_reason.failed_vmentry))
7246 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7247 
7248 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
7249 
7250 	if (unlikely(vmx->exit_reason.failed_vmentry))
7251 		return EXIT_FASTPATH_NONE;
7252 
7253 	vmx->loaded_vmcs->launched = 1;
7254 
7255 	vmx_recover_nmi_blocking(vmx);
7256 	vmx_complete_interrupts(vmx);
7257 
7258 	if (is_guest_mode(vcpu))
7259 		return EXIT_FASTPATH_NONE;
7260 
7261 	return vmx_exit_handlers_fastpath(vcpu);
7262 }
7263 
7264 static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7265 {
7266 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7267 
7268 	if (enable_pml)
7269 		vmx_destroy_pml_buffer(vmx);
7270 	free_vpid(vmx->vpid);
7271 	nested_vmx_free_vcpu(vcpu);
7272 	free_loaded_vmcs(vmx->loaded_vmcs);
7273 }
7274 
7275 static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7276 {
7277 	struct vmx_uret_msr *tsx_ctrl;
7278 	struct vcpu_vmx *vmx;
7279 	int i, err;
7280 
7281 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7282 	vmx = to_vmx(vcpu);
7283 
7284 	INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7285 
7286 	err = -ENOMEM;
7287 
7288 	vmx->vpid = allocate_vpid();
7289 
7290 	/*
7291 	 * If PML is turned on, failure on enabling PML just results in failure
7292 	 * of creating the vcpu, therefore we can simplify PML logic (by
7293 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
7294 	 * for the guest), etc.
7295 	 */
7296 	if (enable_pml) {
7297 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7298 		if (!vmx->pml_pg)
7299 			goto free_vpid;
7300 	}
7301 
7302 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
7303 		vmx->guest_uret_msrs[i].mask = -1ull;
7304 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7305 		/*
7306 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7307 		 * Keep the host value unchanged to avoid changing CPUID bits
7308 		 * under the host kernel's feet.
7309 		 */
7310 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7311 		if (tsx_ctrl)
7312 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7313 	}
7314 
7315 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7316 	if (err < 0)
7317 		goto free_pml;
7318 
7319 	/*
7320 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7321 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7322 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7323 	 * performance benefits from enabling it for vmcs02.
7324 	 */
7325 	if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs) &&
7326 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7327 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7328 
7329 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7330 	}
7331 
7332 	/* The MSR bitmap starts with all ones */
7333 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7334 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7335 
7336 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7337 #ifdef CONFIG_X86_64
7338 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7339 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7340 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7341 #endif
7342 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7343 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7344 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7345 	if (kvm_cstate_in_guest(vcpu->kvm)) {
7346 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7347 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7348 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7349 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7350 	}
7351 
7352 	vmx->loaded_vmcs = &vmx->vmcs01;
7353 
7354 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7355 		err = alloc_apic_access_page(vcpu->kvm);
7356 		if (err)
7357 			goto free_vmcs;
7358 	}
7359 
7360 	if (enable_ept && !enable_unrestricted_guest) {
7361 		err = init_rmode_identity_map(vcpu->kvm);
7362 		if (err)
7363 			goto free_vmcs;
7364 	}
7365 
7366 	if (vmx_can_use_ipiv(vcpu))
7367 		WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7368 			   __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7369 
7370 	return 0;
7371 
7372 free_vmcs:
7373 	free_loaded_vmcs(vmx->loaded_vmcs);
7374 free_pml:
7375 	vmx_destroy_pml_buffer(vmx);
7376 free_vpid:
7377 	free_vpid(vmx->vpid);
7378 	return err;
7379 }
7380 
7381 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7382 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7383 
7384 static int vmx_vm_init(struct kvm *kvm)
7385 {
7386 	if (!ple_gap)
7387 		kvm->arch.pause_in_guest = true;
7388 
7389 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7390 		switch (l1tf_mitigation) {
7391 		case L1TF_MITIGATION_OFF:
7392 		case L1TF_MITIGATION_FLUSH_NOWARN:
7393 			/* 'I explicitly don't care' is set */
7394 			break;
7395 		case L1TF_MITIGATION_FLUSH:
7396 		case L1TF_MITIGATION_FLUSH_NOSMT:
7397 		case L1TF_MITIGATION_FULL:
7398 			/*
7399 			 * Warn upon starting the first VM in a potentially
7400 			 * insecure environment.
7401 			 */
7402 			if (sched_smt_active())
7403 				pr_warn_once(L1TF_MSG_SMT);
7404 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7405 				pr_warn_once(L1TF_MSG_L1D);
7406 			break;
7407 		case L1TF_MITIGATION_FULL_FORCE:
7408 			/* Flush is enforced */
7409 			break;
7410 		}
7411 	}
7412 	return 0;
7413 }
7414 
7415 static int __init vmx_check_processor_compat(void)
7416 {
7417 	struct vmcs_config vmcs_conf;
7418 	struct vmx_capability vmx_cap;
7419 
7420 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7421 	    !this_cpu_has(X86_FEATURE_VMX)) {
7422 		pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7423 		return -EIO;
7424 	}
7425 
7426 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7427 		return -EIO;
7428 	if (nested)
7429 		nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
7430 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7431 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7432 				smp_processor_id());
7433 		return -EIO;
7434 	}
7435 	return 0;
7436 }
7437 
7438 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7439 {
7440 	u8 cache;
7441 
7442 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7443 	 * memory aliases with conflicting memory types and sometimes MCEs.
7444 	 * We have to be careful as to what are honored and when.
7445 	 *
7446 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7447 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
7448 	 * This was historically the source of MCEs and we want to be
7449 	 * conservative.
7450 	 *
7451 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7452 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7453 	 * EPT memory type is set to WB.  The effective memory type is forced
7454 	 * WB.
7455 	 *
7456 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7457 	 * EPT memory type is used to emulate guest CD/MTRR.
7458 	 */
7459 
7460 	if (is_mmio)
7461 		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7462 
7463 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7464 		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7465 
7466 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7467 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7468 			cache = MTRR_TYPE_WRBACK;
7469 		else
7470 			cache = MTRR_TYPE_UNCACHABLE;
7471 
7472 		return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7473 	}
7474 
7475 	return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7476 }
7477 
7478 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7479 {
7480 	/*
7481 	 * These bits in the secondary execution controls field
7482 	 * are dynamic, the others are mostly based on the hypervisor
7483 	 * architecture and the guest's CPUID.  Do not touch the
7484 	 * dynamic bits.
7485 	 */
7486 	u32 mask =
7487 		SECONDARY_EXEC_SHADOW_VMCS |
7488 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7489 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7490 		SECONDARY_EXEC_DESC;
7491 
7492 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7493 
7494 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7495 }
7496 
7497 /*
7498  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7499  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7500  */
7501 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7502 {
7503 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7504 	struct kvm_cpuid_entry2 *entry;
7505 
7506 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7507 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7508 
7509 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7510 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7511 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7512 } while (0)
7513 
7514 	entry = kvm_find_cpuid_entry(vcpu, 0x1);
7515 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7516 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7517 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7518 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7519 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7520 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7521 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7522 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7523 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7524 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7525 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7526 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7527 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7528 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7529 
7530 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7531 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7532 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7533 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7534 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7535 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7536 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7537 
7538 #undef cr4_fixed1_update
7539 }
7540 
7541 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7542 {
7543 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7544 	struct kvm_cpuid_entry2 *best = NULL;
7545 	int i;
7546 
7547 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7548 		best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7549 		if (!best)
7550 			return;
7551 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7552 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7553 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7554 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7555 	}
7556 
7557 	/* Get the number of configurable Address Ranges for filtering */
7558 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7559 						PT_CAP_num_address_ranges);
7560 
7561 	/* Initialize and clear the no dependency bits */
7562 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7563 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7564 			RTIT_CTL_BRANCH_EN);
7565 
7566 	/*
7567 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7568 	 * will inject an #GP
7569 	 */
7570 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7571 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7572 
7573 	/*
7574 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7575 	 * PSBFreq can be set
7576 	 */
7577 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7578 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7579 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7580 
7581 	/*
7582 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7583 	 */
7584 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7585 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7586 					      RTIT_CTL_MTC_RANGE);
7587 
7588 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7589 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7590 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7591 							RTIT_CTL_PTW_EN);
7592 
7593 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7594 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7595 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7596 
7597 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7598 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7599 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7600 
7601 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7602 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7603 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7604 
7605 	/* unmask address range configure area */
7606 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7607 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7608 }
7609 
7610 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7611 {
7612 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7613 
7614 	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7615 	vcpu->arch.xsaves_enabled = false;
7616 
7617 	vmx_setup_uret_msrs(vmx);
7618 
7619 	if (cpu_has_secondary_exec_ctrls())
7620 		vmcs_set_secondary_exec_control(vmx,
7621 						vmx_secondary_exec_control(vmx));
7622 
7623 	if (nested_vmx_allowed(vcpu))
7624 		vmx->msr_ia32_feature_control_valid_bits |=
7625 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7626 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7627 	else
7628 		vmx->msr_ia32_feature_control_valid_bits &=
7629 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7630 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7631 
7632 	if (nested_vmx_allowed(vcpu))
7633 		nested_vmx_cr_fixed1_bits_update(vcpu);
7634 
7635 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7636 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7637 		update_intel_pt_cfg(vcpu);
7638 
7639 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7640 		struct vmx_uret_msr *msr;
7641 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7642 		if (msr) {
7643 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7644 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7645 		}
7646 	}
7647 
7648 	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7649 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7650 					  !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7651 
7652 
7653 	set_cr4_guest_host_mask(vmx);
7654 
7655 	vmx_write_encls_bitmap(vcpu, NULL);
7656 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7657 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7658 	else
7659 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7660 
7661 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7662 		vmx->msr_ia32_feature_control_valid_bits |=
7663 			FEAT_CTL_SGX_LC_ENABLED;
7664 	else
7665 		vmx->msr_ia32_feature_control_valid_bits &=
7666 			~FEAT_CTL_SGX_LC_ENABLED;
7667 
7668 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7669 	vmx_update_exception_bitmap(vcpu);
7670 }
7671 
7672 static __init void vmx_set_cpu_caps(void)
7673 {
7674 	kvm_set_cpu_caps();
7675 
7676 	/* CPUID 0x1 */
7677 	if (nested)
7678 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7679 
7680 	/* CPUID 0x7 */
7681 	if (kvm_mpx_supported())
7682 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7683 	if (!cpu_has_vmx_invpcid())
7684 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7685 	if (vmx_pt_mode_is_host_guest())
7686 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7687 	if (vmx_pebs_supported()) {
7688 		kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7689 		kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7690 	}
7691 
7692 	if (!enable_pmu)
7693 		kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7694 
7695 	if (!enable_sgx) {
7696 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7697 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7698 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7699 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7700 	}
7701 
7702 	if (vmx_umip_emulated())
7703 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7704 
7705 	/* CPUID 0xD.1 */
7706 	kvm_caps.supported_xss = 0;
7707 	if (!cpu_has_vmx_xsaves())
7708 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7709 
7710 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7711 	if (!cpu_has_vmx_rdtscp()) {
7712 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7713 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7714 	}
7715 
7716 	if (cpu_has_vmx_waitpkg())
7717 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7718 }
7719 
7720 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7721 {
7722 	to_vmx(vcpu)->req_immediate_exit = true;
7723 }
7724 
7725 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7726 				  struct x86_instruction_info *info)
7727 {
7728 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7729 	unsigned short port;
7730 	bool intercept;
7731 	int size;
7732 
7733 	if (info->intercept == x86_intercept_in ||
7734 	    info->intercept == x86_intercept_ins) {
7735 		port = info->src_val;
7736 		size = info->dst_bytes;
7737 	} else {
7738 		port = info->dst_val;
7739 		size = info->src_bytes;
7740 	}
7741 
7742 	/*
7743 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7744 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7745 	 * control.
7746 	 *
7747 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7748 	 */
7749 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7750 		intercept = nested_cpu_has(vmcs12,
7751 					   CPU_BASED_UNCOND_IO_EXITING);
7752 	else
7753 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7754 
7755 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7756 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7757 }
7758 
7759 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7760 			       struct x86_instruction_info *info,
7761 			       enum x86_intercept_stage stage,
7762 			       struct x86_exception *exception)
7763 {
7764 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7765 
7766 	switch (info->intercept) {
7767 	/*
7768 	 * RDPID causes #UD if disabled through secondary execution controls.
7769 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7770 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7771 	 */
7772 	case x86_intercept_rdpid:
7773 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7774 			exception->vector = UD_VECTOR;
7775 			exception->error_code_valid = false;
7776 			return X86EMUL_PROPAGATE_FAULT;
7777 		}
7778 		break;
7779 
7780 	case x86_intercept_in:
7781 	case x86_intercept_ins:
7782 	case x86_intercept_out:
7783 	case x86_intercept_outs:
7784 		return vmx_check_intercept_io(vcpu, info);
7785 
7786 	case x86_intercept_lgdt:
7787 	case x86_intercept_lidt:
7788 	case x86_intercept_lldt:
7789 	case x86_intercept_ltr:
7790 	case x86_intercept_sgdt:
7791 	case x86_intercept_sidt:
7792 	case x86_intercept_sldt:
7793 	case x86_intercept_str:
7794 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7795 			return X86EMUL_CONTINUE;
7796 
7797 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7798 		break;
7799 
7800 	/* TODO: check more intercepts... */
7801 	default:
7802 		break;
7803 	}
7804 
7805 	return X86EMUL_UNHANDLEABLE;
7806 }
7807 
7808 #ifdef CONFIG_X86_64
7809 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7810 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7811 				  u64 divisor, u64 *result)
7812 {
7813 	u64 low = a << shift, high = a >> (64 - shift);
7814 
7815 	/* To avoid the overflow on divq */
7816 	if (high >= divisor)
7817 		return 1;
7818 
7819 	/* Low hold the result, high hold rem which is discarded */
7820 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7821 	    "rm" (divisor), "0" (low), "1" (high));
7822 	*result = low;
7823 
7824 	return 0;
7825 }
7826 
7827 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7828 			    bool *expired)
7829 {
7830 	struct vcpu_vmx *vmx;
7831 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7832 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7833 
7834 	vmx = to_vmx(vcpu);
7835 	tscl = rdtsc();
7836 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7837 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7838 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7839 						    ktimer->timer_advance_ns);
7840 
7841 	if (delta_tsc > lapic_timer_advance_cycles)
7842 		delta_tsc -= lapic_timer_advance_cycles;
7843 	else
7844 		delta_tsc = 0;
7845 
7846 	/* Convert to host delta tsc if tsc scaling is enabled */
7847 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
7848 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7849 				kvm_caps.tsc_scaling_ratio_frac_bits,
7850 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
7851 		return -ERANGE;
7852 
7853 	/*
7854 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7855 	 * we can't use the preemption timer.
7856 	 * It's possible that it fits on later vmentries, but checking
7857 	 * on every vmentry is costly so we just use an hrtimer.
7858 	 */
7859 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7860 		return -ERANGE;
7861 
7862 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7863 	*expired = !delta_tsc;
7864 	return 0;
7865 }
7866 
7867 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7868 {
7869 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7870 }
7871 #endif
7872 
7873 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7874 {
7875 	if (!kvm_pause_in_guest(vcpu->kvm))
7876 		shrink_ple_window(vcpu);
7877 }
7878 
7879 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7880 {
7881 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7882 
7883 	if (is_guest_mode(vcpu)) {
7884 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7885 		return;
7886 	}
7887 
7888 	/*
7889 	 * Note, cpu_dirty_logging_count can be changed concurrent with this
7890 	 * code, but in that case another update request will be made and so
7891 	 * the guest will never run with a stale PML value.
7892 	 */
7893 	if (vcpu->kvm->arch.cpu_dirty_logging_count)
7894 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7895 	else
7896 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7897 }
7898 
7899 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7900 {
7901 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7902 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7903 			FEAT_CTL_LMCE_ENABLED;
7904 	else
7905 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7906 			~FEAT_CTL_LMCE_ENABLED;
7907 }
7908 
7909 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7910 {
7911 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7912 	if (to_vmx(vcpu)->nested.nested_run_pending)
7913 		return -EBUSY;
7914 	return !is_smm(vcpu);
7915 }
7916 
7917 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7918 {
7919 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7920 
7921 	/*
7922 	 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
7923 	 * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
7924 	 * SMI and RSM only modify state that is saved and restored via SMRAM.
7925 	 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
7926 	 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
7927 	 */
7928 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7929 	if (vmx->nested.smm.guest_mode)
7930 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7931 
7932 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7933 	vmx->nested.vmxon = false;
7934 	vmx_clear_hlt(vcpu);
7935 	return 0;
7936 }
7937 
7938 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7939 {
7940 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7941 	int ret;
7942 
7943 	if (vmx->nested.smm.vmxon) {
7944 		vmx->nested.vmxon = true;
7945 		vmx->nested.smm.vmxon = false;
7946 	}
7947 
7948 	if (vmx->nested.smm.guest_mode) {
7949 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7950 		if (ret)
7951 			return ret;
7952 
7953 		vmx->nested.nested_run_pending = 1;
7954 		vmx->nested.smm.guest_mode = false;
7955 	}
7956 	return 0;
7957 }
7958 
7959 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7960 {
7961 	/* RSM will cause a vmexit anyway.  */
7962 }
7963 
7964 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7965 {
7966 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7967 }
7968 
7969 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7970 {
7971 	if (is_guest_mode(vcpu)) {
7972 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7973 
7974 		if (hrtimer_try_to_cancel(timer) == 1)
7975 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7976 	}
7977 }
7978 
7979 static void vmx_hardware_unsetup(void)
7980 {
7981 	kvm_set_posted_intr_wakeup_handler(NULL);
7982 
7983 	if (nested)
7984 		nested_vmx_hardware_unsetup();
7985 
7986 	free_kvm_area();
7987 }
7988 
7989 static bool vmx_check_apicv_inhibit_reasons(enum kvm_apicv_inhibit reason)
7990 {
7991 	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7992 			  BIT(APICV_INHIBIT_REASON_ABSENT) |
7993 			  BIT(APICV_INHIBIT_REASON_HYPERV) |
7994 			  BIT(APICV_INHIBIT_REASON_BLOCKIRQ) |
7995 			  BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) |
7996 			  BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
7997 
7998 	return supported & BIT(reason);
7999 }
8000 
8001 static void vmx_vm_destroy(struct kvm *kvm)
8002 {
8003 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8004 
8005 	free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8006 }
8007 
8008 static struct kvm_x86_ops vmx_x86_ops __initdata = {
8009 	.name = "kvm_intel",
8010 
8011 	.hardware_unsetup = vmx_hardware_unsetup,
8012 
8013 	.hardware_enable = vmx_hardware_enable,
8014 	.hardware_disable = vmx_hardware_disable,
8015 	.has_emulated_msr = vmx_has_emulated_msr,
8016 
8017 	.vm_size = sizeof(struct kvm_vmx),
8018 	.vm_init = vmx_vm_init,
8019 	.vm_destroy = vmx_vm_destroy,
8020 
8021 	.vcpu_precreate = vmx_vcpu_precreate,
8022 	.vcpu_create = vmx_vcpu_create,
8023 	.vcpu_free = vmx_vcpu_free,
8024 	.vcpu_reset = vmx_vcpu_reset,
8025 
8026 	.prepare_switch_to_guest = vmx_prepare_switch_to_guest,
8027 	.vcpu_load = vmx_vcpu_load,
8028 	.vcpu_put = vmx_vcpu_put,
8029 
8030 	.update_exception_bitmap = vmx_update_exception_bitmap,
8031 	.get_msr_feature = vmx_get_msr_feature,
8032 	.get_msr = vmx_get_msr,
8033 	.set_msr = vmx_set_msr,
8034 	.get_segment_base = vmx_get_segment_base,
8035 	.get_segment = vmx_get_segment,
8036 	.set_segment = vmx_set_segment,
8037 	.get_cpl = vmx_get_cpl,
8038 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8039 	.set_cr0 = vmx_set_cr0,
8040 	.is_valid_cr4 = vmx_is_valid_cr4,
8041 	.set_cr4 = vmx_set_cr4,
8042 	.set_efer = vmx_set_efer,
8043 	.get_idt = vmx_get_idt,
8044 	.set_idt = vmx_set_idt,
8045 	.get_gdt = vmx_get_gdt,
8046 	.set_gdt = vmx_set_gdt,
8047 	.set_dr7 = vmx_set_dr7,
8048 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
8049 	.cache_reg = vmx_cache_reg,
8050 	.get_rflags = vmx_get_rflags,
8051 	.set_rflags = vmx_set_rflags,
8052 	.get_if_flag = vmx_get_if_flag,
8053 
8054 	.flush_tlb_all = vmx_flush_tlb_all,
8055 	.flush_tlb_current = vmx_flush_tlb_current,
8056 	.flush_tlb_gva = vmx_flush_tlb_gva,
8057 	.flush_tlb_guest = vmx_flush_tlb_guest,
8058 
8059 	.vcpu_pre_run = vmx_vcpu_pre_run,
8060 	.vcpu_run = vmx_vcpu_run,
8061 	.handle_exit = vmx_handle_exit,
8062 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
8063 	.update_emulated_instruction = vmx_update_emulated_instruction,
8064 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
8065 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
8066 	.patch_hypercall = vmx_patch_hypercall,
8067 	.inject_irq = vmx_inject_irq,
8068 	.inject_nmi = vmx_inject_nmi,
8069 	.inject_exception = vmx_inject_exception,
8070 	.cancel_injection = vmx_cancel_injection,
8071 	.interrupt_allowed = vmx_interrupt_allowed,
8072 	.nmi_allowed = vmx_nmi_allowed,
8073 	.get_nmi_mask = vmx_get_nmi_mask,
8074 	.set_nmi_mask = vmx_set_nmi_mask,
8075 	.enable_nmi_window = vmx_enable_nmi_window,
8076 	.enable_irq_window = vmx_enable_irq_window,
8077 	.update_cr8_intercept = vmx_update_cr8_intercept,
8078 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
8079 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
8080 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
8081 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
8082 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
8083 	.check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
8084 	.hwapic_irr_update = vmx_hwapic_irr_update,
8085 	.hwapic_isr_update = vmx_hwapic_isr_update,
8086 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
8087 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
8088 	.deliver_interrupt = vmx_deliver_interrupt,
8089 	.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
8090 
8091 	.set_tss_addr = vmx_set_tss_addr,
8092 	.set_identity_map_addr = vmx_set_identity_map_addr,
8093 	.get_mt_mask = vmx_get_mt_mask,
8094 
8095 	.get_exit_info = vmx_get_exit_info,
8096 
8097 	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
8098 
8099 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8100 
8101 	.get_l2_tsc_offset = vmx_get_l2_tsc_offset,
8102 	.get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
8103 	.write_tsc_offset = vmx_write_tsc_offset,
8104 	.write_tsc_multiplier = vmx_write_tsc_multiplier,
8105 
8106 	.load_mmu_pgd = vmx_load_mmu_pgd,
8107 
8108 	.check_intercept = vmx_check_intercept,
8109 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
8110 
8111 	.request_immediate_exit = vmx_request_immediate_exit,
8112 
8113 	.sched_in = vmx_sched_in,
8114 
8115 	.cpu_dirty_log_size = PML_ENTITY_NUM,
8116 	.update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
8117 
8118 	.nested_ops = &vmx_nested_ops,
8119 
8120 	.pi_update_irte = vmx_pi_update_irte,
8121 	.pi_start_assignment = vmx_pi_start_assignment,
8122 
8123 #ifdef CONFIG_X86_64
8124 	.set_hv_timer = vmx_set_hv_timer,
8125 	.cancel_hv_timer = vmx_cancel_hv_timer,
8126 #endif
8127 
8128 	.setup_mce = vmx_setup_mce,
8129 
8130 	.smi_allowed = vmx_smi_allowed,
8131 	.enter_smm = vmx_enter_smm,
8132 	.leave_smm = vmx_leave_smm,
8133 	.enable_smi_window = vmx_enable_smi_window,
8134 
8135 	.can_emulate_instruction = vmx_can_emulate_instruction,
8136 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
8137 	.migrate_timers = vmx_migrate_timers,
8138 
8139 	.msr_filter_changed = vmx_msr_filter_changed,
8140 	.complete_emulated_msr = kvm_complete_insn_gp,
8141 
8142 	.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
8143 };
8144 
8145 static unsigned int vmx_handle_intel_pt_intr(void)
8146 {
8147 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8148 
8149 	/* '0' on failure so that the !PT case can use a RET0 static call. */
8150 	if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8151 		return 0;
8152 
8153 	kvm_make_request(KVM_REQ_PMI, vcpu);
8154 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8155 		  (unsigned long *)&vcpu->arch.pmu.global_status);
8156 	return 1;
8157 }
8158 
8159 static __init void vmx_setup_user_return_msrs(void)
8160 {
8161 
8162 	/*
8163 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8164 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
8165 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8166 	 * support this emulation, MSR_STAR is included in the list for i386,
8167 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8168 	 * into hardware and is here purely for emulation purposes.
8169 	 */
8170 	const u32 vmx_uret_msrs_list[] = {
8171 	#ifdef CONFIG_X86_64
8172 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8173 	#endif
8174 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8175 		MSR_IA32_TSX_CTRL,
8176 	};
8177 	int i;
8178 
8179 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8180 
8181 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8182 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8183 }
8184 
8185 static void __init vmx_setup_me_spte_mask(void)
8186 {
8187 	u64 me_mask = 0;
8188 
8189 	/*
8190 	 * kvm_get_shadow_phys_bits() returns shadow_phys_bits.  Use
8191 	 * the former to avoid exposing shadow_phys_bits.
8192 	 *
8193 	 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8194 	 * shadow_phys_bits.  On MKTME and/or TDX capable systems,
8195 	 * boot_cpu_data.x86_phys_bits holds the actual physical address
8196 	 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
8197 	 * reported by CPUID.  Those bits between are KeyID bits.
8198 	 */
8199 	if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
8200 		me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8201 			kvm_get_shadow_phys_bits() - 1);
8202 	/*
8203 	 * Unlike SME, host kernel doesn't support setting up any
8204 	 * MKTME KeyID on Intel platforms.  No memory encryption
8205 	 * bits should be included into the SPTE.
8206 	 */
8207 	kvm_mmu_set_me_spte_mask(0, me_mask);
8208 }
8209 
8210 static struct kvm_x86_init_ops vmx_init_ops __initdata;
8211 
8212 static __init int hardware_setup(void)
8213 {
8214 	unsigned long host_bndcfgs;
8215 	struct desc_ptr dt;
8216 	int r;
8217 
8218 	store_idt(&dt);
8219 	host_idt_base = dt.address;
8220 
8221 	vmx_setup_user_return_msrs();
8222 
8223 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8224 		return -EIO;
8225 
8226 	if (cpu_has_perf_global_ctrl_bug())
8227 		pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8228 			     "does not work properly. Using workaround\n");
8229 
8230 	if (boot_cpu_has(X86_FEATURE_NX))
8231 		kvm_enable_efer_bits(EFER_NX);
8232 
8233 	if (boot_cpu_has(X86_FEATURE_MPX)) {
8234 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8235 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
8236 	}
8237 
8238 	if (!cpu_has_vmx_mpx())
8239 		kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8240 					     XFEATURE_MASK_BNDCSR);
8241 
8242 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8243 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8244 		enable_vpid = 0;
8245 
8246 	if (!cpu_has_vmx_ept() ||
8247 	    !cpu_has_vmx_ept_4levels() ||
8248 	    !cpu_has_vmx_ept_mt_wb() ||
8249 	    !cpu_has_vmx_invept_global())
8250 		enable_ept = 0;
8251 
8252 	/* NX support is required for shadow paging. */
8253 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8254 		pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n");
8255 		return -EOPNOTSUPP;
8256 	}
8257 
8258 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8259 		enable_ept_ad_bits = 0;
8260 
8261 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8262 		enable_unrestricted_guest = 0;
8263 
8264 	if (!cpu_has_vmx_flexpriority())
8265 		flexpriority_enabled = 0;
8266 
8267 	if (!cpu_has_virtual_nmis())
8268 		enable_vnmi = 0;
8269 
8270 #ifdef CONFIG_X86_SGX_KVM
8271 	if (!cpu_has_vmx_encls_vmexit())
8272 		enable_sgx = false;
8273 #endif
8274 
8275 	/*
8276 	 * set_apic_access_page_addr() is used to reload apic access
8277 	 * page upon invalidation.  No need to do anything if not
8278 	 * using the APIC_ACCESS_ADDR VMCS field.
8279 	 */
8280 	if (!flexpriority_enabled)
8281 		vmx_x86_ops.set_apic_access_page_addr = NULL;
8282 
8283 	if (!cpu_has_vmx_tpr_shadow())
8284 		vmx_x86_ops.update_cr8_intercept = NULL;
8285 
8286 #if IS_ENABLED(CONFIG_HYPERV)
8287 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8288 	    && enable_ept) {
8289 		vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
8290 		vmx_x86_ops.tlb_remote_flush_with_range =
8291 				hv_remote_flush_tlb_with_range;
8292 	}
8293 #endif
8294 
8295 	if (!cpu_has_vmx_ple()) {
8296 		ple_gap = 0;
8297 		ple_window = 0;
8298 		ple_window_grow = 0;
8299 		ple_window_max = 0;
8300 		ple_window_shrink = 0;
8301 	}
8302 
8303 	if (!cpu_has_vmx_apicv())
8304 		enable_apicv = 0;
8305 	if (!enable_apicv)
8306 		vmx_x86_ops.sync_pir_to_irr = NULL;
8307 
8308 	if (!enable_apicv || !cpu_has_vmx_ipiv())
8309 		enable_ipiv = false;
8310 
8311 	if (cpu_has_vmx_tsc_scaling())
8312 		kvm_caps.has_tsc_control = true;
8313 
8314 	kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8315 	kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8316 	kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8317 	kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8318 
8319 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8320 
8321 	if (enable_ept)
8322 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8323 				      cpu_has_vmx_ept_execute_only());
8324 
8325 	/*
8326 	 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8327 	 * bits to shadow_zero_check.
8328 	 */
8329 	vmx_setup_me_spte_mask();
8330 
8331 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(),
8332 			  ept_caps_to_lpage_level(vmx_capability.ept));
8333 
8334 	/*
8335 	 * Only enable PML when hardware supports PML feature, and both EPT
8336 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8337 	 */
8338 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8339 		enable_pml = 0;
8340 
8341 	if (!enable_pml)
8342 		vmx_x86_ops.cpu_dirty_log_size = 0;
8343 
8344 	if (!cpu_has_vmx_preemption_timer())
8345 		enable_preemption_timer = false;
8346 
8347 	if (enable_preemption_timer) {
8348 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8349 
8350 		cpu_preemption_timer_multi =
8351 			vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8352 
8353 		if (tsc_khz)
8354 			use_timer_freq = (u64)tsc_khz * 1000;
8355 		use_timer_freq >>= cpu_preemption_timer_multi;
8356 
8357 		/*
8358 		 * KVM "disables" the preemption timer by setting it to its max
8359 		 * value.  Don't use the timer if it might cause spurious exits
8360 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8361 		 */
8362 		if (use_timer_freq > 0xffffffffu / 10)
8363 			enable_preemption_timer = false;
8364 	}
8365 
8366 	if (!enable_preemption_timer) {
8367 		vmx_x86_ops.set_hv_timer = NULL;
8368 		vmx_x86_ops.cancel_hv_timer = NULL;
8369 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8370 	}
8371 
8372 	kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8373 	kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8374 
8375 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8376 		return -EINVAL;
8377 	if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8378 		pt_mode = PT_MODE_SYSTEM;
8379 	if (pt_mode == PT_MODE_HOST_GUEST)
8380 		vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8381 	else
8382 		vmx_init_ops.handle_intel_pt_intr = NULL;
8383 
8384 	setup_default_sgx_lepubkeyhash();
8385 
8386 	if (nested) {
8387 		nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8388 
8389 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8390 		if (r)
8391 			return r;
8392 	}
8393 
8394 	vmx_set_cpu_caps();
8395 
8396 	r = alloc_kvm_area();
8397 	if (r && nested)
8398 		nested_vmx_hardware_unsetup();
8399 
8400 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8401 
8402 	return r;
8403 }
8404 
8405 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8406 	.cpu_has_kvm_support = cpu_has_kvm_support,
8407 	.disabled_by_bios = vmx_disabled_by_bios,
8408 	.check_processor_compatibility = vmx_check_processor_compat,
8409 	.hardware_setup = hardware_setup,
8410 	.handle_intel_pt_intr = NULL,
8411 
8412 	.runtime_ops = &vmx_x86_ops,
8413 	.pmu_ops = &intel_pmu_ops,
8414 };
8415 
8416 static void vmx_cleanup_l1d_flush(void)
8417 {
8418 	if (vmx_l1d_flush_pages) {
8419 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8420 		vmx_l1d_flush_pages = NULL;
8421 	}
8422 	/* Restore state so sysfs ignores VMX */
8423 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8424 }
8425 
8426 static void vmx_exit(void)
8427 {
8428 #ifdef CONFIG_KEXEC_CORE
8429 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8430 	synchronize_rcu();
8431 #endif
8432 
8433 	kvm_exit();
8434 
8435 #if IS_ENABLED(CONFIG_HYPERV)
8436 	if (static_branch_unlikely(&enable_evmcs)) {
8437 		int cpu;
8438 		struct hv_vp_assist_page *vp_ap;
8439 		/*
8440 		 * Reset everything to support using non-enlightened VMCS
8441 		 * access later (e.g. when we reload the module with
8442 		 * enlightened_vmcs=0)
8443 		 */
8444 		for_each_online_cpu(cpu) {
8445 			vp_ap =	hv_get_vp_assist_page(cpu);
8446 
8447 			if (!vp_ap)
8448 				continue;
8449 
8450 			vp_ap->nested_control.features.directhypercall = 0;
8451 			vp_ap->current_nested_vmcs = 0;
8452 			vp_ap->enlighten_vmentry = 0;
8453 		}
8454 
8455 		static_branch_disable(&enable_evmcs);
8456 	}
8457 #endif
8458 	vmx_cleanup_l1d_flush();
8459 
8460 	allow_smaller_maxphyaddr = false;
8461 }
8462 module_exit(vmx_exit);
8463 
8464 static int __init vmx_init(void)
8465 {
8466 	int r, cpu;
8467 
8468 #if IS_ENABLED(CONFIG_HYPERV)
8469 	/*
8470 	 * Enlightened VMCS usage should be recommended and the host needs
8471 	 * to support eVMCS v1 or above. We can also disable eVMCS support
8472 	 * with module parameter.
8473 	 */
8474 	if (enlightened_vmcs &&
8475 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8476 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8477 	    KVM_EVMCS_VERSION) {
8478 
8479 		/* Check that we have assist pages on all online CPUs */
8480 		for_each_online_cpu(cpu) {
8481 			if (!hv_get_vp_assist_page(cpu)) {
8482 				enlightened_vmcs = false;
8483 				break;
8484 			}
8485 		}
8486 
8487 		if (enlightened_vmcs) {
8488 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8489 			static_branch_enable(&enable_evmcs);
8490 		}
8491 
8492 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8493 			vmx_x86_ops.enable_direct_tlbflush
8494 				= hv_enable_direct_tlbflush;
8495 
8496 	} else {
8497 		enlightened_vmcs = false;
8498 	}
8499 #endif
8500 
8501 	r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8502 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
8503 	if (r)
8504 		return r;
8505 
8506 	/*
8507 	 * Must be called after kvm_init() so enable_ept is properly set
8508 	 * up. Hand the parameter mitigation value in which was stored in
8509 	 * the pre module init parser. If no parameter was given, it will
8510 	 * contain 'auto' which will be turned into the default 'cond'
8511 	 * mitigation mode.
8512 	 */
8513 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8514 	if (r) {
8515 		vmx_exit();
8516 		return r;
8517 	}
8518 
8519 	vmx_setup_fb_clear_ctrl();
8520 
8521 	for_each_possible_cpu(cpu) {
8522 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8523 
8524 		pi_init_cpu(cpu);
8525 	}
8526 
8527 #ifdef CONFIG_KEXEC_CORE
8528 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8529 			   crash_vmclear_local_loaded_vmcss);
8530 #endif
8531 	vmx_check_vmcs12_offsets();
8532 
8533 	/*
8534 	 * Shadow paging doesn't have a (further) performance penalty
8535 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8536 	 * by default
8537 	 */
8538 	if (!enable_ept)
8539 		allow_smaller_maxphyaddr = true;
8540 
8541 	return 0;
8542 }
8543 module_init(vmx_init);
8544