xref: /linux/arch/x86/kvm/vmx/vmx.h (revision f86fd32d)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_VMX_H
3 #define __KVM_X86_VMX_H
4 
5 #include <linux/kvm_host.h>
6 
7 #include <asm/kvm.h>
8 #include <asm/intel_pt.h>
9 
10 #include "capabilities.h"
11 #include "ops.h"
12 #include "vmcs.h"
13 
14 extern const u32 vmx_msr_index[];
15 extern u64 host_efer;
16 
17 extern u32 get_umwait_control_msr(void);
18 
19 #define MSR_TYPE_R	1
20 #define MSR_TYPE_W	2
21 #define MSR_TYPE_RW	3
22 
23 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
24 
25 #ifdef CONFIG_X86_64
26 #define NR_SHARED_MSRS	7
27 #else
28 #define NR_SHARED_MSRS	4
29 #endif
30 
31 #define NR_LOADSTORE_MSRS 8
32 
33 struct vmx_msrs {
34 	unsigned int		nr;
35 	struct vmx_msr_entry	val[NR_LOADSTORE_MSRS];
36 };
37 
38 struct shared_msr_entry {
39 	unsigned index;
40 	u64 data;
41 	u64 mask;
42 };
43 
44 enum segment_cache_field {
45 	SEG_FIELD_SEL = 0,
46 	SEG_FIELD_BASE = 1,
47 	SEG_FIELD_LIMIT = 2,
48 	SEG_FIELD_AR = 3,
49 
50 	SEG_FIELD_NR = 4
51 };
52 
53 /* Posted-Interrupt Descriptor */
54 struct pi_desc {
55 	u32 pir[8];     /* Posted interrupt requested */
56 	union {
57 		struct {
58 				/* bit 256 - Outstanding Notification */
59 			u16	on	: 1,
60 				/* bit 257 - Suppress Notification */
61 				sn	: 1,
62 				/* bit 271:258 - Reserved */
63 				rsvd_1	: 14;
64 				/* bit 279:272 - Notification Vector */
65 			u8	nv;
66 				/* bit 287:280 - Reserved */
67 			u8	rsvd_2;
68 				/* bit 319:288 - Notification Destination */
69 			u32	ndst;
70 		};
71 		u64 control;
72 	};
73 	u32 rsvd[6];
74 } __aligned(64);
75 
76 #define RTIT_ADDR_RANGE		4
77 
78 struct pt_ctx {
79 	u64 ctl;
80 	u64 status;
81 	u64 output_base;
82 	u64 output_mask;
83 	u64 cr3_match;
84 	u64 addr_a[RTIT_ADDR_RANGE];
85 	u64 addr_b[RTIT_ADDR_RANGE];
86 };
87 
88 struct pt_desc {
89 	u64 ctl_bitmask;
90 	u32 addr_range;
91 	u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
92 	struct pt_ctx host;
93 	struct pt_ctx guest;
94 };
95 
96 /*
97  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
98  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
99  */
100 struct nested_vmx {
101 	/* Has the level1 guest done vmxon? */
102 	bool vmxon;
103 	gpa_t vmxon_ptr;
104 	bool pml_full;
105 
106 	/* The guest-physical address of the current VMCS L1 keeps for L2 */
107 	gpa_t current_vmptr;
108 	/*
109 	 * Cache of the guest's VMCS, existing outside of guest memory.
110 	 * Loaded from guest memory during VMPTRLD. Flushed to guest
111 	 * memory during VMCLEAR and VMPTRLD.
112 	 */
113 	struct vmcs12 *cached_vmcs12;
114 	/*
115 	 * Cache of the guest's shadow VMCS, existing outside of guest
116 	 * memory. Loaded from guest memory during VM entry. Flushed
117 	 * to guest memory during VM exit.
118 	 */
119 	struct vmcs12 *cached_shadow_vmcs12;
120 
121 	/*
122 	 * Indicates if the shadow vmcs or enlightened vmcs must be updated
123 	 * with the data held by struct vmcs12.
124 	 */
125 	bool need_vmcs12_to_shadow_sync;
126 	bool dirty_vmcs12;
127 
128 	/*
129 	 * Indicates lazily loaded guest state has not yet been decached from
130 	 * vmcs02.
131 	 */
132 	bool need_sync_vmcs02_to_vmcs12_rare;
133 
134 	/*
135 	 * vmcs02 has been initialized, i.e. state that is constant for
136 	 * vmcs02 has been written to the backing VMCS.  Initialization
137 	 * is delayed until L1 actually attempts to run a nested VM.
138 	 */
139 	bool vmcs02_initialized;
140 
141 	bool change_vmcs01_virtual_apic_mode;
142 
143 	/*
144 	 * Enlightened VMCS has been enabled. It does not mean that L1 has to
145 	 * use it. However, VMX features available to L1 will be limited based
146 	 * on what the enlightened VMCS supports.
147 	 */
148 	bool enlightened_vmcs_enabled;
149 
150 	/* L2 must run next, and mustn't decide to exit to L1. */
151 	bool nested_run_pending;
152 
153 	struct loaded_vmcs vmcs02;
154 
155 	/*
156 	 * Guest pages referred to in the vmcs02 with host-physical
157 	 * pointers, so we must keep them pinned while L2 runs.
158 	 */
159 	struct page *apic_access_page;
160 	struct kvm_host_map virtual_apic_map;
161 	struct kvm_host_map pi_desc_map;
162 
163 	struct kvm_host_map msr_bitmap_map;
164 
165 	struct pi_desc *pi_desc;
166 	bool pi_pending;
167 	u16 posted_intr_nv;
168 
169 	struct hrtimer preemption_timer;
170 	bool preemption_timer_expired;
171 
172 	/* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
173 	u64 vmcs01_debugctl;
174 	u64 vmcs01_guest_bndcfgs;
175 
176 	/* to migrate it to L1 if L2 writes to L1's CR8 directly */
177 	int l1_tpr_threshold;
178 
179 	u16 vpid02;
180 	u16 last_vpid;
181 
182 	struct nested_vmx_msrs msrs;
183 
184 	/* SMM related state */
185 	struct {
186 		/* in VMX operation on SMM entry? */
187 		bool vmxon;
188 		/* in guest mode on SMM entry? */
189 		bool guest_mode;
190 	} smm;
191 
192 	gpa_t hv_evmcs_vmptr;
193 	struct kvm_host_map hv_evmcs_map;
194 	struct hv_enlightened_vmcs *hv_evmcs;
195 };
196 
197 struct vcpu_vmx {
198 	struct kvm_vcpu       vcpu;
199 	u8                    fail;
200 	u8		      msr_bitmap_mode;
201 
202 	/*
203 	 * If true, host state has been stored in vmx->loaded_vmcs for
204 	 * the CPU registers that only need to be switched when transitioning
205 	 * to/from the kernel, and the registers have been loaded with guest
206 	 * values.  If false, host state is loaded in the CPU registers
207 	 * and vmx->loaded_vmcs->host_state is invalid.
208 	 */
209 	bool		      guest_state_loaded;
210 
211 	u32                   exit_intr_info;
212 	u32                   idt_vectoring_info;
213 	ulong                 rflags;
214 
215 	struct shared_msr_entry guest_msrs[NR_SHARED_MSRS];
216 	int                   nmsrs;
217 	int                   save_nmsrs;
218 	bool                  guest_msrs_ready;
219 #ifdef CONFIG_X86_64
220 	u64		      msr_host_kernel_gs_base;
221 	u64		      msr_guest_kernel_gs_base;
222 #endif
223 
224 	u64		      spec_ctrl;
225 	u32		      msr_ia32_umwait_control;
226 
227 	u32 secondary_exec_control;
228 
229 	/*
230 	 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
231 	 * non-nested (L1) guest, it always points to vmcs01. For a nested
232 	 * guest (L2), it points to a different VMCS.
233 	 */
234 	struct loaded_vmcs    vmcs01;
235 	struct loaded_vmcs   *loaded_vmcs;
236 
237 	struct msr_autoload {
238 		struct vmx_msrs guest;
239 		struct vmx_msrs host;
240 	} msr_autoload;
241 
242 	struct msr_autostore {
243 		struct vmx_msrs guest;
244 	} msr_autostore;
245 
246 	struct {
247 		int vm86_active;
248 		ulong save_rflags;
249 		struct kvm_segment segs[8];
250 	} rmode;
251 	struct {
252 		u32 bitmask; /* 4 bits per segment (1 bit per field) */
253 		struct kvm_save_segment {
254 			u16 selector;
255 			unsigned long base;
256 			u32 limit;
257 			u32 ar;
258 		} seg[8];
259 	} segment_cache;
260 	int vpid;
261 	bool emulation_required;
262 
263 	u32 exit_reason;
264 
265 	/* Posted interrupt descriptor */
266 	struct pi_desc pi_desc;
267 
268 	/* Support for a guest hypervisor (nested VMX) */
269 	struct nested_vmx nested;
270 
271 	/* Dynamic PLE window. */
272 	unsigned int ple_window;
273 	bool ple_window_dirty;
274 
275 	bool req_immediate_exit;
276 
277 	/* Support for PML */
278 #define PML_ENTITY_NUM		512
279 	struct page *pml_pg;
280 
281 	/* apic deadline value in host tsc */
282 	u64 hv_deadline_tsc;
283 
284 	u64 current_tsc_ratio;
285 
286 	u32 host_pkru;
287 
288 	unsigned long host_debugctlmsr;
289 
290 	/*
291 	 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
292 	 * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included
293 	 * in msr_ia32_feature_control_valid_bits.
294 	 */
295 	u64 msr_ia32_feature_control;
296 	u64 msr_ia32_feature_control_valid_bits;
297 	u64 ept_pointer;
298 
299 	struct pt_desc pt_desc;
300 };
301 
302 enum ept_pointers_status {
303 	EPT_POINTERS_CHECK = 0,
304 	EPT_POINTERS_MATCH = 1,
305 	EPT_POINTERS_MISMATCH = 2
306 };
307 
308 struct kvm_vmx {
309 	struct kvm kvm;
310 
311 	unsigned int tss_addr;
312 	bool ept_identity_pagetable_done;
313 	gpa_t ept_identity_map_addr;
314 
315 	enum ept_pointers_status ept_pointers_match;
316 	spinlock_t ept_pointer_lock;
317 };
318 
319 bool nested_vmx_allowed(struct kvm_vcpu *vcpu);
320 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu);
321 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
322 int allocate_vpid(void);
323 void free_vpid(int vpid);
324 void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
325 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
326 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
327 			unsigned long fs_base, unsigned long gs_base);
328 int vmx_get_cpl(struct kvm_vcpu *vcpu);
329 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
330 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
331 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
332 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
333 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
334 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
335 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
336 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
337 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
338 void ept_save_pdptrs(struct kvm_vcpu *vcpu);
339 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
340 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
341 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
342 void update_exception_bitmap(struct kvm_vcpu *vcpu);
343 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu);
344 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
345 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
346 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
347 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr);
348 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx);
349 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp);
350 int vmx_find_msr_index(struct vmx_msrs *m, u32 msr);
351 
352 #define POSTED_INTR_ON  0
353 #define POSTED_INTR_SN  1
354 
355 static inline bool pi_test_and_set_on(struct pi_desc *pi_desc)
356 {
357 	return test_and_set_bit(POSTED_INTR_ON,
358 			(unsigned long *)&pi_desc->control);
359 }
360 
361 static inline bool pi_test_and_clear_on(struct pi_desc *pi_desc)
362 {
363 	return test_and_clear_bit(POSTED_INTR_ON,
364 			(unsigned long *)&pi_desc->control);
365 }
366 
367 static inline int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
368 {
369 	return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
370 }
371 
372 static inline bool pi_is_pir_empty(struct pi_desc *pi_desc)
373 {
374 	return bitmap_empty((unsigned long *)pi_desc->pir, NR_VECTORS);
375 }
376 
377 static inline void pi_set_sn(struct pi_desc *pi_desc)
378 {
379 	set_bit(POSTED_INTR_SN,
380 		(unsigned long *)&pi_desc->control);
381 }
382 
383 static inline void pi_set_on(struct pi_desc *pi_desc)
384 {
385 	set_bit(POSTED_INTR_ON,
386 		(unsigned long *)&pi_desc->control);
387 }
388 
389 static inline void pi_clear_on(struct pi_desc *pi_desc)
390 {
391 	clear_bit(POSTED_INTR_ON,
392 		(unsigned long *)&pi_desc->control);
393 }
394 
395 static inline void pi_clear_sn(struct pi_desc *pi_desc)
396 {
397 	clear_bit(POSTED_INTR_SN,
398 		(unsigned long *)&pi_desc->control);
399 }
400 
401 static inline int pi_test_on(struct pi_desc *pi_desc)
402 {
403 	return test_bit(POSTED_INTR_ON,
404 			(unsigned long *)&pi_desc->control);
405 }
406 
407 static inline int pi_test_sn(struct pi_desc *pi_desc)
408 {
409 	return test_bit(POSTED_INTR_SN,
410 			(unsigned long *)&pi_desc->control);
411 }
412 
413 static inline u8 vmx_get_rvi(void)
414 {
415 	return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
416 }
417 
418 #define BUILD_CONTROLS_SHADOW(lname, uname)				    \
419 static inline void lname##_controls_set(struct vcpu_vmx *vmx, u32 val)	    \
420 {									    \
421 	if (vmx->loaded_vmcs->controls_shadow.lname != val) {		    \
422 		vmcs_write32(uname, val);				    \
423 		vmx->loaded_vmcs->controls_shadow.lname = val;		    \
424 	}								    \
425 }									    \
426 static inline u32 lname##_controls_get(struct vcpu_vmx *vmx)		    \
427 {									    \
428 	return vmx->loaded_vmcs->controls_shadow.lname;			    \
429 }									    \
430 static inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u32 val)   \
431 {									    \
432 	lname##_controls_set(vmx, lname##_controls_get(vmx) | val);	    \
433 }									    \
434 static inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u32 val) \
435 {									    \
436 	lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val);	    \
437 }
438 BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS)
439 BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS)
440 BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL)
441 BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL)
442 BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL)
443 
444 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
445 {
446 	vmx->segment_cache.bitmask = 0;
447 }
448 
449 static inline u32 vmx_vmentry_ctrl(void)
450 {
451 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
452 	if (pt_mode == PT_MODE_SYSTEM)
453 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
454 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
455 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
456 	return vmentry_ctrl &
457 		~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER);
458 }
459 
460 static inline u32 vmx_vmexit_ctrl(void)
461 {
462 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
463 	if (pt_mode == PT_MODE_SYSTEM)
464 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
465 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
466 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
467 	return vmexit_ctrl &
468 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
469 }
470 
471 u32 vmx_exec_control(struct vcpu_vmx *vmx);
472 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx);
473 
474 static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
475 {
476 	return container_of(kvm, struct kvm_vmx, kvm);
477 }
478 
479 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
480 {
481 	return container_of(vcpu, struct vcpu_vmx, vcpu);
482 }
483 
484 static inline struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
485 {
486 	return &(to_vmx(vcpu)->pi_desc);
487 }
488 
489 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags);
490 void free_vmcs(struct vmcs *vmcs);
491 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
492 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
493 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs);
494 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
495 
496 static inline struct vmcs *alloc_vmcs(bool shadow)
497 {
498 	return alloc_vmcs_cpu(shadow, raw_smp_processor_id(),
499 			      GFP_KERNEL_ACCOUNT);
500 }
501 
502 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
503 
504 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid,
505 				bool invalidate_gpa)
506 {
507 	if (enable_ept && (invalidate_gpa || !enable_vpid)) {
508 		if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
509 			return;
510 		ept_sync_context(construct_eptp(vcpu,
511 						vcpu->arch.mmu->root_hpa));
512 	} else {
513 		vpid_sync_context(vpid);
514 	}
515 }
516 
517 static inline void vmx_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
518 {
519 	__vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid, invalidate_gpa);
520 }
521 
522 static inline void decache_tsc_multiplier(struct vcpu_vmx *vmx)
523 {
524 	vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
525 	vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
526 }
527 
528 static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx)
529 {
530 	return vmx->secondary_exec_control &
531 		SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
532 }
533 
534 void dump_vmcs(void);
535 
536 #endif /* __KVM_X86_VMX_H */
537