xref: /linux/arch/x86/kvm/x86.c (revision 0be3ff0c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62 
63 #include <trace/events/kvm.h>
64 
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84 
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87 
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
92 
93 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
94 
95 #define emul_to_vcpu(ctxt) \
96 	((struct kvm_vcpu *)(ctxt)->vcpu)
97 
98 /* EFER defaults:
99  * - enable syscall per default because its emulated by KVM
100  * - enable LME and LMA per default on 64 bit KVM
101  */
102 #ifdef CONFIG_X86_64
103 static
104 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
105 #else
106 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
107 #endif
108 
109 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
110 
111 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
112 
113 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
114 
115 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
116                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
117 
118 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
119 static void process_nmi(struct kvm_vcpu *vcpu);
120 static void process_smi(struct kvm_vcpu *vcpu);
121 static void enter_smm(struct kvm_vcpu *vcpu);
122 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
123 static void store_regs(struct kvm_vcpu *vcpu);
124 static int sync_regs(struct kvm_vcpu *vcpu);
125 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
126 
127 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
128 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
129 
130 struct kvm_x86_ops kvm_x86_ops __read_mostly;
131 
132 #define KVM_X86_OP(func)					     \
133 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
134 				*(((struct kvm_x86_ops *)0)->func));
135 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
136 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
137 #include <asm/kvm-x86-ops.h>
138 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
139 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
140 
141 static bool __read_mostly ignore_msrs = 0;
142 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
143 
144 bool __read_mostly report_ignored_msrs = true;
145 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
146 EXPORT_SYMBOL_GPL(report_ignored_msrs);
147 
148 unsigned int min_timer_period_us = 200;
149 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
150 
151 static bool __read_mostly kvmclock_periodic_sync = true;
152 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
153 
154 bool __read_mostly kvm_has_tsc_control;
155 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
156 u32  __read_mostly kvm_max_guest_tsc_khz;
157 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
158 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
159 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
160 u64  __read_mostly kvm_max_tsc_scaling_ratio;
161 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
162 u64 __read_mostly kvm_default_tsc_scaling_ratio;
163 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
164 bool __read_mostly kvm_has_bus_lock_exit;
165 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
166 
167 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
168 static u32 __read_mostly tsc_tolerance_ppm = 250;
169 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
170 
171 /*
172  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
173  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
174  * advancement entirely.  Any other value is used as-is and disables adaptive
175  * tuning, i.e. allows privileged userspace to set an exact advancement time.
176  */
177 static int __read_mostly lapic_timer_advance_ns = -1;
178 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
179 
180 static bool __read_mostly vector_hashing = true;
181 module_param(vector_hashing, bool, S_IRUGO);
182 
183 bool __read_mostly enable_vmware_backdoor = false;
184 module_param(enable_vmware_backdoor, bool, S_IRUGO);
185 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
186 
187 static bool __read_mostly force_emulation_prefix = false;
188 module_param(force_emulation_prefix, bool, S_IRUGO);
189 
190 int __read_mostly pi_inject_timer = -1;
191 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
192 
193 /* Enable/disable PMU virtualization */
194 bool __read_mostly enable_pmu = true;
195 EXPORT_SYMBOL_GPL(enable_pmu);
196 module_param(enable_pmu, bool, 0444);
197 
198 bool __read_mostly eager_page_split = true;
199 module_param(eager_page_split, bool, 0644);
200 
201 /*
202  * Restoring the host value for MSRs that are only consumed when running in
203  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
204  * returns to userspace, i.e. the kernel can run with the guest's value.
205  */
206 #define KVM_MAX_NR_USER_RETURN_MSRS 16
207 
208 struct kvm_user_return_msrs {
209 	struct user_return_notifier urn;
210 	bool registered;
211 	struct kvm_user_return_msr_values {
212 		u64 host;
213 		u64 curr;
214 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
215 };
216 
217 u32 __read_mostly kvm_nr_uret_msrs;
218 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
219 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
220 static struct kvm_user_return_msrs __percpu *user_return_msrs;
221 
222 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
223 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
224 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
225 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
226 
227 u64 __read_mostly host_efer;
228 EXPORT_SYMBOL_GPL(host_efer);
229 
230 bool __read_mostly allow_smaller_maxphyaddr = 0;
231 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
232 
233 bool __read_mostly enable_apicv = true;
234 EXPORT_SYMBOL_GPL(enable_apicv);
235 
236 u64 __read_mostly host_xss;
237 EXPORT_SYMBOL_GPL(host_xss);
238 u64 __read_mostly supported_xss;
239 EXPORT_SYMBOL_GPL(supported_xss);
240 
241 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
242 	KVM_GENERIC_VM_STATS(),
243 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
244 	STATS_DESC_COUNTER(VM, mmu_pte_write),
245 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
246 	STATS_DESC_COUNTER(VM, mmu_flooded),
247 	STATS_DESC_COUNTER(VM, mmu_recycled),
248 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
249 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
250 	STATS_DESC_ICOUNTER(VM, pages_4k),
251 	STATS_DESC_ICOUNTER(VM, pages_2m),
252 	STATS_DESC_ICOUNTER(VM, pages_1g),
253 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
254 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
255 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
256 };
257 
258 const struct kvm_stats_header kvm_vm_stats_header = {
259 	.name_size = KVM_STATS_NAME_SIZE,
260 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
261 	.id_offset = sizeof(struct kvm_stats_header),
262 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
263 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
264 		       sizeof(kvm_vm_stats_desc),
265 };
266 
267 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
268 	KVM_GENERIC_VCPU_STATS(),
269 	STATS_DESC_COUNTER(VCPU, pf_fixed),
270 	STATS_DESC_COUNTER(VCPU, pf_guest),
271 	STATS_DESC_COUNTER(VCPU, tlb_flush),
272 	STATS_DESC_COUNTER(VCPU, invlpg),
273 	STATS_DESC_COUNTER(VCPU, exits),
274 	STATS_DESC_COUNTER(VCPU, io_exits),
275 	STATS_DESC_COUNTER(VCPU, mmio_exits),
276 	STATS_DESC_COUNTER(VCPU, signal_exits),
277 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
278 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
279 	STATS_DESC_COUNTER(VCPU, l1d_flush),
280 	STATS_DESC_COUNTER(VCPU, halt_exits),
281 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
282 	STATS_DESC_COUNTER(VCPU, irq_exits),
283 	STATS_DESC_COUNTER(VCPU, host_state_reload),
284 	STATS_DESC_COUNTER(VCPU, fpu_reload),
285 	STATS_DESC_COUNTER(VCPU, insn_emulation),
286 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
287 	STATS_DESC_COUNTER(VCPU, hypercalls),
288 	STATS_DESC_COUNTER(VCPU, irq_injections),
289 	STATS_DESC_COUNTER(VCPU, nmi_injections),
290 	STATS_DESC_COUNTER(VCPU, req_event),
291 	STATS_DESC_COUNTER(VCPU, nested_run),
292 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
293 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
294 	STATS_DESC_ICOUNTER(VCPU, guest_mode)
295 };
296 
297 const struct kvm_stats_header kvm_vcpu_stats_header = {
298 	.name_size = KVM_STATS_NAME_SIZE,
299 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
300 	.id_offset = sizeof(struct kvm_stats_header),
301 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
302 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
303 		       sizeof(kvm_vcpu_stats_desc),
304 };
305 
306 u64 __read_mostly host_xcr0;
307 u64 __read_mostly supported_xcr0;
308 EXPORT_SYMBOL_GPL(supported_xcr0);
309 
310 static struct kmem_cache *x86_emulator_cache;
311 
312 /*
313  * When called, it means the previous get/set msr reached an invalid msr.
314  * Return true if we want to ignore/silent this failed msr access.
315  */
316 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
317 {
318 	const char *op = write ? "wrmsr" : "rdmsr";
319 
320 	if (ignore_msrs) {
321 		if (report_ignored_msrs)
322 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
323 				      op, msr, data);
324 		/* Mask the error */
325 		return true;
326 	} else {
327 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
328 				      op, msr, data);
329 		return false;
330 	}
331 }
332 
333 static struct kmem_cache *kvm_alloc_emulator_cache(void)
334 {
335 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
336 	unsigned int size = sizeof(struct x86_emulate_ctxt);
337 
338 	return kmem_cache_create_usercopy("x86_emulator", size,
339 					  __alignof__(struct x86_emulate_ctxt),
340 					  SLAB_ACCOUNT, useroffset,
341 					  size - useroffset, NULL);
342 }
343 
344 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
345 
346 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
347 {
348 	int i;
349 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
350 		vcpu->arch.apf.gfns[i] = ~0;
351 }
352 
353 static void kvm_on_user_return(struct user_return_notifier *urn)
354 {
355 	unsigned slot;
356 	struct kvm_user_return_msrs *msrs
357 		= container_of(urn, struct kvm_user_return_msrs, urn);
358 	struct kvm_user_return_msr_values *values;
359 	unsigned long flags;
360 
361 	/*
362 	 * Disabling irqs at this point since the following code could be
363 	 * interrupted and executed through kvm_arch_hardware_disable()
364 	 */
365 	local_irq_save(flags);
366 	if (msrs->registered) {
367 		msrs->registered = false;
368 		user_return_notifier_unregister(urn);
369 	}
370 	local_irq_restore(flags);
371 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
372 		values = &msrs->values[slot];
373 		if (values->host != values->curr) {
374 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
375 			values->curr = values->host;
376 		}
377 	}
378 }
379 
380 static int kvm_probe_user_return_msr(u32 msr)
381 {
382 	u64 val;
383 	int ret;
384 
385 	preempt_disable();
386 	ret = rdmsrl_safe(msr, &val);
387 	if (ret)
388 		goto out;
389 	ret = wrmsrl_safe(msr, val);
390 out:
391 	preempt_enable();
392 	return ret;
393 }
394 
395 int kvm_add_user_return_msr(u32 msr)
396 {
397 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
398 
399 	if (kvm_probe_user_return_msr(msr))
400 		return -1;
401 
402 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
403 	return kvm_nr_uret_msrs++;
404 }
405 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
406 
407 int kvm_find_user_return_msr(u32 msr)
408 {
409 	int i;
410 
411 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
412 		if (kvm_uret_msrs_list[i] == msr)
413 			return i;
414 	}
415 	return -1;
416 }
417 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
418 
419 static void kvm_user_return_msr_cpu_online(void)
420 {
421 	unsigned int cpu = smp_processor_id();
422 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
423 	u64 value;
424 	int i;
425 
426 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
427 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
428 		msrs->values[i].host = value;
429 		msrs->values[i].curr = value;
430 	}
431 }
432 
433 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
434 {
435 	unsigned int cpu = smp_processor_id();
436 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
437 	int err;
438 
439 	value = (value & mask) | (msrs->values[slot].host & ~mask);
440 	if (value == msrs->values[slot].curr)
441 		return 0;
442 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
443 	if (err)
444 		return 1;
445 
446 	msrs->values[slot].curr = value;
447 	if (!msrs->registered) {
448 		msrs->urn.on_user_return = kvm_on_user_return;
449 		user_return_notifier_register(&msrs->urn);
450 		msrs->registered = true;
451 	}
452 	return 0;
453 }
454 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
455 
456 static void drop_user_return_notifiers(void)
457 {
458 	unsigned int cpu = smp_processor_id();
459 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
460 
461 	if (msrs->registered)
462 		kvm_on_user_return(&msrs->urn);
463 }
464 
465 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
466 {
467 	return vcpu->arch.apic_base;
468 }
469 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
470 
471 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
472 {
473 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
474 }
475 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
476 
477 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
478 {
479 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
480 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
481 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
482 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
483 
484 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
485 		return 1;
486 	if (!msr_info->host_initiated) {
487 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
488 			return 1;
489 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
490 			return 1;
491 	}
492 
493 	kvm_lapic_set_base(vcpu, msr_info->data);
494 	kvm_recalculate_apic_map(vcpu->kvm);
495 	return 0;
496 }
497 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
498 
499 /*
500  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
501  *
502  * Hardware virtualization extension instructions may fault if a reboot turns
503  * off virtualization while processes are running.  Usually after catching the
504  * fault we just panic; during reboot instead the instruction is ignored.
505  */
506 noinstr void kvm_spurious_fault(void)
507 {
508 	/* Fault while not rebooting.  We want the trace. */
509 	BUG_ON(!kvm_rebooting);
510 }
511 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
512 
513 #define EXCPT_BENIGN		0
514 #define EXCPT_CONTRIBUTORY	1
515 #define EXCPT_PF		2
516 
517 static int exception_class(int vector)
518 {
519 	switch (vector) {
520 	case PF_VECTOR:
521 		return EXCPT_PF;
522 	case DE_VECTOR:
523 	case TS_VECTOR:
524 	case NP_VECTOR:
525 	case SS_VECTOR:
526 	case GP_VECTOR:
527 		return EXCPT_CONTRIBUTORY;
528 	default:
529 		break;
530 	}
531 	return EXCPT_BENIGN;
532 }
533 
534 #define EXCPT_FAULT		0
535 #define EXCPT_TRAP		1
536 #define EXCPT_ABORT		2
537 #define EXCPT_INTERRUPT		3
538 
539 static int exception_type(int vector)
540 {
541 	unsigned int mask;
542 
543 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
544 		return EXCPT_INTERRUPT;
545 
546 	mask = 1 << vector;
547 
548 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
549 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
550 		return EXCPT_TRAP;
551 
552 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
553 		return EXCPT_ABORT;
554 
555 	/* Reserved exceptions will result in fault */
556 	return EXCPT_FAULT;
557 }
558 
559 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
560 {
561 	unsigned nr = vcpu->arch.exception.nr;
562 	bool has_payload = vcpu->arch.exception.has_payload;
563 	unsigned long payload = vcpu->arch.exception.payload;
564 
565 	if (!has_payload)
566 		return;
567 
568 	switch (nr) {
569 	case DB_VECTOR:
570 		/*
571 		 * "Certain debug exceptions may clear bit 0-3.  The
572 		 * remaining contents of the DR6 register are never
573 		 * cleared by the processor".
574 		 */
575 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
576 		/*
577 		 * In order to reflect the #DB exception payload in guest
578 		 * dr6, three components need to be considered: active low
579 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
580 		 * DR6_BS and DR6_BT)
581 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
582 		 * In the target guest dr6:
583 		 * FIXED_1 bits should always be set.
584 		 * Active low bits should be cleared if 1-setting in payload.
585 		 * Active high bits should be set if 1-setting in payload.
586 		 *
587 		 * Note, the payload is compatible with the pending debug
588 		 * exceptions/exit qualification under VMX, that active_low bits
589 		 * are active high in payload.
590 		 * So they need to be flipped for DR6.
591 		 */
592 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
593 		vcpu->arch.dr6 |= payload;
594 		vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
595 
596 		/*
597 		 * The #DB payload is defined as compatible with the 'pending
598 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
599 		 * defined in the 'pending debug exceptions' field (enabled
600 		 * breakpoint), it is reserved and must be zero in DR6.
601 		 */
602 		vcpu->arch.dr6 &= ~BIT(12);
603 		break;
604 	case PF_VECTOR:
605 		vcpu->arch.cr2 = payload;
606 		break;
607 	}
608 
609 	vcpu->arch.exception.has_payload = false;
610 	vcpu->arch.exception.payload = 0;
611 }
612 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
613 
614 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
615 		unsigned nr, bool has_error, u32 error_code,
616 	        bool has_payload, unsigned long payload, bool reinject)
617 {
618 	u32 prev_nr;
619 	int class1, class2;
620 
621 	kvm_make_request(KVM_REQ_EVENT, vcpu);
622 
623 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
624 	queue:
625 		if (reinject) {
626 			/*
627 			 * On vmentry, vcpu->arch.exception.pending is only
628 			 * true if an event injection was blocked by
629 			 * nested_run_pending.  In that case, however,
630 			 * vcpu_enter_guest requests an immediate exit,
631 			 * and the guest shouldn't proceed far enough to
632 			 * need reinjection.
633 			 */
634 			WARN_ON_ONCE(vcpu->arch.exception.pending);
635 			vcpu->arch.exception.injected = true;
636 			if (WARN_ON_ONCE(has_payload)) {
637 				/*
638 				 * A reinjected event has already
639 				 * delivered its payload.
640 				 */
641 				has_payload = false;
642 				payload = 0;
643 			}
644 		} else {
645 			vcpu->arch.exception.pending = true;
646 			vcpu->arch.exception.injected = false;
647 		}
648 		vcpu->arch.exception.has_error_code = has_error;
649 		vcpu->arch.exception.nr = nr;
650 		vcpu->arch.exception.error_code = error_code;
651 		vcpu->arch.exception.has_payload = has_payload;
652 		vcpu->arch.exception.payload = payload;
653 		if (!is_guest_mode(vcpu))
654 			kvm_deliver_exception_payload(vcpu);
655 		return;
656 	}
657 
658 	/* to check exception */
659 	prev_nr = vcpu->arch.exception.nr;
660 	if (prev_nr == DF_VECTOR) {
661 		/* triple fault -> shutdown */
662 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
663 		return;
664 	}
665 	class1 = exception_class(prev_nr);
666 	class2 = exception_class(nr);
667 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
668 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
669 		/*
670 		 * Generate double fault per SDM Table 5-5.  Set
671 		 * exception.pending = true so that the double fault
672 		 * can trigger a nested vmexit.
673 		 */
674 		vcpu->arch.exception.pending = true;
675 		vcpu->arch.exception.injected = false;
676 		vcpu->arch.exception.has_error_code = true;
677 		vcpu->arch.exception.nr = DF_VECTOR;
678 		vcpu->arch.exception.error_code = 0;
679 		vcpu->arch.exception.has_payload = false;
680 		vcpu->arch.exception.payload = 0;
681 	} else
682 		/* replace previous exception with a new one in a hope
683 		   that instruction re-execution will regenerate lost
684 		   exception */
685 		goto queue;
686 }
687 
688 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
689 {
690 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
691 }
692 EXPORT_SYMBOL_GPL(kvm_queue_exception);
693 
694 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
695 {
696 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
697 }
698 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
699 
700 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
701 			   unsigned long payload)
702 {
703 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
704 }
705 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
706 
707 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
708 				    u32 error_code, unsigned long payload)
709 {
710 	kvm_multiple_exception(vcpu, nr, true, error_code,
711 			       true, payload, false);
712 }
713 
714 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
715 {
716 	if (err)
717 		kvm_inject_gp(vcpu, 0);
718 	else
719 		return kvm_skip_emulated_instruction(vcpu);
720 
721 	return 1;
722 }
723 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
724 
725 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
726 {
727 	if (err) {
728 		kvm_inject_gp(vcpu, 0);
729 		return 1;
730 	}
731 
732 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
733 				       EMULTYPE_COMPLETE_USER_EXIT);
734 }
735 
736 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
737 {
738 	++vcpu->stat.pf_guest;
739 	vcpu->arch.exception.nested_apf =
740 		is_guest_mode(vcpu) && fault->async_page_fault;
741 	if (vcpu->arch.exception.nested_apf) {
742 		vcpu->arch.apf.nested_apf_token = fault->address;
743 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
744 	} else {
745 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
746 					fault->address);
747 	}
748 }
749 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
750 
751 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
752 				    struct x86_exception *fault)
753 {
754 	struct kvm_mmu *fault_mmu;
755 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
756 
757 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
758 					       vcpu->arch.walk_mmu;
759 
760 	/*
761 	 * Invalidate the TLB entry for the faulting address, if it exists,
762 	 * else the access will fault indefinitely (and to emulate hardware).
763 	 */
764 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
765 	    !(fault->error_code & PFERR_RSVD_MASK))
766 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
767 				       fault_mmu->root.hpa);
768 
769 	fault_mmu->inject_page_fault(vcpu, fault);
770 	return fault->nested_page_fault;
771 }
772 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
773 
774 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
775 {
776 	atomic_inc(&vcpu->arch.nmi_queued);
777 	kvm_make_request(KVM_REQ_NMI, vcpu);
778 }
779 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
780 
781 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
782 {
783 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
784 }
785 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
786 
787 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
788 {
789 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
790 }
791 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
792 
793 /*
794  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
795  * a #GP and return false.
796  */
797 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
798 {
799 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
800 		return true;
801 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
802 	return false;
803 }
804 EXPORT_SYMBOL_GPL(kvm_require_cpl);
805 
806 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
807 {
808 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
809 		return true;
810 
811 	kvm_queue_exception(vcpu, UD_VECTOR);
812 	return false;
813 }
814 EXPORT_SYMBOL_GPL(kvm_require_dr);
815 
816 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
817 {
818 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
819 }
820 
821 /*
822  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
823  */
824 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
825 {
826 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
827 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
828 	gpa_t real_gpa;
829 	int i;
830 	int ret;
831 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
832 
833 	/*
834 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
835 	 * to an L1 GPA.
836 	 */
837 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
838 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
839 	if (real_gpa == UNMAPPED_GVA)
840 		return 0;
841 
842 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
843 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
844 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
845 	if (ret < 0)
846 		return 0;
847 
848 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
849 		if ((pdpte[i] & PT_PRESENT_MASK) &&
850 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
851 			return 0;
852 		}
853 	}
854 
855 	/*
856 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
857 	 * Shadow page roots need to be reconstructed instead.
858 	 */
859 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
860 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
861 
862 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
863 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
864 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
865 	vcpu->arch.pdptrs_from_userspace = false;
866 
867 	return 1;
868 }
869 EXPORT_SYMBOL_GPL(load_pdptrs);
870 
871 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
872 {
873 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
874 		kvm_clear_async_pf_completion_queue(vcpu);
875 		kvm_async_pf_hash_reset(vcpu);
876 
877 		/*
878 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
879 		 * perspective.
880 		 */
881 		if (!(cr0 & X86_CR0_PG))
882 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
883 	}
884 
885 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
886 		kvm_mmu_reset_context(vcpu);
887 
888 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
889 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
890 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
891 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
892 }
893 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
894 
895 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
896 {
897 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
898 
899 	cr0 |= X86_CR0_ET;
900 
901 #ifdef CONFIG_X86_64
902 	if (cr0 & 0xffffffff00000000UL)
903 		return 1;
904 #endif
905 
906 	cr0 &= ~CR0_RESERVED_BITS;
907 
908 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
909 		return 1;
910 
911 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
912 		return 1;
913 
914 #ifdef CONFIG_X86_64
915 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
916 	    (cr0 & X86_CR0_PG)) {
917 		int cs_db, cs_l;
918 
919 		if (!is_pae(vcpu))
920 			return 1;
921 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
922 		if (cs_l)
923 			return 1;
924 	}
925 #endif
926 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
927 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
928 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
929 		return 1;
930 
931 	if (!(cr0 & X86_CR0_PG) &&
932 	    (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
933 		return 1;
934 
935 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
936 
937 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
938 
939 	return 0;
940 }
941 EXPORT_SYMBOL_GPL(kvm_set_cr0);
942 
943 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
944 {
945 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
946 }
947 EXPORT_SYMBOL_GPL(kvm_lmsw);
948 
949 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
950 {
951 	if (vcpu->arch.guest_state_protected)
952 		return;
953 
954 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
955 
956 		if (vcpu->arch.xcr0 != host_xcr0)
957 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
958 
959 		if (vcpu->arch.xsaves_enabled &&
960 		    vcpu->arch.ia32_xss != host_xss)
961 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
962 	}
963 
964 	if (static_cpu_has(X86_FEATURE_PKU) &&
965 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
966 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
967 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
968 		write_pkru(vcpu->arch.pkru);
969 }
970 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
971 
972 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
973 {
974 	if (vcpu->arch.guest_state_protected)
975 		return;
976 
977 	if (static_cpu_has(X86_FEATURE_PKU) &&
978 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
979 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
980 		vcpu->arch.pkru = rdpkru();
981 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
982 			write_pkru(vcpu->arch.host_pkru);
983 	}
984 
985 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
986 
987 		if (vcpu->arch.xcr0 != host_xcr0)
988 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
989 
990 		if (vcpu->arch.xsaves_enabled &&
991 		    vcpu->arch.ia32_xss != host_xss)
992 			wrmsrl(MSR_IA32_XSS, host_xss);
993 	}
994 
995 }
996 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
997 
998 static inline u64 kvm_guest_supported_xcr0(struct kvm_vcpu *vcpu)
999 {
1000 	return vcpu->arch.guest_fpu.fpstate->user_xfeatures;
1001 }
1002 
1003 #ifdef CONFIG_X86_64
1004 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1005 {
1006 	return kvm_guest_supported_xcr0(vcpu) & XFEATURE_MASK_USER_DYNAMIC;
1007 }
1008 #endif
1009 
1010 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1011 {
1012 	u64 xcr0 = xcr;
1013 	u64 old_xcr0 = vcpu->arch.xcr0;
1014 	u64 valid_bits;
1015 
1016 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1017 	if (index != XCR_XFEATURE_ENABLED_MASK)
1018 		return 1;
1019 	if (!(xcr0 & XFEATURE_MASK_FP))
1020 		return 1;
1021 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1022 		return 1;
1023 
1024 	/*
1025 	 * Do not allow the guest to set bits that we do not support
1026 	 * saving.  However, xcr0 bit 0 is always set, even if the
1027 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1028 	 */
1029 	valid_bits = kvm_guest_supported_xcr0(vcpu) | XFEATURE_MASK_FP;
1030 	if (xcr0 & ~valid_bits)
1031 		return 1;
1032 
1033 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1034 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1035 		return 1;
1036 
1037 	if (xcr0 & XFEATURE_MASK_AVX512) {
1038 		if (!(xcr0 & XFEATURE_MASK_YMM))
1039 			return 1;
1040 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1041 			return 1;
1042 	}
1043 
1044 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1045 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1046 		return 1;
1047 
1048 	vcpu->arch.xcr0 = xcr0;
1049 
1050 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1051 		kvm_update_cpuid_runtime(vcpu);
1052 	return 0;
1053 }
1054 
1055 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1056 {
1057 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1058 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1059 		kvm_inject_gp(vcpu, 0);
1060 		return 1;
1061 	}
1062 
1063 	return kvm_skip_emulated_instruction(vcpu);
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1066 
1067 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1068 {
1069 	if (cr4 & cr4_reserved_bits)
1070 		return false;
1071 
1072 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1073 		return false;
1074 
1075 	return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1076 }
1077 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1078 
1079 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1080 {
1081 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1082 		kvm_mmu_reset_context(vcpu);
1083 
1084 	/*
1085 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1086 	 * according to the SDM; however, stale prev_roots could be reused
1087 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1088 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1089 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1090 	 * so fall through.
1091 	 */
1092 	if (!tdp_enabled &&
1093 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1094 		kvm_mmu_unload(vcpu);
1095 
1096 	/*
1097 	 * The TLB has to be flushed for all PCIDs if any of the following
1098 	 * (architecturally required) changes happen:
1099 	 * - CR4.PCIDE is changed from 1 to 0
1100 	 * - CR4.PGE is toggled
1101 	 *
1102 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1103 	 */
1104 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1105 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1106 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1107 
1108 	/*
1109 	 * The TLB has to be flushed for the current PCID if any of the
1110 	 * following (architecturally required) changes happen:
1111 	 * - CR4.SMEP is changed from 0 to 1
1112 	 * - CR4.PAE is toggled
1113 	 */
1114 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1115 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1116 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1117 
1118 }
1119 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1120 
1121 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1122 {
1123 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1124 
1125 	if (!kvm_is_valid_cr4(vcpu, cr4))
1126 		return 1;
1127 
1128 	if (is_long_mode(vcpu)) {
1129 		if (!(cr4 & X86_CR4_PAE))
1130 			return 1;
1131 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1132 			return 1;
1133 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1134 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1135 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1136 		return 1;
1137 
1138 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1139 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1140 			return 1;
1141 
1142 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1143 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1144 			return 1;
1145 	}
1146 
1147 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1148 
1149 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1150 
1151 	return 0;
1152 }
1153 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1154 
1155 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1156 {
1157 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1158 	unsigned long roots_to_free = 0;
1159 	int i;
1160 
1161 	/*
1162 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1163 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1164 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1165 	 * the invalidation, but the guest's TLB entries need to be flushed as
1166 	 * the CPU may have cached entries in its TLB for the target PCID.
1167 	 */
1168 	if (unlikely(tdp_enabled)) {
1169 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1170 		return;
1171 	}
1172 
1173 	/*
1174 	 * If neither the current CR3 nor any of the prev_roots use the given
1175 	 * PCID, then nothing needs to be done here because a resync will
1176 	 * happen anyway before switching to any other CR3.
1177 	 */
1178 	if (kvm_get_active_pcid(vcpu) == pcid) {
1179 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1180 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1181 	}
1182 
1183 	/*
1184 	 * If PCID is disabled, there is no need to free prev_roots even if the
1185 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1186 	 * with PCIDE=0.
1187 	 */
1188 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1189 		return;
1190 
1191 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1192 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1193 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1194 
1195 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1196 }
1197 
1198 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1199 {
1200 	bool skip_tlb_flush = false;
1201 	unsigned long pcid = 0;
1202 #ifdef CONFIG_X86_64
1203 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1204 
1205 	if (pcid_enabled) {
1206 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1207 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1208 		pcid = cr3 & X86_CR3_PCID_MASK;
1209 	}
1210 #endif
1211 
1212 	/* PDPTRs are always reloaded for PAE paging. */
1213 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1214 		goto handle_tlb_flush;
1215 
1216 	/*
1217 	 * Do not condition the GPA check on long mode, this helper is used to
1218 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1219 	 * the current vCPU mode is accurate.
1220 	 */
1221 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1222 		return 1;
1223 
1224 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1225 		return 1;
1226 
1227 	if (cr3 != kvm_read_cr3(vcpu))
1228 		kvm_mmu_new_pgd(vcpu, cr3);
1229 
1230 	vcpu->arch.cr3 = cr3;
1231 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1232 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1233 
1234 handle_tlb_flush:
1235 	/*
1236 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1237 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1238 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1239 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1240 	 * i.e. only PCID=0 can be relevant.
1241 	 */
1242 	if (!skip_tlb_flush)
1243 		kvm_invalidate_pcid(vcpu, pcid);
1244 
1245 	return 0;
1246 }
1247 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1248 
1249 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1250 {
1251 	if (cr8 & CR8_RESERVED_BITS)
1252 		return 1;
1253 	if (lapic_in_kernel(vcpu))
1254 		kvm_lapic_set_tpr(vcpu, cr8);
1255 	else
1256 		vcpu->arch.cr8 = cr8;
1257 	return 0;
1258 }
1259 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1260 
1261 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1262 {
1263 	if (lapic_in_kernel(vcpu))
1264 		return kvm_lapic_get_cr8(vcpu);
1265 	else
1266 		return vcpu->arch.cr8;
1267 }
1268 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1269 
1270 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1271 {
1272 	int i;
1273 
1274 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1275 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1276 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1277 	}
1278 }
1279 
1280 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1281 {
1282 	unsigned long dr7;
1283 
1284 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1285 		dr7 = vcpu->arch.guest_debug_dr7;
1286 	else
1287 		dr7 = vcpu->arch.dr7;
1288 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1289 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1290 	if (dr7 & DR7_BP_EN_MASK)
1291 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1292 }
1293 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1294 
1295 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1296 {
1297 	u64 fixed = DR6_FIXED_1;
1298 
1299 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1300 		fixed |= DR6_RTM;
1301 
1302 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1303 		fixed |= DR6_BUS_LOCK;
1304 	return fixed;
1305 }
1306 
1307 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1308 {
1309 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1310 
1311 	switch (dr) {
1312 	case 0 ... 3:
1313 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1314 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1315 			vcpu->arch.eff_db[dr] = val;
1316 		break;
1317 	case 4:
1318 	case 6:
1319 		if (!kvm_dr6_valid(val))
1320 			return 1; /* #GP */
1321 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1322 		break;
1323 	case 5:
1324 	default: /* 7 */
1325 		if (!kvm_dr7_valid(val))
1326 			return 1; /* #GP */
1327 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1328 		kvm_update_dr7(vcpu);
1329 		break;
1330 	}
1331 
1332 	return 0;
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_set_dr);
1335 
1336 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1337 {
1338 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1339 
1340 	switch (dr) {
1341 	case 0 ... 3:
1342 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1343 		break;
1344 	case 4:
1345 	case 6:
1346 		*val = vcpu->arch.dr6;
1347 		break;
1348 	case 5:
1349 	default: /* 7 */
1350 		*val = vcpu->arch.dr7;
1351 		break;
1352 	}
1353 }
1354 EXPORT_SYMBOL_GPL(kvm_get_dr);
1355 
1356 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1357 {
1358 	u32 ecx = kvm_rcx_read(vcpu);
1359 	u64 data;
1360 
1361 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1362 		kvm_inject_gp(vcpu, 0);
1363 		return 1;
1364 	}
1365 
1366 	kvm_rax_write(vcpu, (u32)data);
1367 	kvm_rdx_write(vcpu, data >> 32);
1368 	return kvm_skip_emulated_instruction(vcpu);
1369 }
1370 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1371 
1372 /*
1373  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1374  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1375  *
1376  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1377  * extract the supported MSRs from the related const lists.
1378  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1379  * capabilities of the host cpu. This capabilities test skips MSRs that are
1380  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1381  * may depend on host virtualization features rather than host cpu features.
1382  */
1383 
1384 static const u32 msrs_to_save_all[] = {
1385 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1386 	MSR_STAR,
1387 #ifdef CONFIG_X86_64
1388 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1389 #endif
1390 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1391 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1392 	MSR_IA32_SPEC_CTRL,
1393 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1394 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1395 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1396 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1397 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1398 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1399 	MSR_IA32_UMWAIT_CONTROL,
1400 
1401 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1402 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1403 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1404 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1405 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1406 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1407 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1408 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1409 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1410 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1411 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1412 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1413 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1414 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1415 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1416 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1417 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1418 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1419 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1420 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1421 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1422 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1423 
1424 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1425 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1426 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1427 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1428 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1429 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1430 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1431 };
1432 
1433 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1434 static unsigned num_msrs_to_save;
1435 
1436 static const u32 emulated_msrs_all[] = {
1437 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1438 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1439 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1440 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1441 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1442 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1443 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1444 	HV_X64_MSR_RESET,
1445 	HV_X64_MSR_VP_INDEX,
1446 	HV_X64_MSR_VP_RUNTIME,
1447 	HV_X64_MSR_SCONTROL,
1448 	HV_X64_MSR_STIMER0_CONFIG,
1449 	HV_X64_MSR_VP_ASSIST_PAGE,
1450 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1451 	HV_X64_MSR_TSC_EMULATION_STATUS,
1452 	HV_X64_MSR_SYNDBG_OPTIONS,
1453 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1454 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1455 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1456 
1457 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1458 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1459 
1460 	MSR_IA32_TSC_ADJUST,
1461 	MSR_IA32_TSC_DEADLINE,
1462 	MSR_IA32_ARCH_CAPABILITIES,
1463 	MSR_IA32_PERF_CAPABILITIES,
1464 	MSR_IA32_MISC_ENABLE,
1465 	MSR_IA32_MCG_STATUS,
1466 	MSR_IA32_MCG_CTL,
1467 	MSR_IA32_MCG_EXT_CTL,
1468 	MSR_IA32_SMBASE,
1469 	MSR_SMI_COUNT,
1470 	MSR_PLATFORM_INFO,
1471 	MSR_MISC_FEATURES_ENABLES,
1472 	MSR_AMD64_VIRT_SPEC_CTRL,
1473 	MSR_AMD64_TSC_RATIO,
1474 	MSR_IA32_POWER_CTL,
1475 	MSR_IA32_UCODE_REV,
1476 
1477 	/*
1478 	 * The following list leaves out MSRs whose values are determined
1479 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1480 	 * We always support the "true" VMX control MSRs, even if the host
1481 	 * processor does not, so I am putting these registers here rather
1482 	 * than in msrs_to_save_all.
1483 	 */
1484 	MSR_IA32_VMX_BASIC,
1485 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1486 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1487 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1488 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1489 	MSR_IA32_VMX_MISC,
1490 	MSR_IA32_VMX_CR0_FIXED0,
1491 	MSR_IA32_VMX_CR4_FIXED0,
1492 	MSR_IA32_VMX_VMCS_ENUM,
1493 	MSR_IA32_VMX_PROCBASED_CTLS2,
1494 	MSR_IA32_VMX_EPT_VPID_CAP,
1495 	MSR_IA32_VMX_VMFUNC,
1496 
1497 	MSR_K7_HWCR,
1498 	MSR_KVM_POLL_CONTROL,
1499 };
1500 
1501 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1502 static unsigned num_emulated_msrs;
1503 
1504 /*
1505  * List of msr numbers which are used to expose MSR-based features that
1506  * can be used by a hypervisor to validate requested CPU features.
1507  */
1508 static const u32 msr_based_features_all[] = {
1509 	MSR_IA32_VMX_BASIC,
1510 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1511 	MSR_IA32_VMX_PINBASED_CTLS,
1512 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1513 	MSR_IA32_VMX_PROCBASED_CTLS,
1514 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1515 	MSR_IA32_VMX_EXIT_CTLS,
1516 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1517 	MSR_IA32_VMX_ENTRY_CTLS,
1518 	MSR_IA32_VMX_MISC,
1519 	MSR_IA32_VMX_CR0_FIXED0,
1520 	MSR_IA32_VMX_CR0_FIXED1,
1521 	MSR_IA32_VMX_CR4_FIXED0,
1522 	MSR_IA32_VMX_CR4_FIXED1,
1523 	MSR_IA32_VMX_VMCS_ENUM,
1524 	MSR_IA32_VMX_PROCBASED_CTLS2,
1525 	MSR_IA32_VMX_EPT_VPID_CAP,
1526 	MSR_IA32_VMX_VMFUNC,
1527 
1528 	MSR_F10H_DECFG,
1529 	MSR_IA32_UCODE_REV,
1530 	MSR_IA32_ARCH_CAPABILITIES,
1531 	MSR_IA32_PERF_CAPABILITIES,
1532 };
1533 
1534 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1535 static unsigned int num_msr_based_features;
1536 
1537 static u64 kvm_get_arch_capabilities(void)
1538 {
1539 	u64 data = 0;
1540 
1541 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1542 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1543 
1544 	/*
1545 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1546 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1547 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1548 	 * L1 guests, so it need not worry about its own (L2) guests.
1549 	 */
1550 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1551 
1552 	/*
1553 	 * If we're doing cache flushes (either "always" or "cond")
1554 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1555 	 * If an outer hypervisor is doing the cache flush for us
1556 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1557 	 * capability to the guest too, and if EPT is disabled we're not
1558 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1559 	 * require a nested hypervisor to do a flush of its own.
1560 	 */
1561 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1562 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1563 
1564 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1565 		data |= ARCH_CAP_RDCL_NO;
1566 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1567 		data |= ARCH_CAP_SSB_NO;
1568 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1569 		data |= ARCH_CAP_MDS_NO;
1570 
1571 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1572 		/*
1573 		 * If RTM=0 because the kernel has disabled TSX, the host might
1574 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1575 		 * and therefore knows that there cannot be TAA) but keep
1576 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1577 		 * and we want to allow migrating those guests to tsx=off hosts.
1578 		 */
1579 		data &= ~ARCH_CAP_TAA_NO;
1580 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1581 		data |= ARCH_CAP_TAA_NO;
1582 	} else {
1583 		/*
1584 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1585 		 * host so the guest can choose between disabling TSX or
1586 		 * using VERW to clear CPU buffers.
1587 		 */
1588 	}
1589 
1590 	return data;
1591 }
1592 
1593 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1594 {
1595 	switch (msr->index) {
1596 	case MSR_IA32_ARCH_CAPABILITIES:
1597 		msr->data = kvm_get_arch_capabilities();
1598 		break;
1599 	case MSR_IA32_UCODE_REV:
1600 		rdmsrl_safe(msr->index, &msr->data);
1601 		break;
1602 	default:
1603 		return static_call(kvm_x86_get_msr_feature)(msr);
1604 	}
1605 	return 0;
1606 }
1607 
1608 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1609 {
1610 	struct kvm_msr_entry msr;
1611 	int r;
1612 
1613 	msr.index = index;
1614 	r = kvm_get_msr_feature(&msr);
1615 
1616 	if (r == KVM_MSR_RET_INVALID) {
1617 		/* Unconditionally clear the output for simplicity */
1618 		*data = 0;
1619 		if (kvm_msr_ignored_check(index, 0, false))
1620 			r = 0;
1621 	}
1622 
1623 	if (r)
1624 		return r;
1625 
1626 	*data = msr.data;
1627 
1628 	return 0;
1629 }
1630 
1631 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1632 {
1633 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1634 		return false;
1635 
1636 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1637 		return false;
1638 
1639 	if (efer & (EFER_LME | EFER_LMA) &&
1640 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1641 		return false;
1642 
1643 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1644 		return false;
1645 
1646 	return true;
1647 
1648 }
1649 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1650 {
1651 	if (efer & efer_reserved_bits)
1652 		return false;
1653 
1654 	return __kvm_valid_efer(vcpu, efer);
1655 }
1656 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1657 
1658 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1659 {
1660 	u64 old_efer = vcpu->arch.efer;
1661 	u64 efer = msr_info->data;
1662 	int r;
1663 
1664 	if (efer & efer_reserved_bits)
1665 		return 1;
1666 
1667 	if (!msr_info->host_initiated) {
1668 		if (!__kvm_valid_efer(vcpu, efer))
1669 			return 1;
1670 
1671 		if (is_paging(vcpu) &&
1672 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1673 			return 1;
1674 	}
1675 
1676 	efer &= ~EFER_LMA;
1677 	efer |= vcpu->arch.efer & EFER_LMA;
1678 
1679 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1680 	if (r) {
1681 		WARN_ON(r > 0);
1682 		return r;
1683 	}
1684 
1685 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1686 		kvm_mmu_reset_context(vcpu);
1687 
1688 	return 0;
1689 }
1690 
1691 void kvm_enable_efer_bits(u64 mask)
1692 {
1693        efer_reserved_bits &= ~mask;
1694 }
1695 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1696 
1697 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1698 {
1699 	struct kvm_x86_msr_filter *msr_filter;
1700 	struct msr_bitmap_range *ranges;
1701 	struct kvm *kvm = vcpu->kvm;
1702 	bool allowed;
1703 	int idx;
1704 	u32 i;
1705 
1706 	/* x2APIC MSRs do not support filtering. */
1707 	if (index >= 0x800 && index <= 0x8ff)
1708 		return true;
1709 
1710 	idx = srcu_read_lock(&kvm->srcu);
1711 
1712 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1713 	if (!msr_filter) {
1714 		allowed = true;
1715 		goto out;
1716 	}
1717 
1718 	allowed = msr_filter->default_allow;
1719 	ranges = msr_filter->ranges;
1720 
1721 	for (i = 0; i < msr_filter->count; i++) {
1722 		u32 start = ranges[i].base;
1723 		u32 end = start + ranges[i].nmsrs;
1724 		u32 flags = ranges[i].flags;
1725 		unsigned long *bitmap = ranges[i].bitmap;
1726 
1727 		if ((index >= start) && (index < end) && (flags & type)) {
1728 			allowed = !!test_bit(index - start, bitmap);
1729 			break;
1730 		}
1731 	}
1732 
1733 out:
1734 	srcu_read_unlock(&kvm->srcu, idx);
1735 
1736 	return allowed;
1737 }
1738 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1739 
1740 /*
1741  * Write @data into the MSR specified by @index.  Select MSR specific fault
1742  * checks are bypassed if @host_initiated is %true.
1743  * Returns 0 on success, non-0 otherwise.
1744  * Assumes vcpu_load() was already called.
1745  */
1746 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1747 			 bool host_initiated)
1748 {
1749 	struct msr_data msr;
1750 
1751 	switch (index) {
1752 	case MSR_FS_BASE:
1753 	case MSR_GS_BASE:
1754 	case MSR_KERNEL_GS_BASE:
1755 	case MSR_CSTAR:
1756 	case MSR_LSTAR:
1757 		if (is_noncanonical_address(data, vcpu))
1758 			return 1;
1759 		break;
1760 	case MSR_IA32_SYSENTER_EIP:
1761 	case MSR_IA32_SYSENTER_ESP:
1762 		/*
1763 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1764 		 * non-canonical address is written on Intel but not on
1765 		 * AMD (which ignores the top 32-bits, because it does
1766 		 * not implement 64-bit SYSENTER).
1767 		 *
1768 		 * 64-bit code should hence be able to write a non-canonical
1769 		 * value on AMD.  Making the address canonical ensures that
1770 		 * vmentry does not fail on Intel after writing a non-canonical
1771 		 * value, and that something deterministic happens if the guest
1772 		 * invokes 64-bit SYSENTER.
1773 		 */
1774 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1775 		break;
1776 	case MSR_TSC_AUX:
1777 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1778 			return 1;
1779 
1780 		if (!host_initiated &&
1781 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1782 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1783 			return 1;
1784 
1785 		/*
1786 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1787 		 * incomplete and conflicting architectural behavior.  Current
1788 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1789 		 * reserved and always read as zeros.  Enforce Intel's reserved
1790 		 * bits check if and only if the guest CPU is Intel, and clear
1791 		 * the bits in all other cases.  This ensures cross-vendor
1792 		 * migration will provide consistent behavior for the guest.
1793 		 */
1794 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1795 			return 1;
1796 
1797 		data = (u32)data;
1798 		break;
1799 	}
1800 
1801 	msr.data = data;
1802 	msr.index = index;
1803 	msr.host_initiated = host_initiated;
1804 
1805 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1806 }
1807 
1808 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1809 				     u32 index, u64 data, bool host_initiated)
1810 {
1811 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1812 
1813 	if (ret == KVM_MSR_RET_INVALID)
1814 		if (kvm_msr_ignored_check(index, data, true))
1815 			ret = 0;
1816 
1817 	return ret;
1818 }
1819 
1820 /*
1821  * Read the MSR specified by @index into @data.  Select MSR specific fault
1822  * checks are bypassed if @host_initiated is %true.
1823  * Returns 0 on success, non-0 otherwise.
1824  * Assumes vcpu_load() was already called.
1825  */
1826 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1827 		  bool host_initiated)
1828 {
1829 	struct msr_data msr;
1830 	int ret;
1831 
1832 	switch (index) {
1833 	case MSR_TSC_AUX:
1834 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1835 			return 1;
1836 
1837 		if (!host_initiated &&
1838 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1839 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1840 			return 1;
1841 		break;
1842 	}
1843 
1844 	msr.index = index;
1845 	msr.host_initiated = host_initiated;
1846 
1847 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1848 	if (!ret)
1849 		*data = msr.data;
1850 	return ret;
1851 }
1852 
1853 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1854 				     u32 index, u64 *data, bool host_initiated)
1855 {
1856 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1857 
1858 	if (ret == KVM_MSR_RET_INVALID) {
1859 		/* Unconditionally clear *data for simplicity */
1860 		*data = 0;
1861 		if (kvm_msr_ignored_check(index, 0, false))
1862 			ret = 0;
1863 	}
1864 
1865 	return ret;
1866 }
1867 
1868 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1869 {
1870 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1871 		return KVM_MSR_RET_FILTERED;
1872 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1873 }
1874 
1875 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1876 {
1877 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1878 		return KVM_MSR_RET_FILTERED;
1879 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1880 }
1881 
1882 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1883 {
1884 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1885 }
1886 EXPORT_SYMBOL_GPL(kvm_get_msr);
1887 
1888 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1889 {
1890 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1891 }
1892 EXPORT_SYMBOL_GPL(kvm_set_msr);
1893 
1894 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1895 {
1896 	if (!vcpu->run->msr.error) {
1897 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1898 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1899 	}
1900 }
1901 
1902 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1903 {
1904 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1905 }
1906 
1907 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1908 {
1909 	complete_userspace_rdmsr(vcpu);
1910 	return complete_emulated_msr_access(vcpu);
1911 }
1912 
1913 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1914 {
1915 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1916 }
1917 
1918 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1919 {
1920 	complete_userspace_rdmsr(vcpu);
1921 	return complete_fast_msr_access(vcpu);
1922 }
1923 
1924 static u64 kvm_msr_reason(int r)
1925 {
1926 	switch (r) {
1927 	case KVM_MSR_RET_INVALID:
1928 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1929 	case KVM_MSR_RET_FILTERED:
1930 		return KVM_MSR_EXIT_REASON_FILTER;
1931 	default:
1932 		return KVM_MSR_EXIT_REASON_INVAL;
1933 	}
1934 }
1935 
1936 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1937 			      u32 exit_reason, u64 data,
1938 			      int (*completion)(struct kvm_vcpu *vcpu),
1939 			      int r)
1940 {
1941 	u64 msr_reason = kvm_msr_reason(r);
1942 
1943 	/* Check if the user wanted to know about this MSR fault */
1944 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1945 		return 0;
1946 
1947 	vcpu->run->exit_reason = exit_reason;
1948 	vcpu->run->msr.error = 0;
1949 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1950 	vcpu->run->msr.reason = msr_reason;
1951 	vcpu->run->msr.index = index;
1952 	vcpu->run->msr.data = data;
1953 	vcpu->arch.complete_userspace_io = completion;
1954 
1955 	return 1;
1956 }
1957 
1958 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1959 {
1960 	u32 ecx = kvm_rcx_read(vcpu);
1961 	u64 data;
1962 	int r;
1963 
1964 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
1965 
1966 	if (!r) {
1967 		trace_kvm_msr_read(ecx, data);
1968 
1969 		kvm_rax_write(vcpu, data & -1u);
1970 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
1971 	} else {
1972 		/* MSR read failed? See if we should ask user space */
1973 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
1974 				       complete_fast_rdmsr, r))
1975 			return 0;
1976 		trace_kvm_msr_read_ex(ecx);
1977 	}
1978 
1979 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1980 }
1981 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1982 
1983 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1984 {
1985 	u32 ecx = kvm_rcx_read(vcpu);
1986 	u64 data = kvm_read_edx_eax(vcpu);
1987 	int r;
1988 
1989 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
1990 
1991 	if (!r) {
1992 		trace_kvm_msr_write(ecx, data);
1993 	} else {
1994 		/* MSR write failed? See if we should ask user space */
1995 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
1996 				       complete_fast_msr_access, r))
1997 			return 0;
1998 		/* Signal all other negative errors to userspace */
1999 		if (r < 0)
2000 			return r;
2001 		trace_kvm_msr_write_ex(ecx, data);
2002 	}
2003 
2004 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2005 }
2006 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2007 
2008 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2009 {
2010 	return kvm_skip_emulated_instruction(vcpu);
2011 }
2012 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
2013 
2014 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2015 {
2016 	/* Treat an INVD instruction as a NOP and just skip it. */
2017 	return kvm_emulate_as_nop(vcpu);
2018 }
2019 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2020 
2021 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2022 {
2023 	pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
2024 	return kvm_emulate_as_nop(vcpu);
2025 }
2026 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2027 
2028 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2029 {
2030 	kvm_queue_exception(vcpu, UD_VECTOR);
2031 	return 1;
2032 }
2033 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2034 
2035 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2036 {
2037 	pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
2038 	return kvm_emulate_as_nop(vcpu);
2039 }
2040 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2041 
2042 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2043 {
2044 	xfer_to_guest_mode_prepare();
2045 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2046 		xfer_to_guest_mode_work_pending();
2047 }
2048 
2049 /*
2050  * The fast path for frequent and performance sensitive wrmsr emulation,
2051  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2052  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2053  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2054  * other cases which must be called after interrupts are enabled on the host.
2055  */
2056 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2057 {
2058 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2059 		return 1;
2060 
2061 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2062 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2063 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2064 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2065 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2066 
2067 	return 1;
2068 }
2069 
2070 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2071 {
2072 	if (!kvm_can_use_hv_timer(vcpu))
2073 		return 1;
2074 
2075 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2076 	return 0;
2077 }
2078 
2079 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2080 {
2081 	u32 msr = kvm_rcx_read(vcpu);
2082 	u64 data;
2083 	fastpath_t ret = EXIT_FASTPATH_NONE;
2084 
2085 	switch (msr) {
2086 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2087 		data = kvm_read_edx_eax(vcpu);
2088 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2089 			kvm_skip_emulated_instruction(vcpu);
2090 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2091 		}
2092 		break;
2093 	case MSR_IA32_TSC_DEADLINE:
2094 		data = kvm_read_edx_eax(vcpu);
2095 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2096 			kvm_skip_emulated_instruction(vcpu);
2097 			ret = EXIT_FASTPATH_REENTER_GUEST;
2098 		}
2099 		break;
2100 	default:
2101 		break;
2102 	}
2103 
2104 	if (ret != EXIT_FASTPATH_NONE)
2105 		trace_kvm_msr_write(msr, data);
2106 
2107 	return ret;
2108 }
2109 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2110 
2111 /*
2112  * Adapt set_msr() to msr_io()'s calling convention
2113  */
2114 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2115 {
2116 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2117 }
2118 
2119 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2120 {
2121 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2122 }
2123 
2124 #ifdef CONFIG_X86_64
2125 struct pvclock_clock {
2126 	int vclock_mode;
2127 	u64 cycle_last;
2128 	u64 mask;
2129 	u32 mult;
2130 	u32 shift;
2131 	u64 base_cycles;
2132 	u64 offset;
2133 };
2134 
2135 struct pvclock_gtod_data {
2136 	seqcount_t	seq;
2137 
2138 	struct pvclock_clock clock; /* extract of a clocksource struct */
2139 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2140 
2141 	ktime_t		offs_boot;
2142 	u64		wall_time_sec;
2143 };
2144 
2145 static struct pvclock_gtod_data pvclock_gtod_data;
2146 
2147 static void update_pvclock_gtod(struct timekeeper *tk)
2148 {
2149 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2150 
2151 	write_seqcount_begin(&vdata->seq);
2152 
2153 	/* copy pvclock gtod data */
2154 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2155 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2156 	vdata->clock.mask		= tk->tkr_mono.mask;
2157 	vdata->clock.mult		= tk->tkr_mono.mult;
2158 	vdata->clock.shift		= tk->tkr_mono.shift;
2159 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2160 	vdata->clock.offset		= tk->tkr_mono.base;
2161 
2162 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2163 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2164 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2165 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2166 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2167 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2168 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2169 
2170 	vdata->wall_time_sec            = tk->xtime_sec;
2171 
2172 	vdata->offs_boot		= tk->offs_boot;
2173 
2174 	write_seqcount_end(&vdata->seq);
2175 }
2176 
2177 static s64 get_kvmclock_base_ns(void)
2178 {
2179 	/* Count up from boot time, but with the frequency of the raw clock.  */
2180 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2181 }
2182 #else
2183 static s64 get_kvmclock_base_ns(void)
2184 {
2185 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2186 	return ktime_get_boottime_ns();
2187 }
2188 #endif
2189 
2190 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2191 {
2192 	int version;
2193 	int r;
2194 	struct pvclock_wall_clock wc;
2195 	u32 wc_sec_hi;
2196 	u64 wall_nsec;
2197 
2198 	if (!wall_clock)
2199 		return;
2200 
2201 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2202 	if (r)
2203 		return;
2204 
2205 	if (version & 1)
2206 		++version;  /* first time write, random junk */
2207 
2208 	++version;
2209 
2210 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2211 		return;
2212 
2213 	/*
2214 	 * The guest calculates current wall clock time by adding
2215 	 * system time (updated by kvm_guest_time_update below) to the
2216 	 * wall clock specified here.  We do the reverse here.
2217 	 */
2218 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2219 
2220 	wc.nsec = do_div(wall_nsec, 1000000000);
2221 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2222 	wc.version = version;
2223 
2224 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2225 
2226 	if (sec_hi_ofs) {
2227 		wc_sec_hi = wall_nsec >> 32;
2228 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2229 				&wc_sec_hi, sizeof(wc_sec_hi));
2230 	}
2231 
2232 	version++;
2233 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2234 }
2235 
2236 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2237 				  bool old_msr, bool host_initiated)
2238 {
2239 	struct kvm_arch *ka = &vcpu->kvm->arch;
2240 
2241 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2242 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2243 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2244 
2245 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2246 	}
2247 
2248 	vcpu->arch.time = system_time;
2249 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2250 
2251 	/* we verify if the enable bit is set... */
2252 	vcpu->arch.pv_time_enabled = false;
2253 	if (!(system_time & 1))
2254 		return;
2255 
2256 	if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2257 				       &vcpu->arch.pv_time, system_time & ~1ULL,
2258 				       sizeof(struct pvclock_vcpu_time_info)))
2259 		vcpu->arch.pv_time_enabled = true;
2260 
2261 	return;
2262 }
2263 
2264 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2265 {
2266 	do_shl32_div32(dividend, divisor);
2267 	return dividend;
2268 }
2269 
2270 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2271 			       s8 *pshift, u32 *pmultiplier)
2272 {
2273 	uint64_t scaled64;
2274 	int32_t  shift = 0;
2275 	uint64_t tps64;
2276 	uint32_t tps32;
2277 
2278 	tps64 = base_hz;
2279 	scaled64 = scaled_hz;
2280 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2281 		tps64 >>= 1;
2282 		shift--;
2283 	}
2284 
2285 	tps32 = (uint32_t)tps64;
2286 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2287 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2288 			scaled64 >>= 1;
2289 		else
2290 			tps32 <<= 1;
2291 		shift++;
2292 	}
2293 
2294 	*pshift = shift;
2295 	*pmultiplier = div_frac(scaled64, tps32);
2296 }
2297 
2298 #ifdef CONFIG_X86_64
2299 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2300 #endif
2301 
2302 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2303 static unsigned long max_tsc_khz;
2304 
2305 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2306 {
2307 	u64 v = (u64)khz * (1000000 + ppm);
2308 	do_div(v, 1000000);
2309 	return v;
2310 }
2311 
2312 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2313 
2314 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2315 {
2316 	u64 ratio;
2317 
2318 	/* Guest TSC same frequency as host TSC? */
2319 	if (!scale) {
2320 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2321 		return 0;
2322 	}
2323 
2324 	/* TSC scaling supported? */
2325 	if (!kvm_has_tsc_control) {
2326 		if (user_tsc_khz > tsc_khz) {
2327 			vcpu->arch.tsc_catchup = 1;
2328 			vcpu->arch.tsc_always_catchup = 1;
2329 			return 0;
2330 		} else {
2331 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2332 			return -1;
2333 		}
2334 	}
2335 
2336 	/* TSC scaling required  - calculate ratio */
2337 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2338 				user_tsc_khz, tsc_khz);
2339 
2340 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2341 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2342 			            user_tsc_khz);
2343 		return -1;
2344 	}
2345 
2346 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2347 	return 0;
2348 }
2349 
2350 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2351 {
2352 	u32 thresh_lo, thresh_hi;
2353 	int use_scaling = 0;
2354 
2355 	/* tsc_khz can be zero if TSC calibration fails */
2356 	if (user_tsc_khz == 0) {
2357 		/* set tsc_scaling_ratio to a safe value */
2358 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2359 		return -1;
2360 	}
2361 
2362 	/* Compute a scale to convert nanoseconds in TSC cycles */
2363 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2364 			   &vcpu->arch.virtual_tsc_shift,
2365 			   &vcpu->arch.virtual_tsc_mult);
2366 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2367 
2368 	/*
2369 	 * Compute the variation in TSC rate which is acceptable
2370 	 * within the range of tolerance and decide if the
2371 	 * rate being applied is within that bounds of the hardware
2372 	 * rate.  If so, no scaling or compensation need be done.
2373 	 */
2374 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2375 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2376 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2377 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2378 		use_scaling = 1;
2379 	}
2380 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2381 }
2382 
2383 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2384 {
2385 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2386 				      vcpu->arch.virtual_tsc_mult,
2387 				      vcpu->arch.virtual_tsc_shift);
2388 	tsc += vcpu->arch.this_tsc_write;
2389 	return tsc;
2390 }
2391 
2392 #ifdef CONFIG_X86_64
2393 static inline int gtod_is_based_on_tsc(int mode)
2394 {
2395 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2396 }
2397 #endif
2398 
2399 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2400 {
2401 #ifdef CONFIG_X86_64
2402 	bool vcpus_matched;
2403 	struct kvm_arch *ka = &vcpu->kvm->arch;
2404 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2405 
2406 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2407 			 atomic_read(&vcpu->kvm->online_vcpus));
2408 
2409 	/*
2410 	 * Once the masterclock is enabled, always perform request in
2411 	 * order to update it.
2412 	 *
2413 	 * In order to enable masterclock, the host clocksource must be TSC
2414 	 * and the vcpus need to have matched TSCs.  When that happens,
2415 	 * perform request to enable masterclock.
2416 	 */
2417 	if (ka->use_master_clock ||
2418 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2419 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2420 
2421 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2422 			    atomic_read(&vcpu->kvm->online_vcpus),
2423 		            ka->use_master_clock, gtod->clock.vclock_mode);
2424 #endif
2425 }
2426 
2427 /*
2428  * Multiply tsc by a fixed point number represented by ratio.
2429  *
2430  * The most significant 64-N bits (mult) of ratio represent the
2431  * integral part of the fixed point number; the remaining N bits
2432  * (frac) represent the fractional part, ie. ratio represents a fixed
2433  * point number (mult + frac * 2^(-N)).
2434  *
2435  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2436  */
2437 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2438 {
2439 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2440 }
2441 
2442 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2443 {
2444 	u64 _tsc = tsc;
2445 
2446 	if (ratio != kvm_default_tsc_scaling_ratio)
2447 		_tsc = __scale_tsc(ratio, tsc);
2448 
2449 	return _tsc;
2450 }
2451 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2452 
2453 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2454 {
2455 	u64 tsc;
2456 
2457 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2458 
2459 	return target_tsc - tsc;
2460 }
2461 
2462 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2463 {
2464 	return vcpu->arch.l1_tsc_offset +
2465 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2466 }
2467 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2468 
2469 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2470 {
2471 	u64 nested_offset;
2472 
2473 	if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2474 		nested_offset = l1_offset;
2475 	else
2476 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2477 						kvm_tsc_scaling_ratio_frac_bits);
2478 
2479 	nested_offset += l2_offset;
2480 	return nested_offset;
2481 }
2482 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2483 
2484 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2485 {
2486 	if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2487 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2488 				       kvm_tsc_scaling_ratio_frac_bits);
2489 
2490 	return l1_multiplier;
2491 }
2492 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2493 
2494 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2495 {
2496 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2497 				   vcpu->arch.l1_tsc_offset,
2498 				   l1_offset);
2499 
2500 	vcpu->arch.l1_tsc_offset = l1_offset;
2501 
2502 	/*
2503 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2504 	 * according to the spec this should set L1's TSC (as opposed to
2505 	 * setting L1's offset for L2).
2506 	 */
2507 	if (is_guest_mode(vcpu))
2508 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2509 			l1_offset,
2510 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2511 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2512 	else
2513 		vcpu->arch.tsc_offset = l1_offset;
2514 
2515 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2516 }
2517 
2518 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2519 {
2520 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2521 
2522 	/* Userspace is changing the multiplier while L2 is active */
2523 	if (is_guest_mode(vcpu))
2524 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2525 			l1_multiplier,
2526 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2527 	else
2528 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2529 
2530 	if (kvm_has_tsc_control)
2531 		static_call(kvm_x86_write_tsc_multiplier)(
2532 			vcpu, vcpu->arch.tsc_scaling_ratio);
2533 }
2534 
2535 static inline bool kvm_check_tsc_unstable(void)
2536 {
2537 #ifdef CONFIG_X86_64
2538 	/*
2539 	 * TSC is marked unstable when we're running on Hyper-V,
2540 	 * 'TSC page' clocksource is good.
2541 	 */
2542 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2543 		return false;
2544 #endif
2545 	return check_tsc_unstable();
2546 }
2547 
2548 /*
2549  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2550  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2551  * participates in.
2552  */
2553 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2554 				  u64 ns, bool matched)
2555 {
2556 	struct kvm *kvm = vcpu->kvm;
2557 
2558 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2559 
2560 	/*
2561 	 * We also track th most recent recorded KHZ, write and time to
2562 	 * allow the matching interval to be extended at each write.
2563 	 */
2564 	kvm->arch.last_tsc_nsec = ns;
2565 	kvm->arch.last_tsc_write = tsc;
2566 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2567 	kvm->arch.last_tsc_offset = offset;
2568 
2569 	vcpu->arch.last_guest_tsc = tsc;
2570 
2571 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2572 
2573 	if (!matched) {
2574 		/*
2575 		 * We split periods of matched TSC writes into generations.
2576 		 * For each generation, we track the original measured
2577 		 * nanosecond time, offset, and write, so if TSCs are in
2578 		 * sync, we can match exact offset, and if not, we can match
2579 		 * exact software computation in compute_guest_tsc()
2580 		 *
2581 		 * These values are tracked in kvm->arch.cur_xxx variables.
2582 		 */
2583 		kvm->arch.cur_tsc_generation++;
2584 		kvm->arch.cur_tsc_nsec = ns;
2585 		kvm->arch.cur_tsc_write = tsc;
2586 		kvm->arch.cur_tsc_offset = offset;
2587 		kvm->arch.nr_vcpus_matched_tsc = 0;
2588 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2589 		kvm->arch.nr_vcpus_matched_tsc++;
2590 	}
2591 
2592 	/* Keep track of which generation this VCPU has synchronized to */
2593 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2594 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2595 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2596 
2597 	kvm_track_tsc_matching(vcpu);
2598 }
2599 
2600 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2601 {
2602 	struct kvm *kvm = vcpu->kvm;
2603 	u64 offset, ns, elapsed;
2604 	unsigned long flags;
2605 	bool matched = false;
2606 	bool synchronizing = false;
2607 
2608 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2609 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2610 	ns = get_kvmclock_base_ns();
2611 	elapsed = ns - kvm->arch.last_tsc_nsec;
2612 
2613 	if (vcpu->arch.virtual_tsc_khz) {
2614 		if (data == 0) {
2615 			/*
2616 			 * detection of vcpu initialization -- need to sync
2617 			 * with other vCPUs. This particularly helps to keep
2618 			 * kvm_clock stable after CPU hotplug
2619 			 */
2620 			synchronizing = true;
2621 		} else {
2622 			u64 tsc_exp = kvm->arch.last_tsc_write +
2623 						nsec_to_cycles(vcpu, elapsed);
2624 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2625 			/*
2626 			 * Special case: TSC write with a small delta (1 second)
2627 			 * of virtual cycle time against real time is
2628 			 * interpreted as an attempt to synchronize the CPU.
2629 			 */
2630 			synchronizing = data < tsc_exp + tsc_hz &&
2631 					data + tsc_hz > tsc_exp;
2632 		}
2633 	}
2634 
2635 	/*
2636 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2637 	 * TSC, we add elapsed time in this computation.  We could let the
2638 	 * compensation code attempt to catch up if we fall behind, but
2639 	 * it's better to try to match offsets from the beginning.
2640          */
2641 	if (synchronizing &&
2642 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2643 		if (!kvm_check_tsc_unstable()) {
2644 			offset = kvm->arch.cur_tsc_offset;
2645 		} else {
2646 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2647 			data += delta;
2648 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2649 		}
2650 		matched = true;
2651 	}
2652 
2653 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2654 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2655 }
2656 
2657 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2658 					   s64 adjustment)
2659 {
2660 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2661 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2662 }
2663 
2664 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2665 {
2666 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2667 		WARN_ON(adjustment < 0);
2668 	adjustment = kvm_scale_tsc((u64) adjustment,
2669 				   vcpu->arch.l1_tsc_scaling_ratio);
2670 	adjust_tsc_offset_guest(vcpu, adjustment);
2671 }
2672 
2673 #ifdef CONFIG_X86_64
2674 
2675 static u64 read_tsc(void)
2676 {
2677 	u64 ret = (u64)rdtsc_ordered();
2678 	u64 last = pvclock_gtod_data.clock.cycle_last;
2679 
2680 	if (likely(ret >= last))
2681 		return ret;
2682 
2683 	/*
2684 	 * GCC likes to generate cmov here, but this branch is extremely
2685 	 * predictable (it's just a function of time and the likely is
2686 	 * very likely) and there's a data dependence, so force GCC
2687 	 * to generate a branch instead.  I don't barrier() because
2688 	 * we don't actually need a barrier, and if this function
2689 	 * ever gets inlined it will generate worse code.
2690 	 */
2691 	asm volatile ("");
2692 	return last;
2693 }
2694 
2695 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2696 			  int *mode)
2697 {
2698 	long v;
2699 	u64 tsc_pg_val;
2700 
2701 	switch (clock->vclock_mode) {
2702 	case VDSO_CLOCKMODE_HVCLOCK:
2703 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2704 						  tsc_timestamp);
2705 		if (tsc_pg_val != U64_MAX) {
2706 			/* TSC page valid */
2707 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2708 			v = (tsc_pg_val - clock->cycle_last) &
2709 				clock->mask;
2710 		} else {
2711 			/* TSC page invalid */
2712 			*mode = VDSO_CLOCKMODE_NONE;
2713 		}
2714 		break;
2715 	case VDSO_CLOCKMODE_TSC:
2716 		*mode = VDSO_CLOCKMODE_TSC;
2717 		*tsc_timestamp = read_tsc();
2718 		v = (*tsc_timestamp - clock->cycle_last) &
2719 			clock->mask;
2720 		break;
2721 	default:
2722 		*mode = VDSO_CLOCKMODE_NONE;
2723 	}
2724 
2725 	if (*mode == VDSO_CLOCKMODE_NONE)
2726 		*tsc_timestamp = v = 0;
2727 
2728 	return v * clock->mult;
2729 }
2730 
2731 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2732 {
2733 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2734 	unsigned long seq;
2735 	int mode;
2736 	u64 ns;
2737 
2738 	do {
2739 		seq = read_seqcount_begin(&gtod->seq);
2740 		ns = gtod->raw_clock.base_cycles;
2741 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2742 		ns >>= gtod->raw_clock.shift;
2743 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2744 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2745 	*t = ns;
2746 
2747 	return mode;
2748 }
2749 
2750 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2751 {
2752 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2753 	unsigned long seq;
2754 	int mode;
2755 	u64 ns;
2756 
2757 	do {
2758 		seq = read_seqcount_begin(&gtod->seq);
2759 		ts->tv_sec = gtod->wall_time_sec;
2760 		ns = gtod->clock.base_cycles;
2761 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2762 		ns >>= gtod->clock.shift;
2763 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2764 
2765 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2766 	ts->tv_nsec = ns;
2767 
2768 	return mode;
2769 }
2770 
2771 /* returns true if host is using TSC based clocksource */
2772 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2773 {
2774 	/* checked again under seqlock below */
2775 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2776 		return false;
2777 
2778 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2779 						      tsc_timestamp));
2780 }
2781 
2782 /* returns true if host is using TSC based clocksource */
2783 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2784 					   u64 *tsc_timestamp)
2785 {
2786 	/* checked again under seqlock below */
2787 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2788 		return false;
2789 
2790 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2791 }
2792 #endif
2793 
2794 /*
2795  *
2796  * Assuming a stable TSC across physical CPUS, and a stable TSC
2797  * across virtual CPUs, the following condition is possible.
2798  * Each numbered line represents an event visible to both
2799  * CPUs at the next numbered event.
2800  *
2801  * "timespecX" represents host monotonic time. "tscX" represents
2802  * RDTSC value.
2803  *
2804  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2805  *
2806  * 1.  read timespec0,tsc0
2807  * 2.					| timespec1 = timespec0 + N
2808  * 					| tsc1 = tsc0 + M
2809  * 3. transition to guest		| transition to guest
2810  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2811  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2812  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2813  *
2814  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2815  *
2816  * 	- ret0 < ret1
2817  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2818  *		...
2819  *	- 0 < N - M => M < N
2820  *
2821  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2822  * always the case (the difference between two distinct xtime instances
2823  * might be smaller then the difference between corresponding TSC reads,
2824  * when updating guest vcpus pvclock areas).
2825  *
2826  * To avoid that problem, do not allow visibility of distinct
2827  * system_timestamp/tsc_timestamp values simultaneously: use a master
2828  * copy of host monotonic time values. Update that master copy
2829  * in lockstep.
2830  *
2831  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2832  *
2833  */
2834 
2835 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2836 {
2837 #ifdef CONFIG_X86_64
2838 	struct kvm_arch *ka = &kvm->arch;
2839 	int vclock_mode;
2840 	bool host_tsc_clocksource, vcpus_matched;
2841 
2842 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2843 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2844 			atomic_read(&kvm->online_vcpus));
2845 
2846 	/*
2847 	 * If the host uses TSC clock, then passthrough TSC as stable
2848 	 * to the guest.
2849 	 */
2850 	host_tsc_clocksource = kvm_get_time_and_clockread(
2851 					&ka->master_kernel_ns,
2852 					&ka->master_cycle_now);
2853 
2854 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2855 				&& !ka->backwards_tsc_observed
2856 				&& !ka->boot_vcpu_runs_old_kvmclock;
2857 
2858 	if (ka->use_master_clock)
2859 		atomic_set(&kvm_guest_has_master_clock, 1);
2860 
2861 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2862 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2863 					vcpus_matched);
2864 #endif
2865 }
2866 
2867 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2868 {
2869 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2870 }
2871 
2872 static void __kvm_start_pvclock_update(struct kvm *kvm)
2873 {
2874 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2875 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2876 }
2877 
2878 static void kvm_start_pvclock_update(struct kvm *kvm)
2879 {
2880 	kvm_make_mclock_inprogress_request(kvm);
2881 
2882 	/* no guest entries from this point */
2883 	__kvm_start_pvclock_update(kvm);
2884 }
2885 
2886 static void kvm_end_pvclock_update(struct kvm *kvm)
2887 {
2888 	struct kvm_arch *ka = &kvm->arch;
2889 	struct kvm_vcpu *vcpu;
2890 	unsigned long i;
2891 
2892 	write_seqcount_end(&ka->pvclock_sc);
2893 	raw_spin_unlock_irq(&ka->tsc_write_lock);
2894 	kvm_for_each_vcpu(i, vcpu, kvm)
2895 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2896 
2897 	/* guest entries allowed */
2898 	kvm_for_each_vcpu(i, vcpu, kvm)
2899 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2900 }
2901 
2902 static void kvm_update_masterclock(struct kvm *kvm)
2903 {
2904 	kvm_hv_request_tsc_page_update(kvm);
2905 	kvm_start_pvclock_update(kvm);
2906 	pvclock_update_vm_gtod_copy(kvm);
2907 	kvm_end_pvclock_update(kvm);
2908 }
2909 
2910 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2911 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2912 {
2913 	struct kvm_arch *ka = &kvm->arch;
2914 	struct pvclock_vcpu_time_info hv_clock;
2915 
2916 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2917 	get_cpu();
2918 
2919 	data->flags = 0;
2920 	if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2921 #ifdef CONFIG_X86_64
2922 		struct timespec64 ts;
2923 
2924 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2925 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2926 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2927 		} else
2928 #endif
2929 		data->host_tsc = rdtsc();
2930 
2931 		data->flags |= KVM_CLOCK_TSC_STABLE;
2932 		hv_clock.tsc_timestamp = ka->master_cycle_now;
2933 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2934 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2935 				   &hv_clock.tsc_shift,
2936 				   &hv_clock.tsc_to_system_mul);
2937 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2938 	} else {
2939 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2940 	}
2941 
2942 	put_cpu();
2943 }
2944 
2945 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2946 {
2947 	struct kvm_arch *ka = &kvm->arch;
2948 	unsigned seq;
2949 
2950 	do {
2951 		seq = read_seqcount_begin(&ka->pvclock_sc);
2952 		__get_kvmclock(kvm, data);
2953 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
2954 }
2955 
2956 u64 get_kvmclock_ns(struct kvm *kvm)
2957 {
2958 	struct kvm_clock_data data;
2959 
2960 	get_kvmclock(kvm, &data);
2961 	return data.clock;
2962 }
2963 
2964 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2965 				   struct gfn_to_hva_cache *cache,
2966 				   unsigned int offset)
2967 {
2968 	struct kvm_vcpu_arch *vcpu = &v->arch;
2969 	struct pvclock_vcpu_time_info guest_hv_clock;
2970 
2971 	if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2972 		&guest_hv_clock, offset, sizeof(guest_hv_clock))))
2973 		return;
2974 
2975 	/* This VCPU is paused, but it's legal for a guest to read another
2976 	 * VCPU's kvmclock, so we really have to follow the specification where
2977 	 * it says that version is odd if data is being modified, and even after
2978 	 * it is consistent.
2979 	 *
2980 	 * Version field updates must be kept separate.  This is because
2981 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2982 	 * writes within a string instruction are weakly ordered.  So there
2983 	 * are three writes overall.
2984 	 *
2985 	 * As a small optimization, only write the version field in the first
2986 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2987 	 * version field is the first in the struct.
2988 	 */
2989 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2990 
2991 	if (guest_hv_clock.version & 1)
2992 		++guest_hv_clock.version;  /* first time write, random junk */
2993 
2994 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2995 	kvm_write_guest_offset_cached(v->kvm, cache,
2996 				      &vcpu->hv_clock, offset,
2997 				      sizeof(vcpu->hv_clock.version));
2998 
2999 	smp_wmb();
3000 
3001 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3002 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
3003 
3004 	if (vcpu->pvclock_set_guest_stopped_request) {
3005 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3006 		vcpu->pvclock_set_guest_stopped_request = false;
3007 	}
3008 
3009 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3010 
3011 	kvm_write_guest_offset_cached(v->kvm, cache,
3012 				      &vcpu->hv_clock, offset,
3013 				      sizeof(vcpu->hv_clock));
3014 
3015 	smp_wmb();
3016 
3017 	vcpu->hv_clock.version++;
3018 	kvm_write_guest_offset_cached(v->kvm, cache,
3019 				     &vcpu->hv_clock, offset,
3020 				     sizeof(vcpu->hv_clock.version));
3021 }
3022 
3023 static int kvm_guest_time_update(struct kvm_vcpu *v)
3024 {
3025 	unsigned long flags, tgt_tsc_khz;
3026 	unsigned seq;
3027 	struct kvm_vcpu_arch *vcpu = &v->arch;
3028 	struct kvm_arch *ka = &v->kvm->arch;
3029 	s64 kernel_ns;
3030 	u64 tsc_timestamp, host_tsc;
3031 	u8 pvclock_flags;
3032 	bool use_master_clock;
3033 
3034 	kernel_ns = 0;
3035 	host_tsc = 0;
3036 
3037 	/*
3038 	 * If the host uses TSC clock, then passthrough TSC as stable
3039 	 * to the guest.
3040 	 */
3041 	do {
3042 		seq = read_seqcount_begin(&ka->pvclock_sc);
3043 		use_master_clock = ka->use_master_clock;
3044 		if (use_master_clock) {
3045 			host_tsc = ka->master_cycle_now;
3046 			kernel_ns = ka->master_kernel_ns;
3047 		}
3048 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3049 
3050 	/* Keep irq disabled to prevent changes to the clock */
3051 	local_irq_save(flags);
3052 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3053 	if (unlikely(tgt_tsc_khz == 0)) {
3054 		local_irq_restore(flags);
3055 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3056 		return 1;
3057 	}
3058 	if (!use_master_clock) {
3059 		host_tsc = rdtsc();
3060 		kernel_ns = get_kvmclock_base_ns();
3061 	}
3062 
3063 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3064 
3065 	/*
3066 	 * We may have to catch up the TSC to match elapsed wall clock
3067 	 * time for two reasons, even if kvmclock is used.
3068 	 *   1) CPU could have been running below the maximum TSC rate
3069 	 *   2) Broken TSC compensation resets the base at each VCPU
3070 	 *      entry to avoid unknown leaps of TSC even when running
3071 	 *      again on the same CPU.  This may cause apparent elapsed
3072 	 *      time to disappear, and the guest to stand still or run
3073 	 *	very slowly.
3074 	 */
3075 	if (vcpu->tsc_catchup) {
3076 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3077 		if (tsc > tsc_timestamp) {
3078 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3079 			tsc_timestamp = tsc;
3080 		}
3081 	}
3082 
3083 	local_irq_restore(flags);
3084 
3085 	/* With all the info we got, fill in the values */
3086 
3087 	if (kvm_has_tsc_control)
3088 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3089 					    v->arch.l1_tsc_scaling_ratio);
3090 
3091 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3092 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3093 				   &vcpu->hv_clock.tsc_shift,
3094 				   &vcpu->hv_clock.tsc_to_system_mul);
3095 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3096 	}
3097 
3098 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3099 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3100 	vcpu->last_guest_tsc = tsc_timestamp;
3101 
3102 	/* If the host uses TSC clocksource, then it is stable */
3103 	pvclock_flags = 0;
3104 	if (use_master_clock)
3105 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3106 
3107 	vcpu->hv_clock.flags = pvclock_flags;
3108 
3109 	if (vcpu->pv_time_enabled)
3110 		kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
3111 	if (vcpu->xen.vcpu_info_set)
3112 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
3113 				       offsetof(struct compat_vcpu_info, time));
3114 	if (vcpu->xen.vcpu_time_info_set)
3115 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
3116 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3117 	return 0;
3118 }
3119 
3120 /*
3121  * kvmclock updates which are isolated to a given vcpu, such as
3122  * vcpu->cpu migration, should not allow system_timestamp from
3123  * the rest of the vcpus to remain static. Otherwise ntp frequency
3124  * correction applies to one vcpu's system_timestamp but not
3125  * the others.
3126  *
3127  * So in those cases, request a kvmclock update for all vcpus.
3128  * We need to rate-limit these requests though, as they can
3129  * considerably slow guests that have a large number of vcpus.
3130  * The time for a remote vcpu to update its kvmclock is bound
3131  * by the delay we use to rate-limit the updates.
3132  */
3133 
3134 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3135 
3136 static void kvmclock_update_fn(struct work_struct *work)
3137 {
3138 	unsigned long i;
3139 	struct delayed_work *dwork = to_delayed_work(work);
3140 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3141 					   kvmclock_update_work);
3142 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3143 	struct kvm_vcpu *vcpu;
3144 
3145 	kvm_for_each_vcpu(i, vcpu, kvm) {
3146 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3147 		kvm_vcpu_kick(vcpu);
3148 	}
3149 }
3150 
3151 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3152 {
3153 	struct kvm *kvm = v->kvm;
3154 
3155 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3156 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3157 					KVMCLOCK_UPDATE_DELAY);
3158 }
3159 
3160 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3161 
3162 static void kvmclock_sync_fn(struct work_struct *work)
3163 {
3164 	struct delayed_work *dwork = to_delayed_work(work);
3165 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3166 					   kvmclock_sync_work);
3167 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3168 
3169 	if (!kvmclock_periodic_sync)
3170 		return;
3171 
3172 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3173 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3174 					KVMCLOCK_SYNC_PERIOD);
3175 }
3176 
3177 /*
3178  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3179  */
3180 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3181 {
3182 	/* McStatusWrEn enabled? */
3183 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3184 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3185 
3186 	return false;
3187 }
3188 
3189 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3190 {
3191 	u64 mcg_cap = vcpu->arch.mcg_cap;
3192 	unsigned bank_num = mcg_cap & 0xff;
3193 	u32 msr = msr_info->index;
3194 	u64 data = msr_info->data;
3195 
3196 	switch (msr) {
3197 	case MSR_IA32_MCG_STATUS:
3198 		vcpu->arch.mcg_status = data;
3199 		break;
3200 	case MSR_IA32_MCG_CTL:
3201 		if (!(mcg_cap & MCG_CTL_P) &&
3202 		    (data || !msr_info->host_initiated))
3203 			return 1;
3204 		if (data != 0 && data != ~(u64)0)
3205 			return 1;
3206 		vcpu->arch.mcg_ctl = data;
3207 		break;
3208 	default:
3209 		if (msr >= MSR_IA32_MC0_CTL &&
3210 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3211 			u32 offset = array_index_nospec(
3212 				msr - MSR_IA32_MC0_CTL,
3213 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3214 
3215 			/* only 0 or all 1s can be written to IA32_MCi_CTL
3216 			 * some Linux kernels though clear bit 10 in bank 4 to
3217 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3218 			 * this to avoid an uncatched #GP in the guest
3219 			 */
3220 			if ((offset & 0x3) == 0 &&
3221 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
3222 				return -1;
3223 
3224 			/* MCi_STATUS */
3225 			if (!msr_info->host_initiated &&
3226 			    (offset & 0x3) == 1 && data != 0) {
3227 				if (!can_set_mci_status(vcpu))
3228 					return -1;
3229 			}
3230 
3231 			vcpu->arch.mce_banks[offset] = data;
3232 			break;
3233 		}
3234 		return 1;
3235 	}
3236 	return 0;
3237 }
3238 
3239 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3240 {
3241 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3242 
3243 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3244 }
3245 
3246 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3247 {
3248 	gpa_t gpa = data & ~0x3f;
3249 
3250 	/* Bits 4:5 are reserved, Should be zero */
3251 	if (data & 0x30)
3252 		return 1;
3253 
3254 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3255 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3256 		return 1;
3257 
3258 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3259 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3260 		return 1;
3261 
3262 	if (!lapic_in_kernel(vcpu))
3263 		return data ? 1 : 0;
3264 
3265 	vcpu->arch.apf.msr_en_val = data;
3266 
3267 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3268 		kvm_clear_async_pf_completion_queue(vcpu);
3269 		kvm_async_pf_hash_reset(vcpu);
3270 		return 0;
3271 	}
3272 
3273 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3274 					sizeof(u64)))
3275 		return 1;
3276 
3277 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3278 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3279 
3280 	kvm_async_pf_wakeup_all(vcpu);
3281 
3282 	return 0;
3283 }
3284 
3285 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3286 {
3287 	/* Bits 8-63 are reserved */
3288 	if (data >> 8)
3289 		return 1;
3290 
3291 	if (!lapic_in_kernel(vcpu))
3292 		return 1;
3293 
3294 	vcpu->arch.apf.msr_int_val = data;
3295 
3296 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3297 
3298 	return 0;
3299 }
3300 
3301 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3302 {
3303 	vcpu->arch.pv_time_enabled = false;
3304 	vcpu->arch.time = 0;
3305 }
3306 
3307 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3308 {
3309 	++vcpu->stat.tlb_flush;
3310 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3311 }
3312 
3313 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3314 {
3315 	++vcpu->stat.tlb_flush;
3316 
3317 	if (!tdp_enabled) {
3318 		/*
3319 		 * A TLB flush on behalf of the guest is equivalent to
3320 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3321 		 * a forced sync of the shadow page tables.  Ensure all the
3322 		 * roots are synced and the guest TLB in hardware is clean.
3323 		 */
3324 		kvm_mmu_sync_roots(vcpu);
3325 		kvm_mmu_sync_prev_roots(vcpu);
3326 	}
3327 
3328 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3329 }
3330 
3331 
3332 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3333 {
3334 	++vcpu->stat.tlb_flush;
3335 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3336 }
3337 
3338 /*
3339  * Service "local" TLB flush requests, which are specific to the current MMU
3340  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3341  * TLB flushes that are targeted at an MMU context also need to be serviced
3342  * prior before nested VM-Enter/VM-Exit.
3343  */
3344 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3345 {
3346 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3347 		kvm_vcpu_flush_tlb_current(vcpu);
3348 
3349 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3350 		kvm_vcpu_flush_tlb_guest(vcpu);
3351 }
3352 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3353 
3354 static void record_steal_time(struct kvm_vcpu *vcpu)
3355 {
3356 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3357 	struct kvm_steal_time __user *st;
3358 	struct kvm_memslots *slots;
3359 	u64 steal;
3360 	u32 version;
3361 
3362 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3363 		kvm_xen_runstate_set_running(vcpu);
3364 		return;
3365 	}
3366 
3367 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3368 		return;
3369 
3370 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3371 		return;
3372 
3373 	slots = kvm_memslots(vcpu->kvm);
3374 
3375 	if (unlikely(slots->generation != ghc->generation ||
3376 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3377 		gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3378 
3379 		/* We rely on the fact that it fits in a single page. */
3380 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3381 
3382 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3383 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3384 			return;
3385 	}
3386 
3387 	st = (struct kvm_steal_time __user *)ghc->hva;
3388 	/*
3389 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3390 	 * expensive IPIs.
3391 	 */
3392 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3393 		u8 st_preempted = 0;
3394 		int err = -EFAULT;
3395 
3396 		if (!user_access_begin(st, sizeof(*st)))
3397 			return;
3398 
3399 		asm volatile("1: xchgb %0, %2\n"
3400 			     "xor %1, %1\n"
3401 			     "2:\n"
3402 			     _ASM_EXTABLE_UA(1b, 2b)
3403 			     : "+q" (st_preempted),
3404 			       "+&r" (err),
3405 			       "+m" (st->preempted));
3406 		if (err)
3407 			goto out;
3408 
3409 		user_access_end();
3410 
3411 		vcpu->arch.st.preempted = 0;
3412 
3413 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3414 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3415 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3416 			kvm_vcpu_flush_tlb_guest(vcpu);
3417 
3418 		if (!user_access_begin(st, sizeof(*st)))
3419 			goto dirty;
3420 	} else {
3421 		if (!user_access_begin(st, sizeof(*st)))
3422 			return;
3423 
3424 		unsafe_put_user(0, &st->preempted, out);
3425 		vcpu->arch.st.preempted = 0;
3426 	}
3427 
3428 	unsafe_get_user(version, &st->version, out);
3429 	if (version & 1)
3430 		version += 1;  /* first time write, random junk */
3431 
3432 	version += 1;
3433 	unsafe_put_user(version, &st->version, out);
3434 
3435 	smp_wmb();
3436 
3437 	unsafe_get_user(steal, &st->steal, out);
3438 	steal += current->sched_info.run_delay -
3439 		vcpu->arch.st.last_steal;
3440 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3441 	unsafe_put_user(steal, &st->steal, out);
3442 
3443 	version += 1;
3444 	unsafe_put_user(version, &st->version, out);
3445 
3446  out:
3447 	user_access_end();
3448  dirty:
3449 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3450 }
3451 
3452 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3453 {
3454 	bool pr = false;
3455 	u32 msr = msr_info->index;
3456 	u64 data = msr_info->data;
3457 
3458 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3459 		return kvm_xen_write_hypercall_page(vcpu, data);
3460 
3461 	switch (msr) {
3462 	case MSR_AMD64_NB_CFG:
3463 	case MSR_IA32_UCODE_WRITE:
3464 	case MSR_VM_HSAVE_PA:
3465 	case MSR_AMD64_PATCH_LOADER:
3466 	case MSR_AMD64_BU_CFG2:
3467 	case MSR_AMD64_DC_CFG:
3468 	case MSR_F15H_EX_CFG:
3469 		break;
3470 
3471 	case MSR_IA32_UCODE_REV:
3472 		if (msr_info->host_initiated)
3473 			vcpu->arch.microcode_version = data;
3474 		break;
3475 	case MSR_IA32_ARCH_CAPABILITIES:
3476 		if (!msr_info->host_initiated)
3477 			return 1;
3478 		vcpu->arch.arch_capabilities = data;
3479 		break;
3480 	case MSR_IA32_PERF_CAPABILITIES: {
3481 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3482 
3483 		if (!msr_info->host_initiated)
3484 			return 1;
3485 		if (kvm_get_msr_feature(&msr_ent))
3486 			return 1;
3487 		if (data & ~msr_ent.data)
3488 			return 1;
3489 
3490 		vcpu->arch.perf_capabilities = data;
3491 
3492 		return 0;
3493 		}
3494 	case MSR_EFER:
3495 		return set_efer(vcpu, msr_info);
3496 	case MSR_K7_HWCR:
3497 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3498 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3499 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3500 
3501 		/* Handle McStatusWrEn */
3502 		if (data == BIT_ULL(18)) {
3503 			vcpu->arch.msr_hwcr = data;
3504 		} else if (data != 0) {
3505 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3506 				    data);
3507 			return 1;
3508 		}
3509 		break;
3510 	case MSR_FAM10H_MMIO_CONF_BASE:
3511 		if (data != 0) {
3512 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3513 				    "0x%llx\n", data);
3514 			return 1;
3515 		}
3516 		break;
3517 	case 0x200 ... 0x2ff:
3518 		return kvm_mtrr_set_msr(vcpu, msr, data);
3519 	case MSR_IA32_APICBASE:
3520 		return kvm_set_apic_base(vcpu, msr_info);
3521 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3522 		return kvm_x2apic_msr_write(vcpu, msr, data);
3523 	case MSR_IA32_TSC_DEADLINE:
3524 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3525 		break;
3526 	case MSR_IA32_TSC_ADJUST:
3527 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3528 			if (!msr_info->host_initiated) {
3529 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3530 				adjust_tsc_offset_guest(vcpu, adj);
3531 				/* Before back to guest, tsc_timestamp must be adjusted
3532 				 * as well, otherwise guest's percpu pvclock time could jump.
3533 				 */
3534 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3535 			}
3536 			vcpu->arch.ia32_tsc_adjust_msr = data;
3537 		}
3538 		break;
3539 	case MSR_IA32_MISC_ENABLE:
3540 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3541 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3542 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3543 				return 1;
3544 			vcpu->arch.ia32_misc_enable_msr = data;
3545 			kvm_update_cpuid_runtime(vcpu);
3546 		} else {
3547 			vcpu->arch.ia32_misc_enable_msr = data;
3548 		}
3549 		break;
3550 	case MSR_IA32_SMBASE:
3551 		if (!msr_info->host_initiated)
3552 			return 1;
3553 		vcpu->arch.smbase = data;
3554 		break;
3555 	case MSR_IA32_POWER_CTL:
3556 		vcpu->arch.msr_ia32_power_ctl = data;
3557 		break;
3558 	case MSR_IA32_TSC:
3559 		if (msr_info->host_initiated) {
3560 			kvm_synchronize_tsc(vcpu, data);
3561 		} else {
3562 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3563 			adjust_tsc_offset_guest(vcpu, adj);
3564 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3565 		}
3566 		break;
3567 	case MSR_IA32_XSS:
3568 		if (!msr_info->host_initiated &&
3569 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3570 			return 1;
3571 		/*
3572 		 * KVM supports exposing PT to the guest, but does not support
3573 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3574 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3575 		 */
3576 		if (data & ~supported_xss)
3577 			return 1;
3578 		vcpu->arch.ia32_xss = data;
3579 		kvm_update_cpuid_runtime(vcpu);
3580 		break;
3581 	case MSR_SMI_COUNT:
3582 		if (!msr_info->host_initiated)
3583 			return 1;
3584 		vcpu->arch.smi_count = data;
3585 		break;
3586 	case MSR_KVM_WALL_CLOCK_NEW:
3587 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3588 			return 1;
3589 
3590 		vcpu->kvm->arch.wall_clock = data;
3591 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3592 		break;
3593 	case MSR_KVM_WALL_CLOCK:
3594 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3595 			return 1;
3596 
3597 		vcpu->kvm->arch.wall_clock = data;
3598 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3599 		break;
3600 	case MSR_KVM_SYSTEM_TIME_NEW:
3601 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3602 			return 1;
3603 
3604 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3605 		break;
3606 	case MSR_KVM_SYSTEM_TIME:
3607 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3608 			return 1;
3609 
3610 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3611 		break;
3612 	case MSR_KVM_ASYNC_PF_EN:
3613 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3614 			return 1;
3615 
3616 		if (kvm_pv_enable_async_pf(vcpu, data))
3617 			return 1;
3618 		break;
3619 	case MSR_KVM_ASYNC_PF_INT:
3620 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3621 			return 1;
3622 
3623 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3624 			return 1;
3625 		break;
3626 	case MSR_KVM_ASYNC_PF_ACK:
3627 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3628 			return 1;
3629 		if (data & 0x1) {
3630 			vcpu->arch.apf.pageready_pending = false;
3631 			kvm_check_async_pf_completion(vcpu);
3632 		}
3633 		break;
3634 	case MSR_KVM_STEAL_TIME:
3635 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3636 			return 1;
3637 
3638 		if (unlikely(!sched_info_on()))
3639 			return 1;
3640 
3641 		if (data & KVM_STEAL_RESERVED_MASK)
3642 			return 1;
3643 
3644 		vcpu->arch.st.msr_val = data;
3645 
3646 		if (!(data & KVM_MSR_ENABLED))
3647 			break;
3648 
3649 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3650 
3651 		break;
3652 	case MSR_KVM_PV_EOI_EN:
3653 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3654 			return 1;
3655 
3656 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3657 			return 1;
3658 		break;
3659 
3660 	case MSR_KVM_POLL_CONTROL:
3661 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3662 			return 1;
3663 
3664 		/* only enable bit supported */
3665 		if (data & (-1ULL << 1))
3666 			return 1;
3667 
3668 		vcpu->arch.msr_kvm_poll_control = data;
3669 		break;
3670 
3671 	case MSR_IA32_MCG_CTL:
3672 	case MSR_IA32_MCG_STATUS:
3673 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3674 		return set_msr_mce(vcpu, msr_info);
3675 
3676 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3677 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3678 		pr = true;
3679 		fallthrough;
3680 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3681 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3682 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3683 			return kvm_pmu_set_msr(vcpu, msr_info);
3684 
3685 		if (pr || data != 0)
3686 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3687 				    "0x%x data 0x%llx\n", msr, data);
3688 		break;
3689 	case MSR_K7_CLK_CTL:
3690 		/*
3691 		 * Ignore all writes to this no longer documented MSR.
3692 		 * Writes are only relevant for old K7 processors,
3693 		 * all pre-dating SVM, but a recommended workaround from
3694 		 * AMD for these chips. It is possible to specify the
3695 		 * affected processor models on the command line, hence
3696 		 * the need to ignore the workaround.
3697 		 */
3698 		break;
3699 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3700 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3701 	case HV_X64_MSR_SYNDBG_OPTIONS:
3702 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3703 	case HV_X64_MSR_CRASH_CTL:
3704 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3705 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3706 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3707 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3708 		return kvm_hv_set_msr_common(vcpu, msr, data,
3709 					     msr_info->host_initiated);
3710 	case MSR_IA32_BBL_CR_CTL3:
3711 		/* Drop writes to this legacy MSR -- see rdmsr
3712 		 * counterpart for further detail.
3713 		 */
3714 		if (report_ignored_msrs)
3715 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3716 				msr, data);
3717 		break;
3718 	case MSR_AMD64_OSVW_ID_LENGTH:
3719 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3720 			return 1;
3721 		vcpu->arch.osvw.length = data;
3722 		break;
3723 	case MSR_AMD64_OSVW_STATUS:
3724 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3725 			return 1;
3726 		vcpu->arch.osvw.status = data;
3727 		break;
3728 	case MSR_PLATFORM_INFO:
3729 		if (!msr_info->host_initiated ||
3730 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3731 		     cpuid_fault_enabled(vcpu)))
3732 			return 1;
3733 		vcpu->arch.msr_platform_info = data;
3734 		break;
3735 	case MSR_MISC_FEATURES_ENABLES:
3736 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3737 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3738 		     !supports_cpuid_fault(vcpu)))
3739 			return 1;
3740 		vcpu->arch.msr_misc_features_enables = data;
3741 		break;
3742 #ifdef CONFIG_X86_64
3743 	case MSR_IA32_XFD:
3744 		if (!msr_info->host_initiated &&
3745 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3746 			return 1;
3747 
3748 		if (data & ~kvm_guest_supported_xfd(vcpu))
3749 			return 1;
3750 
3751 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3752 		break;
3753 	case MSR_IA32_XFD_ERR:
3754 		if (!msr_info->host_initiated &&
3755 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3756 			return 1;
3757 
3758 		if (data & ~kvm_guest_supported_xfd(vcpu))
3759 			return 1;
3760 
3761 		vcpu->arch.guest_fpu.xfd_err = data;
3762 		break;
3763 #endif
3764 	default:
3765 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3766 			return kvm_pmu_set_msr(vcpu, msr_info);
3767 		return KVM_MSR_RET_INVALID;
3768 	}
3769 	return 0;
3770 }
3771 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3772 
3773 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3774 {
3775 	u64 data;
3776 	u64 mcg_cap = vcpu->arch.mcg_cap;
3777 	unsigned bank_num = mcg_cap & 0xff;
3778 
3779 	switch (msr) {
3780 	case MSR_IA32_P5_MC_ADDR:
3781 	case MSR_IA32_P5_MC_TYPE:
3782 		data = 0;
3783 		break;
3784 	case MSR_IA32_MCG_CAP:
3785 		data = vcpu->arch.mcg_cap;
3786 		break;
3787 	case MSR_IA32_MCG_CTL:
3788 		if (!(mcg_cap & MCG_CTL_P) && !host)
3789 			return 1;
3790 		data = vcpu->arch.mcg_ctl;
3791 		break;
3792 	case MSR_IA32_MCG_STATUS:
3793 		data = vcpu->arch.mcg_status;
3794 		break;
3795 	default:
3796 		if (msr >= MSR_IA32_MC0_CTL &&
3797 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3798 			u32 offset = array_index_nospec(
3799 				msr - MSR_IA32_MC0_CTL,
3800 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3801 
3802 			data = vcpu->arch.mce_banks[offset];
3803 			break;
3804 		}
3805 		return 1;
3806 	}
3807 	*pdata = data;
3808 	return 0;
3809 }
3810 
3811 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3812 {
3813 	switch (msr_info->index) {
3814 	case MSR_IA32_PLATFORM_ID:
3815 	case MSR_IA32_EBL_CR_POWERON:
3816 	case MSR_IA32_LASTBRANCHFROMIP:
3817 	case MSR_IA32_LASTBRANCHTOIP:
3818 	case MSR_IA32_LASTINTFROMIP:
3819 	case MSR_IA32_LASTINTTOIP:
3820 	case MSR_AMD64_SYSCFG:
3821 	case MSR_K8_TSEG_ADDR:
3822 	case MSR_K8_TSEG_MASK:
3823 	case MSR_VM_HSAVE_PA:
3824 	case MSR_K8_INT_PENDING_MSG:
3825 	case MSR_AMD64_NB_CFG:
3826 	case MSR_FAM10H_MMIO_CONF_BASE:
3827 	case MSR_AMD64_BU_CFG2:
3828 	case MSR_IA32_PERF_CTL:
3829 	case MSR_AMD64_DC_CFG:
3830 	case MSR_F15H_EX_CFG:
3831 	/*
3832 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3833 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3834 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3835 	 * so for existing CPU-specific MSRs.
3836 	 */
3837 	case MSR_RAPL_POWER_UNIT:
3838 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3839 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3840 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3841 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3842 		msr_info->data = 0;
3843 		break;
3844 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3845 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3846 			return kvm_pmu_get_msr(vcpu, msr_info);
3847 		if (!msr_info->host_initiated)
3848 			return 1;
3849 		msr_info->data = 0;
3850 		break;
3851 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3852 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3853 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3854 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3855 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3856 			return kvm_pmu_get_msr(vcpu, msr_info);
3857 		msr_info->data = 0;
3858 		break;
3859 	case MSR_IA32_UCODE_REV:
3860 		msr_info->data = vcpu->arch.microcode_version;
3861 		break;
3862 	case MSR_IA32_ARCH_CAPABILITIES:
3863 		if (!msr_info->host_initiated &&
3864 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3865 			return 1;
3866 		msr_info->data = vcpu->arch.arch_capabilities;
3867 		break;
3868 	case MSR_IA32_PERF_CAPABILITIES:
3869 		if (!msr_info->host_initiated &&
3870 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3871 			return 1;
3872 		msr_info->data = vcpu->arch.perf_capabilities;
3873 		break;
3874 	case MSR_IA32_POWER_CTL:
3875 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3876 		break;
3877 	case MSR_IA32_TSC: {
3878 		/*
3879 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3880 		 * even when not intercepted. AMD manual doesn't explicitly
3881 		 * state this but appears to behave the same.
3882 		 *
3883 		 * On userspace reads and writes, however, we unconditionally
3884 		 * return L1's TSC value to ensure backwards-compatible
3885 		 * behavior for migration.
3886 		 */
3887 		u64 offset, ratio;
3888 
3889 		if (msr_info->host_initiated) {
3890 			offset = vcpu->arch.l1_tsc_offset;
3891 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
3892 		} else {
3893 			offset = vcpu->arch.tsc_offset;
3894 			ratio = vcpu->arch.tsc_scaling_ratio;
3895 		}
3896 
3897 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
3898 		break;
3899 	}
3900 	case MSR_MTRRcap:
3901 	case 0x200 ... 0x2ff:
3902 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3903 	case 0xcd: /* fsb frequency */
3904 		msr_info->data = 3;
3905 		break;
3906 		/*
3907 		 * MSR_EBC_FREQUENCY_ID
3908 		 * Conservative value valid for even the basic CPU models.
3909 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3910 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3911 		 * and 266MHz for model 3, or 4. Set Core Clock
3912 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3913 		 * 31:24) even though these are only valid for CPU
3914 		 * models > 2, however guests may end up dividing or
3915 		 * multiplying by zero otherwise.
3916 		 */
3917 	case MSR_EBC_FREQUENCY_ID:
3918 		msr_info->data = 1 << 24;
3919 		break;
3920 	case MSR_IA32_APICBASE:
3921 		msr_info->data = kvm_get_apic_base(vcpu);
3922 		break;
3923 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3924 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3925 	case MSR_IA32_TSC_DEADLINE:
3926 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3927 		break;
3928 	case MSR_IA32_TSC_ADJUST:
3929 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3930 		break;
3931 	case MSR_IA32_MISC_ENABLE:
3932 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3933 		break;
3934 	case MSR_IA32_SMBASE:
3935 		if (!msr_info->host_initiated)
3936 			return 1;
3937 		msr_info->data = vcpu->arch.smbase;
3938 		break;
3939 	case MSR_SMI_COUNT:
3940 		msr_info->data = vcpu->arch.smi_count;
3941 		break;
3942 	case MSR_IA32_PERF_STATUS:
3943 		/* TSC increment by tick */
3944 		msr_info->data = 1000ULL;
3945 		/* CPU multiplier */
3946 		msr_info->data |= (((uint64_t)4ULL) << 40);
3947 		break;
3948 	case MSR_EFER:
3949 		msr_info->data = vcpu->arch.efer;
3950 		break;
3951 	case MSR_KVM_WALL_CLOCK:
3952 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3953 			return 1;
3954 
3955 		msr_info->data = vcpu->kvm->arch.wall_clock;
3956 		break;
3957 	case MSR_KVM_WALL_CLOCK_NEW:
3958 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3959 			return 1;
3960 
3961 		msr_info->data = vcpu->kvm->arch.wall_clock;
3962 		break;
3963 	case MSR_KVM_SYSTEM_TIME:
3964 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3965 			return 1;
3966 
3967 		msr_info->data = vcpu->arch.time;
3968 		break;
3969 	case MSR_KVM_SYSTEM_TIME_NEW:
3970 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3971 			return 1;
3972 
3973 		msr_info->data = vcpu->arch.time;
3974 		break;
3975 	case MSR_KVM_ASYNC_PF_EN:
3976 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3977 			return 1;
3978 
3979 		msr_info->data = vcpu->arch.apf.msr_en_val;
3980 		break;
3981 	case MSR_KVM_ASYNC_PF_INT:
3982 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3983 			return 1;
3984 
3985 		msr_info->data = vcpu->arch.apf.msr_int_val;
3986 		break;
3987 	case MSR_KVM_ASYNC_PF_ACK:
3988 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3989 			return 1;
3990 
3991 		msr_info->data = 0;
3992 		break;
3993 	case MSR_KVM_STEAL_TIME:
3994 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3995 			return 1;
3996 
3997 		msr_info->data = vcpu->arch.st.msr_val;
3998 		break;
3999 	case MSR_KVM_PV_EOI_EN:
4000 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4001 			return 1;
4002 
4003 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4004 		break;
4005 	case MSR_KVM_POLL_CONTROL:
4006 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4007 			return 1;
4008 
4009 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4010 		break;
4011 	case MSR_IA32_P5_MC_ADDR:
4012 	case MSR_IA32_P5_MC_TYPE:
4013 	case MSR_IA32_MCG_CAP:
4014 	case MSR_IA32_MCG_CTL:
4015 	case MSR_IA32_MCG_STATUS:
4016 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4017 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4018 				   msr_info->host_initiated);
4019 	case MSR_IA32_XSS:
4020 		if (!msr_info->host_initiated &&
4021 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4022 			return 1;
4023 		msr_info->data = vcpu->arch.ia32_xss;
4024 		break;
4025 	case MSR_K7_CLK_CTL:
4026 		/*
4027 		 * Provide expected ramp-up count for K7. All other
4028 		 * are set to zero, indicating minimum divisors for
4029 		 * every field.
4030 		 *
4031 		 * This prevents guest kernels on AMD host with CPU
4032 		 * type 6, model 8 and higher from exploding due to
4033 		 * the rdmsr failing.
4034 		 */
4035 		msr_info->data = 0x20000000;
4036 		break;
4037 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4038 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4039 	case HV_X64_MSR_SYNDBG_OPTIONS:
4040 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4041 	case HV_X64_MSR_CRASH_CTL:
4042 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4043 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4044 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4045 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4046 		return kvm_hv_get_msr_common(vcpu,
4047 					     msr_info->index, &msr_info->data,
4048 					     msr_info->host_initiated);
4049 	case MSR_IA32_BBL_CR_CTL3:
4050 		/* This legacy MSR exists but isn't fully documented in current
4051 		 * silicon.  It is however accessed by winxp in very narrow
4052 		 * scenarios where it sets bit #19, itself documented as
4053 		 * a "reserved" bit.  Best effort attempt to source coherent
4054 		 * read data here should the balance of the register be
4055 		 * interpreted by the guest:
4056 		 *
4057 		 * L2 cache control register 3: 64GB range, 256KB size,
4058 		 * enabled, latency 0x1, configured
4059 		 */
4060 		msr_info->data = 0xbe702111;
4061 		break;
4062 	case MSR_AMD64_OSVW_ID_LENGTH:
4063 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4064 			return 1;
4065 		msr_info->data = vcpu->arch.osvw.length;
4066 		break;
4067 	case MSR_AMD64_OSVW_STATUS:
4068 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4069 			return 1;
4070 		msr_info->data = vcpu->arch.osvw.status;
4071 		break;
4072 	case MSR_PLATFORM_INFO:
4073 		if (!msr_info->host_initiated &&
4074 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4075 			return 1;
4076 		msr_info->data = vcpu->arch.msr_platform_info;
4077 		break;
4078 	case MSR_MISC_FEATURES_ENABLES:
4079 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4080 		break;
4081 	case MSR_K7_HWCR:
4082 		msr_info->data = vcpu->arch.msr_hwcr;
4083 		break;
4084 #ifdef CONFIG_X86_64
4085 	case MSR_IA32_XFD:
4086 		if (!msr_info->host_initiated &&
4087 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4088 			return 1;
4089 
4090 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4091 		break;
4092 	case MSR_IA32_XFD_ERR:
4093 		if (!msr_info->host_initiated &&
4094 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4095 			return 1;
4096 
4097 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4098 		break;
4099 #endif
4100 	default:
4101 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4102 			return kvm_pmu_get_msr(vcpu, msr_info);
4103 		return KVM_MSR_RET_INVALID;
4104 	}
4105 	return 0;
4106 }
4107 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4108 
4109 /*
4110  * Read or write a bunch of msrs. All parameters are kernel addresses.
4111  *
4112  * @return number of msrs set successfully.
4113  */
4114 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4115 		    struct kvm_msr_entry *entries,
4116 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4117 				  unsigned index, u64 *data))
4118 {
4119 	int i;
4120 
4121 	for (i = 0; i < msrs->nmsrs; ++i)
4122 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4123 			break;
4124 
4125 	return i;
4126 }
4127 
4128 /*
4129  * Read or write a bunch of msrs. Parameters are user addresses.
4130  *
4131  * @return number of msrs set successfully.
4132  */
4133 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4134 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4135 				unsigned index, u64 *data),
4136 		  int writeback)
4137 {
4138 	struct kvm_msrs msrs;
4139 	struct kvm_msr_entry *entries;
4140 	int r, n;
4141 	unsigned size;
4142 
4143 	r = -EFAULT;
4144 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4145 		goto out;
4146 
4147 	r = -E2BIG;
4148 	if (msrs.nmsrs >= MAX_IO_MSRS)
4149 		goto out;
4150 
4151 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4152 	entries = memdup_user(user_msrs->entries, size);
4153 	if (IS_ERR(entries)) {
4154 		r = PTR_ERR(entries);
4155 		goto out;
4156 	}
4157 
4158 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4159 	if (r < 0)
4160 		goto out_free;
4161 
4162 	r = -EFAULT;
4163 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4164 		goto out_free;
4165 
4166 	r = n;
4167 
4168 out_free:
4169 	kfree(entries);
4170 out:
4171 	return r;
4172 }
4173 
4174 static inline bool kvm_can_mwait_in_guest(void)
4175 {
4176 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4177 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4178 		boot_cpu_has(X86_FEATURE_ARAT);
4179 }
4180 
4181 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4182 					    struct kvm_cpuid2 __user *cpuid_arg)
4183 {
4184 	struct kvm_cpuid2 cpuid;
4185 	int r;
4186 
4187 	r = -EFAULT;
4188 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4189 		return r;
4190 
4191 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4192 	if (r)
4193 		return r;
4194 
4195 	r = -EFAULT;
4196 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4197 		return r;
4198 
4199 	return 0;
4200 }
4201 
4202 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4203 {
4204 	int r = 0;
4205 
4206 	switch (ext) {
4207 	case KVM_CAP_IRQCHIP:
4208 	case KVM_CAP_HLT:
4209 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4210 	case KVM_CAP_SET_TSS_ADDR:
4211 	case KVM_CAP_EXT_CPUID:
4212 	case KVM_CAP_EXT_EMUL_CPUID:
4213 	case KVM_CAP_CLOCKSOURCE:
4214 	case KVM_CAP_PIT:
4215 	case KVM_CAP_NOP_IO_DELAY:
4216 	case KVM_CAP_MP_STATE:
4217 	case KVM_CAP_SYNC_MMU:
4218 	case KVM_CAP_USER_NMI:
4219 	case KVM_CAP_REINJECT_CONTROL:
4220 	case KVM_CAP_IRQ_INJECT_STATUS:
4221 	case KVM_CAP_IOEVENTFD:
4222 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4223 	case KVM_CAP_PIT2:
4224 	case KVM_CAP_PIT_STATE2:
4225 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4226 	case KVM_CAP_VCPU_EVENTS:
4227 	case KVM_CAP_HYPERV:
4228 	case KVM_CAP_HYPERV_VAPIC:
4229 	case KVM_CAP_HYPERV_SPIN:
4230 	case KVM_CAP_HYPERV_SYNIC:
4231 	case KVM_CAP_HYPERV_SYNIC2:
4232 	case KVM_CAP_HYPERV_VP_INDEX:
4233 	case KVM_CAP_HYPERV_EVENTFD:
4234 	case KVM_CAP_HYPERV_TLBFLUSH:
4235 	case KVM_CAP_HYPERV_SEND_IPI:
4236 	case KVM_CAP_HYPERV_CPUID:
4237 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4238 	case KVM_CAP_SYS_HYPERV_CPUID:
4239 	case KVM_CAP_PCI_SEGMENT:
4240 	case KVM_CAP_DEBUGREGS:
4241 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4242 	case KVM_CAP_XSAVE:
4243 	case KVM_CAP_ASYNC_PF:
4244 	case KVM_CAP_ASYNC_PF_INT:
4245 	case KVM_CAP_GET_TSC_KHZ:
4246 	case KVM_CAP_KVMCLOCK_CTRL:
4247 	case KVM_CAP_READONLY_MEM:
4248 	case KVM_CAP_HYPERV_TIME:
4249 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4250 	case KVM_CAP_TSC_DEADLINE_TIMER:
4251 	case KVM_CAP_DISABLE_QUIRKS:
4252 	case KVM_CAP_SET_BOOT_CPU_ID:
4253  	case KVM_CAP_SPLIT_IRQCHIP:
4254 	case KVM_CAP_IMMEDIATE_EXIT:
4255 	case KVM_CAP_PMU_EVENT_FILTER:
4256 	case KVM_CAP_GET_MSR_FEATURES:
4257 	case KVM_CAP_MSR_PLATFORM_INFO:
4258 	case KVM_CAP_EXCEPTION_PAYLOAD:
4259 	case KVM_CAP_SET_GUEST_DEBUG:
4260 	case KVM_CAP_LAST_CPU:
4261 	case KVM_CAP_X86_USER_SPACE_MSR:
4262 	case KVM_CAP_X86_MSR_FILTER:
4263 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4264 #ifdef CONFIG_X86_SGX_KVM
4265 	case KVM_CAP_SGX_ATTRIBUTE:
4266 #endif
4267 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4268 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4269 	case KVM_CAP_SREGS2:
4270 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4271 	case KVM_CAP_VCPU_ATTRIBUTES:
4272 	case KVM_CAP_SYS_ATTRIBUTES:
4273 	case KVM_CAP_VAPIC:
4274 	case KVM_CAP_ENABLE_CAP:
4275 		r = 1;
4276 		break;
4277 	case KVM_CAP_EXIT_HYPERCALL:
4278 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4279 		break;
4280 	case KVM_CAP_SET_GUEST_DEBUG2:
4281 		return KVM_GUESTDBG_VALID_MASK;
4282 #ifdef CONFIG_KVM_XEN
4283 	case KVM_CAP_XEN_HVM:
4284 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4285 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4286 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4287 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL;
4288 		if (sched_info_on())
4289 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4290 		break;
4291 #endif
4292 	case KVM_CAP_SYNC_REGS:
4293 		r = KVM_SYNC_X86_VALID_FIELDS;
4294 		break;
4295 	case KVM_CAP_ADJUST_CLOCK:
4296 		r = KVM_CLOCK_VALID_FLAGS;
4297 		break;
4298 	case KVM_CAP_X86_DISABLE_EXITS:
4299 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4300 		      KVM_X86_DISABLE_EXITS_CSTATE;
4301 		if(kvm_can_mwait_in_guest())
4302 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4303 		break;
4304 	case KVM_CAP_X86_SMM:
4305 		/* SMBASE is usually relocated above 1M on modern chipsets,
4306 		 * and SMM handlers might indeed rely on 4G segment limits,
4307 		 * so do not report SMM to be available if real mode is
4308 		 * emulated via vm86 mode.  Still, do not go to great lengths
4309 		 * to avoid userspace's usage of the feature, because it is a
4310 		 * fringe case that is not enabled except via specific settings
4311 		 * of the module parameters.
4312 		 */
4313 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4314 		break;
4315 	case KVM_CAP_NR_VCPUS:
4316 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4317 		break;
4318 	case KVM_CAP_MAX_VCPUS:
4319 		r = KVM_MAX_VCPUS;
4320 		break;
4321 	case KVM_CAP_MAX_VCPU_ID:
4322 		r = KVM_MAX_VCPU_IDS;
4323 		break;
4324 	case KVM_CAP_PV_MMU:	/* obsolete */
4325 		r = 0;
4326 		break;
4327 	case KVM_CAP_MCE:
4328 		r = KVM_MAX_MCE_BANKS;
4329 		break;
4330 	case KVM_CAP_XCRS:
4331 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4332 		break;
4333 	case KVM_CAP_TSC_CONTROL:
4334 		r = kvm_has_tsc_control;
4335 		break;
4336 	case KVM_CAP_X2APIC_API:
4337 		r = KVM_X2APIC_API_VALID_FLAGS;
4338 		break;
4339 	case KVM_CAP_NESTED_STATE:
4340 		r = kvm_x86_ops.nested_ops->get_state ?
4341 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4342 		break;
4343 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4344 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4345 		break;
4346 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4347 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4348 		break;
4349 	case KVM_CAP_SMALLER_MAXPHYADDR:
4350 		r = (int) allow_smaller_maxphyaddr;
4351 		break;
4352 	case KVM_CAP_STEAL_TIME:
4353 		r = sched_info_on();
4354 		break;
4355 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4356 		if (kvm_has_bus_lock_exit)
4357 			r = KVM_BUS_LOCK_DETECTION_OFF |
4358 			    KVM_BUS_LOCK_DETECTION_EXIT;
4359 		else
4360 			r = 0;
4361 		break;
4362 	case KVM_CAP_XSAVE2: {
4363 		u64 guest_perm = xstate_get_guest_group_perm();
4364 
4365 		r = xstate_required_size(supported_xcr0 & guest_perm, false);
4366 		if (r < sizeof(struct kvm_xsave))
4367 			r = sizeof(struct kvm_xsave);
4368 		break;
4369 	case KVM_CAP_PMU_CAPABILITY:
4370 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4371 		break;
4372 	}
4373 	case KVM_CAP_DISABLE_QUIRKS2:
4374 		r = KVM_X86_VALID_QUIRKS;
4375 		break;
4376 	default:
4377 		break;
4378 	}
4379 	return r;
4380 }
4381 
4382 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4383 {
4384 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4385 
4386 	if ((u64)(unsigned long)uaddr != attr->addr)
4387 		return ERR_PTR_USR(-EFAULT);
4388 	return uaddr;
4389 }
4390 
4391 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4392 {
4393 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4394 
4395 	if (attr->group)
4396 		return -ENXIO;
4397 
4398 	if (IS_ERR(uaddr))
4399 		return PTR_ERR(uaddr);
4400 
4401 	switch (attr->attr) {
4402 	case KVM_X86_XCOMP_GUEST_SUPP:
4403 		if (put_user(supported_xcr0, uaddr))
4404 			return -EFAULT;
4405 		return 0;
4406 	default:
4407 		return -ENXIO;
4408 		break;
4409 	}
4410 }
4411 
4412 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4413 {
4414 	if (attr->group)
4415 		return -ENXIO;
4416 
4417 	switch (attr->attr) {
4418 	case KVM_X86_XCOMP_GUEST_SUPP:
4419 		return 0;
4420 	default:
4421 		return -ENXIO;
4422 	}
4423 }
4424 
4425 long kvm_arch_dev_ioctl(struct file *filp,
4426 			unsigned int ioctl, unsigned long arg)
4427 {
4428 	void __user *argp = (void __user *)arg;
4429 	long r;
4430 
4431 	switch (ioctl) {
4432 	case KVM_GET_MSR_INDEX_LIST: {
4433 		struct kvm_msr_list __user *user_msr_list = argp;
4434 		struct kvm_msr_list msr_list;
4435 		unsigned n;
4436 
4437 		r = -EFAULT;
4438 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4439 			goto out;
4440 		n = msr_list.nmsrs;
4441 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4442 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4443 			goto out;
4444 		r = -E2BIG;
4445 		if (n < msr_list.nmsrs)
4446 			goto out;
4447 		r = -EFAULT;
4448 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4449 				 num_msrs_to_save * sizeof(u32)))
4450 			goto out;
4451 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4452 				 &emulated_msrs,
4453 				 num_emulated_msrs * sizeof(u32)))
4454 			goto out;
4455 		r = 0;
4456 		break;
4457 	}
4458 	case KVM_GET_SUPPORTED_CPUID:
4459 	case KVM_GET_EMULATED_CPUID: {
4460 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4461 		struct kvm_cpuid2 cpuid;
4462 
4463 		r = -EFAULT;
4464 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4465 			goto out;
4466 
4467 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4468 					    ioctl);
4469 		if (r)
4470 			goto out;
4471 
4472 		r = -EFAULT;
4473 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4474 			goto out;
4475 		r = 0;
4476 		break;
4477 	}
4478 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4479 		r = -EFAULT;
4480 		if (copy_to_user(argp, &kvm_mce_cap_supported,
4481 				 sizeof(kvm_mce_cap_supported)))
4482 			goto out;
4483 		r = 0;
4484 		break;
4485 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4486 		struct kvm_msr_list __user *user_msr_list = argp;
4487 		struct kvm_msr_list msr_list;
4488 		unsigned int n;
4489 
4490 		r = -EFAULT;
4491 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4492 			goto out;
4493 		n = msr_list.nmsrs;
4494 		msr_list.nmsrs = num_msr_based_features;
4495 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4496 			goto out;
4497 		r = -E2BIG;
4498 		if (n < msr_list.nmsrs)
4499 			goto out;
4500 		r = -EFAULT;
4501 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4502 				 num_msr_based_features * sizeof(u32)))
4503 			goto out;
4504 		r = 0;
4505 		break;
4506 	}
4507 	case KVM_GET_MSRS:
4508 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4509 		break;
4510 	case KVM_GET_SUPPORTED_HV_CPUID:
4511 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4512 		break;
4513 	case KVM_GET_DEVICE_ATTR: {
4514 		struct kvm_device_attr attr;
4515 		r = -EFAULT;
4516 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4517 			break;
4518 		r = kvm_x86_dev_get_attr(&attr);
4519 		break;
4520 	}
4521 	case KVM_HAS_DEVICE_ATTR: {
4522 		struct kvm_device_attr attr;
4523 		r = -EFAULT;
4524 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4525 			break;
4526 		r = kvm_x86_dev_has_attr(&attr);
4527 		break;
4528 	}
4529 	default:
4530 		r = -EINVAL;
4531 		break;
4532 	}
4533 out:
4534 	return r;
4535 }
4536 
4537 static void wbinvd_ipi(void *garbage)
4538 {
4539 	wbinvd();
4540 }
4541 
4542 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4543 {
4544 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4545 }
4546 
4547 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4548 {
4549 	/* Address WBINVD may be executed by guest */
4550 	if (need_emulate_wbinvd(vcpu)) {
4551 		if (static_call(kvm_x86_has_wbinvd_exit)())
4552 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4553 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4554 			smp_call_function_single(vcpu->cpu,
4555 					wbinvd_ipi, NULL, 1);
4556 	}
4557 
4558 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4559 
4560 	/* Save host pkru register if supported */
4561 	vcpu->arch.host_pkru = read_pkru();
4562 
4563 	/* Apply any externally detected TSC adjustments (due to suspend) */
4564 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4565 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4566 		vcpu->arch.tsc_offset_adjustment = 0;
4567 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4568 	}
4569 
4570 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4571 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4572 				rdtsc() - vcpu->arch.last_host_tsc;
4573 		if (tsc_delta < 0)
4574 			mark_tsc_unstable("KVM discovered backwards TSC");
4575 
4576 		if (kvm_check_tsc_unstable()) {
4577 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4578 						vcpu->arch.last_guest_tsc);
4579 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4580 			vcpu->arch.tsc_catchup = 1;
4581 		}
4582 
4583 		if (kvm_lapic_hv_timer_in_use(vcpu))
4584 			kvm_lapic_restart_hv_timer(vcpu);
4585 
4586 		/*
4587 		 * On a host with synchronized TSC, there is no need to update
4588 		 * kvmclock on vcpu->cpu migration
4589 		 */
4590 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4591 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4592 		if (vcpu->cpu != cpu)
4593 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4594 		vcpu->cpu = cpu;
4595 	}
4596 
4597 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4598 }
4599 
4600 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4601 {
4602 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4603 	struct kvm_steal_time __user *st;
4604 	struct kvm_memslots *slots;
4605 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4606 
4607 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4608 		return;
4609 
4610 	if (vcpu->arch.st.preempted)
4611 		return;
4612 
4613 	/* This happens on process exit */
4614 	if (unlikely(current->mm != vcpu->kvm->mm))
4615 		return;
4616 
4617 	slots = kvm_memslots(vcpu->kvm);
4618 
4619 	if (unlikely(slots->generation != ghc->generation ||
4620 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4621 		return;
4622 
4623 	st = (struct kvm_steal_time __user *)ghc->hva;
4624 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4625 
4626 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4627 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4628 
4629 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4630 }
4631 
4632 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4633 {
4634 	int idx;
4635 
4636 	if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4637 		vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4638 
4639 	/*
4640 	 * Take the srcu lock as memslots will be accessed to check the gfn
4641 	 * cache generation against the memslots generation.
4642 	 */
4643 	idx = srcu_read_lock(&vcpu->kvm->srcu);
4644 	if (kvm_xen_msr_enabled(vcpu->kvm))
4645 		kvm_xen_runstate_set_preempted(vcpu);
4646 	else
4647 		kvm_steal_time_set_preempted(vcpu);
4648 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4649 
4650 	static_call(kvm_x86_vcpu_put)(vcpu);
4651 	vcpu->arch.last_host_tsc = rdtsc();
4652 }
4653 
4654 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4655 				    struct kvm_lapic_state *s)
4656 {
4657 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4658 
4659 	return kvm_apic_get_state(vcpu, s);
4660 }
4661 
4662 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4663 				    struct kvm_lapic_state *s)
4664 {
4665 	int r;
4666 
4667 	r = kvm_apic_set_state(vcpu, s);
4668 	if (r)
4669 		return r;
4670 	update_cr8_intercept(vcpu);
4671 
4672 	return 0;
4673 }
4674 
4675 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4676 {
4677 	/*
4678 	 * We can accept userspace's request for interrupt injection
4679 	 * as long as we have a place to store the interrupt number.
4680 	 * The actual injection will happen when the CPU is able to
4681 	 * deliver the interrupt.
4682 	 */
4683 	if (kvm_cpu_has_extint(vcpu))
4684 		return false;
4685 
4686 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4687 	return (!lapic_in_kernel(vcpu) ||
4688 		kvm_apic_accept_pic_intr(vcpu));
4689 }
4690 
4691 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4692 {
4693 	/*
4694 	 * Do not cause an interrupt window exit if an exception
4695 	 * is pending or an event needs reinjection; userspace
4696 	 * might want to inject the interrupt manually using KVM_SET_REGS
4697 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4698 	 * instruction boundary and with no events half-injected.
4699 	 */
4700 	return (kvm_arch_interrupt_allowed(vcpu) &&
4701 		kvm_cpu_accept_dm_intr(vcpu) &&
4702 		!kvm_event_needs_reinjection(vcpu) &&
4703 		!vcpu->arch.exception.pending);
4704 }
4705 
4706 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4707 				    struct kvm_interrupt *irq)
4708 {
4709 	if (irq->irq >= KVM_NR_INTERRUPTS)
4710 		return -EINVAL;
4711 
4712 	if (!irqchip_in_kernel(vcpu->kvm)) {
4713 		kvm_queue_interrupt(vcpu, irq->irq, false);
4714 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4715 		return 0;
4716 	}
4717 
4718 	/*
4719 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4720 	 * fail for in-kernel 8259.
4721 	 */
4722 	if (pic_in_kernel(vcpu->kvm))
4723 		return -ENXIO;
4724 
4725 	if (vcpu->arch.pending_external_vector != -1)
4726 		return -EEXIST;
4727 
4728 	vcpu->arch.pending_external_vector = irq->irq;
4729 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4730 	return 0;
4731 }
4732 
4733 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4734 {
4735 	kvm_inject_nmi(vcpu);
4736 
4737 	return 0;
4738 }
4739 
4740 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4741 {
4742 	kvm_make_request(KVM_REQ_SMI, vcpu);
4743 
4744 	return 0;
4745 }
4746 
4747 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4748 					   struct kvm_tpr_access_ctl *tac)
4749 {
4750 	if (tac->flags)
4751 		return -EINVAL;
4752 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4753 	return 0;
4754 }
4755 
4756 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4757 					u64 mcg_cap)
4758 {
4759 	int r;
4760 	unsigned bank_num = mcg_cap & 0xff, bank;
4761 
4762 	r = -EINVAL;
4763 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4764 		goto out;
4765 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4766 		goto out;
4767 	r = 0;
4768 	vcpu->arch.mcg_cap = mcg_cap;
4769 	/* Init IA32_MCG_CTL to all 1s */
4770 	if (mcg_cap & MCG_CTL_P)
4771 		vcpu->arch.mcg_ctl = ~(u64)0;
4772 	/* Init IA32_MCi_CTL to all 1s */
4773 	for (bank = 0; bank < bank_num; bank++)
4774 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4775 
4776 	static_call(kvm_x86_setup_mce)(vcpu);
4777 out:
4778 	return r;
4779 }
4780 
4781 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4782 				      struct kvm_x86_mce *mce)
4783 {
4784 	u64 mcg_cap = vcpu->arch.mcg_cap;
4785 	unsigned bank_num = mcg_cap & 0xff;
4786 	u64 *banks = vcpu->arch.mce_banks;
4787 
4788 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4789 		return -EINVAL;
4790 	/*
4791 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4792 	 * reporting is disabled
4793 	 */
4794 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4795 	    vcpu->arch.mcg_ctl != ~(u64)0)
4796 		return 0;
4797 	banks += 4 * mce->bank;
4798 	/*
4799 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4800 	 * reporting is disabled for the bank
4801 	 */
4802 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4803 		return 0;
4804 	if (mce->status & MCI_STATUS_UC) {
4805 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4806 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4807 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4808 			return 0;
4809 		}
4810 		if (banks[1] & MCI_STATUS_VAL)
4811 			mce->status |= MCI_STATUS_OVER;
4812 		banks[2] = mce->addr;
4813 		banks[3] = mce->misc;
4814 		vcpu->arch.mcg_status = mce->mcg_status;
4815 		banks[1] = mce->status;
4816 		kvm_queue_exception(vcpu, MC_VECTOR);
4817 	} else if (!(banks[1] & MCI_STATUS_VAL)
4818 		   || !(banks[1] & MCI_STATUS_UC)) {
4819 		if (banks[1] & MCI_STATUS_VAL)
4820 			mce->status |= MCI_STATUS_OVER;
4821 		banks[2] = mce->addr;
4822 		banks[3] = mce->misc;
4823 		banks[1] = mce->status;
4824 	} else
4825 		banks[1] |= MCI_STATUS_OVER;
4826 	return 0;
4827 }
4828 
4829 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4830 					       struct kvm_vcpu_events *events)
4831 {
4832 	process_nmi(vcpu);
4833 
4834 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
4835 		process_smi(vcpu);
4836 
4837 	/*
4838 	 * In guest mode, payload delivery should be deferred,
4839 	 * so that the L1 hypervisor can intercept #PF before
4840 	 * CR2 is modified (or intercept #DB before DR6 is
4841 	 * modified under nVMX). Unless the per-VM capability,
4842 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4843 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4844 	 * opportunistically defer the exception payload, deliver it if the
4845 	 * capability hasn't been requested before processing a
4846 	 * KVM_GET_VCPU_EVENTS.
4847 	 */
4848 	if (!vcpu->kvm->arch.exception_payload_enabled &&
4849 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4850 		kvm_deliver_exception_payload(vcpu);
4851 
4852 	/*
4853 	 * The API doesn't provide the instruction length for software
4854 	 * exceptions, so don't report them. As long as the guest RIP
4855 	 * isn't advanced, we should expect to encounter the exception
4856 	 * again.
4857 	 */
4858 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4859 		events->exception.injected = 0;
4860 		events->exception.pending = 0;
4861 	} else {
4862 		events->exception.injected = vcpu->arch.exception.injected;
4863 		events->exception.pending = vcpu->arch.exception.pending;
4864 		/*
4865 		 * For ABI compatibility, deliberately conflate
4866 		 * pending and injected exceptions when
4867 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4868 		 */
4869 		if (!vcpu->kvm->arch.exception_payload_enabled)
4870 			events->exception.injected |=
4871 				vcpu->arch.exception.pending;
4872 	}
4873 	events->exception.nr = vcpu->arch.exception.nr;
4874 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4875 	events->exception.error_code = vcpu->arch.exception.error_code;
4876 	events->exception_has_payload = vcpu->arch.exception.has_payload;
4877 	events->exception_payload = vcpu->arch.exception.payload;
4878 
4879 	events->interrupt.injected =
4880 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4881 	events->interrupt.nr = vcpu->arch.interrupt.nr;
4882 	events->interrupt.soft = 0;
4883 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4884 
4885 	events->nmi.injected = vcpu->arch.nmi_injected;
4886 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
4887 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4888 	events->nmi.pad = 0;
4889 
4890 	events->sipi_vector = 0; /* never valid when reporting to user space */
4891 
4892 	events->smi.smm = is_smm(vcpu);
4893 	events->smi.pending = vcpu->arch.smi_pending;
4894 	events->smi.smm_inside_nmi =
4895 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4896 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4897 
4898 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4899 			 | KVM_VCPUEVENT_VALID_SHADOW
4900 			 | KVM_VCPUEVENT_VALID_SMM);
4901 	if (vcpu->kvm->arch.exception_payload_enabled)
4902 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4903 
4904 	memset(&events->reserved, 0, sizeof(events->reserved));
4905 }
4906 
4907 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4908 
4909 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4910 					      struct kvm_vcpu_events *events)
4911 {
4912 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4913 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4914 			      | KVM_VCPUEVENT_VALID_SHADOW
4915 			      | KVM_VCPUEVENT_VALID_SMM
4916 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4917 		return -EINVAL;
4918 
4919 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4920 		if (!vcpu->kvm->arch.exception_payload_enabled)
4921 			return -EINVAL;
4922 		if (events->exception.pending)
4923 			events->exception.injected = 0;
4924 		else
4925 			events->exception_has_payload = 0;
4926 	} else {
4927 		events->exception.pending = 0;
4928 		events->exception_has_payload = 0;
4929 	}
4930 
4931 	if ((events->exception.injected || events->exception.pending) &&
4932 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4933 		return -EINVAL;
4934 
4935 	/* INITs are latched while in SMM */
4936 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4937 	    (events->smi.smm || events->smi.pending) &&
4938 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4939 		return -EINVAL;
4940 
4941 	process_nmi(vcpu);
4942 	vcpu->arch.exception.injected = events->exception.injected;
4943 	vcpu->arch.exception.pending = events->exception.pending;
4944 	vcpu->arch.exception.nr = events->exception.nr;
4945 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4946 	vcpu->arch.exception.error_code = events->exception.error_code;
4947 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4948 	vcpu->arch.exception.payload = events->exception_payload;
4949 
4950 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4951 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4952 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4953 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4954 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4955 						events->interrupt.shadow);
4956 
4957 	vcpu->arch.nmi_injected = events->nmi.injected;
4958 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4959 		vcpu->arch.nmi_pending = events->nmi.pending;
4960 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4961 
4962 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4963 	    lapic_in_kernel(vcpu))
4964 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4965 
4966 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4967 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4968 			kvm_x86_ops.nested_ops->leave_nested(vcpu);
4969 			kvm_smm_changed(vcpu, events->smi.smm);
4970 		}
4971 
4972 		vcpu->arch.smi_pending = events->smi.pending;
4973 
4974 		if (events->smi.smm) {
4975 			if (events->smi.smm_inside_nmi)
4976 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4977 			else
4978 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4979 		}
4980 
4981 		if (lapic_in_kernel(vcpu)) {
4982 			if (events->smi.latched_init)
4983 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4984 			else
4985 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4986 		}
4987 	}
4988 
4989 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4990 
4991 	return 0;
4992 }
4993 
4994 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4995 					     struct kvm_debugregs *dbgregs)
4996 {
4997 	unsigned long val;
4998 
4999 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5000 	kvm_get_dr(vcpu, 6, &val);
5001 	dbgregs->dr6 = val;
5002 	dbgregs->dr7 = vcpu->arch.dr7;
5003 	dbgregs->flags = 0;
5004 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
5005 }
5006 
5007 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5008 					    struct kvm_debugregs *dbgregs)
5009 {
5010 	if (dbgregs->flags)
5011 		return -EINVAL;
5012 
5013 	if (!kvm_dr6_valid(dbgregs->dr6))
5014 		return -EINVAL;
5015 	if (!kvm_dr7_valid(dbgregs->dr7))
5016 		return -EINVAL;
5017 
5018 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5019 	kvm_update_dr0123(vcpu);
5020 	vcpu->arch.dr6 = dbgregs->dr6;
5021 	vcpu->arch.dr7 = dbgregs->dr7;
5022 	kvm_update_dr7(vcpu);
5023 
5024 	return 0;
5025 }
5026 
5027 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5028 					 struct kvm_xsave *guest_xsave)
5029 {
5030 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5031 		return;
5032 
5033 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5034 				       guest_xsave->region,
5035 				       sizeof(guest_xsave->region),
5036 				       vcpu->arch.pkru);
5037 }
5038 
5039 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5040 					  u8 *state, unsigned int size)
5041 {
5042 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5043 		return;
5044 
5045 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5046 				       state, size, vcpu->arch.pkru);
5047 }
5048 
5049 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5050 					struct kvm_xsave *guest_xsave)
5051 {
5052 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5053 		return 0;
5054 
5055 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5056 					      guest_xsave->region,
5057 					      supported_xcr0, &vcpu->arch.pkru);
5058 }
5059 
5060 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5061 					struct kvm_xcrs *guest_xcrs)
5062 {
5063 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5064 		guest_xcrs->nr_xcrs = 0;
5065 		return;
5066 	}
5067 
5068 	guest_xcrs->nr_xcrs = 1;
5069 	guest_xcrs->flags = 0;
5070 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5071 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5072 }
5073 
5074 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5075 				       struct kvm_xcrs *guest_xcrs)
5076 {
5077 	int i, r = 0;
5078 
5079 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5080 		return -EINVAL;
5081 
5082 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5083 		return -EINVAL;
5084 
5085 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5086 		/* Only support XCR0 currently */
5087 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5088 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5089 				guest_xcrs->xcrs[i].value);
5090 			break;
5091 		}
5092 	if (r)
5093 		r = -EINVAL;
5094 	return r;
5095 }
5096 
5097 /*
5098  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5099  * stopped by the hypervisor.  This function will be called from the host only.
5100  * EINVAL is returned when the host attempts to set the flag for a guest that
5101  * does not support pv clocks.
5102  */
5103 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5104 {
5105 	if (!vcpu->arch.pv_time_enabled)
5106 		return -EINVAL;
5107 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5108 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5109 	return 0;
5110 }
5111 
5112 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5113 				 struct kvm_device_attr *attr)
5114 {
5115 	int r;
5116 
5117 	switch (attr->attr) {
5118 	case KVM_VCPU_TSC_OFFSET:
5119 		r = 0;
5120 		break;
5121 	default:
5122 		r = -ENXIO;
5123 	}
5124 
5125 	return r;
5126 }
5127 
5128 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5129 				 struct kvm_device_attr *attr)
5130 {
5131 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5132 	int r;
5133 
5134 	if (IS_ERR(uaddr))
5135 		return PTR_ERR(uaddr);
5136 
5137 	switch (attr->attr) {
5138 	case KVM_VCPU_TSC_OFFSET:
5139 		r = -EFAULT;
5140 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5141 			break;
5142 		r = 0;
5143 		break;
5144 	default:
5145 		r = -ENXIO;
5146 	}
5147 
5148 	return r;
5149 }
5150 
5151 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5152 				 struct kvm_device_attr *attr)
5153 {
5154 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5155 	struct kvm *kvm = vcpu->kvm;
5156 	int r;
5157 
5158 	if (IS_ERR(uaddr))
5159 		return PTR_ERR(uaddr);
5160 
5161 	switch (attr->attr) {
5162 	case KVM_VCPU_TSC_OFFSET: {
5163 		u64 offset, tsc, ns;
5164 		unsigned long flags;
5165 		bool matched;
5166 
5167 		r = -EFAULT;
5168 		if (get_user(offset, uaddr))
5169 			break;
5170 
5171 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5172 
5173 		matched = (vcpu->arch.virtual_tsc_khz &&
5174 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5175 			   kvm->arch.last_tsc_offset == offset);
5176 
5177 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5178 		ns = get_kvmclock_base_ns();
5179 
5180 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5181 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5182 
5183 		r = 0;
5184 		break;
5185 	}
5186 	default:
5187 		r = -ENXIO;
5188 	}
5189 
5190 	return r;
5191 }
5192 
5193 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5194 				      unsigned int ioctl,
5195 				      void __user *argp)
5196 {
5197 	struct kvm_device_attr attr;
5198 	int r;
5199 
5200 	if (copy_from_user(&attr, argp, sizeof(attr)))
5201 		return -EFAULT;
5202 
5203 	if (attr.group != KVM_VCPU_TSC_CTRL)
5204 		return -ENXIO;
5205 
5206 	switch (ioctl) {
5207 	case KVM_HAS_DEVICE_ATTR:
5208 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5209 		break;
5210 	case KVM_GET_DEVICE_ATTR:
5211 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5212 		break;
5213 	case KVM_SET_DEVICE_ATTR:
5214 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5215 		break;
5216 	}
5217 
5218 	return r;
5219 }
5220 
5221 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5222 				     struct kvm_enable_cap *cap)
5223 {
5224 	int r;
5225 	uint16_t vmcs_version;
5226 	void __user *user_ptr;
5227 
5228 	if (cap->flags)
5229 		return -EINVAL;
5230 
5231 	switch (cap->cap) {
5232 	case KVM_CAP_HYPERV_SYNIC2:
5233 		if (cap->args[0])
5234 			return -EINVAL;
5235 		fallthrough;
5236 
5237 	case KVM_CAP_HYPERV_SYNIC:
5238 		if (!irqchip_in_kernel(vcpu->kvm))
5239 			return -EINVAL;
5240 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5241 					     KVM_CAP_HYPERV_SYNIC2);
5242 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5243 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5244 			return -ENOTTY;
5245 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5246 		if (!r) {
5247 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5248 			if (copy_to_user(user_ptr, &vmcs_version,
5249 					 sizeof(vmcs_version)))
5250 				r = -EFAULT;
5251 		}
5252 		return r;
5253 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5254 		if (!kvm_x86_ops.enable_direct_tlbflush)
5255 			return -ENOTTY;
5256 
5257 		return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5258 
5259 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5260 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5261 
5262 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5263 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5264 		if (vcpu->arch.pv_cpuid.enforce)
5265 			kvm_update_pv_runtime(vcpu);
5266 
5267 		return 0;
5268 	default:
5269 		return -EINVAL;
5270 	}
5271 }
5272 
5273 long kvm_arch_vcpu_ioctl(struct file *filp,
5274 			 unsigned int ioctl, unsigned long arg)
5275 {
5276 	struct kvm_vcpu *vcpu = filp->private_data;
5277 	void __user *argp = (void __user *)arg;
5278 	int r;
5279 	union {
5280 		struct kvm_sregs2 *sregs2;
5281 		struct kvm_lapic_state *lapic;
5282 		struct kvm_xsave *xsave;
5283 		struct kvm_xcrs *xcrs;
5284 		void *buffer;
5285 	} u;
5286 
5287 	vcpu_load(vcpu);
5288 
5289 	u.buffer = NULL;
5290 	switch (ioctl) {
5291 	case KVM_GET_LAPIC: {
5292 		r = -EINVAL;
5293 		if (!lapic_in_kernel(vcpu))
5294 			goto out;
5295 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5296 				GFP_KERNEL_ACCOUNT);
5297 
5298 		r = -ENOMEM;
5299 		if (!u.lapic)
5300 			goto out;
5301 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5302 		if (r)
5303 			goto out;
5304 		r = -EFAULT;
5305 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5306 			goto out;
5307 		r = 0;
5308 		break;
5309 	}
5310 	case KVM_SET_LAPIC: {
5311 		r = -EINVAL;
5312 		if (!lapic_in_kernel(vcpu))
5313 			goto out;
5314 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5315 		if (IS_ERR(u.lapic)) {
5316 			r = PTR_ERR(u.lapic);
5317 			goto out_nofree;
5318 		}
5319 
5320 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5321 		break;
5322 	}
5323 	case KVM_INTERRUPT: {
5324 		struct kvm_interrupt irq;
5325 
5326 		r = -EFAULT;
5327 		if (copy_from_user(&irq, argp, sizeof(irq)))
5328 			goto out;
5329 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5330 		break;
5331 	}
5332 	case KVM_NMI: {
5333 		r = kvm_vcpu_ioctl_nmi(vcpu);
5334 		break;
5335 	}
5336 	case KVM_SMI: {
5337 		r = kvm_vcpu_ioctl_smi(vcpu);
5338 		break;
5339 	}
5340 	case KVM_SET_CPUID: {
5341 		struct kvm_cpuid __user *cpuid_arg = argp;
5342 		struct kvm_cpuid cpuid;
5343 
5344 		r = -EFAULT;
5345 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5346 			goto out;
5347 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5348 		break;
5349 	}
5350 	case KVM_SET_CPUID2: {
5351 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5352 		struct kvm_cpuid2 cpuid;
5353 
5354 		r = -EFAULT;
5355 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5356 			goto out;
5357 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5358 					      cpuid_arg->entries);
5359 		break;
5360 	}
5361 	case KVM_GET_CPUID2: {
5362 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5363 		struct kvm_cpuid2 cpuid;
5364 
5365 		r = -EFAULT;
5366 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5367 			goto out;
5368 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5369 					      cpuid_arg->entries);
5370 		if (r)
5371 			goto out;
5372 		r = -EFAULT;
5373 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5374 			goto out;
5375 		r = 0;
5376 		break;
5377 	}
5378 	case KVM_GET_MSRS: {
5379 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5380 		r = msr_io(vcpu, argp, do_get_msr, 1);
5381 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5382 		break;
5383 	}
5384 	case KVM_SET_MSRS: {
5385 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5386 		r = msr_io(vcpu, argp, do_set_msr, 0);
5387 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5388 		break;
5389 	}
5390 	case KVM_TPR_ACCESS_REPORTING: {
5391 		struct kvm_tpr_access_ctl tac;
5392 
5393 		r = -EFAULT;
5394 		if (copy_from_user(&tac, argp, sizeof(tac)))
5395 			goto out;
5396 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5397 		if (r)
5398 			goto out;
5399 		r = -EFAULT;
5400 		if (copy_to_user(argp, &tac, sizeof(tac)))
5401 			goto out;
5402 		r = 0;
5403 		break;
5404 	};
5405 	case KVM_SET_VAPIC_ADDR: {
5406 		struct kvm_vapic_addr va;
5407 		int idx;
5408 
5409 		r = -EINVAL;
5410 		if (!lapic_in_kernel(vcpu))
5411 			goto out;
5412 		r = -EFAULT;
5413 		if (copy_from_user(&va, argp, sizeof(va)))
5414 			goto out;
5415 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5416 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5417 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5418 		break;
5419 	}
5420 	case KVM_X86_SETUP_MCE: {
5421 		u64 mcg_cap;
5422 
5423 		r = -EFAULT;
5424 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5425 			goto out;
5426 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5427 		break;
5428 	}
5429 	case KVM_X86_SET_MCE: {
5430 		struct kvm_x86_mce mce;
5431 
5432 		r = -EFAULT;
5433 		if (copy_from_user(&mce, argp, sizeof(mce)))
5434 			goto out;
5435 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5436 		break;
5437 	}
5438 	case KVM_GET_VCPU_EVENTS: {
5439 		struct kvm_vcpu_events events;
5440 
5441 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5442 
5443 		r = -EFAULT;
5444 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5445 			break;
5446 		r = 0;
5447 		break;
5448 	}
5449 	case KVM_SET_VCPU_EVENTS: {
5450 		struct kvm_vcpu_events events;
5451 
5452 		r = -EFAULT;
5453 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5454 			break;
5455 
5456 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5457 		break;
5458 	}
5459 	case KVM_GET_DEBUGREGS: {
5460 		struct kvm_debugregs dbgregs;
5461 
5462 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5463 
5464 		r = -EFAULT;
5465 		if (copy_to_user(argp, &dbgregs,
5466 				 sizeof(struct kvm_debugregs)))
5467 			break;
5468 		r = 0;
5469 		break;
5470 	}
5471 	case KVM_SET_DEBUGREGS: {
5472 		struct kvm_debugregs dbgregs;
5473 
5474 		r = -EFAULT;
5475 		if (copy_from_user(&dbgregs, argp,
5476 				   sizeof(struct kvm_debugregs)))
5477 			break;
5478 
5479 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5480 		break;
5481 	}
5482 	case KVM_GET_XSAVE: {
5483 		r = -EINVAL;
5484 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5485 			break;
5486 
5487 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5488 		r = -ENOMEM;
5489 		if (!u.xsave)
5490 			break;
5491 
5492 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5493 
5494 		r = -EFAULT;
5495 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5496 			break;
5497 		r = 0;
5498 		break;
5499 	}
5500 	case KVM_SET_XSAVE: {
5501 		int size = vcpu->arch.guest_fpu.uabi_size;
5502 
5503 		u.xsave = memdup_user(argp, size);
5504 		if (IS_ERR(u.xsave)) {
5505 			r = PTR_ERR(u.xsave);
5506 			goto out_nofree;
5507 		}
5508 
5509 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5510 		break;
5511 	}
5512 
5513 	case KVM_GET_XSAVE2: {
5514 		int size = vcpu->arch.guest_fpu.uabi_size;
5515 
5516 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5517 		r = -ENOMEM;
5518 		if (!u.xsave)
5519 			break;
5520 
5521 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5522 
5523 		r = -EFAULT;
5524 		if (copy_to_user(argp, u.xsave, size))
5525 			break;
5526 
5527 		r = 0;
5528 		break;
5529 	}
5530 
5531 	case KVM_GET_XCRS: {
5532 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5533 		r = -ENOMEM;
5534 		if (!u.xcrs)
5535 			break;
5536 
5537 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5538 
5539 		r = -EFAULT;
5540 		if (copy_to_user(argp, u.xcrs,
5541 				 sizeof(struct kvm_xcrs)))
5542 			break;
5543 		r = 0;
5544 		break;
5545 	}
5546 	case KVM_SET_XCRS: {
5547 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5548 		if (IS_ERR(u.xcrs)) {
5549 			r = PTR_ERR(u.xcrs);
5550 			goto out_nofree;
5551 		}
5552 
5553 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5554 		break;
5555 	}
5556 	case KVM_SET_TSC_KHZ: {
5557 		u32 user_tsc_khz;
5558 
5559 		r = -EINVAL;
5560 		user_tsc_khz = (u32)arg;
5561 
5562 		if (kvm_has_tsc_control &&
5563 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
5564 			goto out;
5565 
5566 		if (user_tsc_khz == 0)
5567 			user_tsc_khz = tsc_khz;
5568 
5569 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5570 			r = 0;
5571 
5572 		goto out;
5573 	}
5574 	case KVM_GET_TSC_KHZ: {
5575 		r = vcpu->arch.virtual_tsc_khz;
5576 		goto out;
5577 	}
5578 	case KVM_KVMCLOCK_CTRL: {
5579 		r = kvm_set_guest_paused(vcpu);
5580 		goto out;
5581 	}
5582 	case KVM_ENABLE_CAP: {
5583 		struct kvm_enable_cap cap;
5584 
5585 		r = -EFAULT;
5586 		if (copy_from_user(&cap, argp, sizeof(cap)))
5587 			goto out;
5588 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5589 		break;
5590 	}
5591 	case KVM_GET_NESTED_STATE: {
5592 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5593 		u32 user_data_size;
5594 
5595 		r = -EINVAL;
5596 		if (!kvm_x86_ops.nested_ops->get_state)
5597 			break;
5598 
5599 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5600 		r = -EFAULT;
5601 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5602 			break;
5603 
5604 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5605 						     user_data_size);
5606 		if (r < 0)
5607 			break;
5608 
5609 		if (r > user_data_size) {
5610 			if (put_user(r, &user_kvm_nested_state->size))
5611 				r = -EFAULT;
5612 			else
5613 				r = -E2BIG;
5614 			break;
5615 		}
5616 
5617 		r = 0;
5618 		break;
5619 	}
5620 	case KVM_SET_NESTED_STATE: {
5621 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5622 		struct kvm_nested_state kvm_state;
5623 		int idx;
5624 
5625 		r = -EINVAL;
5626 		if (!kvm_x86_ops.nested_ops->set_state)
5627 			break;
5628 
5629 		r = -EFAULT;
5630 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5631 			break;
5632 
5633 		r = -EINVAL;
5634 		if (kvm_state.size < sizeof(kvm_state))
5635 			break;
5636 
5637 		if (kvm_state.flags &
5638 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5639 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5640 		      | KVM_STATE_NESTED_GIF_SET))
5641 			break;
5642 
5643 		/* nested_run_pending implies guest_mode.  */
5644 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5645 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5646 			break;
5647 
5648 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5649 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5650 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5651 		break;
5652 	}
5653 	case KVM_GET_SUPPORTED_HV_CPUID:
5654 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5655 		break;
5656 #ifdef CONFIG_KVM_XEN
5657 	case KVM_XEN_VCPU_GET_ATTR: {
5658 		struct kvm_xen_vcpu_attr xva;
5659 
5660 		r = -EFAULT;
5661 		if (copy_from_user(&xva, argp, sizeof(xva)))
5662 			goto out;
5663 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5664 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5665 			r = -EFAULT;
5666 		break;
5667 	}
5668 	case KVM_XEN_VCPU_SET_ATTR: {
5669 		struct kvm_xen_vcpu_attr xva;
5670 
5671 		r = -EFAULT;
5672 		if (copy_from_user(&xva, argp, sizeof(xva)))
5673 			goto out;
5674 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5675 		break;
5676 	}
5677 #endif
5678 	case KVM_GET_SREGS2: {
5679 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5680 		r = -ENOMEM;
5681 		if (!u.sregs2)
5682 			goto out;
5683 		__get_sregs2(vcpu, u.sregs2);
5684 		r = -EFAULT;
5685 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5686 			goto out;
5687 		r = 0;
5688 		break;
5689 	}
5690 	case KVM_SET_SREGS2: {
5691 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5692 		if (IS_ERR(u.sregs2)) {
5693 			r = PTR_ERR(u.sregs2);
5694 			u.sregs2 = NULL;
5695 			goto out;
5696 		}
5697 		r = __set_sregs2(vcpu, u.sregs2);
5698 		break;
5699 	}
5700 	case KVM_HAS_DEVICE_ATTR:
5701 	case KVM_GET_DEVICE_ATTR:
5702 	case KVM_SET_DEVICE_ATTR:
5703 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5704 		break;
5705 	default:
5706 		r = -EINVAL;
5707 	}
5708 out:
5709 	kfree(u.buffer);
5710 out_nofree:
5711 	vcpu_put(vcpu);
5712 	return r;
5713 }
5714 
5715 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5716 {
5717 	return VM_FAULT_SIGBUS;
5718 }
5719 
5720 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5721 {
5722 	int ret;
5723 
5724 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5725 		return -EINVAL;
5726 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5727 	return ret;
5728 }
5729 
5730 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5731 					      u64 ident_addr)
5732 {
5733 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5734 }
5735 
5736 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5737 					 unsigned long kvm_nr_mmu_pages)
5738 {
5739 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5740 		return -EINVAL;
5741 
5742 	mutex_lock(&kvm->slots_lock);
5743 
5744 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5745 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5746 
5747 	mutex_unlock(&kvm->slots_lock);
5748 	return 0;
5749 }
5750 
5751 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5752 {
5753 	return kvm->arch.n_max_mmu_pages;
5754 }
5755 
5756 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5757 {
5758 	struct kvm_pic *pic = kvm->arch.vpic;
5759 	int r;
5760 
5761 	r = 0;
5762 	switch (chip->chip_id) {
5763 	case KVM_IRQCHIP_PIC_MASTER:
5764 		memcpy(&chip->chip.pic, &pic->pics[0],
5765 			sizeof(struct kvm_pic_state));
5766 		break;
5767 	case KVM_IRQCHIP_PIC_SLAVE:
5768 		memcpy(&chip->chip.pic, &pic->pics[1],
5769 			sizeof(struct kvm_pic_state));
5770 		break;
5771 	case KVM_IRQCHIP_IOAPIC:
5772 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5773 		break;
5774 	default:
5775 		r = -EINVAL;
5776 		break;
5777 	}
5778 	return r;
5779 }
5780 
5781 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5782 {
5783 	struct kvm_pic *pic = kvm->arch.vpic;
5784 	int r;
5785 
5786 	r = 0;
5787 	switch (chip->chip_id) {
5788 	case KVM_IRQCHIP_PIC_MASTER:
5789 		spin_lock(&pic->lock);
5790 		memcpy(&pic->pics[0], &chip->chip.pic,
5791 			sizeof(struct kvm_pic_state));
5792 		spin_unlock(&pic->lock);
5793 		break;
5794 	case KVM_IRQCHIP_PIC_SLAVE:
5795 		spin_lock(&pic->lock);
5796 		memcpy(&pic->pics[1], &chip->chip.pic,
5797 			sizeof(struct kvm_pic_state));
5798 		spin_unlock(&pic->lock);
5799 		break;
5800 	case KVM_IRQCHIP_IOAPIC:
5801 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5802 		break;
5803 	default:
5804 		r = -EINVAL;
5805 		break;
5806 	}
5807 	kvm_pic_update_irq(pic);
5808 	return r;
5809 }
5810 
5811 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5812 {
5813 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5814 
5815 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5816 
5817 	mutex_lock(&kps->lock);
5818 	memcpy(ps, &kps->channels, sizeof(*ps));
5819 	mutex_unlock(&kps->lock);
5820 	return 0;
5821 }
5822 
5823 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5824 {
5825 	int i;
5826 	struct kvm_pit *pit = kvm->arch.vpit;
5827 
5828 	mutex_lock(&pit->pit_state.lock);
5829 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5830 	for (i = 0; i < 3; i++)
5831 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5832 	mutex_unlock(&pit->pit_state.lock);
5833 	return 0;
5834 }
5835 
5836 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5837 {
5838 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
5839 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5840 		sizeof(ps->channels));
5841 	ps->flags = kvm->arch.vpit->pit_state.flags;
5842 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5843 	memset(&ps->reserved, 0, sizeof(ps->reserved));
5844 	return 0;
5845 }
5846 
5847 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5848 {
5849 	int start = 0;
5850 	int i;
5851 	u32 prev_legacy, cur_legacy;
5852 	struct kvm_pit *pit = kvm->arch.vpit;
5853 
5854 	mutex_lock(&pit->pit_state.lock);
5855 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5856 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5857 	if (!prev_legacy && cur_legacy)
5858 		start = 1;
5859 	memcpy(&pit->pit_state.channels, &ps->channels,
5860 	       sizeof(pit->pit_state.channels));
5861 	pit->pit_state.flags = ps->flags;
5862 	for (i = 0; i < 3; i++)
5863 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5864 				   start && i == 0);
5865 	mutex_unlock(&pit->pit_state.lock);
5866 	return 0;
5867 }
5868 
5869 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5870 				 struct kvm_reinject_control *control)
5871 {
5872 	struct kvm_pit *pit = kvm->arch.vpit;
5873 
5874 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
5875 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5876 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5877 	 */
5878 	mutex_lock(&pit->pit_state.lock);
5879 	kvm_pit_set_reinject(pit, control->pit_reinject);
5880 	mutex_unlock(&pit->pit_state.lock);
5881 
5882 	return 0;
5883 }
5884 
5885 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5886 {
5887 
5888 	/*
5889 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5890 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5891 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5892 	 * VM-Exit.
5893 	 */
5894 	struct kvm_vcpu *vcpu;
5895 	unsigned long i;
5896 
5897 	kvm_for_each_vcpu(i, vcpu, kvm)
5898 		kvm_vcpu_kick(vcpu);
5899 }
5900 
5901 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5902 			bool line_status)
5903 {
5904 	if (!irqchip_in_kernel(kvm))
5905 		return -ENXIO;
5906 
5907 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5908 					irq_event->irq, irq_event->level,
5909 					line_status);
5910 	return 0;
5911 }
5912 
5913 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5914 			    struct kvm_enable_cap *cap)
5915 {
5916 	int r;
5917 
5918 	if (cap->flags)
5919 		return -EINVAL;
5920 
5921 	switch (cap->cap) {
5922 	case KVM_CAP_DISABLE_QUIRKS2:
5923 		r = -EINVAL;
5924 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
5925 			break;
5926 		fallthrough;
5927 	case KVM_CAP_DISABLE_QUIRKS:
5928 		kvm->arch.disabled_quirks = cap->args[0];
5929 		r = 0;
5930 		break;
5931 	case KVM_CAP_SPLIT_IRQCHIP: {
5932 		mutex_lock(&kvm->lock);
5933 		r = -EINVAL;
5934 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5935 			goto split_irqchip_unlock;
5936 		r = -EEXIST;
5937 		if (irqchip_in_kernel(kvm))
5938 			goto split_irqchip_unlock;
5939 		if (kvm->created_vcpus)
5940 			goto split_irqchip_unlock;
5941 		r = kvm_setup_empty_irq_routing(kvm);
5942 		if (r)
5943 			goto split_irqchip_unlock;
5944 		/* Pairs with irqchip_in_kernel. */
5945 		smp_wmb();
5946 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5947 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5948 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
5949 		r = 0;
5950 split_irqchip_unlock:
5951 		mutex_unlock(&kvm->lock);
5952 		break;
5953 	}
5954 	case KVM_CAP_X2APIC_API:
5955 		r = -EINVAL;
5956 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5957 			break;
5958 
5959 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5960 			kvm->arch.x2apic_format = true;
5961 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5962 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
5963 
5964 		r = 0;
5965 		break;
5966 	case KVM_CAP_X86_DISABLE_EXITS:
5967 		r = -EINVAL;
5968 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5969 			break;
5970 
5971 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5972 			kvm_can_mwait_in_guest())
5973 			kvm->arch.mwait_in_guest = true;
5974 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5975 			kvm->arch.hlt_in_guest = true;
5976 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5977 			kvm->arch.pause_in_guest = true;
5978 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5979 			kvm->arch.cstate_in_guest = true;
5980 		r = 0;
5981 		break;
5982 	case KVM_CAP_MSR_PLATFORM_INFO:
5983 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5984 		r = 0;
5985 		break;
5986 	case KVM_CAP_EXCEPTION_PAYLOAD:
5987 		kvm->arch.exception_payload_enabled = cap->args[0];
5988 		r = 0;
5989 		break;
5990 	case KVM_CAP_X86_USER_SPACE_MSR:
5991 		kvm->arch.user_space_msr_mask = cap->args[0];
5992 		r = 0;
5993 		break;
5994 	case KVM_CAP_X86_BUS_LOCK_EXIT:
5995 		r = -EINVAL;
5996 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5997 			break;
5998 
5999 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6000 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6001 			break;
6002 
6003 		if (kvm_has_bus_lock_exit &&
6004 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6005 			kvm->arch.bus_lock_detection_enabled = true;
6006 		r = 0;
6007 		break;
6008 #ifdef CONFIG_X86_SGX_KVM
6009 	case KVM_CAP_SGX_ATTRIBUTE: {
6010 		unsigned long allowed_attributes = 0;
6011 
6012 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6013 		if (r)
6014 			break;
6015 
6016 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6017 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6018 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6019 			kvm->arch.sgx_provisioning_allowed = true;
6020 		else
6021 			r = -EINVAL;
6022 		break;
6023 	}
6024 #endif
6025 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6026 		r = -EINVAL;
6027 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6028 			break;
6029 
6030 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6031 		break;
6032 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6033 		r = -EINVAL;
6034 		if (!kvm_x86_ops.vm_move_enc_context_from)
6035 			break;
6036 
6037 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6038 		break;
6039 	case KVM_CAP_EXIT_HYPERCALL:
6040 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6041 			r = -EINVAL;
6042 			break;
6043 		}
6044 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6045 		r = 0;
6046 		break;
6047 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6048 		r = -EINVAL;
6049 		if (cap->args[0] & ~1)
6050 			break;
6051 		kvm->arch.exit_on_emulation_error = cap->args[0];
6052 		r = 0;
6053 		break;
6054 	case KVM_CAP_PMU_CAPABILITY:
6055 		r = -EINVAL;
6056 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6057 			break;
6058 
6059 		mutex_lock(&kvm->lock);
6060 		if (!kvm->created_vcpus) {
6061 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6062 			r = 0;
6063 		}
6064 		mutex_unlock(&kvm->lock);
6065 		break;
6066 	default:
6067 		r = -EINVAL;
6068 		break;
6069 	}
6070 	return r;
6071 }
6072 
6073 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6074 {
6075 	struct kvm_x86_msr_filter *msr_filter;
6076 
6077 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6078 	if (!msr_filter)
6079 		return NULL;
6080 
6081 	msr_filter->default_allow = default_allow;
6082 	return msr_filter;
6083 }
6084 
6085 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6086 {
6087 	u32 i;
6088 
6089 	if (!msr_filter)
6090 		return;
6091 
6092 	for (i = 0; i < msr_filter->count; i++)
6093 		kfree(msr_filter->ranges[i].bitmap);
6094 
6095 	kfree(msr_filter);
6096 }
6097 
6098 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6099 			      struct kvm_msr_filter_range *user_range)
6100 {
6101 	unsigned long *bitmap = NULL;
6102 	size_t bitmap_size;
6103 
6104 	if (!user_range->nmsrs)
6105 		return 0;
6106 
6107 	if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6108 		return -EINVAL;
6109 
6110 	if (!user_range->flags)
6111 		return -EINVAL;
6112 
6113 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6114 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6115 		return -EINVAL;
6116 
6117 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6118 	if (IS_ERR(bitmap))
6119 		return PTR_ERR(bitmap);
6120 
6121 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6122 		.flags = user_range->flags,
6123 		.base = user_range->base,
6124 		.nmsrs = user_range->nmsrs,
6125 		.bitmap = bitmap,
6126 	};
6127 
6128 	msr_filter->count++;
6129 	return 0;
6130 }
6131 
6132 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6133 {
6134 	struct kvm_msr_filter __user *user_msr_filter = argp;
6135 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6136 	struct kvm_msr_filter filter;
6137 	bool default_allow;
6138 	bool empty = true;
6139 	int r = 0;
6140 	u32 i;
6141 
6142 	if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6143 		return -EFAULT;
6144 
6145 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6146 		empty &= !filter.ranges[i].nmsrs;
6147 
6148 	default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6149 	if (empty && !default_allow)
6150 		return -EINVAL;
6151 
6152 	new_filter = kvm_alloc_msr_filter(default_allow);
6153 	if (!new_filter)
6154 		return -ENOMEM;
6155 
6156 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6157 		r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6158 		if (r) {
6159 			kvm_free_msr_filter(new_filter);
6160 			return r;
6161 		}
6162 	}
6163 
6164 	mutex_lock(&kvm->lock);
6165 
6166 	/* The per-VM filter is protected by kvm->lock... */
6167 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6168 
6169 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6170 	synchronize_srcu(&kvm->srcu);
6171 
6172 	kvm_free_msr_filter(old_filter);
6173 
6174 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6175 	mutex_unlock(&kvm->lock);
6176 
6177 	return 0;
6178 }
6179 
6180 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6181 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6182 {
6183 	struct kvm_vcpu *vcpu;
6184 	unsigned long i;
6185 	int ret = 0;
6186 
6187 	mutex_lock(&kvm->lock);
6188 	kvm_for_each_vcpu(i, vcpu, kvm) {
6189 		if (!vcpu->arch.pv_time_enabled)
6190 			continue;
6191 
6192 		ret = kvm_set_guest_paused(vcpu);
6193 		if (ret) {
6194 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6195 				vcpu->vcpu_id, ret);
6196 			break;
6197 		}
6198 	}
6199 	mutex_unlock(&kvm->lock);
6200 
6201 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6202 }
6203 
6204 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6205 {
6206 	switch (state) {
6207 	case PM_HIBERNATION_PREPARE:
6208 	case PM_SUSPEND_PREPARE:
6209 		return kvm_arch_suspend_notifier(kvm);
6210 	}
6211 
6212 	return NOTIFY_DONE;
6213 }
6214 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6215 
6216 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6217 {
6218 	struct kvm_clock_data data = { 0 };
6219 
6220 	get_kvmclock(kvm, &data);
6221 	if (copy_to_user(argp, &data, sizeof(data)))
6222 		return -EFAULT;
6223 
6224 	return 0;
6225 }
6226 
6227 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6228 {
6229 	struct kvm_arch *ka = &kvm->arch;
6230 	struct kvm_clock_data data;
6231 	u64 now_raw_ns;
6232 
6233 	if (copy_from_user(&data, argp, sizeof(data)))
6234 		return -EFAULT;
6235 
6236 	/*
6237 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6238 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6239 	 */
6240 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6241 		return -EINVAL;
6242 
6243 	kvm_hv_request_tsc_page_update(kvm);
6244 	kvm_start_pvclock_update(kvm);
6245 	pvclock_update_vm_gtod_copy(kvm);
6246 
6247 	/*
6248 	 * This pairs with kvm_guest_time_update(): when masterclock is
6249 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6250 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6251 	 * is slightly ahead) here we risk going negative on unsigned
6252 	 * 'system_time' when 'data.clock' is very small.
6253 	 */
6254 	if (data.flags & KVM_CLOCK_REALTIME) {
6255 		u64 now_real_ns = ktime_get_real_ns();
6256 
6257 		/*
6258 		 * Avoid stepping the kvmclock backwards.
6259 		 */
6260 		if (now_real_ns > data.realtime)
6261 			data.clock += now_real_ns - data.realtime;
6262 	}
6263 
6264 	if (ka->use_master_clock)
6265 		now_raw_ns = ka->master_kernel_ns;
6266 	else
6267 		now_raw_ns = get_kvmclock_base_ns();
6268 	ka->kvmclock_offset = data.clock - now_raw_ns;
6269 	kvm_end_pvclock_update(kvm);
6270 	return 0;
6271 }
6272 
6273 long kvm_arch_vm_ioctl(struct file *filp,
6274 		       unsigned int ioctl, unsigned long arg)
6275 {
6276 	struct kvm *kvm = filp->private_data;
6277 	void __user *argp = (void __user *)arg;
6278 	int r = -ENOTTY;
6279 	/*
6280 	 * This union makes it completely explicit to gcc-3.x
6281 	 * that these two variables' stack usage should be
6282 	 * combined, not added together.
6283 	 */
6284 	union {
6285 		struct kvm_pit_state ps;
6286 		struct kvm_pit_state2 ps2;
6287 		struct kvm_pit_config pit_config;
6288 	} u;
6289 
6290 	switch (ioctl) {
6291 	case KVM_SET_TSS_ADDR:
6292 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6293 		break;
6294 	case KVM_SET_IDENTITY_MAP_ADDR: {
6295 		u64 ident_addr;
6296 
6297 		mutex_lock(&kvm->lock);
6298 		r = -EINVAL;
6299 		if (kvm->created_vcpus)
6300 			goto set_identity_unlock;
6301 		r = -EFAULT;
6302 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6303 			goto set_identity_unlock;
6304 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6305 set_identity_unlock:
6306 		mutex_unlock(&kvm->lock);
6307 		break;
6308 	}
6309 	case KVM_SET_NR_MMU_PAGES:
6310 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6311 		break;
6312 	case KVM_GET_NR_MMU_PAGES:
6313 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6314 		break;
6315 	case KVM_CREATE_IRQCHIP: {
6316 		mutex_lock(&kvm->lock);
6317 
6318 		r = -EEXIST;
6319 		if (irqchip_in_kernel(kvm))
6320 			goto create_irqchip_unlock;
6321 
6322 		r = -EINVAL;
6323 		if (kvm->created_vcpus)
6324 			goto create_irqchip_unlock;
6325 
6326 		r = kvm_pic_init(kvm);
6327 		if (r)
6328 			goto create_irqchip_unlock;
6329 
6330 		r = kvm_ioapic_init(kvm);
6331 		if (r) {
6332 			kvm_pic_destroy(kvm);
6333 			goto create_irqchip_unlock;
6334 		}
6335 
6336 		r = kvm_setup_default_irq_routing(kvm);
6337 		if (r) {
6338 			kvm_ioapic_destroy(kvm);
6339 			kvm_pic_destroy(kvm);
6340 			goto create_irqchip_unlock;
6341 		}
6342 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6343 		smp_wmb();
6344 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6345 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6346 	create_irqchip_unlock:
6347 		mutex_unlock(&kvm->lock);
6348 		break;
6349 	}
6350 	case KVM_CREATE_PIT:
6351 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6352 		goto create_pit;
6353 	case KVM_CREATE_PIT2:
6354 		r = -EFAULT;
6355 		if (copy_from_user(&u.pit_config, argp,
6356 				   sizeof(struct kvm_pit_config)))
6357 			goto out;
6358 	create_pit:
6359 		mutex_lock(&kvm->lock);
6360 		r = -EEXIST;
6361 		if (kvm->arch.vpit)
6362 			goto create_pit_unlock;
6363 		r = -ENOMEM;
6364 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6365 		if (kvm->arch.vpit)
6366 			r = 0;
6367 	create_pit_unlock:
6368 		mutex_unlock(&kvm->lock);
6369 		break;
6370 	case KVM_GET_IRQCHIP: {
6371 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6372 		struct kvm_irqchip *chip;
6373 
6374 		chip = memdup_user(argp, sizeof(*chip));
6375 		if (IS_ERR(chip)) {
6376 			r = PTR_ERR(chip);
6377 			goto out;
6378 		}
6379 
6380 		r = -ENXIO;
6381 		if (!irqchip_kernel(kvm))
6382 			goto get_irqchip_out;
6383 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6384 		if (r)
6385 			goto get_irqchip_out;
6386 		r = -EFAULT;
6387 		if (copy_to_user(argp, chip, sizeof(*chip)))
6388 			goto get_irqchip_out;
6389 		r = 0;
6390 	get_irqchip_out:
6391 		kfree(chip);
6392 		break;
6393 	}
6394 	case KVM_SET_IRQCHIP: {
6395 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6396 		struct kvm_irqchip *chip;
6397 
6398 		chip = memdup_user(argp, sizeof(*chip));
6399 		if (IS_ERR(chip)) {
6400 			r = PTR_ERR(chip);
6401 			goto out;
6402 		}
6403 
6404 		r = -ENXIO;
6405 		if (!irqchip_kernel(kvm))
6406 			goto set_irqchip_out;
6407 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6408 	set_irqchip_out:
6409 		kfree(chip);
6410 		break;
6411 	}
6412 	case KVM_GET_PIT: {
6413 		r = -EFAULT;
6414 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6415 			goto out;
6416 		r = -ENXIO;
6417 		if (!kvm->arch.vpit)
6418 			goto out;
6419 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6420 		if (r)
6421 			goto out;
6422 		r = -EFAULT;
6423 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6424 			goto out;
6425 		r = 0;
6426 		break;
6427 	}
6428 	case KVM_SET_PIT: {
6429 		r = -EFAULT;
6430 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6431 			goto out;
6432 		mutex_lock(&kvm->lock);
6433 		r = -ENXIO;
6434 		if (!kvm->arch.vpit)
6435 			goto set_pit_out;
6436 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6437 set_pit_out:
6438 		mutex_unlock(&kvm->lock);
6439 		break;
6440 	}
6441 	case KVM_GET_PIT2: {
6442 		r = -ENXIO;
6443 		if (!kvm->arch.vpit)
6444 			goto out;
6445 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6446 		if (r)
6447 			goto out;
6448 		r = -EFAULT;
6449 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6450 			goto out;
6451 		r = 0;
6452 		break;
6453 	}
6454 	case KVM_SET_PIT2: {
6455 		r = -EFAULT;
6456 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6457 			goto out;
6458 		mutex_lock(&kvm->lock);
6459 		r = -ENXIO;
6460 		if (!kvm->arch.vpit)
6461 			goto set_pit2_out;
6462 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6463 set_pit2_out:
6464 		mutex_unlock(&kvm->lock);
6465 		break;
6466 	}
6467 	case KVM_REINJECT_CONTROL: {
6468 		struct kvm_reinject_control control;
6469 		r =  -EFAULT;
6470 		if (copy_from_user(&control, argp, sizeof(control)))
6471 			goto out;
6472 		r = -ENXIO;
6473 		if (!kvm->arch.vpit)
6474 			goto out;
6475 		r = kvm_vm_ioctl_reinject(kvm, &control);
6476 		break;
6477 	}
6478 	case KVM_SET_BOOT_CPU_ID:
6479 		r = 0;
6480 		mutex_lock(&kvm->lock);
6481 		if (kvm->created_vcpus)
6482 			r = -EBUSY;
6483 		else
6484 			kvm->arch.bsp_vcpu_id = arg;
6485 		mutex_unlock(&kvm->lock);
6486 		break;
6487 #ifdef CONFIG_KVM_XEN
6488 	case KVM_XEN_HVM_CONFIG: {
6489 		struct kvm_xen_hvm_config xhc;
6490 		r = -EFAULT;
6491 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6492 			goto out;
6493 		r = kvm_xen_hvm_config(kvm, &xhc);
6494 		break;
6495 	}
6496 	case KVM_XEN_HVM_GET_ATTR: {
6497 		struct kvm_xen_hvm_attr xha;
6498 
6499 		r = -EFAULT;
6500 		if (copy_from_user(&xha, argp, sizeof(xha)))
6501 			goto out;
6502 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6503 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6504 			r = -EFAULT;
6505 		break;
6506 	}
6507 	case KVM_XEN_HVM_SET_ATTR: {
6508 		struct kvm_xen_hvm_attr xha;
6509 
6510 		r = -EFAULT;
6511 		if (copy_from_user(&xha, argp, sizeof(xha)))
6512 			goto out;
6513 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6514 		break;
6515 	}
6516 #endif
6517 	case KVM_SET_CLOCK:
6518 		r = kvm_vm_ioctl_set_clock(kvm, argp);
6519 		break;
6520 	case KVM_GET_CLOCK:
6521 		r = kvm_vm_ioctl_get_clock(kvm, argp);
6522 		break;
6523 	case KVM_MEMORY_ENCRYPT_OP: {
6524 		r = -ENOTTY;
6525 		if (!kvm_x86_ops.mem_enc_ioctl)
6526 			goto out;
6527 
6528 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6529 		break;
6530 	}
6531 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
6532 		struct kvm_enc_region region;
6533 
6534 		r = -EFAULT;
6535 		if (copy_from_user(&region, argp, sizeof(region)))
6536 			goto out;
6537 
6538 		r = -ENOTTY;
6539 		if (!kvm_x86_ops.mem_enc_register_region)
6540 			goto out;
6541 
6542 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6543 		break;
6544 	}
6545 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6546 		struct kvm_enc_region region;
6547 
6548 		r = -EFAULT;
6549 		if (copy_from_user(&region, argp, sizeof(region)))
6550 			goto out;
6551 
6552 		r = -ENOTTY;
6553 		if (!kvm_x86_ops.mem_enc_unregister_region)
6554 			goto out;
6555 
6556 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6557 		break;
6558 	}
6559 	case KVM_HYPERV_EVENTFD: {
6560 		struct kvm_hyperv_eventfd hvevfd;
6561 
6562 		r = -EFAULT;
6563 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6564 			goto out;
6565 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6566 		break;
6567 	}
6568 	case KVM_SET_PMU_EVENT_FILTER:
6569 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6570 		break;
6571 	case KVM_X86_SET_MSR_FILTER:
6572 		r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6573 		break;
6574 	default:
6575 		r = -ENOTTY;
6576 	}
6577 out:
6578 	return r;
6579 }
6580 
6581 static void kvm_init_msr_list(void)
6582 {
6583 	struct x86_pmu_capability x86_pmu;
6584 	u32 dummy[2];
6585 	unsigned i;
6586 
6587 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
6588 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
6589 
6590 	perf_get_x86_pmu_capability(&x86_pmu);
6591 
6592 	num_msrs_to_save = 0;
6593 	num_emulated_msrs = 0;
6594 	num_msr_based_features = 0;
6595 
6596 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6597 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6598 			continue;
6599 
6600 		/*
6601 		 * Even MSRs that are valid in the host may not be exposed
6602 		 * to the guests in some cases.
6603 		 */
6604 		switch (msrs_to_save_all[i]) {
6605 		case MSR_IA32_BNDCFGS:
6606 			if (!kvm_mpx_supported())
6607 				continue;
6608 			break;
6609 		case MSR_TSC_AUX:
6610 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6611 			    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6612 				continue;
6613 			break;
6614 		case MSR_IA32_UMWAIT_CONTROL:
6615 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6616 				continue;
6617 			break;
6618 		case MSR_IA32_RTIT_CTL:
6619 		case MSR_IA32_RTIT_STATUS:
6620 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6621 				continue;
6622 			break;
6623 		case MSR_IA32_RTIT_CR3_MATCH:
6624 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6625 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6626 				continue;
6627 			break;
6628 		case MSR_IA32_RTIT_OUTPUT_BASE:
6629 		case MSR_IA32_RTIT_OUTPUT_MASK:
6630 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6631 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6632 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6633 				continue;
6634 			break;
6635 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6636 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6637 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6638 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6639 				continue;
6640 			break;
6641 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6642 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6643 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6644 				continue;
6645 			break;
6646 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6647 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6648 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6649 				continue;
6650 			break;
6651 		case MSR_IA32_XFD:
6652 		case MSR_IA32_XFD_ERR:
6653 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6654 				continue;
6655 			break;
6656 		default:
6657 			break;
6658 		}
6659 
6660 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6661 	}
6662 
6663 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6664 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6665 			continue;
6666 
6667 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6668 	}
6669 
6670 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6671 		struct kvm_msr_entry msr;
6672 
6673 		msr.index = msr_based_features_all[i];
6674 		if (kvm_get_msr_feature(&msr))
6675 			continue;
6676 
6677 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6678 	}
6679 }
6680 
6681 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6682 			   const void *v)
6683 {
6684 	int handled = 0;
6685 	int n;
6686 
6687 	do {
6688 		n = min(len, 8);
6689 		if (!(lapic_in_kernel(vcpu) &&
6690 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6691 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6692 			break;
6693 		handled += n;
6694 		addr += n;
6695 		len -= n;
6696 		v += n;
6697 	} while (len);
6698 
6699 	return handled;
6700 }
6701 
6702 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6703 {
6704 	int handled = 0;
6705 	int n;
6706 
6707 	do {
6708 		n = min(len, 8);
6709 		if (!(lapic_in_kernel(vcpu) &&
6710 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6711 					 addr, n, v))
6712 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6713 			break;
6714 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6715 		handled += n;
6716 		addr += n;
6717 		len -= n;
6718 		v += n;
6719 	} while (len);
6720 
6721 	return handled;
6722 }
6723 
6724 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6725 			struct kvm_segment *var, int seg)
6726 {
6727 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
6728 }
6729 
6730 void kvm_get_segment(struct kvm_vcpu *vcpu,
6731 		     struct kvm_segment *var, int seg)
6732 {
6733 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
6734 }
6735 
6736 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
6737 			   struct x86_exception *exception)
6738 {
6739 	struct kvm_mmu *mmu = vcpu->arch.mmu;
6740 	gpa_t t_gpa;
6741 
6742 	BUG_ON(!mmu_is_nested(vcpu));
6743 
6744 	/* NPT walks are always user-walks */
6745 	access |= PFERR_USER_MASK;
6746 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
6747 
6748 	return t_gpa;
6749 }
6750 
6751 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6752 			      struct x86_exception *exception)
6753 {
6754 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6755 
6756 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6757 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6758 }
6759 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6760 
6761  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6762 				struct x86_exception *exception)
6763 {
6764 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6765 
6766 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6767 	access |= PFERR_FETCH_MASK;
6768 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6769 }
6770 
6771 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6772 			       struct x86_exception *exception)
6773 {
6774 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6775 
6776 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6777 	access |= PFERR_WRITE_MASK;
6778 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6779 }
6780 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6781 
6782 /* uses this to access any guest's mapped memory without checking CPL */
6783 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6784 				struct x86_exception *exception)
6785 {
6786 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6787 
6788 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
6789 }
6790 
6791 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6792 				      struct kvm_vcpu *vcpu, u64 access,
6793 				      struct x86_exception *exception)
6794 {
6795 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6796 	void *data = val;
6797 	int r = X86EMUL_CONTINUE;
6798 
6799 	while (bytes) {
6800 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6801 		unsigned offset = addr & (PAGE_SIZE-1);
6802 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6803 		int ret;
6804 
6805 		if (gpa == UNMAPPED_GVA)
6806 			return X86EMUL_PROPAGATE_FAULT;
6807 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6808 					       offset, toread);
6809 		if (ret < 0) {
6810 			r = X86EMUL_IO_NEEDED;
6811 			goto out;
6812 		}
6813 
6814 		bytes -= toread;
6815 		data += toread;
6816 		addr += toread;
6817 	}
6818 out:
6819 	return r;
6820 }
6821 
6822 /* used for instruction fetching */
6823 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6824 				gva_t addr, void *val, unsigned int bytes,
6825 				struct x86_exception *exception)
6826 {
6827 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6828 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6829 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6830 	unsigned offset;
6831 	int ret;
6832 
6833 	/* Inline kvm_read_guest_virt_helper for speed.  */
6834 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
6835 				    exception);
6836 	if (unlikely(gpa == UNMAPPED_GVA))
6837 		return X86EMUL_PROPAGATE_FAULT;
6838 
6839 	offset = addr & (PAGE_SIZE-1);
6840 	if (WARN_ON(offset + bytes > PAGE_SIZE))
6841 		bytes = (unsigned)PAGE_SIZE - offset;
6842 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6843 				       offset, bytes);
6844 	if (unlikely(ret < 0))
6845 		return X86EMUL_IO_NEEDED;
6846 
6847 	return X86EMUL_CONTINUE;
6848 }
6849 
6850 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6851 			       gva_t addr, void *val, unsigned int bytes,
6852 			       struct x86_exception *exception)
6853 {
6854 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6855 
6856 	/*
6857 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6858 	 * is returned, but our callers are not ready for that and they blindly
6859 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
6860 	 * uninitialized kernel stack memory into cr2 and error code.
6861 	 */
6862 	memset(exception, 0, sizeof(*exception));
6863 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6864 					  exception);
6865 }
6866 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6867 
6868 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6869 			     gva_t addr, void *val, unsigned int bytes,
6870 			     struct x86_exception *exception, bool system)
6871 {
6872 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6873 	u64 access = 0;
6874 
6875 	if (system)
6876 		access |= PFERR_IMPLICIT_ACCESS;
6877 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
6878 		access |= PFERR_USER_MASK;
6879 
6880 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6881 }
6882 
6883 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6884 		unsigned long addr, void *val, unsigned int bytes)
6885 {
6886 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6887 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6888 
6889 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6890 }
6891 
6892 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6893 				      struct kvm_vcpu *vcpu, u64 access,
6894 				      struct x86_exception *exception)
6895 {
6896 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6897 	void *data = val;
6898 	int r = X86EMUL_CONTINUE;
6899 
6900 	while (bytes) {
6901 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6902 		unsigned offset = addr & (PAGE_SIZE-1);
6903 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6904 		int ret;
6905 
6906 		if (gpa == UNMAPPED_GVA)
6907 			return X86EMUL_PROPAGATE_FAULT;
6908 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6909 		if (ret < 0) {
6910 			r = X86EMUL_IO_NEEDED;
6911 			goto out;
6912 		}
6913 
6914 		bytes -= towrite;
6915 		data += towrite;
6916 		addr += towrite;
6917 	}
6918 out:
6919 	return r;
6920 }
6921 
6922 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6923 			      unsigned int bytes, struct x86_exception *exception,
6924 			      bool system)
6925 {
6926 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6927 	u64 access = PFERR_WRITE_MASK;
6928 
6929 	if (system)
6930 		access |= PFERR_IMPLICIT_ACCESS;
6931 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
6932 		access |= PFERR_USER_MASK;
6933 
6934 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6935 					   access, exception);
6936 }
6937 
6938 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6939 				unsigned int bytes, struct x86_exception *exception)
6940 {
6941 	/* kvm_write_guest_virt_system can pull in tons of pages. */
6942 	vcpu->arch.l1tf_flush_l1d = true;
6943 
6944 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6945 					   PFERR_WRITE_MASK, exception);
6946 }
6947 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6948 
6949 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
6950 				void *insn, int insn_len)
6951 {
6952 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
6953 							    insn, insn_len);
6954 }
6955 
6956 int handle_ud(struct kvm_vcpu *vcpu)
6957 {
6958 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6959 	int emul_type = EMULTYPE_TRAP_UD;
6960 	char sig[5]; /* ud2; .ascii "kvm" */
6961 	struct x86_exception e;
6962 
6963 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
6964 		return 1;
6965 
6966 	if (force_emulation_prefix &&
6967 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6968 				sig, sizeof(sig), &e) == 0 &&
6969 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6970 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6971 		emul_type = EMULTYPE_TRAP_UD_FORCED;
6972 	}
6973 
6974 	return kvm_emulate_instruction(vcpu, emul_type);
6975 }
6976 EXPORT_SYMBOL_GPL(handle_ud);
6977 
6978 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6979 			    gpa_t gpa, bool write)
6980 {
6981 	/* For APIC access vmexit */
6982 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6983 		return 1;
6984 
6985 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6986 		trace_vcpu_match_mmio(gva, gpa, write, true);
6987 		return 1;
6988 	}
6989 
6990 	return 0;
6991 }
6992 
6993 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6994 				gpa_t *gpa, struct x86_exception *exception,
6995 				bool write)
6996 {
6997 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6998 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6999 		| (write ? PFERR_WRITE_MASK : 0);
7000 
7001 	/*
7002 	 * currently PKRU is only applied to ept enabled guest so
7003 	 * there is no pkey in EPT page table for L1 guest or EPT
7004 	 * shadow page table for L2 guest.
7005 	 */
7006 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7007 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7008 			      vcpu->arch.mmio_access, 0, access))) {
7009 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7010 					(gva & (PAGE_SIZE - 1));
7011 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7012 		return 1;
7013 	}
7014 
7015 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7016 
7017 	if (*gpa == UNMAPPED_GVA)
7018 		return -1;
7019 
7020 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7021 }
7022 
7023 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7024 			const void *val, int bytes)
7025 {
7026 	int ret;
7027 
7028 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7029 	if (ret < 0)
7030 		return 0;
7031 	kvm_page_track_write(vcpu, gpa, val, bytes);
7032 	return 1;
7033 }
7034 
7035 struct read_write_emulator_ops {
7036 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7037 				  int bytes);
7038 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7039 				  void *val, int bytes);
7040 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7041 			       int bytes, void *val);
7042 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7043 				    void *val, int bytes);
7044 	bool write;
7045 };
7046 
7047 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7048 {
7049 	if (vcpu->mmio_read_completed) {
7050 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7051 			       vcpu->mmio_fragments[0].gpa, val);
7052 		vcpu->mmio_read_completed = 0;
7053 		return 1;
7054 	}
7055 
7056 	return 0;
7057 }
7058 
7059 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7060 			void *val, int bytes)
7061 {
7062 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7063 }
7064 
7065 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7066 			 void *val, int bytes)
7067 {
7068 	return emulator_write_phys(vcpu, gpa, val, bytes);
7069 }
7070 
7071 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7072 {
7073 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7074 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7075 }
7076 
7077 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7078 			  void *val, int bytes)
7079 {
7080 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7081 	return X86EMUL_IO_NEEDED;
7082 }
7083 
7084 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7085 			   void *val, int bytes)
7086 {
7087 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7088 
7089 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7090 	return X86EMUL_CONTINUE;
7091 }
7092 
7093 static const struct read_write_emulator_ops read_emultor = {
7094 	.read_write_prepare = read_prepare,
7095 	.read_write_emulate = read_emulate,
7096 	.read_write_mmio = vcpu_mmio_read,
7097 	.read_write_exit_mmio = read_exit_mmio,
7098 };
7099 
7100 static const struct read_write_emulator_ops write_emultor = {
7101 	.read_write_emulate = write_emulate,
7102 	.read_write_mmio = write_mmio,
7103 	.read_write_exit_mmio = write_exit_mmio,
7104 	.write = true,
7105 };
7106 
7107 static int emulator_read_write_onepage(unsigned long addr, void *val,
7108 				       unsigned int bytes,
7109 				       struct x86_exception *exception,
7110 				       struct kvm_vcpu *vcpu,
7111 				       const struct read_write_emulator_ops *ops)
7112 {
7113 	gpa_t gpa;
7114 	int handled, ret;
7115 	bool write = ops->write;
7116 	struct kvm_mmio_fragment *frag;
7117 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7118 
7119 	/*
7120 	 * If the exit was due to a NPF we may already have a GPA.
7121 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7122 	 * Note, this cannot be used on string operations since string
7123 	 * operation using rep will only have the initial GPA from the NPF
7124 	 * occurred.
7125 	 */
7126 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7127 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7128 		gpa = ctxt->gpa_val;
7129 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7130 	} else {
7131 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7132 		if (ret < 0)
7133 			return X86EMUL_PROPAGATE_FAULT;
7134 	}
7135 
7136 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7137 		return X86EMUL_CONTINUE;
7138 
7139 	/*
7140 	 * Is this MMIO handled locally?
7141 	 */
7142 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7143 	if (handled == bytes)
7144 		return X86EMUL_CONTINUE;
7145 
7146 	gpa += handled;
7147 	bytes -= handled;
7148 	val += handled;
7149 
7150 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7151 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7152 	frag->gpa = gpa;
7153 	frag->data = val;
7154 	frag->len = bytes;
7155 	return X86EMUL_CONTINUE;
7156 }
7157 
7158 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7159 			unsigned long addr,
7160 			void *val, unsigned int bytes,
7161 			struct x86_exception *exception,
7162 			const struct read_write_emulator_ops *ops)
7163 {
7164 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7165 	gpa_t gpa;
7166 	int rc;
7167 
7168 	if (ops->read_write_prepare &&
7169 		  ops->read_write_prepare(vcpu, val, bytes))
7170 		return X86EMUL_CONTINUE;
7171 
7172 	vcpu->mmio_nr_fragments = 0;
7173 
7174 	/* Crossing a page boundary? */
7175 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7176 		int now;
7177 
7178 		now = -addr & ~PAGE_MASK;
7179 		rc = emulator_read_write_onepage(addr, val, now, exception,
7180 						 vcpu, ops);
7181 
7182 		if (rc != X86EMUL_CONTINUE)
7183 			return rc;
7184 		addr += now;
7185 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7186 			addr = (u32)addr;
7187 		val += now;
7188 		bytes -= now;
7189 	}
7190 
7191 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7192 					 vcpu, ops);
7193 	if (rc != X86EMUL_CONTINUE)
7194 		return rc;
7195 
7196 	if (!vcpu->mmio_nr_fragments)
7197 		return rc;
7198 
7199 	gpa = vcpu->mmio_fragments[0].gpa;
7200 
7201 	vcpu->mmio_needed = 1;
7202 	vcpu->mmio_cur_fragment = 0;
7203 
7204 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7205 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7206 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7207 	vcpu->run->mmio.phys_addr = gpa;
7208 
7209 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7210 }
7211 
7212 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7213 				  unsigned long addr,
7214 				  void *val,
7215 				  unsigned int bytes,
7216 				  struct x86_exception *exception)
7217 {
7218 	return emulator_read_write(ctxt, addr, val, bytes,
7219 				   exception, &read_emultor);
7220 }
7221 
7222 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7223 			    unsigned long addr,
7224 			    const void *val,
7225 			    unsigned int bytes,
7226 			    struct x86_exception *exception)
7227 {
7228 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7229 				   exception, &write_emultor);
7230 }
7231 
7232 #define CMPXCHG_TYPE(t, ptr, old, new) \
7233 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
7234 
7235 #ifdef CONFIG_X86_64
7236 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
7237 #else
7238 #  define CMPXCHG64(ptr, old, new) \
7239 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
7240 #endif
7241 
7242 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7243 				     unsigned long addr,
7244 				     const void *old,
7245 				     const void *new,
7246 				     unsigned int bytes,
7247 				     struct x86_exception *exception)
7248 {
7249 	struct kvm_host_map map;
7250 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7251 	u64 page_line_mask;
7252 	gpa_t gpa;
7253 	char *kaddr;
7254 	bool exchanged;
7255 
7256 	/* guests cmpxchg8b have to be emulated atomically */
7257 	if (bytes > 8 || (bytes & (bytes - 1)))
7258 		goto emul_write;
7259 
7260 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7261 
7262 	if (gpa == UNMAPPED_GVA ||
7263 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7264 		goto emul_write;
7265 
7266 	/*
7267 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7268 	 * enabled in the host and the access splits a cache line.
7269 	 */
7270 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7271 		page_line_mask = ~(cache_line_size() - 1);
7272 	else
7273 		page_line_mask = PAGE_MASK;
7274 
7275 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7276 		goto emul_write;
7277 
7278 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
7279 		goto emul_write;
7280 
7281 	kaddr = map.hva + offset_in_page(gpa);
7282 
7283 	switch (bytes) {
7284 	case 1:
7285 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
7286 		break;
7287 	case 2:
7288 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
7289 		break;
7290 	case 4:
7291 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
7292 		break;
7293 	case 8:
7294 		exchanged = CMPXCHG64(kaddr, old, new);
7295 		break;
7296 	default:
7297 		BUG();
7298 	}
7299 
7300 	kvm_vcpu_unmap(vcpu, &map, true);
7301 
7302 	if (!exchanged)
7303 		return X86EMUL_CMPXCHG_FAILED;
7304 
7305 	kvm_page_track_write(vcpu, gpa, new, bytes);
7306 
7307 	return X86EMUL_CONTINUE;
7308 
7309 emul_write:
7310 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7311 
7312 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7313 }
7314 
7315 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7316 {
7317 	int r = 0, i;
7318 
7319 	for (i = 0; i < vcpu->arch.pio.count; i++) {
7320 		if (vcpu->arch.pio.in)
7321 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7322 					    vcpu->arch.pio.size, pd);
7323 		else
7324 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7325 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
7326 					     pd);
7327 		if (r)
7328 			break;
7329 		pd += vcpu->arch.pio.size;
7330 	}
7331 	return r;
7332 }
7333 
7334 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7335 			       unsigned short port,
7336 			       unsigned int count, bool in)
7337 {
7338 	vcpu->arch.pio.port = port;
7339 	vcpu->arch.pio.in = in;
7340 	vcpu->arch.pio.count  = count;
7341 	vcpu->arch.pio.size = size;
7342 
7343 	if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7344 		return 1;
7345 
7346 	vcpu->run->exit_reason = KVM_EXIT_IO;
7347 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7348 	vcpu->run->io.size = size;
7349 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7350 	vcpu->run->io.count = count;
7351 	vcpu->run->io.port = port;
7352 
7353 	return 0;
7354 }
7355 
7356 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7357 			     unsigned short port, unsigned int count)
7358 {
7359 	WARN_ON(vcpu->arch.pio.count);
7360 	memset(vcpu->arch.pio_data, 0, size * count);
7361 	return emulator_pio_in_out(vcpu, size, port, count, true);
7362 }
7363 
7364 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7365 {
7366 	int size = vcpu->arch.pio.size;
7367 	unsigned count = vcpu->arch.pio.count;
7368 	memcpy(val, vcpu->arch.pio_data, size * count);
7369 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7370 	vcpu->arch.pio.count = 0;
7371 }
7372 
7373 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7374 			   unsigned short port, void *val, unsigned int count)
7375 {
7376 	if (vcpu->arch.pio.count) {
7377 		/*
7378 		 * Complete a previous iteration that required userspace I/O.
7379 		 * Note, @count isn't guaranteed to match pio.count as userspace
7380 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7381 		 * shenanigans as KVM doesn't support modifying the rep count,
7382 		 * and the emulator ensures @count doesn't overflow the buffer.
7383 		 */
7384 	} else {
7385 		int r = __emulator_pio_in(vcpu, size, port, count);
7386 		if (!r)
7387 			return r;
7388 
7389 		/* Results already available, fall through.  */
7390 	}
7391 
7392 	complete_emulator_pio_in(vcpu, val);
7393 	return 1;
7394 }
7395 
7396 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7397 				    int size, unsigned short port, void *val,
7398 				    unsigned int count)
7399 {
7400 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7401 
7402 }
7403 
7404 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7405 			    unsigned short port, const void *val,
7406 			    unsigned int count)
7407 {
7408 	int ret;
7409 
7410 	memcpy(vcpu->arch.pio_data, val, size * count);
7411 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7412 	ret = emulator_pio_in_out(vcpu, size, port, count, false);
7413 	if (ret)
7414                 vcpu->arch.pio.count = 0;
7415 
7416         return ret;
7417 }
7418 
7419 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7420 				     int size, unsigned short port,
7421 				     const void *val, unsigned int count)
7422 {
7423 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7424 }
7425 
7426 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7427 {
7428 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7429 }
7430 
7431 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7432 {
7433 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7434 }
7435 
7436 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7437 {
7438 	if (!need_emulate_wbinvd(vcpu))
7439 		return X86EMUL_CONTINUE;
7440 
7441 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7442 		int cpu = get_cpu();
7443 
7444 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7445 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7446 				wbinvd_ipi, NULL, 1);
7447 		put_cpu();
7448 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7449 	} else
7450 		wbinvd();
7451 	return X86EMUL_CONTINUE;
7452 }
7453 
7454 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7455 {
7456 	kvm_emulate_wbinvd_noskip(vcpu);
7457 	return kvm_skip_emulated_instruction(vcpu);
7458 }
7459 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7460 
7461 
7462 
7463 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7464 {
7465 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7466 }
7467 
7468 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7469 			    unsigned long *dest)
7470 {
7471 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7472 }
7473 
7474 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7475 			   unsigned long value)
7476 {
7477 
7478 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7479 }
7480 
7481 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7482 {
7483 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7484 }
7485 
7486 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7487 {
7488 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7489 	unsigned long value;
7490 
7491 	switch (cr) {
7492 	case 0:
7493 		value = kvm_read_cr0(vcpu);
7494 		break;
7495 	case 2:
7496 		value = vcpu->arch.cr2;
7497 		break;
7498 	case 3:
7499 		value = kvm_read_cr3(vcpu);
7500 		break;
7501 	case 4:
7502 		value = kvm_read_cr4(vcpu);
7503 		break;
7504 	case 8:
7505 		value = kvm_get_cr8(vcpu);
7506 		break;
7507 	default:
7508 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7509 		return 0;
7510 	}
7511 
7512 	return value;
7513 }
7514 
7515 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7516 {
7517 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7518 	int res = 0;
7519 
7520 	switch (cr) {
7521 	case 0:
7522 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7523 		break;
7524 	case 2:
7525 		vcpu->arch.cr2 = val;
7526 		break;
7527 	case 3:
7528 		res = kvm_set_cr3(vcpu, val);
7529 		break;
7530 	case 4:
7531 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7532 		break;
7533 	case 8:
7534 		res = kvm_set_cr8(vcpu, val);
7535 		break;
7536 	default:
7537 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7538 		res = -1;
7539 	}
7540 
7541 	return res;
7542 }
7543 
7544 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7545 {
7546 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7547 }
7548 
7549 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7550 {
7551 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7552 }
7553 
7554 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7555 {
7556 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7557 }
7558 
7559 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7560 {
7561 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7562 }
7563 
7564 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7565 {
7566 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7567 }
7568 
7569 static unsigned long emulator_get_cached_segment_base(
7570 	struct x86_emulate_ctxt *ctxt, int seg)
7571 {
7572 	return get_segment_base(emul_to_vcpu(ctxt), seg);
7573 }
7574 
7575 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7576 				 struct desc_struct *desc, u32 *base3,
7577 				 int seg)
7578 {
7579 	struct kvm_segment var;
7580 
7581 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7582 	*selector = var.selector;
7583 
7584 	if (var.unusable) {
7585 		memset(desc, 0, sizeof(*desc));
7586 		if (base3)
7587 			*base3 = 0;
7588 		return false;
7589 	}
7590 
7591 	if (var.g)
7592 		var.limit >>= 12;
7593 	set_desc_limit(desc, var.limit);
7594 	set_desc_base(desc, (unsigned long)var.base);
7595 #ifdef CONFIG_X86_64
7596 	if (base3)
7597 		*base3 = var.base >> 32;
7598 #endif
7599 	desc->type = var.type;
7600 	desc->s = var.s;
7601 	desc->dpl = var.dpl;
7602 	desc->p = var.present;
7603 	desc->avl = var.avl;
7604 	desc->l = var.l;
7605 	desc->d = var.db;
7606 	desc->g = var.g;
7607 
7608 	return true;
7609 }
7610 
7611 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7612 				 struct desc_struct *desc, u32 base3,
7613 				 int seg)
7614 {
7615 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7616 	struct kvm_segment var;
7617 
7618 	var.selector = selector;
7619 	var.base = get_desc_base(desc);
7620 #ifdef CONFIG_X86_64
7621 	var.base |= ((u64)base3) << 32;
7622 #endif
7623 	var.limit = get_desc_limit(desc);
7624 	if (desc->g)
7625 		var.limit = (var.limit << 12) | 0xfff;
7626 	var.type = desc->type;
7627 	var.dpl = desc->dpl;
7628 	var.db = desc->d;
7629 	var.s = desc->s;
7630 	var.l = desc->l;
7631 	var.g = desc->g;
7632 	var.avl = desc->avl;
7633 	var.present = desc->p;
7634 	var.unusable = !var.present;
7635 	var.padding = 0;
7636 
7637 	kvm_set_segment(vcpu, &var, seg);
7638 	return;
7639 }
7640 
7641 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7642 					u32 msr_index, u64 *pdata)
7643 {
7644 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7645 	int r;
7646 
7647 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
7648 
7649 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7650 				    complete_emulated_rdmsr, r)) {
7651 		/* Bounce to user space */
7652 		return X86EMUL_IO_NEEDED;
7653 	}
7654 
7655 	return r;
7656 }
7657 
7658 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7659 					u32 msr_index, u64 data)
7660 {
7661 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7662 	int r;
7663 
7664 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
7665 
7666 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7667 				    complete_emulated_msr_access, r)) {
7668 		/* Bounce to user space */
7669 		return X86EMUL_IO_NEEDED;
7670 	}
7671 
7672 	return r;
7673 }
7674 
7675 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7676 			    u32 msr_index, u64 *pdata)
7677 {
7678 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
7679 }
7680 
7681 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7682 			    u32 msr_index, u64 data)
7683 {
7684 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
7685 }
7686 
7687 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7688 {
7689 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7690 
7691 	return vcpu->arch.smbase;
7692 }
7693 
7694 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7695 {
7696 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7697 
7698 	vcpu->arch.smbase = smbase;
7699 }
7700 
7701 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7702 			      u32 pmc)
7703 {
7704 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7705 		return 0;
7706 	return -EINVAL;
7707 }
7708 
7709 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7710 			     u32 pmc, u64 *pdata)
7711 {
7712 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7713 }
7714 
7715 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7716 {
7717 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
7718 }
7719 
7720 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7721 			      struct x86_instruction_info *info,
7722 			      enum x86_intercept_stage stage)
7723 {
7724 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7725 					    &ctxt->exception);
7726 }
7727 
7728 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7729 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7730 			      bool exact_only)
7731 {
7732 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7733 }
7734 
7735 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7736 {
7737 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7738 }
7739 
7740 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7741 {
7742 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7743 }
7744 
7745 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7746 {
7747 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7748 }
7749 
7750 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
7751 {
7752 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
7753 }
7754 
7755 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7756 {
7757 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7758 }
7759 
7760 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7761 {
7762 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7763 }
7764 
7765 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7766 {
7767 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7768 }
7769 
7770 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7771 {
7772 	return emul_to_vcpu(ctxt)->arch.hflags;
7773 }
7774 
7775 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7776 {
7777 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7778 
7779 	kvm_smm_changed(vcpu, false);
7780 }
7781 
7782 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7783 				  const char *smstate)
7784 {
7785 	return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7786 }
7787 
7788 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7789 {
7790 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7791 }
7792 
7793 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7794 {
7795 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7796 }
7797 
7798 static const struct x86_emulate_ops emulate_ops = {
7799 	.read_gpr            = emulator_read_gpr,
7800 	.write_gpr           = emulator_write_gpr,
7801 	.read_std            = emulator_read_std,
7802 	.write_std           = emulator_write_std,
7803 	.read_phys           = kvm_read_guest_phys_system,
7804 	.fetch               = kvm_fetch_guest_virt,
7805 	.read_emulated       = emulator_read_emulated,
7806 	.write_emulated      = emulator_write_emulated,
7807 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
7808 	.invlpg              = emulator_invlpg,
7809 	.pio_in_emulated     = emulator_pio_in_emulated,
7810 	.pio_out_emulated    = emulator_pio_out_emulated,
7811 	.get_segment         = emulator_get_segment,
7812 	.set_segment         = emulator_set_segment,
7813 	.get_cached_segment_base = emulator_get_cached_segment_base,
7814 	.get_gdt             = emulator_get_gdt,
7815 	.get_idt	     = emulator_get_idt,
7816 	.set_gdt             = emulator_set_gdt,
7817 	.set_idt	     = emulator_set_idt,
7818 	.get_cr              = emulator_get_cr,
7819 	.set_cr              = emulator_set_cr,
7820 	.cpl                 = emulator_get_cpl,
7821 	.get_dr              = emulator_get_dr,
7822 	.set_dr              = emulator_set_dr,
7823 	.get_smbase          = emulator_get_smbase,
7824 	.set_smbase          = emulator_set_smbase,
7825 	.set_msr_with_filter = emulator_set_msr_with_filter,
7826 	.get_msr_with_filter = emulator_get_msr_with_filter,
7827 	.set_msr             = emulator_set_msr,
7828 	.get_msr             = emulator_get_msr,
7829 	.check_pmc	     = emulator_check_pmc,
7830 	.read_pmc            = emulator_read_pmc,
7831 	.halt                = emulator_halt,
7832 	.wbinvd              = emulator_wbinvd,
7833 	.fix_hypercall       = emulator_fix_hypercall,
7834 	.intercept           = emulator_intercept,
7835 	.get_cpuid           = emulator_get_cpuid,
7836 	.guest_has_long_mode = emulator_guest_has_long_mode,
7837 	.guest_has_movbe     = emulator_guest_has_movbe,
7838 	.guest_has_fxsr      = emulator_guest_has_fxsr,
7839 	.guest_has_rdpid     = emulator_guest_has_rdpid,
7840 	.set_nmi_mask        = emulator_set_nmi_mask,
7841 	.get_hflags          = emulator_get_hflags,
7842 	.exiting_smm         = emulator_exiting_smm,
7843 	.leave_smm           = emulator_leave_smm,
7844 	.triple_fault        = emulator_triple_fault,
7845 	.set_xcr             = emulator_set_xcr,
7846 };
7847 
7848 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7849 {
7850 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7851 	/*
7852 	 * an sti; sti; sequence only disable interrupts for the first
7853 	 * instruction. So, if the last instruction, be it emulated or
7854 	 * not, left the system with the INT_STI flag enabled, it
7855 	 * means that the last instruction is an sti. We should not
7856 	 * leave the flag on in this case. The same goes for mov ss
7857 	 */
7858 	if (int_shadow & mask)
7859 		mask = 0;
7860 	if (unlikely(int_shadow || mask)) {
7861 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7862 		if (!mask)
7863 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7864 	}
7865 }
7866 
7867 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7868 {
7869 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7870 	if (ctxt->exception.vector == PF_VECTOR)
7871 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7872 
7873 	if (ctxt->exception.error_code_valid)
7874 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7875 				      ctxt->exception.error_code);
7876 	else
7877 		kvm_queue_exception(vcpu, ctxt->exception.vector);
7878 	return false;
7879 }
7880 
7881 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7882 {
7883 	struct x86_emulate_ctxt *ctxt;
7884 
7885 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7886 	if (!ctxt) {
7887 		pr_err("kvm: failed to allocate vcpu's emulator\n");
7888 		return NULL;
7889 	}
7890 
7891 	ctxt->vcpu = vcpu;
7892 	ctxt->ops = &emulate_ops;
7893 	vcpu->arch.emulate_ctxt = ctxt;
7894 
7895 	return ctxt;
7896 }
7897 
7898 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7899 {
7900 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7901 	int cs_db, cs_l;
7902 
7903 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7904 
7905 	ctxt->gpa_available = false;
7906 	ctxt->eflags = kvm_get_rflags(vcpu);
7907 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7908 
7909 	ctxt->eip = kvm_rip_read(vcpu);
7910 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
7911 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
7912 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
7913 		     cs_db				? X86EMUL_MODE_PROT32 :
7914 							  X86EMUL_MODE_PROT16;
7915 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7916 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7917 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7918 
7919 	ctxt->interruptibility = 0;
7920 	ctxt->have_exception = false;
7921 	ctxt->exception.vector = -1;
7922 	ctxt->perm_ok = false;
7923 
7924 	init_decode_cache(ctxt);
7925 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7926 }
7927 
7928 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7929 {
7930 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7931 	int ret;
7932 
7933 	init_emulate_ctxt(vcpu);
7934 
7935 	ctxt->op_bytes = 2;
7936 	ctxt->ad_bytes = 2;
7937 	ctxt->_eip = ctxt->eip + inc_eip;
7938 	ret = emulate_int_real(ctxt, irq);
7939 
7940 	if (ret != X86EMUL_CONTINUE) {
7941 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7942 	} else {
7943 		ctxt->eip = ctxt->_eip;
7944 		kvm_rip_write(vcpu, ctxt->eip);
7945 		kvm_set_rflags(vcpu, ctxt->eflags);
7946 	}
7947 }
7948 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7949 
7950 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7951 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
7952 {
7953 	struct kvm_run *run = vcpu->run;
7954 	u64 info[5];
7955 	u8 info_start;
7956 
7957 	/*
7958 	 * Zero the whole array used to retrieve the exit info, as casting to
7959 	 * u32 for select entries will leave some chunks uninitialized.
7960 	 */
7961 	memset(&info, 0, sizeof(info));
7962 
7963 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
7964 					   &info[2], (u32 *)&info[3],
7965 					   (u32 *)&info[4]);
7966 
7967 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7968 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7969 
7970 	/*
7971 	 * There's currently space for 13 entries, but 5 are used for the exit
7972 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
7973 	 * when expanding kvm_run.emulation_failure in the future.
7974 	 */
7975 	if (WARN_ON_ONCE(ndata > 4))
7976 		ndata = 4;
7977 
7978 	/* Always include the flags as a 'data' entry. */
7979 	info_start = 1;
7980 	run->emulation_failure.flags = 0;
7981 
7982 	if (insn_size) {
7983 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
7984 			      sizeof(run->emulation_failure.insn_bytes) != 16));
7985 		info_start += 2;
7986 		run->emulation_failure.flags |=
7987 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7988 		run->emulation_failure.insn_size = insn_size;
7989 		memset(run->emulation_failure.insn_bytes, 0x90,
7990 		       sizeof(run->emulation_failure.insn_bytes));
7991 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
7992 	}
7993 
7994 	memcpy(&run->internal.data[info_start], info, sizeof(info));
7995 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
7996 	       ndata * sizeof(data[0]));
7997 
7998 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
7999 }
8000 
8001 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8002 {
8003 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8004 
8005 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8006 				       ctxt->fetch.end - ctxt->fetch.data);
8007 }
8008 
8009 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8010 					  u8 ndata)
8011 {
8012 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8013 }
8014 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8015 
8016 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8017 {
8018 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8019 }
8020 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8021 
8022 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8023 {
8024 	struct kvm *kvm = vcpu->kvm;
8025 
8026 	++vcpu->stat.insn_emulation_fail;
8027 	trace_kvm_emulate_insn_failed(vcpu);
8028 
8029 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8030 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8031 		return 1;
8032 	}
8033 
8034 	if (kvm->arch.exit_on_emulation_error ||
8035 	    (emulation_type & EMULTYPE_SKIP)) {
8036 		prepare_emulation_ctxt_failure_exit(vcpu);
8037 		return 0;
8038 	}
8039 
8040 	kvm_queue_exception(vcpu, UD_VECTOR);
8041 
8042 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8043 		prepare_emulation_ctxt_failure_exit(vcpu);
8044 		return 0;
8045 	}
8046 
8047 	return 1;
8048 }
8049 
8050 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8051 				  bool write_fault_to_shadow_pgtable,
8052 				  int emulation_type)
8053 {
8054 	gpa_t gpa = cr2_or_gpa;
8055 	kvm_pfn_t pfn;
8056 
8057 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8058 		return false;
8059 
8060 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8061 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8062 		return false;
8063 
8064 	if (!vcpu->arch.mmu->direct_map) {
8065 		/*
8066 		 * Write permission should be allowed since only
8067 		 * write access need to be emulated.
8068 		 */
8069 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8070 
8071 		/*
8072 		 * If the mapping is invalid in guest, let cpu retry
8073 		 * it to generate fault.
8074 		 */
8075 		if (gpa == UNMAPPED_GVA)
8076 			return true;
8077 	}
8078 
8079 	/*
8080 	 * Do not retry the unhandleable instruction if it faults on the
8081 	 * readonly host memory, otherwise it will goto a infinite loop:
8082 	 * retry instruction -> write #PF -> emulation fail -> retry
8083 	 * instruction -> ...
8084 	 */
8085 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8086 
8087 	/*
8088 	 * If the instruction failed on the error pfn, it can not be fixed,
8089 	 * report the error to userspace.
8090 	 */
8091 	if (is_error_noslot_pfn(pfn))
8092 		return false;
8093 
8094 	kvm_release_pfn_clean(pfn);
8095 
8096 	/* The instructions are well-emulated on direct mmu. */
8097 	if (vcpu->arch.mmu->direct_map) {
8098 		unsigned int indirect_shadow_pages;
8099 
8100 		write_lock(&vcpu->kvm->mmu_lock);
8101 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8102 		write_unlock(&vcpu->kvm->mmu_lock);
8103 
8104 		if (indirect_shadow_pages)
8105 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8106 
8107 		return true;
8108 	}
8109 
8110 	/*
8111 	 * if emulation was due to access to shadowed page table
8112 	 * and it failed try to unshadow page and re-enter the
8113 	 * guest to let CPU execute the instruction.
8114 	 */
8115 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8116 
8117 	/*
8118 	 * If the access faults on its page table, it can not
8119 	 * be fixed by unprotecting shadow page and it should
8120 	 * be reported to userspace.
8121 	 */
8122 	return !write_fault_to_shadow_pgtable;
8123 }
8124 
8125 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8126 			      gpa_t cr2_or_gpa,  int emulation_type)
8127 {
8128 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8129 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8130 
8131 	last_retry_eip = vcpu->arch.last_retry_eip;
8132 	last_retry_addr = vcpu->arch.last_retry_addr;
8133 
8134 	/*
8135 	 * If the emulation is caused by #PF and it is non-page_table
8136 	 * writing instruction, it means the VM-EXIT is caused by shadow
8137 	 * page protected, we can zap the shadow page and retry this
8138 	 * instruction directly.
8139 	 *
8140 	 * Note: if the guest uses a non-page-table modifying instruction
8141 	 * on the PDE that points to the instruction, then we will unmap
8142 	 * the instruction and go to an infinite loop. So, we cache the
8143 	 * last retried eip and the last fault address, if we meet the eip
8144 	 * and the address again, we can break out of the potential infinite
8145 	 * loop.
8146 	 */
8147 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8148 
8149 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8150 		return false;
8151 
8152 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8153 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8154 		return false;
8155 
8156 	if (x86_page_table_writing_insn(ctxt))
8157 		return false;
8158 
8159 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8160 		return false;
8161 
8162 	vcpu->arch.last_retry_eip = ctxt->eip;
8163 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8164 
8165 	if (!vcpu->arch.mmu->direct_map)
8166 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8167 
8168 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8169 
8170 	return true;
8171 }
8172 
8173 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8174 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8175 
8176 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8177 {
8178 	trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8179 
8180 	if (entering_smm) {
8181 		vcpu->arch.hflags |= HF_SMM_MASK;
8182 	} else {
8183 		vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8184 
8185 		/* Process a latched INIT or SMI, if any.  */
8186 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8187 
8188 		/*
8189 		 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8190 		 * on SMM exit we still need to reload them from
8191 		 * guest memory
8192 		 */
8193 		vcpu->arch.pdptrs_from_userspace = false;
8194 	}
8195 
8196 	kvm_mmu_reset_context(vcpu);
8197 }
8198 
8199 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8200 				unsigned long *db)
8201 {
8202 	u32 dr6 = 0;
8203 	int i;
8204 	u32 enable, rwlen;
8205 
8206 	enable = dr7;
8207 	rwlen = dr7 >> 16;
8208 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8209 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8210 			dr6 |= (1 << i);
8211 	return dr6;
8212 }
8213 
8214 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8215 {
8216 	struct kvm_run *kvm_run = vcpu->run;
8217 
8218 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8219 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8220 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8221 		kvm_run->debug.arch.exception = DB_VECTOR;
8222 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8223 		return 0;
8224 	}
8225 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8226 	return 1;
8227 }
8228 
8229 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8230 {
8231 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8232 	int r;
8233 
8234 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8235 	if (unlikely(!r))
8236 		return 0;
8237 
8238 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8239 
8240 	/*
8241 	 * rflags is the old, "raw" value of the flags.  The new value has
8242 	 * not been saved yet.
8243 	 *
8244 	 * This is correct even for TF set by the guest, because "the
8245 	 * processor will not generate this exception after the instruction
8246 	 * that sets the TF flag".
8247 	 */
8248 	if (unlikely(rflags & X86_EFLAGS_TF))
8249 		r = kvm_vcpu_do_singlestep(vcpu);
8250 	return r;
8251 }
8252 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8253 
8254 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
8255 {
8256 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8257 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8258 		struct kvm_run *kvm_run = vcpu->run;
8259 		unsigned long eip = kvm_get_linear_rip(vcpu);
8260 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8261 					   vcpu->arch.guest_debug_dr7,
8262 					   vcpu->arch.eff_db);
8263 
8264 		if (dr6 != 0) {
8265 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8266 			kvm_run->debug.arch.pc = eip;
8267 			kvm_run->debug.arch.exception = DB_VECTOR;
8268 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8269 			*r = 0;
8270 			return true;
8271 		}
8272 	}
8273 
8274 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8275 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8276 		unsigned long eip = kvm_get_linear_rip(vcpu);
8277 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8278 					   vcpu->arch.dr7,
8279 					   vcpu->arch.db);
8280 
8281 		if (dr6 != 0) {
8282 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8283 			*r = 1;
8284 			return true;
8285 		}
8286 	}
8287 
8288 	return false;
8289 }
8290 
8291 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8292 {
8293 	switch (ctxt->opcode_len) {
8294 	case 1:
8295 		switch (ctxt->b) {
8296 		case 0xe4:	/* IN */
8297 		case 0xe5:
8298 		case 0xec:
8299 		case 0xed:
8300 		case 0xe6:	/* OUT */
8301 		case 0xe7:
8302 		case 0xee:
8303 		case 0xef:
8304 		case 0x6c:	/* INS */
8305 		case 0x6d:
8306 		case 0x6e:	/* OUTS */
8307 		case 0x6f:
8308 			return true;
8309 		}
8310 		break;
8311 	case 2:
8312 		switch (ctxt->b) {
8313 		case 0x33:	/* RDPMC */
8314 			return true;
8315 		}
8316 		break;
8317 	}
8318 
8319 	return false;
8320 }
8321 
8322 /*
8323  * Decode to be emulated instruction. Return EMULATION_OK if success.
8324  */
8325 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8326 				    void *insn, int insn_len)
8327 {
8328 	int r = EMULATION_OK;
8329 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8330 
8331 	init_emulate_ctxt(vcpu);
8332 
8333 	/*
8334 	 * We will reenter on the same instruction since we do not set
8335 	 * complete_userspace_io. This does not handle watchpoints yet,
8336 	 * those would be handled in the emulate_ops.
8337 	 */
8338 	if (!(emulation_type & EMULTYPE_SKIP) &&
8339 	    kvm_vcpu_check_breakpoint(vcpu, &r))
8340 		return r;
8341 
8342 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8343 
8344 	trace_kvm_emulate_insn_start(vcpu);
8345 	++vcpu->stat.insn_emulation;
8346 
8347 	return r;
8348 }
8349 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8350 
8351 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8352 			    int emulation_type, void *insn, int insn_len)
8353 {
8354 	int r;
8355 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8356 	bool writeback = true;
8357 	bool write_fault_to_spt;
8358 
8359 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8360 		return 1;
8361 
8362 	vcpu->arch.l1tf_flush_l1d = true;
8363 
8364 	/*
8365 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
8366 	 * never reused.
8367 	 */
8368 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8369 	vcpu->arch.write_fault_to_shadow_pgtable = false;
8370 
8371 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8372 		kvm_clear_exception_queue(vcpu);
8373 
8374 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8375 						    insn, insn_len);
8376 		if (r != EMULATION_OK)  {
8377 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8378 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8379 				kvm_queue_exception(vcpu, UD_VECTOR);
8380 				return 1;
8381 			}
8382 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8383 						  write_fault_to_spt,
8384 						  emulation_type))
8385 				return 1;
8386 			if (ctxt->have_exception) {
8387 				/*
8388 				 * #UD should result in just EMULATION_FAILED, and trap-like
8389 				 * exception should not be encountered during decode.
8390 				 */
8391 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8392 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8393 				inject_emulated_exception(vcpu);
8394 				return 1;
8395 			}
8396 			return handle_emulation_failure(vcpu, emulation_type);
8397 		}
8398 	}
8399 
8400 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8401 	    !is_vmware_backdoor_opcode(ctxt)) {
8402 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8403 		return 1;
8404 	}
8405 
8406 	/*
8407 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8408 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8409 	 * The caller is responsible for updating interruptibility state and
8410 	 * injecting single-step #DBs.
8411 	 */
8412 	if (emulation_type & EMULTYPE_SKIP) {
8413 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8414 			ctxt->eip = (u32)ctxt->_eip;
8415 		else
8416 			ctxt->eip = ctxt->_eip;
8417 
8418 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8419 			r = 1;
8420 			goto writeback;
8421 		}
8422 
8423 		kvm_rip_write(vcpu, ctxt->eip);
8424 		if (ctxt->eflags & X86_EFLAGS_RF)
8425 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8426 		return 1;
8427 	}
8428 
8429 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8430 		return 1;
8431 
8432 	/* this is needed for vmware backdoor interface to work since it
8433 	   changes registers values  during IO operation */
8434 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8435 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8436 		emulator_invalidate_register_cache(ctxt);
8437 	}
8438 
8439 restart:
8440 	if (emulation_type & EMULTYPE_PF) {
8441 		/* Save the faulting GPA (cr2) in the address field */
8442 		ctxt->exception.address = cr2_or_gpa;
8443 
8444 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8445 		if (vcpu->arch.mmu->direct_map) {
8446 			ctxt->gpa_available = true;
8447 			ctxt->gpa_val = cr2_or_gpa;
8448 		}
8449 	} else {
8450 		/* Sanitize the address out of an abundance of paranoia. */
8451 		ctxt->exception.address = 0;
8452 	}
8453 
8454 	r = x86_emulate_insn(ctxt);
8455 
8456 	if (r == EMULATION_INTERCEPTED)
8457 		return 1;
8458 
8459 	if (r == EMULATION_FAILED) {
8460 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8461 					emulation_type))
8462 			return 1;
8463 
8464 		return handle_emulation_failure(vcpu, emulation_type);
8465 	}
8466 
8467 	if (ctxt->have_exception) {
8468 		r = 1;
8469 		if (inject_emulated_exception(vcpu))
8470 			return r;
8471 	} else if (vcpu->arch.pio.count) {
8472 		if (!vcpu->arch.pio.in) {
8473 			/* FIXME: return into emulator if single-stepping.  */
8474 			vcpu->arch.pio.count = 0;
8475 		} else {
8476 			writeback = false;
8477 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
8478 		}
8479 		r = 0;
8480 	} else if (vcpu->mmio_needed) {
8481 		++vcpu->stat.mmio_exits;
8482 
8483 		if (!vcpu->mmio_is_write)
8484 			writeback = false;
8485 		r = 0;
8486 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8487 	} else if (vcpu->arch.complete_userspace_io) {
8488 		writeback = false;
8489 		r = 0;
8490 	} else if (r == EMULATION_RESTART)
8491 		goto restart;
8492 	else
8493 		r = 1;
8494 
8495 writeback:
8496 	if (writeback) {
8497 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8498 		toggle_interruptibility(vcpu, ctxt->interruptibility);
8499 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8500 		if (!ctxt->have_exception ||
8501 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8502 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8503 			if (ctxt->is_branch)
8504 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8505 			kvm_rip_write(vcpu, ctxt->eip);
8506 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8507 				r = kvm_vcpu_do_singlestep(vcpu);
8508 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8509 			__kvm_set_rflags(vcpu, ctxt->eflags);
8510 		}
8511 
8512 		/*
8513 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8514 		 * do nothing, and it will be requested again as soon as
8515 		 * the shadow expires.  But we still need to check here,
8516 		 * because POPF has no interrupt shadow.
8517 		 */
8518 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8519 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8520 	} else
8521 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8522 
8523 	return r;
8524 }
8525 
8526 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8527 {
8528 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8529 }
8530 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8531 
8532 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8533 					void *insn, int insn_len)
8534 {
8535 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8536 }
8537 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8538 
8539 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8540 {
8541 	vcpu->arch.pio.count = 0;
8542 	return 1;
8543 }
8544 
8545 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8546 {
8547 	vcpu->arch.pio.count = 0;
8548 
8549 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8550 		return 1;
8551 
8552 	return kvm_skip_emulated_instruction(vcpu);
8553 }
8554 
8555 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8556 			    unsigned short port)
8557 {
8558 	unsigned long val = kvm_rax_read(vcpu);
8559 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8560 
8561 	if (ret)
8562 		return ret;
8563 
8564 	/*
8565 	 * Workaround userspace that relies on old KVM behavior of %rip being
8566 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8567 	 */
8568 	if (port == 0x7e &&
8569 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8570 		vcpu->arch.complete_userspace_io =
8571 			complete_fast_pio_out_port_0x7e;
8572 		kvm_skip_emulated_instruction(vcpu);
8573 	} else {
8574 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8575 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8576 	}
8577 	return 0;
8578 }
8579 
8580 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8581 {
8582 	unsigned long val;
8583 
8584 	/* We should only ever be called with arch.pio.count equal to 1 */
8585 	BUG_ON(vcpu->arch.pio.count != 1);
8586 
8587 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8588 		vcpu->arch.pio.count = 0;
8589 		return 1;
8590 	}
8591 
8592 	/* For size less than 4 we merge, else we zero extend */
8593 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8594 
8595 	/*
8596 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8597 	 * the copy and tracing
8598 	 */
8599 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8600 	kvm_rax_write(vcpu, val);
8601 
8602 	return kvm_skip_emulated_instruction(vcpu);
8603 }
8604 
8605 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8606 			   unsigned short port)
8607 {
8608 	unsigned long val;
8609 	int ret;
8610 
8611 	/* For size less than 4 we merge, else we zero extend */
8612 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8613 
8614 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
8615 	if (ret) {
8616 		kvm_rax_write(vcpu, val);
8617 		return ret;
8618 	}
8619 
8620 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8621 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8622 
8623 	return 0;
8624 }
8625 
8626 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8627 {
8628 	int ret;
8629 
8630 	if (in)
8631 		ret = kvm_fast_pio_in(vcpu, size, port);
8632 	else
8633 		ret = kvm_fast_pio_out(vcpu, size, port);
8634 	return ret && kvm_skip_emulated_instruction(vcpu);
8635 }
8636 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8637 
8638 static int kvmclock_cpu_down_prep(unsigned int cpu)
8639 {
8640 	__this_cpu_write(cpu_tsc_khz, 0);
8641 	return 0;
8642 }
8643 
8644 static void tsc_khz_changed(void *data)
8645 {
8646 	struct cpufreq_freqs *freq = data;
8647 	unsigned long khz = 0;
8648 
8649 	if (data)
8650 		khz = freq->new;
8651 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8652 		khz = cpufreq_quick_get(raw_smp_processor_id());
8653 	if (!khz)
8654 		khz = tsc_khz;
8655 	__this_cpu_write(cpu_tsc_khz, khz);
8656 }
8657 
8658 #ifdef CONFIG_X86_64
8659 static void kvm_hyperv_tsc_notifier(void)
8660 {
8661 	struct kvm *kvm;
8662 	int cpu;
8663 
8664 	mutex_lock(&kvm_lock);
8665 	list_for_each_entry(kvm, &vm_list, vm_list)
8666 		kvm_make_mclock_inprogress_request(kvm);
8667 
8668 	/* no guest entries from this point */
8669 	hyperv_stop_tsc_emulation();
8670 
8671 	/* TSC frequency always matches when on Hyper-V */
8672 	for_each_present_cpu(cpu)
8673 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8674 	kvm_max_guest_tsc_khz = tsc_khz;
8675 
8676 	list_for_each_entry(kvm, &vm_list, vm_list) {
8677 		__kvm_start_pvclock_update(kvm);
8678 		pvclock_update_vm_gtod_copy(kvm);
8679 		kvm_end_pvclock_update(kvm);
8680 	}
8681 
8682 	mutex_unlock(&kvm_lock);
8683 }
8684 #endif
8685 
8686 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8687 {
8688 	struct kvm *kvm;
8689 	struct kvm_vcpu *vcpu;
8690 	int send_ipi = 0;
8691 	unsigned long i;
8692 
8693 	/*
8694 	 * We allow guests to temporarily run on slowing clocks,
8695 	 * provided we notify them after, or to run on accelerating
8696 	 * clocks, provided we notify them before.  Thus time never
8697 	 * goes backwards.
8698 	 *
8699 	 * However, we have a problem.  We can't atomically update
8700 	 * the frequency of a given CPU from this function; it is
8701 	 * merely a notifier, which can be called from any CPU.
8702 	 * Changing the TSC frequency at arbitrary points in time
8703 	 * requires a recomputation of local variables related to
8704 	 * the TSC for each VCPU.  We must flag these local variables
8705 	 * to be updated and be sure the update takes place with the
8706 	 * new frequency before any guests proceed.
8707 	 *
8708 	 * Unfortunately, the combination of hotplug CPU and frequency
8709 	 * change creates an intractable locking scenario; the order
8710 	 * of when these callouts happen is undefined with respect to
8711 	 * CPU hotplug, and they can race with each other.  As such,
8712 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8713 	 * undefined; you can actually have a CPU frequency change take
8714 	 * place in between the computation of X and the setting of the
8715 	 * variable.  To protect against this problem, all updates of
8716 	 * the per_cpu tsc_khz variable are done in an interrupt
8717 	 * protected IPI, and all callers wishing to update the value
8718 	 * must wait for a synchronous IPI to complete (which is trivial
8719 	 * if the caller is on the CPU already).  This establishes the
8720 	 * necessary total order on variable updates.
8721 	 *
8722 	 * Note that because a guest time update may take place
8723 	 * anytime after the setting of the VCPU's request bit, the
8724 	 * correct TSC value must be set before the request.  However,
8725 	 * to ensure the update actually makes it to any guest which
8726 	 * starts running in hardware virtualization between the set
8727 	 * and the acquisition of the spinlock, we must also ping the
8728 	 * CPU after setting the request bit.
8729 	 *
8730 	 */
8731 
8732 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8733 
8734 	mutex_lock(&kvm_lock);
8735 	list_for_each_entry(kvm, &vm_list, vm_list) {
8736 		kvm_for_each_vcpu(i, vcpu, kvm) {
8737 			if (vcpu->cpu != cpu)
8738 				continue;
8739 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8740 			if (vcpu->cpu != raw_smp_processor_id())
8741 				send_ipi = 1;
8742 		}
8743 	}
8744 	mutex_unlock(&kvm_lock);
8745 
8746 	if (freq->old < freq->new && send_ipi) {
8747 		/*
8748 		 * We upscale the frequency.  Must make the guest
8749 		 * doesn't see old kvmclock values while running with
8750 		 * the new frequency, otherwise we risk the guest sees
8751 		 * time go backwards.
8752 		 *
8753 		 * In case we update the frequency for another cpu
8754 		 * (which might be in guest context) send an interrupt
8755 		 * to kick the cpu out of guest context.  Next time
8756 		 * guest context is entered kvmclock will be updated,
8757 		 * so the guest will not see stale values.
8758 		 */
8759 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8760 	}
8761 }
8762 
8763 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8764 				     void *data)
8765 {
8766 	struct cpufreq_freqs *freq = data;
8767 	int cpu;
8768 
8769 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8770 		return 0;
8771 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8772 		return 0;
8773 
8774 	for_each_cpu(cpu, freq->policy->cpus)
8775 		__kvmclock_cpufreq_notifier(freq, cpu);
8776 
8777 	return 0;
8778 }
8779 
8780 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8781 	.notifier_call  = kvmclock_cpufreq_notifier
8782 };
8783 
8784 static int kvmclock_cpu_online(unsigned int cpu)
8785 {
8786 	tsc_khz_changed(NULL);
8787 	return 0;
8788 }
8789 
8790 static void kvm_timer_init(void)
8791 {
8792 	max_tsc_khz = tsc_khz;
8793 
8794 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8795 #ifdef CONFIG_CPU_FREQ
8796 		struct cpufreq_policy *policy;
8797 		int cpu;
8798 
8799 		cpu = get_cpu();
8800 		policy = cpufreq_cpu_get(cpu);
8801 		if (policy) {
8802 			if (policy->cpuinfo.max_freq)
8803 				max_tsc_khz = policy->cpuinfo.max_freq;
8804 			cpufreq_cpu_put(policy);
8805 		}
8806 		put_cpu();
8807 #endif
8808 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8809 					  CPUFREQ_TRANSITION_NOTIFIER);
8810 	}
8811 
8812 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8813 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
8814 }
8815 
8816 #ifdef CONFIG_X86_64
8817 static void pvclock_gtod_update_fn(struct work_struct *work)
8818 {
8819 	struct kvm *kvm;
8820 	struct kvm_vcpu *vcpu;
8821 	unsigned long i;
8822 
8823 	mutex_lock(&kvm_lock);
8824 	list_for_each_entry(kvm, &vm_list, vm_list)
8825 		kvm_for_each_vcpu(i, vcpu, kvm)
8826 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8827 	atomic_set(&kvm_guest_has_master_clock, 0);
8828 	mutex_unlock(&kvm_lock);
8829 }
8830 
8831 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8832 
8833 /*
8834  * Indirection to move queue_work() out of the tk_core.seq write held
8835  * region to prevent possible deadlocks against time accessors which
8836  * are invoked with work related locks held.
8837  */
8838 static void pvclock_irq_work_fn(struct irq_work *w)
8839 {
8840 	queue_work(system_long_wq, &pvclock_gtod_work);
8841 }
8842 
8843 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8844 
8845 /*
8846  * Notification about pvclock gtod data update.
8847  */
8848 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8849 			       void *priv)
8850 {
8851 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8852 	struct timekeeper *tk = priv;
8853 
8854 	update_pvclock_gtod(tk);
8855 
8856 	/*
8857 	 * Disable master clock if host does not trust, or does not use,
8858 	 * TSC based clocksource. Delegate queue_work() to irq_work as
8859 	 * this is invoked with tk_core.seq write held.
8860 	 */
8861 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8862 	    atomic_read(&kvm_guest_has_master_clock) != 0)
8863 		irq_work_queue(&pvclock_irq_work);
8864 	return 0;
8865 }
8866 
8867 static struct notifier_block pvclock_gtod_notifier = {
8868 	.notifier_call = pvclock_gtod_notify,
8869 };
8870 #endif
8871 
8872 int kvm_arch_init(void *opaque)
8873 {
8874 	struct kvm_x86_init_ops *ops = opaque;
8875 	int r;
8876 
8877 	if (kvm_x86_ops.hardware_enable) {
8878 		pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
8879 		r = -EEXIST;
8880 		goto out;
8881 	}
8882 
8883 	if (!ops->cpu_has_kvm_support()) {
8884 		pr_err_ratelimited("kvm: no hardware support for '%s'\n",
8885 				   ops->runtime_ops->name);
8886 		r = -EOPNOTSUPP;
8887 		goto out;
8888 	}
8889 	if (ops->disabled_by_bios()) {
8890 		pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
8891 				   ops->runtime_ops->name);
8892 		r = -EOPNOTSUPP;
8893 		goto out;
8894 	}
8895 
8896 	/*
8897 	 * KVM explicitly assumes that the guest has an FPU and
8898 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8899 	 * vCPU's FPU state as a fxregs_state struct.
8900 	 */
8901 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8902 		printk(KERN_ERR "kvm: inadequate fpu\n");
8903 		r = -EOPNOTSUPP;
8904 		goto out;
8905 	}
8906 
8907 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8908 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
8909 		r = -EOPNOTSUPP;
8910 		goto out;
8911 	}
8912 
8913 	r = -ENOMEM;
8914 
8915 	x86_emulator_cache = kvm_alloc_emulator_cache();
8916 	if (!x86_emulator_cache) {
8917 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
8918 		goto out;
8919 	}
8920 
8921 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8922 	if (!user_return_msrs) {
8923 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8924 		goto out_free_x86_emulator_cache;
8925 	}
8926 	kvm_nr_uret_msrs = 0;
8927 
8928 	r = kvm_mmu_vendor_module_init();
8929 	if (r)
8930 		goto out_free_percpu;
8931 
8932 	kvm_timer_init();
8933 
8934 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8935 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8936 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8937 	}
8938 
8939 	if (pi_inject_timer == -1)
8940 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
8941 #ifdef CONFIG_X86_64
8942 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8943 
8944 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8945 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8946 #endif
8947 
8948 	return 0;
8949 
8950 out_free_percpu:
8951 	free_percpu(user_return_msrs);
8952 out_free_x86_emulator_cache:
8953 	kmem_cache_destroy(x86_emulator_cache);
8954 out:
8955 	return r;
8956 }
8957 
8958 void kvm_arch_exit(void)
8959 {
8960 #ifdef CONFIG_X86_64
8961 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8962 		clear_hv_tscchange_cb();
8963 #endif
8964 	kvm_lapic_exit();
8965 
8966 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8967 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8968 					    CPUFREQ_TRANSITION_NOTIFIER);
8969 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8970 #ifdef CONFIG_X86_64
8971 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8972 	irq_work_sync(&pvclock_irq_work);
8973 	cancel_work_sync(&pvclock_gtod_work);
8974 #endif
8975 	kvm_x86_ops.hardware_enable = NULL;
8976 	kvm_mmu_vendor_module_exit();
8977 	free_percpu(user_return_msrs);
8978 	kmem_cache_destroy(x86_emulator_cache);
8979 #ifdef CONFIG_KVM_XEN
8980 	static_key_deferred_flush(&kvm_xen_enabled);
8981 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8982 #endif
8983 }
8984 
8985 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
8986 {
8987 	/*
8988 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
8989 	 * local APIC is in-kernel, the run loop will detect the non-runnable
8990 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
8991 	 * managed by userspace, in which case userspace is responsible for
8992 	 * handling wake events.
8993 	 */
8994 	++vcpu->stat.halt_exits;
8995 	if (lapic_in_kernel(vcpu)) {
8996 		vcpu->arch.mp_state = state;
8997 		return 1;
8998 	} else {
8999 		vcpu->run->exit_reason = reason;
9000 		return 0;
9001 	}
9002 }
9003 
9004 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9005 {
9006 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9007 }
9008 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9009 
9010 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9011 {
9012 	int ret = kvm_skip_emulated_instruction(vcpu);
9013 	/*
9014 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9015 	 * KVM_EXIT_DEBUG here.
9016 	 */
9017 	return kvm_emulate_halt_noskip(vcpu) && ret;
9018 }
9019 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9020 
9021 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9022 {
9023 	int ret = kvm_skip_emulated_instruction(vcpu);
9024 
9025 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9026 					KVM_EXIT_AP_RESET_HOLD) && ret;
9027 }
9028 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9029 
9030 #ifdef CONFIG_X86_64
9031 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9032 			        unsigned long clock_type)
9033 {
9034 	struct kvm_clock_pairing clock_pairing;
9035 	struct timespec64 ts;
9036 	u64 cycle;
9037 	int ret;
9038 
9039 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9040 		return -KVM_EOPNOTSUPP;
9041 
9042 	/*
9043 	 * When tsc is in permanent catchup mode guests won't be able to use
9044 	 * pvclock_read_retry loop to get consistent view of pvclock
9045 	 */
9046 	if (vcpu->arch.tsc_always_catchup)
9047 		return -KVM_EOPNOTSUPP;
9048 
9049 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9050 		return -KVM_EOPNOTSUPP;
9051 
9052 	clock_pairing.sec = ts.tv_sec;
9053 	clock_pairing.nsec = ts.tv_nsec;
9054 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9055 	clock_pairing.flags = 0;
9056 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9057 
9058 	ret = 0;
9059 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9060 			    sizeof(struct kvm_clock_pairing)))
9061 		ret = -KVM_EFAULT;
9062 
9063 	return ret;
9064 }
9065 #endif
9066 
9067 /*
9068  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9069  *
9070  * @apicid - apicid of vcpu to be kicked.
9071  */
9072 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9073 {
9074 	struct kvm_lapic_irq lapic_irq;
9075 
9076 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
9077 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
9078 	lapic_irq.level = 0;
9079 	lapic_irq.dest_id = apicid;
9080 	lapic_irq.msi_redir_hint = false;
9081 
9082 	lapic_irq.delivery_mode = APIC_DM_REMRD;
9083 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9084 }
9085 
9086 bool kvm_apicv_activated(struct kvm *kvm)
9087 {
9088 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9089 }
9090 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9091 
9092 
9093 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9094 				       enum kvm_apicv_inhibit reason, bool set)
9095 {
9096 	if (set)
9097 		__set_bit(reason, inhibits);
9098 	else
9099 		__clear_bit(reason, inhibits);
9100 
9101 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9102 }
9103 
9104 static void kvm_apicv_init(struct kvm *kvm)
9105 {
9106 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9107 
9108 	init_rwsem(&kvm->arch.apicv_update_lock);
9109 
9110 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9111 
9112 	if (!enable_apicv)
9113 		set_or_clear_apicv_inhibit(inhibits,
9114 					   APICV_INHIBIT_REASON_DISABLE, true);
9115 }
9116 
9117 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9118 {
9119 	struct kvm_vcpu *target = NULL;
9120 	struct kvm_apic_map *map;
9121 
9122 	vcpu->stat.directed_yield_attempted++;
9123 
9124 	if (single_task_running())
9125 		goto no_yield;
9126 
9127 	rcu_read_lock();
9128 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9129 
9130 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9131 		target = map->phys_map[dest_id]->vcpu;
9132 
9133 	rcu_read_unlock();
9134 
9135 	if (!target || !READ_ONCE(target->ready))
9136 		goto no_yield;
9137 
9138 	/* Ignore requests to yield to self */
9139 	if (vcpu == target)
9140 		goto no_yield;
9141 
9142 	if (kvm_vcpu_yield_to(target) <= 0)
9143 		goto no_yield;
9144 
9145 	vcpu->stat.directed_yield_successful++;
9146 
9147 no_yield:
9148 	return;
9149 }
9150 
9151 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9152 {
9153 	u64 ret = vcpu->run->hypercall.ret;
9154 
9155 	if (!is_64_bit_mode(vcpu))
9156 		ret = (u32)ret;
9157 	kvm_rax_write(vcpu, ret);
9158 	++vcpu->stat.hypercalls;
9159 	return kvm_skip_emulated_instruction(vcpu);
9160 }
9161 
9162 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9163 {
9164 	unsigned long nr, a0, a1, a2, a3, ret;
9165 	int op_64_bit;
9166 
9167 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9168 		return kvm_xen_hypercall(vcpu);
9169 
9170 	if (kvm_hv_hypercall_enabled(vcpu))
9171 		return kvm_hv_hypercall(vcpu);
9172 
9173 	nr = kvm_rax_read(vcpu);
9174 	a0 = kvm_rbx_read(vcpu);
9175 	a1 = kvm_rcx_read(vcpu);
9176 	a2 = kvm_rdx_read(vcpu);
9177 	a3 = kvm_rsi_read(vcpu);
9178 
9179 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9180 
9181 	op_64_bit = is_64_bit_hypercall(vcpu);
9182 	if (!op_64_bit) {
9183 		nr &= 0xFFFFFFFF;
9184 		a0 &= 0xFFFFFFFF;
9185 		a1 &= 0xFFFFFFFF;
9186 		a2 &= 0xFFFFFFFF;
9187 		a3 &= 0xFFFFFFFF;
9188 	}
9189 
9190 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9191 		ret = -KVM_EPERM;
9192 		goto out;
9193 	}
9194 
9195 	ret = -KVM_ENOSYS;
9196 
9197 	switch (nr) {
9198 	case KVM_HC_VAPIC_POLL_IRQ:
9199 		ret = 0;
9200 		break;
9201 	case KVM_HC_KICK_CPU:
9202 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9203 			break;
9204 
9205 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9206 		kvm_sched_yield(vcpu, a1);
9207 		ret = 0;
9208 		break;
9209 #ifdef CONFIG_X86_64
9210 	case KVM_HC_CLOCK_PAIRING:
9211 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9212 		break;
9213 #endif
9214 	case KVM_HC_SEND_IPI:
9215 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9216 			break;
9217 
9218 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9219 		break;
9220 	case KVM_HC_SCHED_YIELD:
9221 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9222 			break;
9223 
9224 		kvm_sched_yield(vcpu, a0);
9225 		ret = 0;
9226 		break;
9227 	case KVM_HC_MAP_GPA_RANGE: {
9228 		u64 gpa = a0, npages = a1, attrs = a2;
9229 
9230 		ret = -KVM_ENOSYS;
9231 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9232 			break;
9233 
9234 		if (!PAGE_ALIGNED(gpa) || !npages ||
9235 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9236 			ret = -KVM_EINVAL;
9237 			break;
9238 		}
9239 
9240 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9241 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9242 		vcpu->run->hypercall.args[0]  = gpa;
9243 		vcpu->run->hypercall.args[1]  = npages;
9244 		vcpu->run->hypercall.args[2]  = attrs;
9245 		vcpu->run->hypercall.longmode = op_64_bit;
9246 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9247 		return 0;
9248 	}
9249 	default:
9250 		ret = -KVM_ENOSYS;
9251 		break;
9252 	}
9253 out:
9254 	if (!op_64_bit)
9255 		ret = (u32)ret;
9256 	kvm_rax_write(vcpu, ret);
9257 
9258 	++vcpu->stat.hypercalls;
9259 	return kvm_skip_emulated_instruction(vcpu);
9260 }
9261 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9262 
9263 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9264 {
9265 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9266 	char instruction[3];
9267 	unsigned long rip = kvm_rip_read(vcpu);
9268 
9269 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9270 
9271 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9272 		&ctxt->exception);
9273 }
9274 
9275 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9276 {
9277 	return vcpu->run->request_interrupt_window &&
9278 		likely(!pic_in_kernel(vcpu->kvm));
9279 }
9280 
9281 /* Called within kvm->srcu read side.  */
9282 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9283 {
9284 	struct kvm_run *kvm_run = vcpu->run;
9285 
9286 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9287 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9288 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9289 
9290 	kvm_run->ready_for_interrupt_injection =
9291 		pic_in_kernel(vcpu->kvm) ||
9292 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9293 
9294 	if (is_smm(vcpu))
9295 		kvm_run->flags |= KVM_RUN_X86_SMM;
9296 }
9297 
9298 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9299 {
9300 	int max_irr, tpr;
9301 
9302 	if (!kvm_x86_ops.update_cr8_intercept)
9303 		return;
9304 
9305 	if (!lapic_in_kernel(vcpu))
9306 		return;
9307 
9308 	if (vcpu->arch.apicv_active)
9309 		return;
9310 
9311 	if (!vcpu->arch.apic->vapic_addr)
9312 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9313 	else
9314 		max_irr = -1;
9315 
9316 	if (max_irr != -1)
9317 		max_irr >>= 4;
9318 
9319 	tpr = kvm_lapic_get_cr8(vcpu);
9320 
9321 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9322 }
9323 
9324 
9325 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9326 {
9327 	if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9328 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9329 		return 1;
9330 	}
9331 
9332 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9333 }
9334 
9335 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9336 {
9337 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9338 		vcpu->arch.exception.error_code = false;
9339 	static_call(kvm_x86_queue_exception)(vcpu);
9340 }
9341 
9342 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9343 {
9344 	int r;
9345 	bool can_inject = true;
9346 
9347 	/* try to reinject previous events if any */
9348 
9349 	if (vcpu->arch.exception.injected) {
9350 		kvm_inject_exception(vcpu);
9351 		can_inject = false;
9352 	}
9353 	/*
9354 	 * Do not inject an NMI or interrupt if there is a pending
9355 	 * exception.  Exceptions and interrupts are recognized at
9356 	 * instruction boundaries, i.e. the start of an instruction.
9357 	 * Trap-like exceptions, e.g. #DB, have higher priority than
9358 	 * NMIs and interrupts, i.e. traps are recognized before an
9359 	 * NMI/interrupt that's pending on the same instruction.
9360 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9361 	 * priority, but are only generated (pended) during instruction
9362 	 * execution, i.e. a pending fault-like exception means the
9363 	 * fault occurred on the *previous* instruction and must be
9364 	 * serviced prior to recognizing any new events in order to
9365 	 * fully complete the previous instruction.
9366 	 */
9367 	else if (!vcpu->arch.exception.pending) {
9368 		if (vcpu->arch.nmi_injected) {
9369 			static_call(kvm_x86_inject_nmi)(vcpu);
9370 			can_inject = false;
9371 		} else if (vcpu->arch.interrupt.injected) {
9372 			static_call(kvm_x86_inject_irq)(vcpu);
9373 			can_inject = false;
9374 		}
9375 	}
9376 
9377 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
9378 		     vcpu->arch.exception.pending);
9379 
9380 	/*
9381 	 * Call check_nested_events() even if we reinjected a previous event
9382 	 * in order for caller to determine if it should require immediate-exit
9383 	 * from L2 to L1 due to pending L1 events which require exit
9384 	 * from L2 to L1.
9385 	 */
9386 	if (is_guest_mode(vcpu)) {
9387 		r = kvm_check_nested_events(vcpu);
9388 		if (r < 0)
9389 			goto out;
9390 	}
9391 
9392 	/* try to inject new event if pending */
9393 	if (vcpu->arch.exception.pending) {
9394 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
9395 					vcpu->arch.exception.has_error_code,
9396 					vcpu->arch.exception.error_code);
9397 
9398 		vcpu->arch.exception.pending = false;
9399 		vcpu->arch.exception.injected = true;
9400 
9401 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9402 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9403 					     X86_EFLAGS_RF);
9404 
9405 		if (vcpu->arch.exception.nr == DB_VECTOR) {
9406 			kvm_deliver_exception_payload(vcpu);
9407 			if (vcpu->arch.dr7 & DR7_GD) {
9408 				vcpu->arch.dr7 &= ~DR7_GD;
9409 				kvm_update_dr7(vcpu);
9410 			}
9411 		}
9412 
9413 		kvm_inject_exception(vcpu);
9414 		can_inject = false;
9415 	}
9416 
9417 	/* Don't inject interrupts if the user asked to avoid doing so */
9418 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9419 		return 0;
9420 
9421 	/*
9422 	 * Finally, inject interrupt events.  If an event cannot be injected
9423 	 * due to architectural conditions (e.g. IF=0) a window-open exit
9424 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9425 	 * and can architecturally be injected, but we cannot do it right now:
9426 	 * an interrupt could have arrived just now and we have to inject it
9427 	 * as a vmexit, or there could already an event in the queue, which is
9428 	 * indicated by can_inject.  In that case we request an immediate exit
9429 	 * in order to make progress and get back here for another iteration.
9430 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9431 	 */
9432 	if (vcpu->arch.smi_pending) {
9433 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9434 		if (r < 0)
9435 			goto out;
9436 		if (r) {
9437 			vcpu->arch.smi_pending = false;
9438 			++vcpu->arch.smi_count;
9439 			enter_smm(vcpu);
9440 			can_inject = false;
9441 		} else
9442 			static_call(kvm_x86_enable_smi_window)(vcpu);
9443 	}
9444 
9445 	if (vcpu->arch.nmi_pending) {
9446 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9447 		if (r < 0)
9448 			goto out;
9449 		if (r) {
9450 			--vcpu->arch.nmi_pending;
9451 			vcpu->arch.nmi_injected = true;
9452 			static_call(kvm_x86_inject_nmi)(vcpu);
9453 			can_inject = false;
9454 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9455 		}
9456 		if (vcpu->arch.nmi_pending)
9457 			static_call(kvm_x86_enable_nmi_window)(vcpu);
9458 	}
9459 
9460 	if (kvm_cpu_has_injectable_intr(vcpu)) {
9461 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9462 		if (r < 0)
9463 			goto out;
9464 		if (r) {
9465 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9466 			static_call(kvm_x86_inject_irq)(vcpu);
9467 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9468 		}
9469 		if (kvm_cpu_has_injectable_intr(vcpu))
9470 			static_call(kvm_x86_enable_irq_window)(vcpu);
9471 	}
9472 
9473 	if (is_guest_mode(vcpu) &&
9474 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
9475 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9476 		*req_immediate_exit = true;
9477 
9478 	WARN_ON(vcpu->arch.exception.pending);
9479 	return 0;
9480 
9481 out:
9482 	if (r == -EBUSY) {
9483 		*req_immediate_exit = true;
9484 		r = 0;
9485 	}
9486 	return r;
9487 }
9488 
9489 static void process_nmi(struct kvm_vcpu *vcpu)
9490 {
9491 	unsigned limit = 2;
9492 
9493 	/*
9494 	 * x86 is limited to one NMI running, and one NMI pending after it.
9495 	 * If an NMI is already in progress, limit further NMIs to just one.
9496 	 * Otherwise, allow two (and we'll inject the first one immediately).
9497 	 */
9498 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9499 		limit = 1;
9500 
9501 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9502 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9503 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9504 }
9505 
9506 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9507 {
9508 	u32 flags = 0;
9509 	flags |= seg->g       << 23;
9510 	flags |= seg->db      << 22;
9511 	flags |= seg->l       << 21;
9512 	flags |= seg->avl     << 20;
9513 	flags |= seg->present << 15;
9514 	flags |= seg->dpl     << 13;
9515 	flags |= seg->s       << 12;
9516 	flags |= seg->type    << 8;
9517 	return flags;
9518 }
9519 
9520 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9521 {
9522 	struct kvm_segment seg;
9523 	int offset;
9524 
9525 	kvm_get_segment(vcpu, &seg, n);
9526 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9527 
9528 	if (n < 3)
9529 		offset = 0x7f84 + n * 12;
9530 	else
9531 		offset = 0x7f2c + (n - 3) * 12;
9532 
9533 	put_smstate(u32, buf, offset + 8, seg.base);
9534 	put_smstate(u32, buf, offset + 4, seg.limit);
9535 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9536 }
9537 
9538 #ifdef CONFIG_X86_64
9539 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9540 {
9541 	struct kvm_segment seg;
9542 	int offset;
9543 	u16 flags;
9544 
9545 	kvm_get_segment(vcpu, &seg, n);
9546 	offset = 0x7e00 + n * 16;
9547 
9548 	flags = enter_smm_get_segment_flags(&seg) >> 8;
9549 	put_smstate(u16, buf, offset, seg.selector);
9550 	put_smstate(u16, buf, offset + 2, flags);
9551 	put_smstate(u32, buf, offset + 4, seg.limit);
9552 	put_smstate(u64, buf, offset + 8, seg.base);
9553 }
9554 #endif
9555 
9556 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9557 {
9558 	struct desc_ptr dt;
9559 	struct kvm_segment seg;
9560 	unsigned long val;
9561 	int i;
9562 
9563 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9564 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9565 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9566 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9567 
9568 	for (i = 0; i < 8; i++)
9569 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9570 
9571 	kvm_get_dr(vcpu, 6, &val);
9572 	put_smstate(u32, buf, 0x7fcc, (u32)val);
9573 	kvm_get_dr(vcpu, 7, &val);
9574 	put_smstate(u32, buf, 0x7fc8, (u32)val);
9575 
9576 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9577 	put_smstate(u32, buf, 0x7fc4, seg.selector);
9578 	put_smstate(u32, buf, 0x7f64, seg.base);
9579 	put_smstate(u32, buf, 0x7f60, seg.limit);
9580 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9581 
9582 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9583 	put_smstate(u32, buf, 0x7fc0, seg.selector);
9584 	put_smstate(u32, buf, 0x7f80, seg.base);
9585 	put_smstate(u32, buf, 0x7f7c, seg.limit);
9586 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9587 
9588 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9589 	put_smstate(u32, buf, 0x7f74, dt.address);
9590 	put_smstate(u32, buf, 0x7f70, dt.size);
9591 
9592 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9593 	put_smstate(u32, buf, 0x7f58, dt.address);
9594 	put_smstate(u32, buf, 0x7f54, dt.size);
9595 
9596 	for (i = 0; i < 6; i++)
9597 		enter_smm_save_seg_32(vcpu, buf, i);
9598 
9599 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9600 
9601 	/* revision id */
9602 	put_smstate(u32, buf, 0x7efc, 0x00020000);
9603 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9604 }
9605 
9606 #ifdef CONFIG_X86_64
9607 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9608 {
9609 	struct desc_ptr dt;
9610 	struct kvm_segment seg;
9611 	unsigned long val;
9612 	int i;
9613 
9614 	for (i = 0; i < 16; i++)
9615 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9616 
9617 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9618 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9619 
9620 	kvm_get_dr(vcpu, 6, &val);
9621 	put_smstate(u64, buf, 0x7f68, val);
9622 	kvm_get_dr(vcpu, 7, &val);
9623 	put_smstate(u64, buf, 0x7f60, val);
9624 
9625 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9626 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9627 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9628 
9629 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9630 
9631 	/* revision id */
9632 	put_smstate(u32, buf, 0x7efc, 0x00020064);
9633 
9634 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9635 
9636 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9637 	put_smstate(u16, buf, 0x7e90, seg.selector);
9638 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9639 	put_smstate(u32, buf, 0x7e94, seg.limit);
9640 	put_smstate(u64, buf, 0x7e98, seg.base);
9641 
9642 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9643 	put_smstate(u32, buf, 0x7e84, dt.size);
9644 	put_smstate(u64, buf, 0x7e88, dt.address);
9645 
9646 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9647 	put_smstate(u16, buf, 0x7e70, seg.selector);
9648 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9649 	put_smstate(u32, buf, 0x7e74, seg.limit);
9650 	put_smstate(u64, buf, 0x7e78, seg.base);
9651 
9652 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9653 	put_smstate(u32, buf, 0x7e64, dt.size);
9654 	put_smstate(u64, buf, 0x7e68, dt.address);
9655 
9656 	for (i = 0; i < 6; i++)
9657 		enter_smm_save_seg_64(vcpu, buf, i);
9658 }
9659 #endif
9660 
9661 static void enter_smm(struct kvm_vcpu *vcpu)
9662 {
9663 	struct kvm_segment cs, ds;
9664 	struct desc_ptr dt;
9665 	unsigned long cr0;
9666 	char buf[512];
9667 
9668 	memset(buf, 0, 512);
9669 #ifdef CONFIG_X86_64
9670 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9671 		enter_smm_save_state_64(vcpu, buf);
9672 	else
9673 #endif
9674 		enter_smm_save_state_32(vcpu, buf);
9675 
9676 	/*
9677 	 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9678 	 * state (e.g. leave guest mode) after we've saved the state into the
9679 	 * SMM state-save area.
9680 	 */
9681 	static_call(kvm_x86_enter_smm)(vcpu, buf);
9682 
9683 	kvm_smm_changed(vcpu, true);
9684 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9685 
9686 	if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9687 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9688 	else
9689 		static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9690 
9691 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9692 	kvm_rip_write(vcpu, 0x8000);
9693 
9694 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9695 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
9696 	vcpu->arch.cr0 = cr0;
9697 
9698 	static_call(kvm_x86_set_cr4)(vcpu, 0);
9699 
9700 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
9701 	dt.address = dt.size = 0;
9702 	static_call(kvm_x86_set_idt)(vcpu, &dt);
9703 
9704 	kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9705 
9706 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9707 	cs.base = vcpu->arch.smbase;
9708 
9709 	ds.selector = 0;
9710 	ds.base = 0;
9711 
9712 	cs.limit    = ds.limit = 0xffffffff;
9713 	cs.type     = ds.type = 0x3;
9714 	cs.dpl      = ds.dpl = 0;
9715 	cs.db       = ds.db = 0;
9716 	cs.s        = ds.s = 1;
9717 	cs.l        = ds.l = 0;
9718 	cs.g        = ds.g = 1;
9719 	cs.avl      = ds.avl = 0;
9720 	cs.present  = ds.present = 1;
9721 	cs.unusable = ds.unusable = 0;
9722 	cs.padding  = ds.padding = 0;
9723 
9724 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9725 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9726 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9727 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9728 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9729 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9730 
9731 #ifdef CONFIG_X86_64
9732 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9733 		static_call(kvm_x86_set_efer)(vcpu, 0);
9734 #endif
9735 
9736 	kvm_update_cpuid_runtime(vcpu);
9737 	kvm_mmu_reset_context(vcpu);
9738 }
9739 
9740 static void process_smi(struct kvm_vcpu *vcpu)
9741 {
9742 	vcpu->arch.smi_pending = true;
9743 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9744 }
9745 
9746 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9747 				       unsigned long *vcpu_bitmap)
9748 {
9749 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
9750 }
9751 
9752 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9753 {
9754 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9755 }
9756 
9757 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9758 {
9759 	bool activate;
9760 
9761 	if (!lapic_in_kernel(vcpu))
9762 		return;
9763 
9764 	down_read(&vcpu->kvm->arch.apicv_update_lock);
9765 
9766 	activate = kvm_apicv_activated(vcpu->kvm);
9767 	if (vcpu->arch.apicv_active == activate)
9768 		goto out;
9769 
9770 	vcpu->arch.apicv_active = activate;
9771 	kvm_apic_update_apicv(vcpu);
9772 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9773 
9774 	/*
9775 	 * When APICv gets disabled, we may still have injected interrupts
9776 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9777 	 * still active when the interrupt got accepted. Make sure
9778 	 * inject_pending_event() is called to check for that.
9779 	 */
9780 	if (!vcpu->arch.apicv_active)
9781 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9782 
9783 out:
9784 	up_read(&vcpu->kvm->arch.apicv_update_lock);
9785 }
9786 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9787 
9788 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
9789 				      enum kvm_apicv_inhibit reason, bool set)
9790 {
9791 	unsigned long old, new;
9792 
9793 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
9794 
9795 	if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason))
9796 		return;
9797 
9798 	old = new = kvm->arch.apicv_inhibit_reasons;
9799 
9800 	set_or_clear_apicv_inhibit(&new, reason, set);
9801 
9802 	if (!!old != !!new) {
9803 		/*
9804 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
9805 		 * false positives in the sanity check WARN in svm_vcpu_run().
9806 		 * This task will wait for all vCPUs to ack the kick IRQ before
9807 		 * updating apicv_inhibit_reasons, and all other vCPUs will
9808 		 * block on acquiring apicv_update_lock so that vCPUs can't
9809 		 * redo svm_vcpu_run() without seeing the new inhibit state.
9810 		 *
9811 		 * Note, holding apicv_update_lock and taking it in the read
9812 		 * side (handling the request) also prevents other vCPUs from
9813 		 * servicing the request with a stale apicv_inhibit_reasons.
9814 		 */
9815 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9816 		kvm->arch.apicv_inhibit_reasons = new;
9817 		if (new) {
9818 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9819 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
9820 		}
9821 	} else {
9822 		kvm->arch.apicv_inhibit_reasons = new;
9823 	}
9824 }
9825 
9826 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
9827 				    enum kvm_apicv_inhibit reason, bool set)
9828 {
9829 	if (!enable_apicv)
9830 		return;
9831 
9832 	down_write(&kvm->arch.apicv_update_lock);
9833 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
9834 	up_write(&kvm->arch.apicv_update_lock);
9835 }
9836 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
9837 
9838 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9839 {
9840 	if (!kvm_apic_present(vcpu))
9841 		return;
9842 
9843 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9844 
9845 	if (irqchip_split(vcpu->kvm))
9846 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9847 	else {
9848 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9849 		if (ioapic_in_kernel(vcpu->kvm))
9850 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9851 	}
9852 
9853 	if (is_guest_mode(vcpu))
9854 		vcpu->arch.load_eoi_exitmap_pending = true;
9855 	else
9856 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9857 }
9858 
9859 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9860 {
9861 	u64 eoi_exit_bitmap[4];
9862 
9863 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9864 		return;
9865 
9866 	if (to_hv_vcpu(vcpu)) {
9867 		bitmap_or((ulong *)eoi_exit_bitmap,
9868 			  vcpu->arch.ioapic_handled_vectors,
9869 			  to_hv_synic(vcpu)->vec_bitmap, 256);
9870 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9871 		return;
9872 	}
9873 
9874 	static_call_cond(kvm_x86_load_eoi_exitmap)(
9875 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9876 }
9877 
9878 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9879 					    unsigned long start, unsigned long end)
9880 {
9881 	unsigned long apic_address;
9882 
9883 	/*
9884 	 * The physical address of apic access page is stored in the VMCS.
9885 	 * Update it when it becomes invalid.
9886 	 */
9887 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9888 	if (start <= apic_address && apic_address < end)
9889 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9890 }
9891 
9892 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
9893 {
9894 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
9895 }
9896 
9897 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9898 {
9899 	if (!lapic_in_kernel(vcpu))
9900 		return;
9901 
9902 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
9903 }
9904 
9905 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9906 {
9907 	smp_send_reschedule(vcpu->cpu);
9908 }
9909 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9910 
9911 /*
9912  * Called within kvm->srcu read side.
9913  * Returns 1 to let vcpu_run() continue the guest execution loop without
9914  * exiting to the userspace.  Otherwise, the value will be returned to the
9915  * userspace.
9916  */
9917 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9918 {
9919 	int r;
9920 	bool req_int_win =
9921 		dm_request_for_irq_injection(vcpu) &&
9922 		kvm_cpu_accept_dm_intr(vcpu);
9923 	fastpath_t exit_fastpath;
9924 
9925 	bool req_immediate_exit = false;
9926 
9927 	/* Forbid vmenter if vcpu dirty ring is soft-full */
9928 	if (unlikely(vcpu->kvm->dirty_ring_size &&
9929 		     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9930 		vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9931 		trace_kvm_dirty_ring_exit(vcpu);
9932 		r = 0;
9933 		goto out;
9934 	}
9935 
9936 	if (kvm_request_pending(vcpu)) {
9937 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
9938 			r = -EIO;
9939 			goto out;
9940 		}
9941 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9942 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9943 				r = 0;
9944 				goto out;
9945 			}
9946 		}
9947 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
9948 			kvm_mmu_free_obsolete_roots(vcpu);
9949 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9950 			__kvm_migrate_timers(vcpu);
9951 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9952 			kvm_update_masterclock(vcpu->kvm);
9953 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9954 			kvm_gen_kvmclock_update(vcpu);
9955 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9956 			r = kvm_guest_time_update(vcpu);
9957 			if (unlikely(r))
9958 				goto out;
9959 		}
9960 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9961 			kvm_mmu_sync_roots(vcpu);
9962 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9963 			kvm_mmu_load_pgd(vcpu);
9964 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9965 			kvm_vcpu_flush_tlb_all(vcpu);
9966 
9967 			/* Flushing all ASIDs flushes the current ASID... */
9968 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9969 		}
9970 		kvm_service_local_tlb_flush_requests(vcpu);
9971 
9972 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9973 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9974 			r = 0;
9975 			goto out;
9976 		}
9977 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9978 			if (is_guest_mode(vcpu)) {
9979 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
9980 			} else {
9981 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9982 				vcpu->mmio_needed = 0;
9983 				r = 0;
9984 				goto out;
9985 			}
9986 		}
9987 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9988 			/* Page is swapped out. Do synthetic halt */
9989 			vcpu->arch.apf.halted = true;
9990 			r = 1;
9991 			goto out;
9992 		}
9993 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9994 			record_steal_time(vcpu);
9995 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
9996 			process_smi(vcpu);
9997 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
9998 			process_nmi(vcpu);
9999 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10000 			kvm_pmu_handle_event(vcpu);
10001 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10002 			kvm_pmu_deliver_pmi(vcpu);
10003 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10004 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10005 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10006 				     vcpu->arch.ioapic_handled_vectors)) {
10007 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10008 				vcpu->run->eoi.vector =
10009 						vcpu->arch.pending_ioapic_eoi;
10010 				r = 0;
10011 				goto out;
10012 			}
10013 		}
10014 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10015 			vcpu_scan_ioapic(vcpu);
10016 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10017 			vcpu_load_eoi_exitmap(vcpu);
10018 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10019 			kvm_vcpu_reload_apic_access_page(vcpu);
10020 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10021 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10022 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10023 			vcpu->run->system_event.ndata = 0;
10024 			r = 0;
10025 			goto out;
10026 		}
10027 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10028 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10029 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10030 			vcpu->run->system_event.ndata = 0;
10031 			r = 0;
10032 			goto out;
10033 		}
10034 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10035 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10036 
10037 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10038 			vcpu->run->hyperv = hv_vcpu->exit;
10039 			r = 0;
10040 			goto out;
10041 		}
10042 
10043 		/*
10044 		 * KVM_REQ_HV_STIMER has to be processed after
10045 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10046 		 * depend on the guest clock being up-to-date
10047 		 */
10048 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10049 			kvm_hv_process_stimers(vcpu);
10050 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10051 			kvm_vcpu_update_apicv(vcpu);
10052 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10053 			kvm_check_async_pf_completion(vcpu);
10054 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10055 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10056 
10057 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10058 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10059 	}
10060 
10061 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10062 	    kvm_xen_has_interrupt(vcpu)) {
10063 		++vcpu->stat.req_event;
10064 		r = kvm_apic_accept_events(vcpu);
10065 		if (r < 0) {
10066 			r = 0;
10067 			goto out;
10068 		}
10069 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10070 			r = 1;
10071 			goto out;
10072 		}
10073 
10074 		r = inject_pending_event(vcpu, &req_immediate_exit);
10075 		if (r < 0) {
10076 			r = 0;
10077 			goto out;
10078 		}
10079 		if (req_int_win)
10080 			static_call(kvm_x86_enable_irq_window)(vcpu);
10081 
10082 		if (kvm_lapic_enabled(vcpu)) {
10083 			update_cr8_intercept(vcpu);
10084 			kvm_lapic_sync_to_vapic(vcpu);
10085 		}
10086 	}
10087 
10088 	r = kvm_mmu_reload(vcpu);
10089 	if (unlikely(r)) {
10090 		goto cancel_injection;
10091 	}
10092 
10093 	preempt_disable();
10094 
10095 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10096 
10097 	/*
10098 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10099 	 * IPI are then delayed after guest entry, which ensures that they
10100 	 * result in virtual interrupt delivery.
10101 	 */
10102 	local_irq_disable();
10103 
10104 	/* Store vcpu->apicv_active before vcpu->mode.  */
10105 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10106 
10107 	kvm_vcpu_srcu_read_unlock(vcpu);
10108 
10109 	/*
10110 	 * 1) We should set ->mode before checking ->requests.  Please see
10111 	 * the comment in kvm_vcpu_exiting_guest_mode().
10112 	 *
10113 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10114 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10115 	 * (see vmx_deliver_posted_interrupt).
10116 	 *
10117 	 * 3) This also orders the write to mode from any reads to the page
10118 	 * tables done while the VCPU is running.  Please see the comment
10119 	 * in kvm_flush_remote_tlbs.
10120 	 */
10121 	smp_mb__after_srcu_read_unlock();
10122 
10123 	/*
10124 	 * Process pending posted interrupts to handle the case where the
10125 	 * notification IRQ arrived in the host, or was never sent (because the
10126 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10127 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10128 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10129 	 */
10130 	if (kvm_lapic_enabled(vcpu))
10131 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10132 
10133 	if (kvm_vcpu_exit_request(vcpu)) {
10134 		vcpu->mode = OUTSIDE_GUEST_MODE;
10135 		smp_wmb();
10136 		local_irq_enable();
10137 		preempt_enable();
10138 		kvm_vcpu_srcu_read_lock(vcpu);
10139 		r = 1;
10140 		goto cancel_injection;
10141 	}
10142 
10143 	if (req_immediate_exit) {
10144 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10145 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10146 	}
10147 
10148 	fpregs_assert_state_consistent();
10149 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10150 		switch_fpu_return();
10151 
10152 	if (vcpu->arch.guest_fpu.xfd_err)
10153 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10154 
10155 	if (unlikely(vcpu->arch.switch_db_regs)) {
10156 		set_debugreg(0, 7);
10157 		set_debugreg(vcpu->arch.eff_db[0], 0);
10158 		set_debugreg(vcpu->arch.eff_db[1], 1);
10159 		set_debugreg(vcpu->arch.eff_db[2], 2);
10160 		set_debugreg(vcpu->arch.eff_db[3], 3);
10161 	} else if (unlikely(hw_breakpoint_active())) {
10162 		set_debugreg(0, 7);
10163 	}
10164 
10165 	guest_timing_enter_irqoff();
10166 
10167 	for (;;) {
10168 		/*
10169 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10170 		 * update must kick and wait for all vCPUs before toggling the
10171 		 * per-VM state, and responsing vCPUs must wait for the update
10172 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10173 		 */
10174 		WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu));
10175 
10176 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10177 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10178 			break;
10179 
10180 		if (kvm_lapic_enabled(vcpu))
10181 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10182 
10183 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10184 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10185 			break;
10186 		}
10187 	}
10188 
10189 	/*
10190 	 * Do this here before restoring debug registers on the host.  And
10191 	 * since we do this before handling the vmexit, a DR access vmexit
10192 	 * can (a) read the correct value of the debug registers, (b) set
10193 	 * KVM_DEBUGREG_WONT_EXIT again.
10194 	 */
10195 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10196 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10197 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10198 		kvm_update_dr0123(vcpu);
10199 		kvm_update_dr7(vcpu);
10200 	}
10201 
10202 	/*
10203 	 * If the guest has used debug registers, at least dr7
10204 	 * will be disabled while returning to the host.
10205 	 * If we don't have active breakpoints in the host, we don't
10206 	 * care about the messed up debug address registers. But if
10207 	 * we have some of them active, restore the old state.
10208 	 */
10209 	if (hw_breakpoint_active())
10210 		hw_breakpoint_restore();
10211 
10212 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10213 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10214 
10215 	vcpu->mode = OUTSIDE_GUEST_MODE;
10216 	smp_wmb();
10217 
10218 	/*
10219 	 * Sync xfd before calling handle_exit_irqoff() which may
10220 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10221 	 * in #NM irqoff handler).
10222 	 */
10223 	if (vcpu->arch.xfd_no_write_intercept)
10224 		fpu_sync_guest_vmexit_xfd_state();
10225 
10226 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10227 
10228 	if (vcpu->arch.guest_fpu.xfd_err)
10229 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10230 
10231 	/*
10232 	 * Consume any pending interrupts, including the possible source of
10233 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10234 	 * An instruction is required after local_irq_enable() to fully unblock
10235 	 * interrupts on processors that implement an interrupt shadow, the
10236 	 * stat.exits increment will do nicely.
10237 	 */
10238 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10239 	local_irq_enable();
10240 	++vcpu->stat.exits;
10241 	local_irq_disable();
10242 	kvm_after_interrupt(vcpu);
10243 
10244 	/*
10245 	 * Wait until after servicing IRQs to account guest time so that any
10246 	 * ticks that occurred while running the guest are properly accounted
10247 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10248 	 * of accounting via context tracking, but the loss of accuracy is
10249 	 * acceptable for all known use cases.
10250 	 */
10251 	guest_timing_exit_irqoff();
10252 
10253 	if (lapic_in_kernel(vcpu)) {
10254 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
10255 		if (delta != S64_MIN) {
10256 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
10257 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
10258 		}
10259 	}
10260 
10261 	local_irq_enable();
10262 	preempt_enable();
10263 
10264 	kvm_vcpu_srcu_read_lock(vcpu);
10265 
10266 	/*
10267 	 * Profile KVM exit RIPs:
10268 	 */
10269 	if (unlikely(prof_on == KVM_PROFILING)) {
10270 		unsigned long rip = kvm_rip_read(vcpu);
10271 		profile_hit(KVM_PROFILING, (void *)rip);
10272 	}
10273 
10274 	if (unlikely(vcpu->arch.tsc_always_catchup))
10275 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10276 
10277 	if (vcpu->arch.apic_attention)
10278 		kvm_lapic_sync_from_vapic(vcpu);
10279 
10280 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10281 	return r;
10282 
10283 cancel_injection:
10284 	if (req_immediate_exit)
10285 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10286 	static_call(kvm_x86_cancel_injection)(vcpu);
10287 	if (unlikely(vcpu->arch.apic_attention))
10288 		kvm_lapic_sync_from_vapic(vcpu);
10289 out:
10290 	return r;
10291 }
10292 
10293 /* Called within kvm->srcu read side.  */
10294 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10295 {
10296 	bool hv_timer;
10297 
10298 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10299 		/*
10300 		 * Switch to the software timer before halt-polling/blocking as
10301 		 * the guest's timer may be a break event for the vCPU, and the
10302 		 * hypervisor timer runs only when the CPU is in guest mode.
10303 		 * Switch before halt-polling so that KVM recognizes an expired
10304 		 * timer before blocking.
10305 		 */
10306 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10307 		if (hv_timer)
10308 			kvm_lapic_switch_to_sw_timer(vcpu);
10309 
10310 		kvm_vcpu_srcu_read_unlock(vcpu);
10311 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10312 			kvm_vcpu_halt(vcpu);
10313 		else
10314 			kvm_vcpu_block(vcpu);
10315 		kvm_vcpu_srcu_read_lock(vcpu);
10316 
10317 		if (hv_timer)
10318 			kvm_lapic_switch_to_hv_timer(vcpu);
10319 
10320 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10321 			return 1;
10322 	}
10323 
10324 	if (kvm_apic_accept_events(vcpu) < 0)
10325 		return 0;
10326 	switch(vcpu->arch.mp_state) {
10327 	case KVM_MP_STATE_HALTED:
10328 	case KVM_MP_STATE_AP_RESET_HOLD:
10329 		vcpu->arch.pv.pv_unhalted = false;
10330 		vcpu->arch.mp_state =
10331 			KVM_MP_STATE_RUNNABLE;
10332 		fallthrough;
10333 	case KVM_MP_STATE_RUNNABLE:
10334 		vcpu->arch.apf.halted = false;
10335 		break;
10336 	case KVM_MP_STATE_INIT_RECEIVED:
10337 		break;
10338 	default:
10339 		return -EINTR;
10340 	}
10341 	return 1;
10342 }
10343 
10344 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10345 {
10346 	if (is_guest_mode(vcpu))
10347 		kvm_check_nested_events(vcpu);
10348 
10349 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10350 		!vcpu->arch.apf.halted);
10351 }
10352 
10353 /* Called within kvm->srcu read side.  */
10354 static int vcpu_run(struct kvm_vcpu *vcpu)
10355 {
10356 	int r;
10357 
10358 	vcpu->arch.l1tf_flush_l1d = true;
10359 
10360 	for (;;) {
10361 		if (kvm_vcpu_running(vcpu)) {
10362 			r = vcpu_enter_guest(vcpu);
10363 		} else {
10364 			r = vcpu_block(vcpu);
10365 		}
10366 
10367 		if (r <= 0)
10368 			break;
10369 
10370 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10371 		if (kvm_cpu_has_pending_timer(vcpu))
10372 			kvm_inject_pending_timer_irqs(vcpu);
10373 
10374 		if (dm_request_for_irq_injection(vcpu) &&
10375 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10376 			r = 0;
10377 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10378 			++vcpu->stat.request_irq_exits;
10379 			break;
10380 		}
10381 
10382 		if (__xfer_to_guest_mode_work_pending()) {
10383 			kvm_vcpu_srcu_read_unlock(vcpu);
10384 			r = xfer_to_guest_mode_handle_work(vcpu);
10385 			kvm_vcpu_srcu_read_lock(vcpu);
10386 			if (r)
10387 				return r;
10388 		}
10389 	}
10390 
10391 	return r;
10392 }
10393 
10394 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10395 {
10396 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10397 }
10398 
10399 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10400 {
10401 	BUG_ON(!vcpu->arch.pio.count);
10402 
10403 	return complete_emulated_io(vcpu);
10404 }
10405 
10406 /*
10407  * Implements the following, as a state machine:
10408  *
10409  * read:
10410  *   for each fragment
10411  *     for each mmio piece in the fragment
10412  *       write gpa, len
10413  *       exit
10414  *       copy data
10415  *   execute insn
10416  *
10417  * write:
10418  *   for each fragment
10419  *     for each mmio piece in the fragment
10420  *       write gpa, len
10421  *       copy data
10422  *       exit
10423  */
10424 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10425 {
10426 	struct kvm_run *run = vcpu->run;
10427 	struct kvm_mmio_fragment *frag;
10428 	unsigned len;
10429 
10430 	BUG_ON(!vcpu->mmio_needed);
10431 
10432 	/* Complete previous fragment */
10433 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10434 	len = min(8u, frag->len);
10435 	if (!vcpu->mmio_is_write)
10436 		memcpy(frag->data, run->mmio.data, len);
10437 
10438 	if (frag->len <= 8) {
10439 		/* Switch to the next fragment. */
10440 		frag++;
10441 		vcpu->mmio_cur_fragment++;
10442 	} else {
10443 		/* Go forward to the next mmio piece. */
10444 		frag->data += len;
10445 		frag->gpa += len;
10446 		frag->len -= len;
10447 	}
10448 
10449 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10450 		vcpu->mmio_needed = 0;
10451 
10452 		/* FIXME: return into emulator if single-stepping.  */
10453 		if (vcpu->mmio_is_write)
10454 			return 1;
10455 		vcpu->mmio_read_completed = 1;
10456 		return complete_emulated_io(vcpu);
10457 	}
10458 
10459 	run->exit_reason = KVM_EXIT_MMIO;
10460 	run->mmio.phys_addr = frag->gpa;
10461 	if (vcpu->mmio_is_write)
10462 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10463 	run->mmio.len = min(8u, frag->len);
10464 	run->mmio.is_write = vcpu->mmio_is_write;
10465 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10466 	return 0;
10467 }
10468 
10469 /* Swap (qemu) user FPU context for the guest FPU context. */
10470 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10471 {
10472 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10473 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10474 	trace_kvm_fpu(1);
10475 }
10476 
10477 /* When vcpu_run ends, restore user space FPU context. */
10478 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10479 {
10480 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10481 	++vcpu->stat.fpu_reload;
10482 	trace_kvm_fpu(0);
10483 }
10484 
10485 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10486 {
10487 	struct kvm_run *kvm_run = vcpu->run;
10488 	int r;
10489 
10490 	vcpu_load(vcpu);
10491 	kvm_sigset_activate(vcpu);
10492 	kvm_run->flags = 0;
10493 	kvm_load_guest_fpu(vcpu);
10494 
10495 	kvm_vcpu_srcu_read_lock(vcpu);
10496 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10497 		if (kvm_run->immediate_exit) {
10498 			r = -EINTR;
10499 			goto out;
10500 		}
10501 		/*
10502 		 * It should be impossible for the hypervisor timer to be in
10503 		 * use before KVM has ever run the vCPU.
10504 		 */
10505 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10506 
10507 		kvm_vcpu_srcu_read_unlock(vcpu);
10508 		kvm_vcpu_block(vcpu);
10509 		kvm_vcpu_srcu_read_lock(vcpu);
10510 
10511 		if (kvm_apic_accept_events(vcpu) < 0) {
10512 			r = 0;
10513 			goto out;
10514 		}
10515 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10516 		r = -EAGAIN;
10517 		if (signal_pending(current)) {
10518 			r = -EINTR;
10519 			kvm_run->exit_reason = KVM_EXIT_INTR;
10520 			++vcpu->stat.signal_exits;
10521 		}
10522 		goto out;
10523 	}
10524 
10525 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10526 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10527 		r = -EINVAL;
10528 		goto out;
10529 	}
10530 
10531 	if (kvm_run->kvm_dirty_regs) {
10532 		r = sync_regs(vcpu);
10533 		if (r != 0)
10534 			goto out;
10535 	}
10536 
10537 	/* re-sync apic's tpr */
10538 	if (!lapic_in_kernel(vcpu)) {
10539 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10540 			r = -EINVAL;
10541 			goto out;
10542 		}
10543 	}
10544 
10545 	if (unlikely(vcpu->arch.complete_userspace_io)) {
10546 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10547 		vcpu->arch.complete_userspace_io = NULL;
10548 		r = cui(vcpu);
10549 		if (r <= 0)
10550 			goto out;
10551 	} else
10552 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10553 
10554 	if (kvm_run->immediate_exit) {
10555 		r = -EINTR;
10556 		goto out;
10557 	}
10558 
10559 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10560 	if (r <= 0)
10561 		goto out;
10562 
10563 	r = vcpu_run(vcpu);
10564 
10565 out:
10566 	kvm_put_guest_fpu(vcpu);
10567 	if (kvm_run->kvm_valid_regs)
10568 		store_regs(vcpu);
10569 	post_kvm_run_save(vcpu);
10570 	kvm_vcpu_srcu_read_unlock(vcpu);
10571 
10572 	kvm_sigset_deactivate(vcpu);
10573 	vcpu_put(vcpu);
10574 	return r;
10575 }
10576 
10577 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10578 {
10579 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10580 		/*
10581 		 * We are here if userspace calls get_regs() in the middle of
10582 		 * instruction emulation. Registers state needs to be copied
10583 		 * back from emulation context to vcpu. Userspace shouldn't do
10584 		 * that usually, but some bad designed PV devices (vmware
10585 		 * backdoor interface) need this to work
10586 		 */
10587 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10588 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10589 	}
10590 	regs->rax = kvm_rax_read(vcpu);
10591 	regs->rbx = kvm_rbx_read(vcpu);
10592 	regs->rcx = kvm_rcx_read(vcpu);
10593 	regs->rdx = kvm_rdx_read(vcpu);
10594 	regs->rsi = kvm_rsi_read(vcpu);
10595 	regs->rdi = kvm_rdi_read(vcpu);
10596 	regs->rsp = kvm_rsp_read(vcpu);
10597 	regs->rbp = kvm_rbp_read(vcpu);
10598 #ifdef CONFIG_X86_64
10599 	regs->r8 = kvm_r8_read(vcpu);
10600 	regs->r9 = kvm_r9_read(vcpu);
10601 	regs->r10 = kvm_r10_read(vcpu);
10602 	regs->r11 = kvm_r11_read(vcpu);
10603 	regs->r12 = kvm_r12_read(vcpu);
10604 	regs->r13 = kvm_r13_read(vcpu);
10605 	regs->r14 = kvm_r14_read(vcpu);
10606 	regs->r15 = kvm_r15_read(vcpu);
10607 #endif
10608 
10609 	regs->rip = kvm_rip_read(vcpu);
10610 	regs->rflags = kvm_get_rflags(vcpu);
10611 }
10612 
10613 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10614 {
10615 	vcpu_load(vcpu);
10616 	__get_regs(vcpu, regs);
10617 	vcpu_put(vcpu);
10618 	return 0;
10619 }
10620 
10621 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10622 {
10623 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10624 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10625 
10626 	kvm_rax_write(vcpu, regs->rax);
10627 	kvm_rbx_write(vcpu, regs->rbx);
10628 	kvm_rcx_write(vcpu, regs->rcx);
10629 	kvm_rdx_write(vcpu, regs->rdx);
10630 	kvm_rsi_write(vcpu, regs->rsi);
10631 	kvm_rdi_write(vcpu, regs->rdi);
10632 	kvm_rsp_write(vcpu, regs->rsp);
10633 	kvm_rbp_write(vcpu, regs->rbp);
10634 #ifdef CONFIG_X86_64
10635 	kvm_r8_write(vcpu, regs->r8);
10636 	kvm_r9_write(vcpu, regs->r9);
10637 	kvm_r10_write(vcpu, regs->r10);
10638 	kvm_r11_write(vcpu, regs->r11);
10639 	kvm_r12_write(vcpu, regs->r12);
10640 	kvm_r13_write(vcpu, regs->r13);
10641 	kvm_r14_write(vcpu, regs->r14);
10642 	kvm_r15_write(vcpu, regs->r15);
10643 #endif
10644 
10645 	kvm_rip_write(vcpu, regs->rip);
10646 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10647 
10648 	vcpu->arch.exception.pending = false;
10649 
10650 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10651 }
10652 
10653 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10654 {
10655 	vcpu_load(vcpu);
10656 	__set_regs(vcpu, regs);
10657 	vcpu_put(vcpu);
10658 	return 0;
10659 }
10660 
10661 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10662 {
10663 	struct desc_ptr dt;
10664 
10665 	if (vcpu->arch.guest_state_protected)
10666 		goto skip_protected_regs;
10667 
10668 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10669 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10670 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10671 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10672 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10673 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10674 
10675 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10676 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10677 
10678 	static_call(kvm_x86_get_idt)(vcpu, &dt);
10679 	sregs->idt.limit = dt.size;
10680 	sregs->idt.base = dt.address;
10681 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
10682 	sregs->gdt.limit = dt.size;
10683 	sregs->gdt.base = dt.address;
10684 
10685 	sregs->cr2 = vcpu->arch.cr2;
10686 	sregs->cr3 = kvm_read_cr3(vcpu);
10687 
10688 skip_protected_regs:
10689 	sregs->cr0 = kvm_read_cr0(vcpu);
10690 	sregs->cr4 = kvm_read_cr4(vcpu);
10691 	sregs->cr8 = kvm_get_cr8(vcpu);
10692 	sregs->efer = vcpu->arch.efer;
10693 	sregs->apic_base = kvm_get_apic_base(vcpu);
10694 }
10695 
10696 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10697 {
10698 	__get_sregs_common(vcpu, sregs);
10699 
10700 	if (vcpu->arch.guest_state_protected)
10701 		return;
10702 
10703 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10704 		set_bit(vcpu->arch.interrupt.nr,
10705 			(unsigned long *)sregs->interrupt_bitmap);
10706 }
10707 
10708 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10709 {
10710 	int i;
10711 
10712 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10713 
10714 	if (vcpu->arch.guest_state_protected)
10715 		return;
10716 
10717 	if (is_pae_paging(vcpu)) {
10718 		for (i = 0 ; i < 4 ; i++)
10719 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10720 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10721 	}
10722 }
10723 
10724 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10725 				  struct kvm_sregs *sregs)
10726 {
10727 	vcpu_load(vcpu);
10728 	__get_sregs(vcpu, sregs);
10729 	vcpu_put(vcpu);
10730 	return 0;
10731 }
10732 
10733 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10734 				    struct kvm_mp_state *mp_state)
10735 {
10736 	int r;
10737 
10738 	vcpu_load(vcpu);
10739 	if (kvm_mpx_supported())
10740 		kvm_load_guest_fpu(vcpu);
10741 
10742 	r = kvm_apic_accept_events(vcpu);
10743 	if (r < 0)
10744 		goto out;
10745 	r = 0;
10746 
10747 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10748 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10749 	    vcpu->arch.pv.pv_unhalted)
10750 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10751 	else
10752 		mp_state->mp_state = vcpu->arch.mp_state;
10753 
10754 out:
10755 	if (kvm_mpx_supported())
10756 		kvm_put_guest_fpu(vcpu);
10757 	vcpu_put(vcpu);
10758 	return r;
10759 }
10760 
10761 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10762 				    struct kvm_mp_state *mp_state)
10763 {
10764 	int ret = -EINVAL;
10765 
10766 	vcpu_load(vcpu);
10767 
10768 	if (!lapic_in_kernel(vcpu) &&
10769 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10770 		goto out;
10771 
10772 	/*
10773 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10774 	 * INIT state; latched init should be reported using
10775 	 * KVM_SET_VCPU_EVENTS, so reject it here.
10776 	 */
10777 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10778 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10779 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10780 		goto out;
10781 
10782 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10783 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10784 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10785 	} else
10786 		vcpu->arch.mp_state = mp_state->mp_state;
10787 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10788 
10789 	ret = 0;
10790 out:
10791 	vcpu_put(vcpu);
10792 	return ret;
10793 }
10794 
10795 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10796 		    int reason, bool has_error_code, u32 error_code)
10797 {
10798 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10799 	int ret;
10800 
10801 	init_emulate_ctxt(vcpu);
10802 
10803 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10804 				   has_error_code, error_code);
10805 	if (ret) {
10806 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10807 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10808 		vcpu->run->internal.ndata = 0;
10809 		return 0;
10810 	}
10811 
10812 	kvm_rip_write(vcpu, ctxt->eip);
10813 	kvm_set_rflags(vcpu, ctxt->eflags);
10814 	return 1;
10815 }
10816 EXPORT_SYMBOL_GPL(kvm_task_switch);
10817 
10818 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10819 {
10820 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10821 		/*
10822 		 * When EFER.LME and CR0.PG are set, the processor is in
10823 		 * 64-bit mode (though maybe in a 32-bit code segment).
10824 		 * CR4.PAE and EFER.LMA must be set.
10825 		 */
10826 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10827 			return false;
10828 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10829 			return false;
10830 	} else {
10831 		/*
10832 		 * Not in 64-bit mode: EFER.LMA is clear and the code
10833 		 * segment cannot be 64-bit.
10834 		 */
10835 		if (sregs->efer & EFER_LMA || sregs->cs.l)
10836 			return false;
10837 	}
10838 
10839 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
10840 }
10841 
10842 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10843 		int *mmu_reset_needed, bool update_pdptrs)
10844 {
10845 	struct msr_data apic_base_msr;
10846 	int idx;
10847 	struct desc_ptr dt;
10848 
10849 	if (!kvm_is_valid_sregs(vcpu, sregs))
10850 		return -EINVAL;
10851 
10852 	apic_base_msr.data = sregs->apic_base;
10853 	apic_base_msr.host_initiated = true;
10854 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
10855 		return -EINVAL;
10856 
10857 	if (vcpu->arch.guest_state_protected)
10858 		return 0;
10859 
10860 	dt.size = sregs->idt.limit;
10861 	dt.address = sregs->idt.base;
10862 	static_call(kvm_x86_set_idt)(vcpu, &dt);
10863 	dt.size = sregs->gdt.limit;
10864 	dt.address = sregs->gdt.base;
10865 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
10866 
10867 	vcpu->arch.cr2 = sregs->cr2;
10868 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10869 	vcpu->arch.cr3 = sregs->cr3;
10870 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10871 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
10872 
10873 	kvm_set_cr8(vcpu, sregs->cr8);
10874 
10875 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10876 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10877 
10878 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10879 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10880 	vcpu->arch.cr0 = sregs->cr0;
10881 
10882 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10883 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10884 
10885 	if (update_pdptrs) {
10886 		idx = srcu_read_lock(&vcpu->kvm->srcu);
10887 		if (is_pae_paging(vcpu)) {
10888 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
10889 			*mmu_reset_needed = 1;
10890 		}
10891 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
10892 	}
10893 
10894 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10895 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10896 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10897 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10898 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10899 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10900 
10901 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10902 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10903 
10904 	update_cr8_intercept(vcpu);
10905 
10906 	/* Older userspace won't unhalt the vcpu on reset. */
10907 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10908 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10909 	    !is_protmode(vcpu))
10910 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10911 
10912 	return 0;
10913 }
10914 
10915 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10916 {
10917 	int pending_vec, max_bits;
10918 	int mmu_reset_needed = 0;
10919 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10920 
10921 	if (ret)
10922 		return ret;
10923 
10924 	if (mmu_reset_needed)
10925 		kvm_mmu_reset_context(vcpu);
10926 
10927 	max_bits = KVM_NR_INTERRUPTS;
10928 	pending_vec = find_first_bit(
10929 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
10930 
10931 	if (pending_vec < max_bits) {
10932 		kvm_queue_interrupt(vcpu, pending_vec, false);
10933 		pr_debug("Set back pending irq %d\n", pending_vec);
10934 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10935 	}
10936 	return 0;
10937 }
10938 
10939 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10940 {
10941 	int mmu_reset_needed = 0;
10942 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10943 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10944 		!(sregs2->efer & EFER_LMA);
10945 	int i, ret;
10946 
10947 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10948 		return -EINVAL;
10949 
10950 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10951 		return -EINVAL;
10952 
10953 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10954 				 &mmu_reset_needed, !valid_pdptrs);
10955 	if (ret)
10956 		return ret;
10957 
10958 	if (valid_pdptrs) {
10959 		for (i = 0; i < 4 ; i++)
10960 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10961 
10962 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10963 		mmu_reset_needed = 1;
10964 		vcpu->arch.pdptrs_from_userspace = true;
10965 	}
10966 	if (mmu_reset_needed)
10967 		kvm_mmu_reset_context(vcpu);
10968 	return 0;
10969 }
10970 
10971 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10972 				  struct kvm_sregs *sregs)
10973 {
10974 	int ret;
10975 
10976 	vcpu_load(vcpu);
10977 	ret = __set_sregs(vcpu, sregs);
10978 	vcpu_put(vcpu);
10979 	return ret;
10980 }
10981 
10982 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
10983 {
10984 	bool set = false;
10985 	struct kvm_vcpu *vcpu;
10986 	unsigned long i;
10987 
10988 	if (!enable_apicv)
10989 		return;
10990 
10991 	down_write(&kvm->arch.apicv_update_lock);
10992 
10993 	kvm_for_each_vcpu(i, vcpu, kvm) {
10994 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
10995 			set = true;
10996 			break;
10997 		}
10998 	}
10999 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11000 	up_write(&kvm->arch.apicv_update_lock);
11001 }
11002 
11003 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11004 					struct kvm_guest_debug *dbg)
11005 {
11006 	unsigned long rflags;
11007 	int i, r;
11008 
11009 	if (vcpu->arch.guest_state_protected)
11010 		return -EINVAL;
11011 
11012 	vcpu_load(vcpu);
11013 
11014 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11015 		r = -EBUSY;
11016 		if (vcpu->arch.exception.pending)
11017 			goto out;
11018 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11019 			kvm_queue_exception(vcpu, DB_VECTOR);
11020 		else
11021 			kvm_queue_exception(vcpu, BP_VECTOR);
11022 	}
11023 
11024 	/*
11025 	 * Read rflags as long as potentially injected trace flags are still
11026 	 * filtered out.
11027 	 */
11028 	rflags = kvm_get_rflags(vcpu);
11029 
11030 	vcpu->guest_debug = dbg->control;
11031 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11032 		vcpu->guest_debug = 0;
11033 
11034 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11035 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11036 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11037 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11038 	} else {
11039 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11040 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11041 	}
11042 	kvm_update_dr7(vcpu);
11043 
11044 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11045 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11046 
11047 	/*
11048 	 * Trigger an rflags update that will inject or remove the trace
11049 	 * flags.
11050 	 */
11051 	kvm_set_rflags(vcpu, rflags);
11052 
11053 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11054 
11055 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11056 
11057 	r = 0;
11058 
11059 out:
11060 	vcpu_put(vcpu);
11061 	return r;
11062 }
11063 
11064 /*
11065  * Translate a guest virtual address to a guest physical address.
11066  */
11067 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11068 				    struct kvm_translation *tr)
11069 {
11070 	unsigned long vaddr = tr->linear_address;
11071 	gpa_t gpa;
11072 	int idx;
11073 
11074 	vcpu_load(vcpu);
11075 
11076 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11077 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11078 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11079 	tr->physical_address = gpa;
11080 	tr->valid = gpa != UNMAPPED_GVA;
11081 	tr->writeable = 1;
11082 	tr->usermode = 0;
11083 
11084 	vcpu_put(vcpu);
11085 	return 0;
11086 }
11087 
11088 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11089 {
11090 	struct fxregs_state *fxsave;
11091 
11092 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11093 		return 0;
11094 
11095 	vcpu_load(vcpu);
11096 
11097 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11098 	memcpy(fpu->fpr, fxsave->st_space, 128);
11099 	fpu->fcw = fxsave->cwd;
11100 	fpu->fsw = fxsave->swd;
11101 	fpu->ftwx = fxsave->twd;
11102 	fpu->last_opcode = fxsave->fop;
11103 	fpu->last_ip = fxsave->rip;
11104 	fpu->last_dp = fxsave->rdp;
11105 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11106 
11107 	vcpu_put(vcpu);
11108 	return 0;
11109 }
11110 
11111 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11112 {
11113 	struct fxregs_state *fxsave;
11114 
11115 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11116 		return 0;
11117 
11118 	vcpu_load(vcpu);
11119 
11120 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11121 
11122 	memcpy(fxsave->st_space, fpu->fpr, 128);
11123 	fxsave->cwd = fpu->fcw;
11124 	fxsave->swd = fpu->fsw;
11125 	fxsave->twd = fpu->ftwx;
11126 	fxsave->fop = fpu->last_opcode;
11127 	fxsave->rip = fpu->last_ip;
11128 	fxsave->rdp = fpu->last_dp;
11129 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11130 
11131 	vcpu_put(vcpu);
11132 	return 0;
11133 }
11134 
11135 static void store_regs(struct kvm_vcpu *vcpu)
11136 {
11137 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11138 
11139 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11140 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11141 
11142 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11143 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11144 
11145 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11146 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11147 				vcpu, &vcpu->run->s.regs.events);
11148 }
11149 
11150 static int sync_regs(struct kvm_vcpu *vcpu)
11151 {
11152 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11153 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11154 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11155 	}
11156 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11157 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11158 			return -EINVAL;
11159 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11160 	}
11161 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11162 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11163 				vcpu, &vcpu->run->s.regs.events))
11164 			return -EINVAL;
11165 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11166 	}
11167 
11168 	return 0;
11169 }
11170 
11171 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11172 {
11173 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
11174 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11175 			     "guest TSC will not be reliable\n");
11176 
11177 	return 0;
11178 }
11179 
11180 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11181 {
11182 	struct page *page;
11183 	int r;
11184 
11185 	vcpu->arch.last_vmentry_cpu = -1;
11186 	vcpu->arch.regs_avail = ~0;
11187 	vcpu->arch.regs_dirty = ~0;
11188 
11189 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11190 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11191 	else
11192 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11193 
11194 	r = kvm_mmu_create(vcpu);
11195 	if (r < 0)
11196 		return r;
11197 
11198 	if (irqchip_in_kernel(vcpu->kvm)) {
11199 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11200 		if (r < 0)
11201 			goto fail_mmu_destroy;
11202 
11203 		/*
11204 		 * Defer evaluating inhibits until the vCPU is first run, as
11205 		 * this vCPU will not get notified of any changes until this
11206 		 * vCPU is visible to other vCPUs (marked online and added to
11207 		 * the set of vCPUs).  Opportunistically mark APICv active as
11208 		 * VMX in particularly is highly unlikely to have inhibits.
11209 		 * Ignore the current per-VM APICv state so that vCPU creation
11210 		 * is guaranteed to run with a deterministic value, the request
11211 		 * will ensure the vCPU gets the correct state before VM-Entry.
11212 		 */
11213 		if (enable_apicv) {
11214 			vcpu->arch.apicv_active = true;
11215 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11216 		}
11217 	} else
11218 		static_branch_inc(&kvm_has_noapic_vcpu);
11219 
11220 	r = -ENOMEM;
11221 
11222 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11223 	if (!page)
11224 		goto fail_free_lapic;
11225 	vcpu->arch.pio_data = page_address(page);
11226 
11227 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
11228 				       GFP_KERNEL_ACCOUNT);
11229 	if (!vcpu->arch.mce_banks)
11230 		goto fail_free_pio_data;
11231 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11232 
11233 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11234 				GFP_KERNEL_ACCOUNT))
11235 		goto fail_free_mce_banks;
11236 
11237 	if (!alloc_emulate_ctxt(vcpu))
11238 		goto free_wbinvd_dirty_mask;
11239 
11240 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11241 		pr_err("kvm: failed to allocate vcpu's fpu\n");
11242 		goto free_emulate_ctxt;
11243 	}
11244 
11245 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11246 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11247 
11248 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11249 
11250 	kvm_async_pf_hash_reset(vcpu);
11251 	kvm_pmu_init(vcpu);
11252 
11253 	vcpu->arch.pending_external_vector = -1;
11254 	vcpu->arch.preempted_in_kernel = false;
11255 
11256 #if IS_ENABLED(CONFIG_HYPERV)
11257 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11258 #endif
11259 
11260 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11261 	if (r)
11262 		goto free_guest_fpu;
11263 
11264 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11265 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11266 	kvm_vcpu_mtrr_init(vcpu);
11267 	vcpu_load(vcpu);
11268 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
11269 	kvm_vcpu_reset(vcpu, false);
11270 	kvm_init_mmu(vcpu);
11271 	vcpu_put(vcpu);
11272 	return 0;
11273 
11274 free_guest_fpu:
11275 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11276 free_emulate_ctxt:
11277 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11278 free_wbinvd_dirty_mask:
11279 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11280 fail_free_mce_banks:
11281 	kfree(vcpu->arch.mce_banks);
11282 fail_free_pio_data:
11283 	free_page((unsigned long)vcpu->arch.pio_data);
11284 fail_free_lapic:
11285 	kvm_free_lapic(vcpu);
11286 fail_mmu_destroy:
11287 	kvm_mmu_destroy(vcpu);
11288 	return r;
11289 }
11290 
11291 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11292 {
11293 	struct kvm *kvm = vcpu->kvm;
11294 
11295 	if (mutex_lock_killable(&vcpu->mutex))
11296 		return;
11297 	vcpu_load(vcpu);
11298 	kvm_synchronize_tsc(vcpu, 0);
11299 	vcpu_put(vcpu);
11300 
11301 	/* poll control enabled by default */
11302 	vcpu->arch.msr_kvm_poll_control = 1;
11303 
11304 	mutex_unlock(&vcpu->mutex);
11305 
11306 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11307 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11308 						KVMCLOCK_SYNC_PERIOD);
11309 }
11310 
11311 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11312 {
11313 	int idx;
11314 
11315 	kvmclock_reset(vcpu);
11316 
11317 	static_call(kvm_x86_vcpu_free)(vcpu);
11318 
11319 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11320 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11321 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11322 
11323 	kvm_hv_vcpu_uninit(vcpu);
11324 	kvm_pmu_destroy(vcpu);
11325 	kfree(vcpu->arch.mce_banks);
11326 	kvm_free_lapic(vcpu);
11327 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11328 	kvm_mmu_destroy(vcpu);
11329 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11330 	free_page((unsigned long)vcpu->arch.pio_data);
11331 	kvfree(vcpu->arch.cpuid_entries);
11332 	if (!lapic_in_kernel(vcpu))
11333 		static_branch_dec(&kvm_has_noapic_vcpu);
11334 }
11335 
11336 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11337 {
11338 	struct kvm_cpuid_entry2 *cpuid_0x1;
11339 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
11340 	unsigned long new_cr0;
11341 
11342 	/*
11343 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11344 	 * to handle side effects.  RESET emulation hits those flows and relies
11345 	 * on emulated/virtualized registers, including those that are loaded
11346 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11347 	 * to detect improper or missing initialization.
11348 	 */
11349 	WARN_ON_ONCE(!init_event &&
11350 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11351 
11352 	kvm_lapic_reset(vcpu, init_event);
11353 
11354 	vcpu->arch.hflags = 0;
11355 
11356 	vcpu->arch.smi_pending = 0;
11357 	vcpu->arch.smi_count = 0;
11358 	atomic_set(&vcpu->arch.nmi_queued, 0);
11359 	vcpu->arch.nmi_pending = 0;
11360 	vcpu->arch.nmi_injected = false;
11361 	kvm_clear_interrupt_queue(vcpu);
11362 	kvm_clear_exception_queue(vcpu);
11363 
11364 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11365 	kvm_update_dr0123(vcpu);
11366 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11367 	vcpu->arch.dr7 = DR7_FIXED_1;
11368 	kvm_update_dr7(vcpu);
11369 
11370 	vcpu->arch.cr2 = 0;
11371 
11372 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11373 	vcpu->arch.apf.msr_en_val = 0;
11374 	vcpu->arch.apf.msr_int_val = 0;
11375 	vcpu->arch.st.msr_val = 0;
11376 
11377 	kvmclock_reset(vcpu);
11378 
11379 	kvm_clear_async_pf_completion_queue(vcpu);
11380 	kvm_async_pf_hash_reset(vcpu);
11381 	vcpu->arch.apf.halted = false;
11382 
11383 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11384 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11385 
11386 		/*
11387 		 * To avoid have the INIT path from kvm_apic_has_events() that be
11388 		 * called with loaded FPU and does not let userspace fix the state.
11389 		 */
11390 		if (init_event)
11391 			kvm_put_guest_fpu(vcpu);
11392 
11393 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11394 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11395 
11396 		if (init_event)
11397 			kvm_load_guest_fpu(vcpu);
11398 	}
11399 
11400 	if (!init_event) {
11401 		kvm_pmu_reset(vcpu);
11402 		vcpu->arch.smbase = 0x30000;
11403 
11404 		vcpu->arch.msr_misc_features_enables = 0;
11405 
11406 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11407 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11408 	}
11409 
11410 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11411 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11412 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11413 
11414 	/*
11415 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11416 	 * if no CPUID match is found.  Note, it's impossible to get a match at
11417 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11418 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11419 	 * on RESET.  But, go through the motions in case that's ever remedied.
11420 	 */
11421 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11422 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11423 
11424 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11425 
11426 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11427 	kvm_rip_write(vcpu, 0xfff0);
11428 
11429 	vcpu->arch.cr3 = 0;
11430 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11431 
11432 	/*
11433 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11434 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11435 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
11436 	 */
11437 	new_cr0 = X86_CR0_ET;
11438 	if (init_event)
11439 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11440 	else
11441 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11442 
11443 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11444 	static_call(kvm_x86_set_cr4)(vcpu, 0);
11445 	static_call(kvm_x86_set_efer)(vcpu, 0);
11446 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11447 
11448 	/*
11449 	 * On the standard CR0/CR4/EFER modification paths, there are several
11450 	 * complex conditions determining whether the MMU has to be reset and/or
11451 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
11452 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11453 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11454 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
11455 	 */
11456 	if (old_cr0 & X86_CR0_PG) {
11457 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11458 		kvm_mmu_reset_context(vcpu);
11459 	}
11460 
11461 	/*
11462 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11463 	 * APM states the TLBs are untouched by INIT, but it also states that
11464 	 * the TLBs are flushed on "External initialization of the processor."
11465 	 * Flush the guest TLB regardless of vendor, there is no meaningful
11466 	 * benefit in relying on the guest to flush the TLB immediately after
11467 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
11468 	 * performance perspective.
11469 	 */
11470 	if (init_event)
11471 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11472 }
11473 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11474 
11475 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11476 {
11477 	struct kvm_segment cs;
11478 
11479 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11480 	cs.selector = vector << 8;
11481 	cs.base = vector << 12;
11482 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11483 	kvm_rip_write(vcpu, 0);
11484 }
11485 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11486 
11487 int kvm_arch_hardware_enable(void)
11488 {
11489 	struct kvm *kvm;
11490 	struct kvm_vcpu *vcpu;
11491 	unsigned long i;
11492 	int ret;
11493 	u64 local_tsc;
11494 	u64 max_tsc = 0;
11495 	bool stable, backwards_tsc = false;
11496 
11497 	kvm_user_return_msr_cpu_online();
11498 	ret = static_call(kvm_x86_hardware_enable)();
11499 	if (ret != 0)
11500 		return ret;
11501 
11502 	local_tsc = rdtsc();
11503 	stable = !kvm_check_tsc_unstable();
11504 	list_for_each_entry(kvm, &vm_list, vm_list) {
11505 		kvm_for_each_vcpu(i, vcpu, kvm) {
11506 			if (!stable && vcpu->cpu == smp_processor_id())
11507 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11508 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11509 				backwards_tsc = true;
11510 				if (vcpu->arch.last_host_tsc > max_tsc)
11511 					max_tsc = vcpu->arch.last_host_tsc;
11512 			}
11513 		}
11514 	}
11515 
11516 	/*
11517 	 * Sometimes, even reliable TSCs go backwards.  This happens on
11518 	 * platforms that reset TSC during suspend or hibernate actions, but
11519 	 * maintain synchronization.  We must compensate.  Fortunately, we can
11520 	 * detect that condition here, which happens early in CPU bringup,
11521 	 * before any KVM threads can be running.  Unfortunately, we can't
11522 	 * bring the TSCs fully up to date with real time, as we aren't yet far
11523 	 * enough into CPU bringup that we know how much real time has actually
11524 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11525 	 * variables that haven't been updated yet.
11526 	 *
11527 	 * So we simply find the maximum observed TSC above, then record the
11528 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11529 	 * the adjustment will be applied.  Note that we accumulate
11530 	 * adjustments, in case multiple suspend cycles happen before some VCPU
11531 	 * gets a chance to run again.  In the event that no KVM threads get a
11532 	 * chance to run, we will miss the entire elapsed period, as we'll have
11533 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11534 	 * loose cycle time.  This isn't too big a deal, since the loss will be
11535 	 * uniform across all VCPUs (not to mention the scenario is extremely
11536 	 * unlikely). It is possible that a second hibernate recovery happens
11537 	 * much faster than a first, causing the observed TSC here to be
11538 	 * smaller; this would require additional padding adjustment, which is
11539 	 * why we set last_host_tsc to the local tsc observed here.
11540 	 *
11541 	 * N.B. - this code below runs only on platforms with reliable TSC,
11542 	 * as that is the only way backwards_tsc is set above.  Also note
11543 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11544 	 * have the same delta_cyc adjustment applied if backwards_tsc
11545 	 * is detected.  Note further, this adjustment is only done once,
11546 	 * as we reset last_host_tsc on all VCPUs to stop this from being
11547 	 * called multiple times (one for each physical CPU bringup).
11548 	 *
11549 	 * Platforms with unreliable TSCs don't have to deal with this, they
11550 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
11551 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
11552 	 * guarantee that they stay in perfect synchronization.
11553 	 */
11554 	if (backwards_tsc) {
11555 		u64 delta_cyc = max_tsc - local_tsc;
11556 		list_for_each_entry(kvm, &vm_list, vm_list) {
11557 			kvm->arch.backwards_tsc_observed = true;
11558 			kvm_for_each_vcpu(i, vcpu, kvm) {
11559 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
11560 				vcpu->arch.last_host_tsc = local_tsc;
11561 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11562 			}
11563 
11564 			/*
11565 			 * We have to disable TSC offset matching.. if you were
11566 			 * booting a VM while issuing an S4 host suspend....
11567 			 * you may have some problem.  Solving this issue is
11568 			 * left as an exercise to the reader.
11569 			 */
11570 			kvm->arch.last_tsc_nsec = 0;
11571 			kvm->arch.last_tsc_write = 0;
11572 		}
11573 
11574 	}
11575 	return 0;
11576 }
11577 
11578 void kvm_arch_hardware_disable(void)
11579 {
11580 	static_call(kvm_x86_hardware_disable)();
11581 	drop_user_return_notifiers();
11582 }
11583 
11584 int kvm_arch_hardware_setup(void *opaque)
11585 {
11586 	struct kvm_x86_init_ops *ops = opaque;
11587 	int r;
11588 
11589 	rdmsrl_safe(MSR_EFER, &host_efer);
11590 
11591 	if (boot_cpu_has(X86_FEATURE_XSAVES))
11592 		rdmsrl(MSR_IA32_XSS, host_xss);
11593 
11594 	r = ops->hardware_setup();
11595 	if (r != 0)
11596 		return r;
11597 
11598 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11599 	kvm_ops_static_call_update();
11600 
11601 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11602 
11603 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11604 		supported_xss = 0;
11605 
11606 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11607 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11608 #undef __kvm_cpu_cap_has
11609 
11610 	if (kvm_has_tsc_control) {
11611 		/*
11612 		 * Make sure the user can only configure tsc_khz values that
11613 		 * fit into a signed integer.
11614 		 * A min value is not calculated because it will always
11615 		 * be 1 on all machines.
11616 		 */
11617 		u64 max = min(0x7fffffffULL,
11618 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11619 		kvm_max_guest_tsc_khz = max;
11620 	}
11621 	kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11622 	kvm_init_msr_list();
11623 	return 0;
11624 }
11625 
11626 void kvm_arch_hardware_unsetup(void)
11627 {
11628 	kvm_unregister_perf_callbacks();
11629 
11630 	static_call(kvm_x86_hardware_unsetup)();
11631 }
11632 
11633 int kvm_arch_check_processor_compat(void *opaque)
11634 {
11635 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11636 	struct kvm_x86_init_ops *ops = opaque;
11637 
11638 	WARN_ON(!irqs_disabled());
11639 
11640 	if (__cr4_reserved_bits(cpu_has, c) !=
11641 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11642 		return -EIO;
11643 
11644 	return ops->check_processor_compatibility();
11645 }
11646 
11647 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11648 {
11649 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11650 }
11651 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11652 
11653 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11654 {
11655 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11656 }
11657 
11658 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11659 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11660 
11661 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11662 {
11663 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11664 
11665 	vcpu->arch.l1tf_flush_l1d = true;
11666 	if (pmu->version && unlikely(pmu->event_count)) {
11667 		pmu->need_cleanup = true;
11668 		kvm_make_request(KVM_REQ_PMU, vcpu);
11669 	}
11670 	static_call(kvm_x86_sched_in)(vcpu, cpu);
11671 }
11672 
11673 void kvm_arch_free_vm(struct kvm *kvm)
11674 {
11675 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
11676 	__kvm_arch_free_vm(kvm);
11677 }
11678 
11679 
11680 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11681 {
11682 	int ret;
11683 	unsigned long flags;
11684 
11685 	if (type)
11686 		return -EINVAL;
11687 
11688 	ret = kvm_page_track_init(kvm);
11689 	if (ret)
11690 		goto out;
11691 
11692 	ret = kvm_mmu_init_vm(kvm);
11693 	if (ret)
11694 		goto out_page_track;
11695 
11696 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11697 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11698 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11699 
11700 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11701 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11702 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11703 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11704 		&kvm->arch.irq_sources_bitmap);
11705 
11706 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11707 	mutex_init(&kvm->arch.apic_map_lock);
11708 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
11709 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11710 
11711 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
11712 	pvclock_update_vm_gtod_copy(kvm);
11713 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
11714 
11715 	kvm->arch.guest_can_read_msr_platform_info = true;
11716 	kvm->arch.enable_pmu = enable_pmu;
11717 
11718 #if IS_ENABLED(CONFIG_HYPERV)
11719 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11720 	kvm->arch.hv_root_tdp = INVALID_PAGE;
11721 #endif
11722 
11723 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11724 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11725 
11726 	kvm_apicv_init(kvm);
11727 	kvm_hv_init_vm(kvm);
11728 	kvm_xen_init_vm(kvm);
11729 
11730 	return static_call(kvm_x86_vm_init)(kvm);
11731 
11732 out_page_track:
11733 	kvm_page_track_cleanup(kvm);
11734 out:
11735 	return ret;
11736 }
11737 
11738 int kvm_arch_post_init_vm(struct kvm *kvm)
11739 {
11740 	return kvm_mmu_post_init_vm(kvm);
11741 }
11742 
11743 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11744 {
11745 	vcpu_load(vcpu);
11746 	kvm_mmu_unload(vcpu);
11747 	vcpu_put(vcpu);
11748 }
11749 
11750 static void kvm_free_vcpus(struct kvm *kvm)
11751 {
11752 	unsigned long i;
11753 	struct kvm_vcpu *vcpu;
11754 
11755 	/*
11756 	 * Unpin any mmu pages first.
11757 	 */
11758 	kvm_for_each_vcpu(i, vcpu, kvm) {
11759 		kvm_clear_async_pf_completion_queue(vcpu);
11760 		kvm_unload_vcpu_mmu(vcpu);
11761 	}
11762 
11763 	kvm_destroy_vcpus(kvm);
11764 }
11765 
11766 void kvm_arch_sync_events(struct kvm *kvm)
11767 {
11768 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11769 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11770 	kvm_free_pit(kvm);
11771 }
11772 
11773 /**
11774  * __x86_set_memory_region: Setup KVM internal memory slot
11775  *
11776  * @kvm: the kvm pointer to the VM.
11777  * @id: the slot ID to setup.
11778  * @gpa: the GPA to install the slot (unused when @size == 0).
11779  * @size: the size of the slot. Set to zero to uninstall a slot.
11780  *
11781  * This function helps to setup a KVM internal memory slot.  Specify
11782  * @size > 0 to install a new slot, while @size == 0 to uninstall a
11783  * slot.  The return code can be one of the following:
11784  *
11785  *   HVA:           on success (uninstall will return a bogus HVA)
11786  *   -errno:        on error
11787  *
11788  * The caller should always use IS_ERR() to check the return value
11789  * before use.  Note, the KVM internal memory slots are guaranteed to
11790  * remain valid and unchanged until the VM is destroyed, i.e., the
11791  * GPA->HVA translation will not change.  However, the HVA is a user
11792  * address, i.e. its accessibility is not guaranteed, and must be
11793  * accessed via __copy_{to,from}_user().
11794  */
11795 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11796 				      u32 size)
11797 {
11798 	int i, r;
11799 	unsigned long hva, old_npages;
11800 	struct kvm_memslots *slots = kvm_memslots(kvm);
11801 	struct kvm_memory_slot *slot;
11802 
11803 	/* Called with kvm->slots_lock held.  */
11804 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11805 		return ERR_PTR_USR(-EINVAL);
11806 
11807 	slot = id_to_memslot(slots, id);
11808 	if (size) {
11809 		if (slot && slot->npages)
11810 			return ERR_PTR_USR(-EEXIST);
11811 
11812 		/*
11813 		 * MAP_SHARED to prevent internal slot pages from being moved
11814 		 * by fork()/COW.
11815 		 */
11816 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11817 			      MAP_SHARED | MAP_ANONYMOUS, 0);
11818 		if (IS_ERR((void *)hva))
11819 			return (void __user *)hva;
11820 	} else {
11821 		if (!slot || !slot->npages)
11822 			return NULL;
11823 
11824 		old_npages = slot->npages;
11825 		hva = slot->userspace_addr;
11826 	}
11827 
11828 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11829 		struct kvm_userspace_memory_region m;
11830 
11831 		m.slot = id | (i << 16);
11832 		m.flags = 0;
11833 		m.guest_phys_addr = gpa;
11834 		m.userspace_addr = hva;
11835 		m.memory_size = size;
11836 		r = __kvm_set_memory_region(kvm, &m);
11837 		if (r < 0)
11838 			return ERR_PTR_USR(r);
11839 	}
11840 
11841 	if (!size)
11842 		vm_munmap(hva, old_npages * PAGE_SIZE);
11843 
11844 	return (void __user *)hva;
11845 }
11846 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11847 
11848 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11849 {
11850 	kvm_mmu_pre_destroy_vm(kvm);
11851 }
11852 
11853 void kvm_arch_destroy_vm(struct kvm *kvm)
11854 {
11855 	if (current->mm == kvm->mm) {
11856 		/*
11857 		 * Free memory regions allocated on behalf of userspace,
11858 		 * unless the the memory map has changed due to process exit
11859 		 * or fd copying.
11860 		 */
11861 		mutex_lock(&kvm->slots_lock);
11862 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11863 					0, 0);
11864 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11865 					0, 0);
11866 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11867 		mutex_unlock(&kvm->slots_lock);
11868 	}
11869 	static_call_cond(kvm_x86_vm_destroy)(kvm);
11870 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11871 	kvm_pic_destroy(kvm);
11872 	kvm_ioapic_destroy(kvm);
11873 	kvm_free_vcpus(kvm);
11874 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11875 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11876 	kvm_mmu_uninit_vm(kvm);
11877 	kvm_page_track_cleanup(kvm);
11878 	kvm_xen_destroy_vm(kvm);
11879 	kvm_hv_destroy_vm(kvm);
11880 }
11881 
11882 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11883 {
11884 	int i;
11885 
11886 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11887 		kvfree(slot->arch.rmap[i]);
11888 		slot->arch.rmap[i] = NULL;
11889 	}
11890 }
11891 
11892 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11893 {
11894 	int i;
11895 
11896 	memslot_rmap_free(slot);
11897 
11898 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11899 		kvfree(slot->arch.lpage_info[i - 1]);
11900 		slot->arch.lpage_info[i - 1] = NULL;
11901 	}
11902 
11903 	kvm_page_track_free_memslot(slot);
11904 }
11905 
11906 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
11907 {
11908 	const int sz = sizeof(*slot->arch.rmap[0]);
11909 	int i;
11910 
11911 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11912 		int level = i + 1;
11913 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11914 
11915 		if (slot->arch.rmap[i])
11916 			continue;
11917 
11918 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11919 		if (!slot->arch.rmap[i]) {
11920 			memslot_rmap_free(slot);
11921 			return -ENOMEM;
11922 		}
11923 	}
11924 
11925 	return 0;
11926 }
11927 
11928 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11929 				      struct kvm_memory_slot *slot)
11930 {
11931 	unsigned long npages = slot->npages;
11932 	int i, r;
11933 
11934 	/*
11935 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
11936 	 * old arrays will be freed by __kvm_set_memory_region() if installing
11937 	 * the new memslot is successful.
11938 	 */
11939 	memset(&slot->arch, 0, sizeof(slot->arch));
11940 
11941 	if (kvm_memslots_have_rmaps(kvm)) {
11942 		r = memslot_rmap_alloc(slot, npages);
11943 		if (r)
11944 			return r;
11945 	}
11946 
11947 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11948 		struct kvm_lpage_info *linfo;
11949 		unsigned long ugfn;
11950 		int lpages;
11951 		int level = i + 1;
11952 
11953 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11954 
11955 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11956 		if (!linfo)
11957 			goto out_free;
11958 
11959 		slot->arch.lpage_info[i - 1] = linfo;
11960 
11961 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11962 			linfo[0].disallow_lpage = 1;
11963 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11964 			linfo[lpages - 1].disallow_lpage = 1;
11965 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
11966 		/*
11967 		 * If the gfn and userspace address are not aligned wrt each
11968 		 * other, disable large page support for this slot.
11969 		 */
11970 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11971 			unsigned long j;
11972 
11973 			for (j = 0; j < lpages; ++j)
11974 				linfo[j].disallow_lpage = 1;
11975 		}
11976 	}
11977 
11978 	if (kvm_page_track_create_memslot(kvm, slot, npages))
11979 		goto out_free;
11980 
11981 	return 0;
11982 
11983 out_free:
11984 	memslot_rmap_free(slot);
11985 
11986 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11987 		kvfree(slot->arch.lpage_info[i - 1]);
11988 		slot->arch.lpage_info[i - 1] = NULL;
11989 	}
11990 	return -ENOMEM;
11991 }
11992 
11993 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11994 {
11995 	struct kvm_vcpu *vcpu;
11996 	unsigned long i;
11997 
11998 	/*
11999 	 * memslots->generation has been incremented.
12000 	 * mmio generation may have reached its maximum value.
12001 	 */
12002 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12003 
12004 	/* Force re-initialization of steal_time cache */
12005 	kvm_for_each_vcpu(i, vcpu, kvm)
12006 		kvm_vcpu_kick(vcpu);
12007 }
12008 
12009 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12010 				   const struct kvm_memory_slot *old,
12011 				   struct kvm_memory_slot *new,
12012 				   enum kvm_mr_change change)
12013 {
12014 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12015 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12016 			return -EINVAL;
12017 
12018 		return kvm_alloc_memslot_metadata(kvm, new);
12019 	}
12020 
12021 	if (change == KVM_MR_FLAGS_ONLY)
12022 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12023 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12024 		return -EIO;
12025 
12026 	return 0;
12027 }
12028 
12029 
12030 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12031 {
12032 	struct kvm_arch *ka = &kvm->arch;
12033 
12034 	if (!kvm_x86_ops.cpu_dirty_log_size)
12035 		return;
12036 
12037 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12038 	    (!enable && --ka->cpu_dirty_logging_count == 0))
12039 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12040 
12041 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12042 }
12043 
12044 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12045 				     struct kvm_memory_slot *old,
12046 				     const struct kvm_memory_slot *new,
12047 				     enum kvm_mr_change change)
12048 {
12049 	u32 old_flags = old ? old->flags : 0;
12050 	u32 new_flags = new ? new->flags : 0;
12051 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12052 
12053 	/*
12054 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12055 	 * applies to all operations.
12056 	 */
12057 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12058 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12059 
12060 	/*
12061 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12062 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12063 	 *
12064 	 * For a memslot with dirty logging disabled:
12065 	 * CREATE:      No dirty mappings will already exist.
12066 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12067 	 *		kvm_arch_flush_shadow_memslot()
12068 	 *
12069 	 * For a memslot with dirty logging enabled:
12070 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12071 	 *		and no dirty bits to clear.
12072 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12073 	 *		kvm_arch_flush_shadow_memslot().
12074 	 */
12075 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12076 		return;
12077 
12078 	/*
12079 	 * READONLY and non-flags changes were filtered out above, and the only
12080 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12081 	 * logging isn't being toggled on or off.
12082 	 */
12083 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12084 		return;
12085 
12086 	if (!log_dirty_pages) {
12087 		/*
12088 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12089 		 * large sptes have to be split.  If live migration succeeds,
12090 		 * the guest in the source machine will be destroyed and large
12091 		 * sptes will be created in the destination.  However, if the
12092 		 * guest continues to run in the source machine (for example if
12093 		 * live migration fails), small sptes will remain around and
12094 		 * cause bad performance.
12095 		 *
12096 		 * Scan sptes if dirty logging has been stopped, dropping those
12097 		 * which can be collapsed into a single large-page spte.  Later
12098 		 * page faults will create the large-page sptes.
12099 		 */
12100 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12101 	} else {
12102 		/*
12103 		 * Initially-all-set does not require write protecting any page,
12104 		 * because they're all assumed to be dirty.
12105 		 */
12106 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12107 			return;
12108 
12109 		if (READ_ONCE(eager_page_split))
12110 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12111 
12112 		if (kvm_x86_ops.cpu_dirty_log_size) {
12113 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12114 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12115 		} else {
12116 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12117 		}
12118 	}
12119 }
12120 
12121 void kvm_arch_commit_memory_region(struct kvm *kvm,
12122 				struct kvm_memory_slot *old,
12123 				const struct kvm_memory_slot *new,
12124 				enum kvm_mr_change change)
12125 {
12126 	if (!kvm->arch.n_requested_mmu_pages &&
12127 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12128 		unsigned long nr_mmu_pages;
12129 
12130 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12131 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12132 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12133 	}
12134 
12135 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12136 
12137 	/* Free the arrays associated with the old memslot. */
12138 	if (change == KVM_MR_MOVE)
12139 		kvm_arch_free_memslot(kvm, old);
12140 }
12141 
12142 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12143 {
12144 	kvm_mmu_zap_all(kvm);
12145 }
12146 
12147 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12148 				   struct kvm_memory_slot *slot)
12149 {
12150 	kvm_page_track_flush_slot(kvm, slot);
12151 }
12152 
12153 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12154 {
12155 	return (is_guest_mode(vcpu) &&
12156 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12157 }
12158 
12159 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12160 {
12161 	if (!list_empty_careful(&vcpu->async_pf.done))
12162 		return true;
12163 
12164 	if (kvm_apic_has_events(vcpu))
12165 		return true;
12166 
12167 	if (vcpu->arch.pv.pv_unhalted)
12168 		return true;
12169 
12170 	if (vcpu->arch.exception.pending)
12171 		return true;
12172 
12173 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12174 	    (vcpu->arch.nmi_pending &&
12175 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12176 		return true;
12177 
12178 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12179 	    (vcpu->arch.smi_pending &&
12180 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12181 		return true;
12182 
12183 	if (kvm_arch_interrupt_allowed(vcpu) &&
12184 	    (kvm_cpu_has_interrupt(vcpu) ||
12185 	    kvm_guest_apic_has_interrupt(vcpu)))
12186 		return true;
12187 
12188 	if (kvm_hv_has_stimer_pending(vcpu))
12189 		return true;
12190 
12191 	if (is_guest_mode(vcpu) &&
12192 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
12193 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12194 		return true;
12195 
12196 	return false;
12197 }
12198 
12199 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12200 {
12201 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12202 }
12203 
12204 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12205 {
12206 	if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12207 		return true;
12208 
12209 	return false;
12210 }
12211 
12212 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12213 {
12214 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12215 		return true;
12216 
12217 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12218 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12219 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12220 		return true;
12221 
12222 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12223 }
12224 
12225 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12226 {
12227 	if (vcpu->arch.guest_state_protected)
12228 		return true;
12229 
12230 	return vcpu->arch.preempted_in_kernel;
12231 }
12232 
12233 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12234 {
12235 	return kvm_rip_read(vcpu);
12236 }
12237 
12238 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12239 {
12240 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12241 }
12242 
12243 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12244 {
12245 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12246 }
12247 
12248 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12249 {
12250 	/* Can't read the RIP when guest state is protected, just return 0 */
12251 	if (vcpu->arch.guest_state_protected)
12252 		return 0;
12253 
12254 	if (is_64_bit_mode(vcpu))
12255 		return kvm_rip_read(vcpu);
12256 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12257 		     kvm_rip_read(vcpu));
12258 }
12259 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12260 
12261 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12262 {
12263 	return kvm_get_linear_rip(vcpu) == linear_rip;
12264 }
12265 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12266 
12267 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12268 {
12269 	unsigned long rflags;
12270 
12271 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12272 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12273 		rflags &= ~X86_EFLAGS_TF;
12274 	return rflags;
12275 }
12276 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12277 
12278 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12279 {
12280 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12281 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12282 		rflags |= X86_EFLAGS_TF;
12283 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12284 }
12285 
12286 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12287 {
12288 	__kvm_set_rflags(vcpu, rflags);
12289 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12290 }
12291 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12292 
12293 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
12294 {
12295 	int r;
12296 
12297 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
12298 	      work->wakeup_all)
12299 		return;
12300 
12301 	r = kvm_mmu_reload(vcpu);
12302 	if (unlikely(r))
12303 		return;
12304 
12305 	if (!vcpu->arch.mmu->direct_map &&
12306 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
12307 		return;
12308 
12309 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
12310 }
12311 
12312 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12313 {
12314 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12315 
12316 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12317 }
12318 
12319 static inline u32 kvm_async_pf_next_probe(u32 key)
12320 {
12321 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12322 }
12323 
12324 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12325 {
12326 	u32 key = kvm_async_pf_hash_fn(gfn);
12327 
12328 	while (vcpu->arch.apf.gfns[key] != ~0)
12329 		key = kvm_async_pf_next_probe(key);
12330 
12331 	vcpu->arch.apf.gfns[key] = gfn;
12332 }
12333 
12334 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12335 {
12336 	int i;
12337 	u32 key = kvm_async_pf_hash_fn(gfn);
12338 
12339 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
12340 		     (vcpu->arch.apf.gfns[key] != gfn &&
12341 		      vcpu->arch.apf.gfns[key] != ~0); i++)
12342 		key = kvm_async_pf_next_probe(key);
12343 
12344 	return key;
12345 }
12346 
12347 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12348 {
12349 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12350 }
12351 
12352 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12353 {
12354 	u32 i, j, k;
12355 
12356 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12357 
12358 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12359 		return;
12360 
12361 	while (true) {
12362 		vcpu->arch.apf.gfns[i] = ~0;
12363 		do {
12364 			j = kvm_async_pf_next_probe(j);
12365 			if (vcpu->arch.apf.gfns[j] == ~0)
12366 				return;
12367 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12368 			/*
12369 			 * k lies cyclically in ]i,j]
12370 			 * |    i.k.j |
12371 			 * |....j i.k.| or  |.k..j i...|
12372 			 */
12373 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12374 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12375 		i = j;
12376 	}
12377 }
12378 
12379 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12380 {
12381 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12382 
12383 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12384 				      sizeof(reason));
12385 }
12386 
12387 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12388 {
12389 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12390 
12391 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12392 					     &token, offset, sizeof(token));
12393 }
12394 
12395 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12396 {
12397 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12398 	u32 val;
12399 
12400 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12401 					 &val, offset, sizeof(val)))
12402 		return false;
12403 
12404 	return !val;
12405 }
12406 
12407 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12408 {
12409 
12410 	if (!kvm_pv_async_pf_enabled(vcpu))
12411 		return false;
12412 
12413 	if (vcpu->arch.apf.send_user_only &&
12414 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
12415 		return false;
12416 
12417 	if (is_guest_mode(vcpu)) {
12418 		/*
12419 		 * L1 needs to opt into the special #PF vmexits that are
12420 		 * used to deliver async page faults.
12421 		 */
12422 		return vcpu->arch.apf.delivery_as_pf_vmexit;
12423 	} else {
12424 		/*
12425 		 * Play it safe in case the guest temporarily disables paging.
12426 		 * The real mode IDT in particular is unlikely to have a #PF
12427 		 * exception setup.
12428 		 */
12429 		return is_paging(vcpu);
12430 	}
12431 }
12432 
12433 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12434 {
12435 	if (unlikely(!lapic_in_kernel(vcpu) ||
12436 		     kvm_event_needs_reinjection(vcpu) ||
12437 		     vcpu->arch.exception.pending))
12438 		return false;
12439 
12440 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12441 		return false;
12442 
12443 	/*
12444 	 * If interrupts are off we cannot even use an artificial
12445 	 * halt state.
12446 	 */
12447 	return kvm_arch_interrupt_allowed(vcpu);
12448 }
12449 
12450 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12451 				     struct kvm_async_pf *work)
12452 {
12453 	struct x86_exception fault;
12454 
12455 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12456 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12457 
12458 	if (kvm_can_deliver_async_pf(vcpu) &&
12459 	    !apf_put_user_notpresent(vcpu)) {
12460 		fault.vector = PF_VECTOR;
12461 		fault.error_code_valid = true;
12462 		fault.error_code = 0;
12463 		fault.nested_page_fault = false;
12464 		fault.address = work->arch.token;
12465 		fault.async_page_fault = true;
12466 		kvm_inject_page_fault(vcpu, &fault);
12467 		return true;
12468 	} else {
12469 		/*
12470 		 * It is not possible to deliver a paravirtualized asynchronous
12471 		 * page fault, but putting the guest in an artificial halt state
12472 		 * can be beneficial nevertheless: if an interrupt arrives, we
12473 		 * can deliver it timely and perhaps the guest will schedule
12474 		 * another process.  When the instruction that triggered a page
12475 		 * fault is retried, hopefully the page will be ready in the host.
12476 		 */
12477 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12478 		return false;
12479 	}
12480 }
12481 
12482 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12483 				 struct kvm_async_pf *work)
12484 {
12485 	struct kvm_lapic_irq irq = {
12486 		.delivery_mode = APIC_DM_FIXED,
12487 		.vector = vcpu->arch.apf.vec
12488 	};
12489 
12490 	if (work->wakeup_all)
12491 		work->arch.token = ~0; /* broadcast wakeup */
12492 	else
12493 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12494 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12495 
12496 	if ((work->wakeup_all || work->notpresent_injected) &&
12497 	    kvm_pv_async_pf_enabled(vcpu) &&
12498 	    !apf_put_user_ready(vcpu, work->arch.token)) {
12499 		vcpu->arch.apf.pageready_pending = true;
12500 		kvm_apic_set_irq(vcpu, &irq, NULL);
12501 	}
12502 
12503 	vcpu->arch.apf.halted = false;
12504 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12505 }
12506 
12507 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12508 {
12509 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
12510 	if (!vcpu->arch.apf.pageready_pending)
12511 		kvm_vcpu_kick(vcpu);
12512 }
12513 
12514 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12515 {
12516 	if (!kvm_pv_async_pf_enabled(vcpu))
12517 		return true;
12518 	else
12519 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12520 }
12521 
12522 void kvm_arch_start_assignment(struct kvm *kvm)
12523 {
12524 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12525 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
12526 }
12527 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12528 
12529 void kvm_arch_end_assignment(struct kvm *kvm)
12530 {
12531 	atomic_dec(&kvm->arch.assigned_device_count);
12532 }
12533 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12534 
12535 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12536 {
12537 	return atomic_read(&kvm->arch.assigned_device_count);
12538 }
12539 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12540 
12541 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12542 {
12543 	atomic_inc(&kvm->arch.noncoherent_dma_count);
12544 }
12545 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12546 
12547 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12548 {
12549 	atomic_dec(&kvm->arch.noncoherent_dma_count);
12550 }
12551 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12552 
12553 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12554 {
12555 	return atomic_read(&kvm->arch.noncoherent_dma_count);
12556 }
12557 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12558 
12559 bool kvm_arch_has_irq_bypass(void)
12560 {
12561 	return true;
12562 }
12563 
12564 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12565 				      struct irq_bypass_producer *prod)
12566 {
12567 	struct kvm_kernel_irqfd *irqfd =
12568 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12569 	int ret;
12570 
12571 	irqfd->producer = prod;
12572 	kvm_arch_start_assignment(irqfd->kvm);
12573 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
12574 					 prod->irq, irqfd->gsi, 1);
12575 
12576 	if (ret)
12577 		kvm_arch_end_assignment(irqfd->kvm);
12578 
12579 	return ret;
12580 }
12581 
12582 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12583 				      struct irq_bypass_producer *prod)
12584 {
12585 	int ret;
12586 	struct kvm_kernel_irqfd *irqfd =
12587 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12588 
12589 	WARN_ON(irqfd->producer != prod);
12590 	irqfd->producer = NULL;
12591 
12592 	/*
12593 	 * When producer of consumer is unregistered, we change back to
12594 	 * remapped mode, so we can re-use the current implementation
12595 	 * when the irq is masked/disabled or the consumer side (KVM
12596 	 * int this case doesn't want to receive the interrupts.
12597 	*/
12598 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12599 	if (ret)
12600 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12601 		       " fails: %d\n", irqfd->consumer.token, ret);
12602 
12603 	kvm_arch_end_assignment(irqfd->kvm);
12604 }
12605 
12606 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12607 				   uint32_t guest_irq, bool set)
12608 {
12609 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
12610 }
12611 
12612 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12613 				  struct kvm_kernel_irq_routing_entry *new)
12614 {
12615 	if (new->type != KVM_IRQ_ROUTING_MSI)
12616 		return true;
12617 
12618 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12619 }
12620 
12621 bool kvm_vector_hashing_enabled(void)
12622 {
12623 	return vector_hashing;
12624 }
12625 
12626 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12627 {
12628 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12629 }
12630 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12631 
12632 
12633 int kvm_spec_ctrl_test_value(u64 value)
12634 {
12635 	/*
12636 	 * test that setting IA32_SPEC_CTRL to given value
12637 	 * is allowed by the host processor
12638 	 */
12639 
12640 	u64 saved_value;
12641 	unsigned long flags;
12642 	int ret = 0;
12643 
12644 	local_irq_save(flags);
12645 
12646 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12647 		ret = 1;
12648 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12649 		ret = 1;
12650 	else
12651 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12652 
12653 	local_irq_restore(flags);
12654 
12655 	return ret;
12656 }
12657 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12658 
12659 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12660 {
12661 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
12662 	struct x86_exception fault;
12663 	u64 access = error_code &
12664 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12665 
12666 	if (!(error_code & PFERR_PRESENT_MASK) ||
12667 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) {
12668 		/*
12669 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12670 		 * tables probably do not match the TLB.  Just proceed
12671 		 * with the error code that the processor gave.
12672 		 */
12673 		fault.vector = PF_VECTOR;
12674 		fault.error_code_valid = true;
12675 		fault.error_code = error_code;
12676 		fault.nested_page_fault = false;
12677 		fault.address = gva;
12678 	}
12679 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12680 }
12681 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12682 
12683 /*
12684  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12685  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12686  * indicates whether exit to userspace is needed.
12687  */
12688 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12689 			      struct x86_exception *e)
12690 {
12691 	if (r == X86EMUL_PROPAGATE_FAULT) {
12692 		kvm_inject_emulated_page_fault(vcpu, e);
12693 		return 1;
12694 	}
12695 
12696 	/*
12697 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12698 	 * while handling a VMX instruction KVM could've handled the request
12699 	 * correctly by exiting to userspace and performing I/O but there
12700 	 * doesn't seem to be a real use-case behind such requests, just return
12701 	 * KVM_EXIT_INTERNAL_ERROR for now.
12702 	 */
12703 	kvm_prepare_emulation_failure_exit(vcpu);
12704 
12705 	return 0;
12706 }
12707 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12708 
12709 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12710 {
12711 	bool pcid_enabled;
12712 	struct x86_exception e;
12713 	struct {
12714 		u64 pcid;
12715 		u64 gla;
12716 	} operand;
12717 	int r;
12718 
12719 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12720 	if (r != X86EMUL_CONTINUE)
12721 		return kvm_handle_memory_failure(vcpu, r, &e);
12722 
12723 	if (operand.pcid >> 12 != 0) {
12724 		kvm_inject_gp(vcpu, 0);
12725 		return 1;
12726 	}
12727 
12728 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12729 
12730 	switch (type) {
12731 	case INVPCID_TYPE_INDIV_ADDR:
12732 		if ((!pcid_enabled && (operand.pcid != 0)) ||
12733 		    is_noncanonical_address(operand.gla, vcpu)) {
12734 			kvm_inject_gp(vcpu, 0);
12735 			return 1;
12736 		}
12737 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12738 		return kvm_skip_emulated_instruction(vcpu);
12739 
12740 	case INVPCID_TYPE_SINGLE_CTXT:
12741 		if (!pcid_enabled && (operand.pcid != 0)) {
12742 			kvm_inject_gp(vcpu, 0);
12743 			return 1;
12744 		}
12745 
12746 		kvm_invalidate_pcid(vcpu, operand.pcid);
12747 		return kvm_skip_emulated_instruction(vcpu);
12748 
12749 	case INVPCID_TYPE_ALL_NON_GLOBAL:
12750 		/*
12751 		 * Currently, KVM doesn't mark global entries in the shadow
12752 		 * page tables, so a non-global flush just degenerates to a
12753 		 * global flush. If needed, we could optimize this later by
12754 		 * keeping track of global entries in shadow page tables.
12755 		 */
12756 
12757 		fallthrough;
12758 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
12759 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12760 		return kvm_skip_emulated_instruction(vcpu);
12761 
12762 	default:
12763 		kvm_inject_gp(vcpu, 0);
12764 		return 1;
12765 	}
12766 }
12767 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12768 
12769 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12770 {
12771 	struct kvm_run *run = vcpu->run;
12772 	struct kvm_mmio_fragment *frag;
12773 	unsigned int len;
12774 
12775 	BUG_ON(!vcpu->mmio_needed);
12776 
12777 	/* Complete previous fragment */
12778 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12779 	len = min(8u, frag->len);
12780 	if (!vcpu->mmio_is_write)
12781 		memcpy(frag->data, run->mmio.data, len);
12782 
12783 	if (frag->len <= 8) {
12784 		/* Switch to the next fragment. */
12785 		frag++;
12786 		vcpu->mmio_cur_fragment++;
12787 	} else {
12788 		/* Go forward to the next mmio piece. */
12789 		frag->data += len;
12790 		frag->gpa += len;
12791 		frag->len -= len;
12792 	}
12793 
12794 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12795 		vcpu->mmio_needed = 0;
12796 
12797 		// VMG change, at this point, we're always done
12798 		// RIP has already been advanced
12799 		return 1;
12800 	}
12801 
12802 	// More MMIO is needed
12803 	run->mmio.phys_addr = frag->gpa;
12804 	run->mmio.len = min(8u, frag->len);
12805 	run->mmio.is_write = vcpu->mmio_is_write;
12806 	if (run->mmio.is_write)
12807 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12808 	run->exit_reason = KVM_EXIT_MMIO;
12809 
12810 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12811 
12812 	return 0;
12813 }
12814 
12815 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12816 			  void *data)
12817 {
12818 	int handled;
12819 	struct kvm_mmio_fragment *frag;
12820 
12821 	if (!data)
12822 		return -EINVAL;
12823 
12824 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12825 	if (handled == bytes)
12826 		return 1;
12827 
12828 	bytes -= handled;
12829 	gpa += handled;
12830 	data += handled;
12831 
12832 	/*TODO: Check if need to increment number of frags */
12833 	frag = vcpu->mmio_fragments;
12834 	vcpu->mmio_nr_fragments = 1;
12835 	frag->len = bytes;
12836 	frag->gpa = gpa;
12837 	frag->data = data;
12838 
12839 	vcpu->mmio_needed = 1;
12840 	vcpu->mmio_cur_fragment = 0;
12841 
12842 	vcpu->run->mmio.phys_addr = gpa;
12843 	vcpu->run->mmio.len = min(8u, frag->len);
12844 	vcpu->run->mmio.is_write = 1;
12845 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12846 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12847 
12848 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12849 
12850 	return 0;
12851 }
12852 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12853 
12854 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12855 			 void *data)
12856 {
12857 	int handled;
12858 	struct kvm_mmio_fragment *frag;
12859 
12860 	if (!data)
12861 		return -EINVAL;
12862 
12863 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12864 	if (handled == bytes)
12865 		return 1;
12866 
12867 	bytes -= handled;
12868 	gpa += handled;
12869 	data += handled;
12870 
12871 	/*TODO: Check if need to increment number of frags */
12872 	frag = vcpu->mmio_fragments;
12873 	vcpu->mmio_nr_fragments = 1;
12874 	frag->len = bytes;
12875 	frag->gpa = gpa;
12876 	frag->data = data;
12877 
12878 	vcpu->mmio_needed = 1;
12879 	vcpu->mmio_cur_fragment = 0;
12880 
12881 	vcpu->run->mmio.phys_addr = gpa;
12882 	vcpu->run->mmio.len = min(8u, frag->len);
12883 	vcpu->run->mmio.is_write = 0;
12884 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12885 
12886 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12887 
12888 	return 0;
12889 }
12890 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12891 
12892 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12893 			   unsigned int port);
12894 
12895 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12896 {
12897 	int size = vcpu->arch.pio.size;
12898 	int port = vcpu->arch.pio.port;
12899 
12900 	vcpu->arch.pio.count = 0;
12901 	if (vcpu->arch.sev_pio_count)
12902 		return kvm_sev_es_outs(vcpu, size, port);
12903 	return 1;
12904 }
12905 
12906 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12907 			   unsigned int port)
12908 {
12909 	for (;;) {
12910 		unsigned int count =
12911 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12912 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12913 
12914 		/* memcpy done already by emulator_pio_out.  */
12915 		vcpu->arch.sev_pio_count -= count;
12916 		vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12917 		if (!ret)
12918 			break;
12919 
12920 		/* Emulation done by the kernel.  */
12921 		if (!vcpu->arch.sev_pio_count)
12922 			return 1;
12923 	}
12924 
12925 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12926 	return 0;
12927 }
12928 
12929 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12930 			  unsigned int port);
12931 
12932 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12933 {
12934 	unsigned count = vcpu->arch.pio.count;
12935 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12936 	vcpu->arch.sev_pio_count -= count;
12937 	vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12938 }
12939 
12940 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12941 {
12942 	int size = vcpu->arch.pio.size;
12943 	int port = vcpu->arch.pio.port;
12944 
12945 	advance_sev_es_emulated_ins(vcpu);
12946 	if (vcpu->arch.sev_pio_count)
12947 		return kvm_sev_es_ins(vcpu, size, port);
12948 	return 1;
12949 }
12950 
12951 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12952 			  unsigned int port)
12953 {
12954 	for (;;) {
12955 		unsigned int count =
12956 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12957 		if (!__emulator_pio_in(vcpu, size, port, count))
12958 			break;
12959 
12960 		/* Emulation done by the kernel.  */
12961 		advance_sev_es_emulated_ins(vcpu);
12962 		if (!vcpu->arch.sev_pio_count)
12963 			return 1;
12964 	}
12965 
12966 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12967 	return 0;
12968 }
12969 
12970 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12971 			 unsigned int port, void *data,  unsigned int count,
12972 			 int in)
12973 {
12974 	vcpu->arch.sev_pio_data = data;
12975 	vcpu->arch.sev_pio_count = count;
12976 	return in ? kvm_sev_es_ins(vcpu, size, port)
12977 		  : kvm_sev_es_outs(vcpu, size, port);
12978 }
12979 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12980 
12981 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12982 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12983 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12984 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12985 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12986 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12987 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12988 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12989 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12990 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12991 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12992 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12993 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12994 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12995 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12996 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12997 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12998 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12999 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13000 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13001 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13002 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13003 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13004 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13005 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13006 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13007 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13008 
13009 static int __init kvm_x86_init(void)
13010 {
13011 	kvm_mmu_x86_module_init();
13012 	return 0;
13013 }
13014 module_init(kvm_x86_init);
13015 
13016 static void __exit kvm_x86_exit(void)
13017 {
13018 	/*
13019 	 * If module_init() is implemented, module_exit() must also be
13020 	 * implemented to allow module unload.
13021 	 */
13022 }
13023 module_exit(kvm_x86_exit);
13024