xref: /linux/arch/x86/kvm/x86.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "mmu.h"
22 #include "i8254.h"
23 #include "tss.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28 #include "hyperv.h"
29 
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/export.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <linux/kvm_irqfd.h>
52 #include <linux/irqbypass.h>
53 #include <linux/sched/stat.h>
54 #include <linux/mem_encrypt.h>
55 
56 #include <trace/events/kvm.h>
57 
58 #include <asm/debugreg.h>
59 #include <asm/msr.h>
60 #include <asm/desc.h>
61 #include <asm/mce.h>
62 #include <linux/kernel_stat.h>
63 #include <asm/fpu/internal.h> /* Ugh! */
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66 #include <asm/irq_remapping.h>
67 #include <asm/mshyperv.h>
68 #include <asm/hypervisor.h>
69 #include <asm/intel_pt.h>
70 
71 #define CREATE_TRACE_POINTS
72 #include "trace.h"
73 
74 #define MAX_IO_MSRS 256
75 #define KVM_MAX_MCE_BANKS 32
76 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
77 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
78 
79 #define emul_to_vcpu(ctxt) \
80 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
81 
82 /* EFER defaults:
83  * - enable syscall per default because its emulated by KVM
84  * - enable LME and LMA per default on 64 bit KVM
85  */
86 #ifdef CONFIG_X86_64
87 static
88 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
89 #else
90 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
91 #endif
92 
93 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
94 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
95 
96 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
97                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
98 
99 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
100 static void process_nmi(struct kvm_vcpu *vcpu);
101 static void enter_smm(struct kvm_vcpu *vcpu);
102 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
103 static void store_regs(struct kvm_vcpu *vcpu);
104 static int sync_regs(struct kvm_vcpu *vcpu);
105 
106 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
107 EXPORT_SYMBOL_GPL(kvm_x86_ops);
108 
109 static bool __read_mostly ignore_msrs = 0;
110 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
111 
112 static bool __read_mostly report_ignored_msrs = true;
113 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
114 
115 unsigned int min_timer_period_us = 200;
116 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
117 
118 static bool __read_mostly kvmclock_periodic_sync = true;
119 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
120 
121 bool __read_mostly kvm_has_tsc_control;
122 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
123 u32  __read_mostly kvm_max_guest_tsc_khz;
124 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
125 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
126 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
127 u64  __read_mostly kvm_max_tsc_scaling_ratio;
128 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
129 u64 __read_mostly kvm_default_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
131 
132 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
133 static u32 __read_mostly tsc_tolerance_ppm = 250;
134 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
135 
136 /*
137  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
138  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
139  * advancement entirely.  Any other value is used as-is and disables adaptive
140  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
141  */
142 static int __read_mostly lapic_timer_advance_ns = -1;
143 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
144 
145 static bool __read_mostly vector_hashing = true;
146 module_param(vector_hashing, bool, S_IRUGO);
147 
148 bool __read_mostly enable_vmware_backdoor = false;
149 module_param(enable_vmware_backdoor, bool, S_IRUGO);
150 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
151 
152 static bool __read_mostly force_emulation_prefix = false;
153 module_param(force_emulation_prefix, bool, S_IRUGO);
154 
155 #define KVM_NR_SHARED_MSRS 16
156 
157 struct kvm_shared_msrs_global {
158 	int nr;
159 	u32 msrs[KVM_NR_SHARED_MSRS];
160 };
161 
162 struct kvm_shared_msrs {
163 	struct user_return_notifier urn;
164 	bool registered;
165 	struct kvm_shared_msr_values {
166 		u64 host;
167 		u64 curr;
168 	} values[KVM_NR_SHARED_MSRS];
169 };
170 
171 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
172 static struct kvm_shared_msrs __percpu *shared_msrs;
173 
174 struct kvm_stats_debugfs_item debugfs_entries[] = {
175 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
176 	{ "pf_guest", VCPU_STAT(pf_guest) },
177 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
178 	{ "invlpg", VCPU_STAT(invlpg) },
179 	{ "exits", VCPU_STAT(exits) },
180 	{ "io_exits", VCPU_STAT(io_exits) },
181 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
182 	{ "signal_exits", VCPU_STAT(signal_exits) },
183 	{ "irq_window", VCPU_STAT(irq_window_exits) },
184 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
185 	{ "halt_exits", VCPU_STAT(halt_exits) },
186 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
187 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
188 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
189 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
190 	{ "hypercalls", VCPU_STAT(hypercalls) },
191 	{ "request_irq", VCPU_STAT(request_irq_exits) },
192 	{ "irq_exits", VCPU_STAT(irq_exits) },
193 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
194 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
195 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
196 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
197 	{ "irq_injections", VCPU_STAT(irq_injections) },
198 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
199 	{ "req_event", VCPU_STAT(req_event) },
200 	{ "l1d_flush", VCPU_STAT(l1d_flush) },
201 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
202 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
203 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
204 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
205 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
206 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
207 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
208 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
209 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
210 	{ "largepages", VM_STAT(lpages) },
211 	{ "max_mmu_page_hash_collisions",
212 		VM_STAT(max_mmu_page_hash_collisions) },
213 	{ NULL }
214 };
215 
216 u64 __read_mostly host_xcr0;
217 
218 struct kmem_cache *x86_fpu_cache;
219 EXPORT_SYMBOL_GPL(x86_fpu_cache);
220 
221 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
222 
223 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
224 {
225 	int i;
226 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
227 		vcpu->arch.apf.gfns[i] = ~0;
228 }
229 
230 static void kvm_on_user_return(struct user_return_notifier *urn)
231 {
232 	unsigned slot;
233 	struct kvm_shared_msrs *locals
234 		= container_of(urn, struct kvm_shared_msrs, urn);
235 	struct kvm_shared_msr_values *values;
236 	unsigned long flags;
237 
238 	/*
239 	 * Disabling irqs at this point since the following code could be
240 	 * interrupted and executed through kvm_arch_hardware_disable()
241 	 */
242 	local_irq_save(flags);
243 	if (locals->registered) {
244 		locals->registered = false;
245 		user_return_notifier_unregister(urn);
246 	}
247 	local_irq_restore(flags);
248 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
249 		values = &locals->values[slot];
250 		if (values->host != values->curr) {
251 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
252 			values->curr = values->host;
253 		}
254 	}
255 }
256 
257 static void shared_msr_update(unsigned slot, u32 msr)
258 {
259 	u64 value;
260 	unsigned int cpu = smp_processor_id();
261 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
262 
263 	/* only read, and nobody should modify it at this time,
264 	 * so don't need lock */
265 	if (slot >= shared_msrs_global.nr) {
266 		printk(KERN_ERR "kvm: invalid MSR slot!");
267 		return;
268 	}
269 	rdmsrl_safe(msr, &value);
270 	smsr->values[slot].host = value;
271 	smsr->values[slot].curr = value;
272 }
273 
274 void kvm_define_shared_msr(unsigned slot, u32 msr)
275 {
276 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
277 	shared_msrs_global.msrs[slot] = msr;
278 	if (slot >= shared_msrs_global.nr)
279 		shared_msrs_global.nr = slot + 1;
280 }
281 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
282 
283 static void kvm_shared_msr_cpu_online(void)
284 {
285 	unsigned i;
286 
287 	for (i = 0; i < shared_msrs_global.nr; ++i)
288 		shared_msr_update(i, shared_msrs_global.msrs[i]);
289 }
290 
291 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
292 {
293 	unsigned int cpu = smp_processor_id();
294 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
295 	int err;
296 
297 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
298 		return 0;
299 	smsr->values[slot].curr = value;
300 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
301 	if (err)
302 		return 1;
303 
304 	if (!smsr->registered) {
305 		smsr->urn.on_user_return = kvm_on_user_return;
306 		user_return_notifier_register(&smsr->urn);
307 		smsr->registered = true;
308 	}
309 	return 0;
310 }
311 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
312 
313 static void drop_user_return_notifiers(void)
314 {
315 	unsigned int cpu = smp_processor_id();
316 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
317 
318 	if (smsr->registered)
319 		kvm_on_user_return(&smsr->urn);
320 }
321 
322 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
323 {
324 	return vcpu->arch.apic_base;
325 }
326 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
327 
328 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
329 {
330 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
331 }
332 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
333 
334 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
335 {
336 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
337 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
338 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
339 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
340 
341 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
342 		return 1;
343 	if (!msr_info->host_initiated) {
344 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
345 			return 1;
346 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
347 			return 1;
348 	}
349 
350 	kvm_lapic_set_base(vcpu, msr_info->data);
351 	return 0;
352 }
353 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
354 
355 asmlinkage __visible void kvm_spurious_fault(void)
356 {
357 	/* Fault while not rebooting.  We want the trace. */
358 	BUG();
359 }
360 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
361 
362 #define EXCPT_BENIGN		0
363 #define EXCPT_CONTRIBUTORY	1
364 #define EXCPT_PF		2
365 
366 static int exception_class(int vector)
367 {
368 	switch (vector) {
369 	case PF_VECTOR:
370 		return EXCPT_PF;
371 	case DE_VECTOR:
372 	case TS_VECTOR:
373 	case NP_VECTOR:
374 	case SS_VECTOR:
375 	case GP_VECTOR:
376 		return EXCPT_CONTRIBUTORY;
377 	default:
378 		break;
379 	}
380 	return EXCPT_BENIGN;
381 }
382 
383 #define EXCPT_FAULT		0
384 #define EXCPT_TRAP		1
385 #define EXCPT_ABORT		2
386 #define EXCPT_INTERRUPT		3
387 
388 static int exception_type(int vector)
389 {
390 	unsigned int mask;
391 
392 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
393 		return EXCPT_INTERRUPT;
394 
395 	mask = 1 << vector;
396 
397 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
398 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
399 		return EXCPT_TRAP;
400 
401 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
402 		return EXCPT_ABORT;
403 
404 	/* Reserved exceptions will result in fault */
405 	return EXCPT_FAULT;
406 }
407 
408 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
409 {
410 	unsigned nr = vcpu->arch.exception.nr;
411 	bool has_payload = vcpu->arch.exception.has_payload;
412 	unsigned long payload = vcpu->arch.exception.payload;
413 
414 	if (!has_payload)
415 		return;
416 
417 	switch (nr) {
418 	case DB_VECTOR:
419 		/*
420 		 * "Certain debug exceptions may clear bit 0-3.  The
421 		 * remaining contents of the DR6 register are never
422 		 * cleared by the processor".
423 		 */
424 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
425 		/*
426 		 * DR6.RTM is set by all #DB exceptions that don't clear it.
427 		 */
428 		vcpu->arch.dr6 |= DR6_RTM;
429 		vcpu->arch.dr6 |= payload;
430 		/*
431 		 * Bit 16 should be set in the payload whenever the #DB
432 		 * exception should clear DR6.RTM. This makes the payload
433 		 * compatible with the pending debug exceptions under VMX.
434 		 * Though not currently documented in the SDM, this also
435 		 * makes the payload compatible with the exit qualification
436 		 * for #DB exceptions under VMX.
437 		 */
438 		vcpu->arch.dr6 ^= payload & DR6_RTM;
439 		break;
440 	case PF_VECTOR:
441 		vcpu->arch.cr2 = payload;
442 		break;
443 	}
444 
445 	vcpu->arch.exception.has_payload = false;
446 	vcpu->arch.exception.payload = 0;
447 }
448 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
449 
450 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
451 		unsigned nr, bool has_error, u32 error_code,
452 	        bool has_payload, unsigned long payload, bool reinject)
453 {
454 	u32 prev_nr;
455 	int class1, class2;
456 
457 	kvm_make_request(KVM_REQ_EVENT, vcpu);
458 
459 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
460 	queue:
461 		if (has_error && !is_protmode(vcpu))
462 			has_error = false;
463 		if (reinject) {
464 			/*
465 			 * On vmentry, vcpu->arch.exception.pending is only
466 			 * true if an event injection was blocked by
467 			 * nested_run_pending.  In that case, however,
468 			 * vcpu_enter_guest requests an immediate exit,
469 			 * and the guest shouldn't proceed far enough to
470 			 * need reinjection.
471 			 */
472 			WARN_ON_ONCE(vcpu->arch.exception.pending);
473 			vcpu->arch.exception.injected = true;
474 			if (WARN_ON_ONCE(has_payload)) {
475 				/*
476 				 * A reinjected event has already
477 				 * delivered its payload.
478 				 */
479 				has_payload = false;
480 				payload = 0;
481 			}
482 		} else {
483 			vcpu->arch.exception.pending = true;
484 			vcpu->arch.exception.injected = false;
485 		}
486 		vcpu->arch.exception.has_error_code = has_error;
487 		vcpu->arch.exception.nr = nr;
488 		vcpu->arch.exception.error_code = error_code;
489 		vcpu->arch.exception.has_payload = has_payload;
490 		vcpu->arch.exception.payload = payload;
491 		/*
492 		 * In guest mode, payload delivery should be deferred,
493 		 * so that the L1 hypervisor can intercept #PF before
494 		 * CR2 is modified (or intercept #DB before DR6 is
495 		 * modified under nVMX).  However, for ABI
496 		 * compatibility with KVM_GET_VCPU_EVENTS and
497 		 * KVM_SET_VCPU_EVENTS, we can't delay payload
498 		 * delivery unless userspace has enabled this
499 		 * functionality via the per-VM capability,
500 		 * KVM_CAP_EXCEPTION_PAYLOAD.
501 		 */
502 		if (!vcpu->kvm->arch.exception_payload_enabled ||
503 		    !is_guest_mode(vcpu))
504 			kvm_deliver_exception_payload(vcpu);
505 		return;
506 	}
507 
508 	/* to check exception */
509 	prev_nr = vcpu->arch.exception.nr;
510 	if (prev_nr == DF_VECTOR) {
511 		/* triple fault -> shutdown */
512 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
513 		return;
514 	}
515 	class1 = exception_class(prev_nr);
516 	class2 = exception_class(nr);
517 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
518 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
519 		/*
520 		 * Generate double fault per SDM Table 5-5.  Set
521 		 * exception.pending = true so that the double fault
522 		 * can trigger a nested vmexit.
523 		 */
524 		vcpu->arch.exception.pending = true;
525 		vcpu->arch.exception.injected = false;
526 		vcpu->arch.exception.has_error_code = true;
527 		vcpu->arch.exception.nr = DF_VECTOR;
528 		vcpu->arch.exception.error_code = 0;
529 		vcpu->arch.exception.has_payload = false;
530 		vcpu->arch.exception.payload = 0;
531 	} else
532 		/* replace previous exception with a new one in a hope
533 		   that instruction re-execution will regenerate lost
534 		   exception */
535 		goto queue;
536 }
537 
538 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
539 {
540 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
541 }
542 EXPORT_SYMBOL_GPL(kvm_queue_exception);
543 
544 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
545 {
546 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
547 }
548 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
549 
550 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
551 				  unsigned long payload)
552 {
553 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
554 }
555 
556 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
557 				    u32 error_code, unsigned long payload)
558 {
559 	kvm_multiple_exception(vcpu, nr, true, error_code,
560 			       true, payload, false);
561 }
562 
563 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
564 {
565 	if (err)
566 		kvm_inject_gp(vcpu, 0);
567 	else
568 		return kvm_skip_emulated_instruction(vcpu);
569 
570 	return 1;
571 }
572 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
573 
574 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
575 {
576 	++vcpu->stat.pf_guest;
577 	vcpu->arch.exception.nested_apf =
578 		is_guest_mode(vcpu) && fault->async_page_fault;
579 	if (vcpu->arch.exception.nested_apf) {
580 		vcpu->arch.apf.nested_apf_token = fault->address;
581 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
582 	} else {
583 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
584 					fault->address);
585 	}
586 }
587 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
588 
589 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
590 {
591 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
592 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
593 	else
594 		vcpu->arch.mmu->inject_page_fault(vcpu, fault);
595 
596 	return fault->nested_page_fault;
597 }
598 
599 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
600 {
601 	atomic_inc(&vcpu->arch.nmi_queued);
602 	kvm_make_request(KVM_REQ_NMI, vcpu);
603 }
604 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
605 
606 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
607 {
608 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
609 }
610 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
611 
612 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
613 {
614 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
615 }
616 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
617 
618 /*
619  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
620  * a #GP and return false.
621  */
622 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
623 {
624 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
625 		return true;
626 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
627 	return false;
628 }
629 EXPORT_SYMBOL_GPL(kvm_require_cpl);
630 
631 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
632 {
633 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
634 		return true;
635 
636 	kvm_queue_exception(vcpu, UD_VECTOR);
637 	return false;
638 }
639 EXPORT_SYMBOL_GPL(kvm_require_dr);
640 
641 /*
642  * This function will be used to read from the physical memory of the currently
643  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
644  * can read from guest physical or from the guest's guest physical memory.
645  */
646 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
647 			    gfn_t ngfn, void *data, int offset, int len,
648 			    u32 access)
649 {
650 	struct x86_exception exception;
651 	gfn_t real_gfn;
652 	gpa_t ngpa;
653 
654 	ngpa     = gfn_to_gpa(ngfn);
655 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
656 	if (real_gfn == UNMAPPED_GVA)
657 		return -EFAULT;
658 
659 	real_gfn = gpa_to_gfn(real_gfn);
660 
661 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
662 }
663 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
664 
665 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
666 			       void *data, int offset, int len, u32 access)
667 {
668 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
669 				       data, offset, len, access);
670 }
671 
672 /*
673  * Load the pae pdptrs.  Return true is they are all valid.
674  */
675 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
676 {
677 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
678 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
679 	int i;
680 	int ret;
681 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
682 
683 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
684 				      offset * sizeof(u64), sizeof(pdpte),
685 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
686 	if (ret < 0) {
687 		ret = 0;
688 		goto out;
689 	}
690 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
691 		if ((pdpte[i] & PT_PRESENT_MASK) &&
692 		    (pdpte[i] &
693 		     vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) {
694 			ret = 0;
695 			goto out;
696 		}
697 	}
698 	ret = 1;
699 
700 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
701 	__set_bit(VCPU_EXREG_PDPTR,
702 		  (unsigned long *)&vcpu->arch.regs_avail);
703 	__set_bit(VCPU_EXREG_PDPTR,
704 		  (unsigned long *)&vcpu->arch.regs_dirty);
705 out:
706 
707 	return ret;
708 }
709 EXPORT_SYMBOL_GPL(load_pdptrs);
710 
711 bool pdptrs_changed(struct kvm_vcpu *vcpu)
712 {
713 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
714 	bool changed = true;
715 	int offset;
716 	gfn_t gfn;
717 	int r;
718 
719 	if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu))
720 		return false;
721 
722 	if (!test_bit(VCPU_EXREG_PDPTR,
723 		      (unsigned long *)&vcpu->arch.regs_avail))
724 		return true;
725 
726 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
727 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
728 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
729 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
730 	if (r < 0)
731 		goto out;
732 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
733 out:
734 
735 	return changed;
736 }
737 EXPORT_SYMBOL_GPL(pdptrs_changed);
738 
739 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
740 {
741 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
742 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
743 
744 	cr0 |= X86_CR0_ET;
745 
746 #ifdef CONFIG_X86_64
747 	if (cr0 & 0xffffffff00000000UL)
748 		return 1;
749 #endif
750 
751 	cr0 &= ~CR0_RESERVED_BITS;
752 
753 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
754 		return 1;
755 
756 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
757 		return 1;
758 
759 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
760 #ifdef CONFIG_X86_64
761 		if ((vcpu->arch.efer & EFER_LME)) {
762 			int cs_db, cs_l;
763 
764 			if (!is_pae(vcpu))
765 				return 1;
766 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
767 			if (cs_l)
768 				return 1;
769 		} else
770 #endif
771 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
772 						 kvm_read_cr3(vcpu)))
773 			return 1;
774 	}
775 
776 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
777 		return 1;
778 
779 	kvm_x86_ops->set_cr0(vcpu, cr0);
780 
781 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
782 		kvm_clear_async_pf_completion_queue(vcpu);
783 		kvm_async_pf_hash_reset(vcpu);
784 	}
785 
786 	if ((cr0 ^ old_cr0) & update_bits)
787 		kvm_mmu_reset_context(vcpu);
788 
789 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
790 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
791 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
792 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
793 
794 	return 0;
795 }
796 EXPORT_SYMBOL_GPL(kvm_set_cr0);
797 
798 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
799 {
800 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
801 }
802 EXPORT_SYMBOL_GPL(kvm_lmsw);
803 
804 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
805 {
806 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
807 			!vcpu->guest_xcr0_loaded) {
808 		/* kvm_set_xcr() also depends on this */
809 		if (vcpu->arch.xcr0 != host_xcr0)
810 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
811 		vcpu->guest_xcr0_loaded = 1;
812 	}
813 }
814 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0);
815 
816 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
817 {
818 	if (vcpu->guest_xcr0_loaded) {
819 		if (vcpu->arch.xcr0 != host_xcr0)
820 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
821 		vcpu->guest_xcr0_loaded = 0;
822 	}
823 }
824 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0);
825 
826 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
827 {
828 	u64 xcr0 = xcr;
829 	u64 old_xcr0 = vcpu->arch.xcr0;
830 	u64 valid_bits;
831 
832 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
833 	if (index != XCR_XFEATURE_ENABLED_MASK)
834 		return 1;
835 	if (!(xcr0 & XFEATURE_MASK_FP))
836 		return 1;
837 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
838 		return 1;
839 
840 	/*
841 	 * Do not allow the guest to set bits that we do not support
842 	 * saving.  However, xcr0 bit 0 is always set, even if the
843 	 * emulated CPU does not support XSAVE (see fx_init).
844 	 */
845 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
846 	if (xcr0 & ~valid_bits)
847 		return 1;
848 
849 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
850 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
851 		return 1;
852 
853 	if (xcr0 & XFEATURE_MASK_AVX512) {
854 		if (!(xcr0 & XFEATURE_MASK_YMM))
855 			return 1;
856 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
857 			return 1;
858 	}
859 	vcpu->arch.xcr0 = xcr0;
860 
861 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
862 		kvm_update_cpuid(vcpu);
863 	return 0;
864 }
865 
866 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
867 {
868 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
869 	    __kvm_set_xcr(vcpu, index, xcr)) {
870 		kvm_inject_gp(vcpu, 0);
871 		return 1;
872 	}
873 	return 0;
874 }
875 EXPORT_SYMBOL_GPL(kvm_set_xcr);
876 
877 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
878 {
879 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
880 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
881 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
882 
883 	if (cr4 & CR4_RESERVED_BITS)
884 		return 1;
885 
886 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
887 		return 1;
888 
889 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
890 		return 1;
891 
892 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
893 		return 1;
894 
895 	if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
896 		return 1;
897 
898 	if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
899 		return 1;
900 
901 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
902 		return 1;
903 
904 	if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
905 		return 1;
906 
907 	if (is_long_mode(vcpu)) {
908 		if (!(cr4 & X86_CR4_PAE))
909 			return 1;
910 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
911 		   && ((cr4 ^ old_cr4) & pdptr_bits)
912 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
913 				   kvm_read_cr3(vcpu)))
914 		return 1;
915 
916 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
917 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
918 			return 1;
919 
920 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
921 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
922 			return 1;
923 	}
924 
925 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
926 		return 1;
927 
928 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
929 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
930 		kvm_mmu_reset_context(vcpu);
931 
932 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
933 		kvm_update_cpuid(vcpu);
934 
935 	return 0;
936 }
937 EXPORT_SYMBOL_GPL(kvm_set_cr4);
938 
939 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
940 {
941 	bool skip_tlb_flush = false;
942 #ifdef CONFIG_X86_64
943 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
944 
945 	if (pcid_enabled) {
946 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
947 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
948 	}
949 #endif
950 
951 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
952 		if (!skip_tlb_flush) {
953 			kvm_mmu_sync_roots(vcpu);
954 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
955 		}
956 		return 0;
957 	}
958 
959 	if (is_long_mode(vcpu) &&
960 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
961 		return 1;
962 	else if (is_pae(vcpu) && is_paging(vcpu) &&
963 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
964 		return 1;
965 
966 	kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
967 	vcpu->arch.cr3 = cr3;
968 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
969 
970 	return 0;
971 }
972 EXPORT_SYMBOL_GPL(kvm_set_cr3);
973 
974 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
975 {
976 	if (cr8 & CR8_RESERVED_BITS)
977 		return 1;
978 	if (lapic_in_kernel(vcpu))
979 		kvm_lapic_set_tpr(vcpu, cr8);
980 	else
981 		vcpu->arch.cr8 = cr8;
982 	return 0;
983 }
984 EXPORT_SYMBOL_GPL(kvm_set_cr8);
985 
986 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
987 {
988 	if (lapic_in_kernel(vcpu))
989 		return kvm_lapic_get_cr8(vcpu);
990 	else
991 		return vcpu->arch.cr8;
992 }
993 EXPORT_SYMBOL_GPL(kvm_get_cr8);
994 
995 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
996 {
997 	int i;
998 
999 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1000 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1001 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1002 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1003 	}
1004 }
1005 
1006 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1007 {
1008 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1009 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1010 }
1011 
1012 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1013 {
1014 	unsigned long dr7;
1015 
1016 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1017 		dr7 = vcpu->arch.guest_debug_dr7;
1018 	else
1019 		dr7 = vcpu->arch.dr7;
1020 	kvm_x86_ops->set_dr7(vcpu, dr7);
1021 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1022 	if (dr7 & DR7_BP_EN_MASK)
1023 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1024 }
1025 
1026 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1027 {
1028 	u64 fixed = DR6_FIXED_1;
1029 
1030 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1031 		fixed |= DR6_RTM;
1032 	return fixed;
1033 }
1034 
1035 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1036 {
1037 	switch (dr) {
1038 	case 0 ... 3:
1039 		vcpu->arch.db[dr] = val;
1040 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1041 			vcpu->arch.eff_db[dr] = val;
1042 		break;
1043 	case 4:
1044 		/* fall through */
1045 	case 6:
1046 		if (val & 0xffffffff00000000ULL)
1047 			return -1; /* #GP */
1048 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1049 		kvm_update_dr6(vcpu);
1050 		break;
1051 	case 5:
1052 		/* fall through */
1053 	default: /* 7 */
1054 		if (val & 0xffffffff00000000ULL)
1055 			return -1; /* #GP */
1056 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1057 		kvm_update_dr7(vcpu);
1058 		break;
1059 	}
1060 
1061 	return 0;
1062 }
1063 
1064 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1065 {
1066 	if (__kvm_set_dr(vcpu, dr, val)) {
1067 		kvm_inject_gp(vcpu, 0);
1068 		return 1;
1069 	}
1070 	return 0;
1071 }
1072 EXPORT_SYMBOL_GPL(kvm_set_dr);
1073 
1074 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1075 {
1076 	switch (dr) {
1077 	case 0 ... 3:
1078 		*val = vcpu->arch.db[dr];
1079 		break;
1080 	case 4:
1081 		/* fall through */
1082 	case 6:
1083 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1084 			*val = vcpu->arch.dr6;
1085 		else
1086 			*val = kvm_x86_ops->get_dr6(vcpu);
1087 		break;
1088 	case 5:
1089 		/* fall through */
1090 	default: /* 7 */
1091 		*val = vcpu->arch.dr7;
1092 		break;
1093 	}
1094 	return 0;
1095 }
1096 EXPORT_SYMBOL_GPL(kvm_get_dr);
1097 
1098 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1099 {
1100 	u32 ecx = kvm_rcx_read(vcpu);
1101 	u64 data;
1102 	int err;
1103 
1104 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1105 	if (err)
1106 		return err;
1107 	kvm_rax_write(vcpu, (u32)data);
1108 	kvm_rdx_write(vcpu, data >> 32);
1109 	return err;
1110 }
1111 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1112 
1113 /*
1114  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1115  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1116  *
1117  * This list is modified at module load time to reflect the
1118  * capabilities of the host cpu. This capabilities test skips MSRs that are
1119  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1120  * may depend on host virtualization features rather than host cpu features.
1121  */
1122 
1123 static u32 msrs_to_save[] = {
1124 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1125 	MSR_STAR,
1126 #ifdef CONFIG_X86_64
1127 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1128 #endif
1129 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1130 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1131 	MSR_IA32_SPEC_CTRL,
1132 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1133 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1134 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1135 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1136 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1137 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1138 };
1139 
1140 static unsigned num_msrs_to_save;
1141 
1142 static u32 emulated_msrs[] = {
1143 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1144 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1145 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1146 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1147 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1148 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1149 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1150 	HV_X64_MSR_RESET,
1151 	HV_X64_MSR_VP_INDEX,
1152 	HV_X64_MSR_VP_RUNTIME,
1153 	HV_X64_MSR_SCONTROL,
1154 	HV_X64_MSR_STIMER0_CONFIG,
1155 	HV_X64_MSR_VP_ASSIST_PAGE,
1156 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1157 	HV_X64_MSR_TSC_EMULATION_STATUS,
1158 
1159 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1160 	MSR_KVM_PV_EOI_EN,
1161 
1162 	MSR_IA32_TSC_ADJUST,
1163 	MSR_IA32_TSCDEADLINE,
1164 	MSR_IA32_ARCH_CAPABILITIES,
1165 	MSR_IA32_MISC_ENABLE,
1166 	MSR_IA32_MCG_STATUS,
1167 	MSR_IA32_MCG_CTL,
1168 	MSR_IA32_MCG_EXT_CTL,
1169 	MSR_IA32_SMBASE,
1170 	MSR_SMI_COUNT,
1171 	MSR_PLATFORM_INFO,
1172 	MSR_MISC_FEATURES_ENABLES,
1173 	MSR_AMD64_VIRT_SPEC_CTRL,
1174 	MSR_IA32_POWER_CTL,
1175 
1176 	MSR_K7_HWCR,
1177 };
1178 
1179 static unsigned num_emulated_msrs;
1180 
1181 /*
1182  * List of msr numbers which are used to expose MSR-based features that
1183  * can be used by a hypervisor to validate requested CPU features.
1184  */
1185 static u32 msr_based_features[] = {
1186 	MSR_IA32_VMX_BASIC,
1187 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1188 	MSR_IA32_VMX_PINBASED_CTLS,
1189 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1190 	MSR_IA32_VMX_PROCBASED_CTLS,
1191 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1192 	MSR_IA32_VMX_EXIT_CTLS,
1193 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1194 	MSR_IA32_VMX_ENTRY_CTLS,
1195 	MSR_IA32_VMX_MISC,
1196 	MSR_IA32_VMX_CR0_FIXED0,
1197 	MSR_IA32_VMX_CR0_FIXED1,
1198 	MSR_IA32_VMX_CR4_FIXED0,
1199 	MSR_IA32_VMX_CR4_FIXED1,
1200 	MSR_IA32_VMX_VMCS_ENUM,
1201 	MSR_IA32_VMX_PROCBASED_CTLS2,
1202 	MSR_IA32_VMX_EPT_VPID_CAP,
1203 	MSR_IA32_VMX_VMFUNC,
1204 
1205 	MSR_F10H_DECFG,
1206 	MSR_IA32_UCODE_REV,
1207 	MSR_IA32_ARCH_CAPABILITIES,
1208 };
1209 
1210 static unsigned int num_msr_based_features;
1211 
1212 u64 kvm_get_arch_capabilities(void)
1213 {
1214 	u64 data;
1215 
1216 	rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1217 
1218 	/*
1219 	 * If we're doing cache flushes (either "always" or "cond")
1220 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1221 	 * If an outer hypervisor is doing the cache flush for us
1222 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1223 	 * capability to the guest too, and if EPT is disabled we're not
1224 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1225 	 * require a nested hypervisor to do a flush of its own.
1226 	 */
1227 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1228 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1229 
1230 	return data;
1231 }
1232 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1233 
1234 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1235 {
1236 	switch (msr->index) {
1237 	case MSR_IA32_ARCH_CAPABILITIES:
1238 		msr->data = kvm_get_arch_capabilities();
1239 		break;
1240 	case MSR_IA32_UCODE_REV:
1241 		rdmsrl_safe(msr->index, &msr->data);
1242 		break;
1243 	default:
1244 		if (kvm_x86_ops->get_msr_feature(msr))
1245 			return 1;
1246 	}
1247 	return 0;
1248 }
1249 
1250 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1251 {
1252 	struct kvm_msr_entry msr;
1253 	int r;
1254 
1255 	msr.index = index;
1256 	r = kvm_get_msr_feature(&msr);
1257 	if (r)
1258 		return r;
1259 
1260 	*data = msr.data;
1261 
1262 	return 0;
1263 }
1264 
1265 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1266 {
1267 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1268 		return false;
1269 
1270 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1271 		return false;
1272 
1273 	if (efer & (EFER_LME | EFER_LMA) &&
1274 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1275 		return false;
1276 
1277 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1278 		return false;
1279 
1280 	return true;
1281 
1282 }
1283 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1284 {
1285 	if (efer & efer_reserved_bits)
1286 		return false;
1287 
1288 	return __kvm_valid_efer(vcpu, efer);
1289 }
1290 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1291 
1292 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1293 {
1294 	u64 old_efer = vcpu->arch.efer;
1295 	u64 efer = msr_info->data;
1296 
1297 	if (efer & efer_reserved_bits)
1298 		return 1;
1299 
1300 	if (!msr_info->host_initiated) {
1301 		if (!__kvm_valid_efer(vcpu, efer))
1302 			return 1;
1303 
1304 		if (is_paging(vcpu) &&
1305 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1306 			return 1;
1307 	}
1308 
1309 	efer &= ~EFER_LMA;
1310 	efer |= vcpu->arch.efer & EFER_LMA;
1311 
1312 	kvm_x86_ops->set_efer(vcpu, efer);
1313 
1314 	/* Update reserved bits */
1315 	if ((efer ^ old_efer) & EFER_NX)
1316 		kvm_mmu_reset_context(vcpu);
1317 
1318 	return 0;
1319 }
1320 
1321 void kvm_enable_efer_bits(u64 mask)
1322 {
1323        efer_reserved_bits &= ~mask;
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1326 
1327 /*
1328  * Writes msr value into into the appropriate "register".
1329  * Returns 0 on success, non-0 otherwise.
1330  * Assumes vcpu_load() was already called.
1331  */
1332 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1333 {
1334 	switch (msr->index) {
1335 	case MSR_FS_BASE:
1336 	case MSR_GS_BASE:
1337 	case MSR_KERNEL_GS_BASE:
1338 	case MSR_CSTAR:
1339 	case MSR_LSTAR:
1340 		if (is_noncanonical_address(msr->data, vcpu))
1341 			return 1;
1342 		break;
1343 	case MSR_IA32_SYSENTER_EIP:
1344 	case MSR_IA32_SYSENTER_ESP:
1345 		/*
1346 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1347 		 * non-canonical address is written on Intel but not on
1348 		 * AMD (which ignores the top 32-bits, because it does
1349 		 * not implement 64-bit SYSENTER).
1350 		 *
1351 		 * 64-bit code should hence be able to write a non-canonical
1352 		 * value on AMD.  Making the address canonical ensures that
1353 		 * vmentry does not fail on Intel after writing a non-canonical
1354 		 * value, and that something deterministic happens if the guest
1355 		 * invokes 64-bit SYSENTER.
1356 		 */
1357 		msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1358 	}
1359 	return kvm_x86_ops->set_msr(vcpu, msr);
1360 }
1361 EXPORT_SYMBOL_GPL(kvm_set_msr);
1362 
1363 /*
1364  * Adapt set_msr() to msr_io()'s calling convention
1365  */
1366 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1367 {
1368 	struct msr_data msr;
1369 	int r;
1370 
1371 	msr.index = index;
1372 	msr.host_initiated = true;
1373 	r = kvm_get_msr(vcpu, &msr);
1374 	if (r)
1375 		return r;
1376 
1377 	*data = msr.data;
1378 	return 0;
1379 }
1380 
1381 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1382 {
1383 	struct msr_data msr;
1384 
1385 	msr.data = *data;
1386 	msr.index = index;
1387 	msr.host_initiated = true;
1388 	return kvm_set_msr(vcpu, &msr);
1389 }
1390 
1391 #ifdef CONFIG_X86_64
1392 struct pvclock_gtod_data {
1393 	seqcount_t	seq;
1394 
1395 	struct { /* extract of a clocksource struct */
1396 		int vclock_mode;
1397 		u64	cycle_last;
1398 		u64	mask;
1399 		u32	mult;
1400 		u32	shift;
1401 	} clock;
1402 
1403 	u64		boot_ns;
1404 	u64		nsec_base;
1405 	u64		wall_time_sec;
1406 };
1407 
1408 static struct pvclock_gtod_data pvclock_gtod_data;
1409 
1410 static void update_pvclock_gtod(struct timekeeper *tk)
1411 {
1412 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1413 	u64 boot_ns;
1414 
1415 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1416 
1417 	write_seqcount_begin(&vdata->seq);
1418 
1419 	/* copy pvclock gtod data */
1420 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1421 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1422 	vdata->clock.mask		= tk->tkr_mono.mask;
1423 	vdata->clock.mult		= tk->tkr_mono.mult;
1424 	vdata->clock.shift		= tk->tkr_mono.shift;
1425 
1426 	vdata->boot_ns			= boot_ns;
1427 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1428 
1429 	vdata->wall_time_sec            = tk->xtime_sec;
1430 
1431 	write_seqcount_end(&vdata->seq);
1432 }
1433 #endif
1434 
1435 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1436 {
1437 	/*
1438 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1439 	 * vcpu_enter_guest.  This function is only called from
1440 	 * the physical CPU that is running vcpu.
1441 	 */
1442 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1443 }
1444 
1445 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1446 {
1447 	int version;
1448 	int r;
1449 	struct pvclock_wall_clock wc;
1450 	struct timespec64 boot;
1451 
1452 	if (!wall_clock)
1453 		return;
1454 
1455 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1456 	if (r)
1457 		return;
1458 
1459 	if (version & 1)
1460 		++version;  /* first time write, random junk */
1461 
1462 	++version;
1463 
1464 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1465 		return;
1466 
1467 	/*
1468 	 * The guest calculates current wall clock time by adding
1469 	 * system time (updated by kvm_guest_time_update below) to the
1470 	 * wall clock specified here.  guest system time equals host
1471 	 * system time for us, thus we must fill in host boot time here.
1472 	 */
1473 	getboottime64(&boot);
1474 
1475 	if (kvm->arch.kvmclock_offset) {
1476 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1477 		boot = timespec64_sub(boot, ts);
1478 	}
1479 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1480 	wc.nsec = boot.tv_nsec;
1481 	wc.version = version;
1482 
1483 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1484 
1485 	version++;
1486 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1487 }
1488 
1489 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1490 {
1491 	do_shl32_div32(dividend, divisor);
1492 	return dividend;
1493 }
1494 
1495 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1496 			       s8 *pshift, u32 *pmultiplier)
1497 {
1498 	uint64_t scaled64;
1499 	int32_t  shift = 0;
1500 	uint64_t tps64;
1501 	uint32_t tps32;
1502 
1503 	tps64 = base_hz;
1504 	scaled64 = scaled_hz;
1505 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1506 		tps64 >>= 1;
1507 		shift--;
1508 	}
1509 
1510 	tps32 = (uint32_t)tps64;
1511 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1512 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1513 			scaled64 >>= 1;
1514 		else
1515 			tps32 <<= 1;
1516 		shift++;
1517 	}
1518 
1519 	*pshift = shift;
1520 	*pmultiplier = div_frac(scaled64, tps32);
1521 
1522 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1523 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1524 }
1525 
1526 #ifdef CONFIG_X86_64
1527 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1528 #endif
1529 
1530 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1531 static unsigned long max_tsc_khz;
1532 
1533 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1534 {
1535 	u64 v = (u64)khz * (1000000 + ppm);
1536 	do_div(v, 1000000);
1537 	return v;
1538 }
1539 
1540 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1541 {
1542 	u64 ratio;
1543 
1544 	/* Guest TSC same frequency as host TSC? */
1545 	if (!scale) {
1546 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1547 		return 0;
1548 	}
1549 
1550 	/* TSC scaling supported? */
1551 	if (!kvm_has_tsc_control) {
1552 		if (user_tsc_khz > tsc_khz) {
1553 			vcpu->arch.tsc_catchup = 1;
1554 			vcpu->arch.tsc_always_catchup = 1;
1555 			return 0;
1556 		} else {
1557 			WARN(1, "user requested TSC rate below hardware speed\n");
1558 			return -1;
1559 		}
1560 	}
1561 
1562 	/* TSC scaling required  - calculate ratio */
1563 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1564 				user_tsc_khz, tsc_khz);
1565 
1566 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1567 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1568 			  user_tsc_khz);
1569 		return -1;
1570 	}
1571 
1572 	vcpu->arch.tsc_scaling_ratio = ratio;
1573 	return 0;
1574 }
1575 
1576 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1577 {
1578 	u32 thresh_lo, thresh_hi;
1579 	int use_scaling = 0;
1580 
1581 	/* tsc_khz can be zero if TSC calibration fails */
1582 	if (user_tsc_khz == 0) {
1583 		/* set tsc_scaling_ratio to a safe value */
1584 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1585 		return -1;
1586 	}
1587 
1588 	/* Compute a scale to convert nanoseconds in TSC cycles */
1589 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1590 			   &vcpu->arch.virtual_tsc_shift,
1591 			   &vcpu->arch.virtual_tsc_mult);
1592 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1593 
1594 	/*
1595 	 * Compute the variation in TSC rate which is acceptable
1596 	 * within the range of tolerance and decide if the
1597 	 * rate being applied is within that bounds of the hardware
1598 	 * rate.  If so, no scaling or compensation need be done.
1599 	 */
1600 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1601 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1602 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1603 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1604 		use_scaling = 1;
1605 	}
1606 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1607 }
1608 
1609 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1610 {
1611 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1612 				      vcpu->arch.virtual_tsc_mult,
1613 				      vcpu->arch.virtual_tsc_shift);
1614 	tsc += vcpu->arch.this_tsc_write;
1615 	return tsc;
1616 }
1617 
1618 static inline int gtod_is_based_on_tsc(int mode)
1619 {
1620 	return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1621 }
1622 
1623 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1624 {
1625 #ifdef CONFIG_X86_64
1626 	bool vcpus_matched;
1627 	struct kvm_arch *ka = &vcpu->kvm->arch;
1628 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1629 
1630 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1631 			 atomic_read(&vcpu->kvm->online_vcpus));
1632 
1633 	/*
1634 	 * Once the masterclock is enabled, always perform request in
1635 	 * order to update it.
1636 	 *
1637 	 * In order to enable masterclock, the host clocksource must be TSC
1638 	 * and the vcpus need to have matched TSCs.  When that happens,
1639 	 * perform request to enable masterclock.
1640 	 */
1641 	if (ka->use_master_clock ||
1642 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1643 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1644 
1645 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1646 			    atomic_read(&vcpu->kvm->online_vcpus),
1647 		            ka->use_master_clock, gtod->clock.vclock_mode);
1648 #endif
1649 }
1650 
1651 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1652 {
1653 	u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1654 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1655 }
1656 
1657 /*
1658  * Multiply tsc by a fixed point number represented by ratio.
1659  *
1660  * The most significant 64-N bits (mult) of ratio represent the
1661  * integral part of the fixed point number; the remaining N bits
1662  * (frac) represent the fractional part, ie. ratio represents a fixed
1663  * point number (mult + frac * 2^(-N)).
1664  *
1665  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1666  */
1667 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1668 {
1669 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1670 }
1671 
1672 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1673 {
1674 	u64 _tsc = tsc;
1675 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1676 
1677 	if (ratio != kvm_default_tsc_scaling_ratio)
1678 		_tsc = __scale_tsc(ratio, tsc);
1679 
1680 	return _tsc;
1681 }
1682 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1683 
1684 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1685 {
1686 	u64 tsc;
1687 
1688 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1689 
1690 	return target_tsc - tsc;
1691 }
1692 
1693 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1694 {
1695 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1696 
1697 	return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1698 }
1699 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1700 
1701 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1702 {
1703 	vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1704 }
1705 
1706 static inline bool kvm_check_tsc_unstable(void)
1707 {
1708 #ifdef CONFIG_X86_64
1709 	/*
1710 	 * TSC is marked unstable when we're running on Hyper-V,
1711 	 * 'TSC page' clocksource is good.
1712 	 */
1713 	if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1714 		return false;
1715 #endif
1716 	return check_tsc_unstable();
1717 }
1718 
1719 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1720 {
1721 	struct kvm *kvm = vcpu->kvm;
1722 	u64 offset, ns, elapsed;
1723 	unsigned long flags;
1724 	bool matched;
1725 	bool already_matched;
1726 	u64 data = msr->data;
1727 	bool synchronizing = false;
1728 
1729 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1730 	offset = kvm_compute_tsc_offset(vcpu, data);
1731 	ns = ktime_get_boot_ns();
1732 	elapsed = ns - kvm->arch.last_tsc_nsec;
1733 
1734 	if (vcpu->arch.virtual_tsc_khz) {
1735 		if (data == 0 && msr->host_initiated) {
1736 			/*
1737 			 * detection of vcpu initialization -- need to sync
1738 			 * with other vCPUs. This particularly helps to keep
1739 			 * kvm_clock stable after CPU hotplug
1740 			 */
1741 			synchronizing = true;
1742 		} else {
1743 			u64 tsc_exp = kvm->arch.last_tsc_write +
1744 						nsec_to_cycles(vcpu, elapsed);
1745 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1746 			/*
1747 			 * Special case: TSC write with a small delta (1 second)
1748 			 * of virtual cycle time against real time is
1749 			 * interpreted as an attempt to synchronize the CPU.
1750 			 */
1751 			synchronizing = data < tsc_exp + tsc_hz &&
1752 					data + tsc_hz > tsc_exp;
1753 		}
1754 	}
1755 
1756 	/*
1757 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1758 	 * TSC, we add elapsed time in this computation.  We could let the
1759 	 * compensation code attempt to catch up if we fall behind, but
1760 	 * it's better to try to match offsets from the beginning.
1761          */
1762 	if (synchronizing &&
1763 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1764 		if (!kvm_check_tsc_unstable()) {
1765 			offset = kvm->arch.cur_tsc_offset;
1766 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1767 		} else {
1768 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1769 			data += delta;
1770 			offset = kvm_compute_tsc_offset(vcpu, data);
1771 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1772 		}
1773 		matched = true;
1774 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1775 	} else {
1776 		/*
1777 		 * We split periods of matched TSC writes into generations.
1778 		 * For each generation, we track the original measured
1779 		 * nanosecond time, offset, and write, so if TSCs are in
1780 		 * sync, we can match exact offset, and if not, we can match
1781 		 * exact software computation in compute_guest_tsc()
1782 		 *
1783 		 * These values are tracked in kvm->arch.cur_xxx variables.
1784 		 */
1785 		kvm->arch.cur_tsc_generation++;
1786 		kvm->arch.cur_tsc_nsec = ns;
1787 		kvm->arch.cur_tsc_write = data;
1788 		kvm->arch.cur_tsc_offset = offset;
1789 		matched = false;
1790 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1791 			 kvm->arch.cur_tsc_generation, data);
1792 	}
1793 
1794 	/*
1795 	 * We also track th most recent recorded KHZ, write and time to
1796 	 * allow the matching interval to be extended at each write.
1797 	 */
1798 	kvm->arch.last_tsc_nsec = ns;
1799 	kvm->arch.last_tsc_write = data;
1800 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1801 
1802 	vcpu->arch.last_guest_tsc = data;
1803 
1804 	/* Keep track of which generation this VCPU has synchronized to */
1805 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1806 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1807 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1808 
1809 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1810 		update_ia32_tsc_adjust_msr(vcpu, offset);
1811 
1812 	kvm_vcpu_write_tsc_offset(vcpu, offset);
1813 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1814 
1815 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1816 	if (!matched) {
1817 		kvm->arch.nr_vcpus_matched_tsc = 0;
1818 	} else if (!already_matched) {
1819 		kvm->arch.nr_vcpus_matched_tsc++;
1820 	}
1821 
1822 	kvm_track_tsc_matching(vcpu);
1823 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1824 }
1825 
1826 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1827 
1828 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1829 					   s64 adjustment)
1830 {
1831 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1832 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1833 }
1834 
1835 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1836 {
1837 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1838 		WARN_ON(adjustment < 0);
1839 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1840 	adjust_tsc_offset_guest(vcpu, adjustment);
1841 }
1842 
1843 #ifdef CONFIG_X86_64
1844 
1845 static u64 read_tsc(void)
1846 {
1847 	u64 ret = (u64)rdtsc_ordered();
1848 	u64 last = pvclock_gtod_data.clock.cycle_last;
1849 
1850 	if (likely(ret >= last))
1851 		return ret;
1852 
1853 	/*
1854 	 * GCC likes to generate cmov here, but this branch is extremely
1855 	 * predictable (it's just a function of time and the likely is
1856 	 * very likely) and there's a data dependence, so force GCC
1857 	 * to generate a branch instead.  I don't barrier() because
1858 	 * we don't actually need a barrier, and if this function
1859 	 * ever gets inlined it will generate worse code.
1860 	 */
1861 	asm volatile ("");
1862 	return last;
1863 }
1864 
1865 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1866 {
1867 	long v;
1868 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1869 	u64 tsc_pg_val;
1870 
1871 	switch (gtod->clock.vclock_mode) {
1872 	case VCLOCK_HVCLOCK:
1873 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1874 						  tsc_timestamp);
1875 		if (tsc_pg_val != U64_MAX) {
1876 			/* TSC page valid */
1877 			*mode = VCLOCK_HVCLOCK;
1878 			v = (tsc_pg_val - gtod->clock.cycle_last) &
1879 				gtod->clock.mask;
1880 		} else {
1881 			/* TSC page invalid */
1882 			*mode = VCLOCK_NONE;
1883 		}
1884 		break;
1885 	case VCLOCK_TSC:
1886 		*mode = VCLOCK_TSC;
1887 		*tsc_timestamp = read_tsc();
1888 		v = (*tsc_timestamp - gtod->clock.cycle_last) &
1889 			gtod->clock.mask;
1890 		break;
1891 	default:
1892 		*mode = VCLOCK_NONE;
1893 	}
1894 
1895 	if (*mode == VCLOCK_NONE)
1896 		*tsc_timestamp = v = 0;
1897 
1898 	return v * gtod->clock.mult;
1899 }
1900 
1901 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1902 {
1903 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1904 	unsigned long seq;
1905 	int mode;
1906 	u64 ns;
1907 
1908 	do {
1909 		seq = read_seqcount_begin(&gtod->seq);
1910 		ns = gtod->nsec_base;
1911 		ns += vgettsc(tsc_timestamp, &mode);
1912 		ns >>= gtod->clock.shift;
1913 		ns += gtod->boot_ns;
1914 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1915 	*t = ns;
1916 
1917 	return mode;
1918 }
1919 
1920 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1921 {
1922 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1923 	unsigned long seq;
1924 	int mode;
1925 	u64 ns;
1926 
1927 	do {
1928 		seq = read_seqcount_begin(&gtod->seq);
1929 		ts->tv_sec = gtod->wall_time_sec;
1930 		ns = gtod->nsec_base;
1931 		ns += vgettsc(tsc_timestamp, &mode);
1932 		ns >>= gtod->clock.shift;
1933 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1934 
1935 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1936 	ts->tv_nsec = ns;
1937 
1938 	return mode;
1939 }
1940 
1941 /* returns true if host is using TSC based clocksource */
1942 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1943 {
1944 	/* checked again under seqlock below */
1945 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1946 		return false;
1947 
1948 	return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1949 						      tsc_timestamp));
1950 }
1951 
1952 /* returns true if host is using TSC based clocksource */
1953 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1954 					   u64 *tsc_timestamp)
1955 {
1956 	/* checked again under seqlock below */
1957 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1958 		return false;
1959 
1960 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1961 }
1962 #endif
1963 
1964 /*
1965  *
1966  * Assuming a stable TSC across physical CPUS, and a stable TSC
1967  * across virtual CPUs, the following condition is possible.
1968  * Each numbered line represents an event visible to both
1969  * CPUs at the next numbered event.
1970  *
1971  * "timespecX" represents host monotonic time. "tscX" represents
1972  * RDTSC value.
1973  *
1974  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1975  *
1976  * 1.  read timespec0,tsc0
1977  * 2.					| timespec1 = timespec0 + N
1978  * 					| tsc1 = tsc0 + M
1979  * 3. transition to guest		| transition to guest
1980  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1981  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1982  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1983  *
1984  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1985  *
1986  * 	- ret0 < ret1
1987  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1988  *		...
1989  *	- 0 < N - M => M < N
1990  *
1991  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1992  * always the case (the difference between two distinct xtime instances
1993  * might be smaller then the difference between corresponding TSC reads,
1994  * when updating guest vcpus pvclock areas).
1995  *
1996  * To avoid that problem, do not allow visibility of distinct
1997  * system_timestamp/tsc_timestamp values simultaneously: use a master
1998  * copy of host monotonic time values. Update that master copy
1999  * in lockstep.
2000  *
2001  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2002  *
2003  */
2004 
2005 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2006 {
2007 #ifdef CONFIG_X86_64
2008 	struct kvm_arch *ka = &kvm->arch;
2009 	int vclock_mode;
2010 	bool host_tsc_clocksource, vcpus_matched;
2011 
2012 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2013 			atomic_read(&kvm->online_vcpus));
2014 
2015 	/*
2016 	 * If the host uses TSC clock, then passthrough TSC as stable
2017 	 * to the guest.
2018 	 */
2019 	host_tsc_clocksource = kvm_get_time_and_clockread(
2020 					&ka->master_kernel_ns,
2021 					&ka->master_cycle_now);
2022 
2023 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2024 				&& !ka->backwards_tsc_observed
2025 				&& !ka->boot_vcpu_runs_old_kvmclock;
2026 
2027 	if (ka->use_master_clock)
2028 		atomic_set(&kvm_guest_has_master_clock, 1);
2029 
2030 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2031 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2032 					vcpus_matched);
2033 #endif
2034 }
2035 
2036 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2037 {
2038 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2039 }
2040 
2041 static void kvm_gen_update_masterclock(struct kvm *kvm)
2042 {
2043 #ifdef CONFIG_X86_64
2044 	int i;
2045 	struct kvm_vcpu *vcpu;
2046 	struct kvm_arch *ka = &kvm->arch;
2047 
2048 	spin_lock(&ka->pvclock_gtod_sync_lock);
2049 	kvm_make_mclock_inprogress_request(kvm);
2050 	/* no guest entries from this point */
2051 	pvclock_update_vm_gtod_copy(kvm);
2052 
2053 	kvm_for_each_vcpu(i, vcpu, kvm)
2054 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2055 
2056 	/* guest entries allowed */
2057 	kvm_for_each_vcpu(i, vcpu, kvm)
2058 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2059 
2060 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2061 #endif
2062 }
2063 
2064 u64 get_kvmclock_ns(struct kvm *kvm)
2065 {
2066 	struct kvm_arch *ka = &kvm->arch;
2067 	struct pvclock_vcpu_time_info hv_clock;
2068 	u64 ret;
2069 
2070 	spin_lock(&ka->pvclock_gtod_sync_lock);
2071 	if (!ka->use_master_clock) {
2072 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2073 		return ktime_get_boot_ns() + ka->kvmclock_offset;
2074 	}
2075 
2076 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2077 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2078 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2079 
2080 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2081 	get_cpu();
2082 
2083 	if (__this_cpu_read(cpu_tsc_khz)) {
2084 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2085 				   &hv_clock.tsc_shift,
2086 				   &hv_clock.tsc_to_system_mul);
2087 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2088 	} else
2089 		ret = ktime_get_boot_ns() + ka->kvmclock_offset;
2090 
2091 	put_cpu();
2092 
2093 	return ret;
2094 }
2095 
2096 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2097 {
2098 	struct kvm_vcpu_arch *vcpu = &v->arch;
2099 	struct pvclock_vcpu_time_info guest_hv_clock;
2100 
2101 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2102 		&guest_hv_clock, sizeof(guest_hv_clock))))
2103 		return;
2104 
2105 	/* This VCPU is paused, but it's legal for a guest to read another
2106 	 * VCPU's kvmclock, so we really have to follow the specification where
2107 	 * it says that version is odd if data is being modified, and even after
2108 	 * it is consistent.
2109 	 *
2110 	 * Version field updates must be kept separate.  This is because
2111 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2112 	 * writes within a string instruction are weakly ordered.  So there
2113 	 * are three writes overall.
2114 	 *
2115 	 * As a small optimization, only write the version field in the first
2116 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2117 	 * version field is the first in the struct.
2118 	 */
2119 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2120 
2121 	if (guest_hv_clock.version & 1)
2122 		++guest_hv_clock.version;  /* first time write, random junk */
2123 
2124 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2125 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2126 				&vcpu->hv_clock,
2127 				sizeof(vcpu->hv_clock.version));
2128 
2129 	smp_wmb();
2130 
2131 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2132 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2133 
2134 	if (vcpu->pvclock_set_guest_stopped_request) {
2135 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2136 		vcpu->pvclock_set_guest_stopped_request = false;
2137 	}
2138 
2139 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2140 
2141 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2142 				&vcpu->hv_clock,
2143 				sizeof(vcpu->hv_clock));
2144 
2145 	smp_wmb();
2146 
2147 	vcpu->hv_clock.version++;
2148 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2149 				&vcpu->hv_clock,
2150 				sizeof(vcpu->hv_clock.version));
2151 }
2152 
2153 static int kvm_guest_time_update(struct kvm_vcpu *v)
2154 {
2155 	unsigned long flags, tgt_tsc_khz;
2156 	struct kvm_vcpu_arch *vcpu = &v->arch;
2157 	struct kvm_arch *ka = &v->kvm->arch;
2158 	s64 kernel_ns;
2159 	u64 tsc_timestamp, host_tsc;
2160 	u8 pvclock_flags;
2161 	bool use_master_clock;
2162 
2163 	kernel_ns = 0;
2164 	host_tsc = 0;
2165 
2166 	/*
2167 	 * If the host uses TSC clock, then passthrough TSC as stable
2168 	 * to the guest.
2169 	 */
2170 	spin_lock(&ka->pvclock_gtod_sync_lock);
2171 	use_master_clock = ka->use_master_clock;
2172 	if (use_master_clock) {
2173 		host_tsc = ka->master_cycle_now;
2174 		kernel_ns = ka->master_kernel_ns;
2175 	}
2176 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2177 
2178 	/* Keep irq disabled to prevent changes to the clock */
2179 	local_irq_save(flags);
2180 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2181 	if (unlikely(tgt_tsc_khz == 0)) {
2182 		local_irq_restore(flags);
2183 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2184 		return 1;
2185 	}
2186 	if (!use_master_clock) {
2187 		host_tsc = rdtsc();
2188 		kernel_ns = ktime_get_boot_ns();
2189 	}
2190 
2191 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2192 
2193 	/*
2194 	 * We may have to catch up the TSC to match elapsed wall clock
2195 	 * time for two reasons, even if kvmclock is used.
2196 	 *   1) CPU could have been running below the maximum TSC rate
2197 	 *   2) Broken TSC compensation resets the base at each VCPU
2198 	 *      entry to avoid unknown leaps of TSC even when running
2199 	 *      again on the same CPU.  This may cause apparent elapsed
2200 	 *      time to disappear, and the guest to stand still or run
2201 	 *	very slowly.
2202 	 */
2203 	if (vcpu->tsc_catchup) {
2204 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2205 		if (tsc > tsc_timestamp) {
2206 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2207 			tsc_timestamp = tsc;
2208 		}
2209 	}
2210 
2211 	local_irq_restore(flags);
2212 
2213 	/* With all the info we got, fill in the values */
2214 
2215 	if (kvm_has_tsc_control)
2216 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2217 
2218 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2219 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2220 				   &vcpu->hv_clock.tsc_shift,
2221 				   &vcpu->hv_clock.tsc_to_system_mul);
2222 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2223 	}
2224 
2225 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2226 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2227 	vcpu->last_guest_tsc = tsc_timestamp;
2228 
2229 	/* If the host uses TSC clocksource, then it is stable */
2230 	pvclock_flags = 0;
2231 	if (use_master_clock)
2232 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2233 
2234 	vcpu->hv_clock.flags = pvclock_flags;
2235 
2236 	if (vcpu->pv_time_enabled)
2237 		kvm_setup_pvclock_page(v);
2238 	if (v == kvm_get_vcpu(v->kvm, 0))
2239 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2240 	return 0;
2241 }
2242 
2243 /*
2244  * kvmclock updates which are isolated to a given vcpu, such as
2245  * vcpu->cpu migration, should not allow system_timestamp from
2246  * the rest of the vcpus to remain static. Otherwise ntp frequency
2247  * correction applies to one vcpu's system_timestamp but not
2248  * the others.
2249  *
2250  * So in those cases, request a kvmclock update for all vcpus.
2251  * We need to rate-limit these requests though, as they can
2252  * considerably slow guests that have a large number of vcpus.
2253  * The time for a remote vcpu to update its kvmclock is bound
2254  * by the delay we use to rate-limit the updates.
2255  */
2256 
2257 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2258 
2259 static void kvmclock_update_fn(struct work_struct *work)
2260 {
2261 	int i;
2262 	struct delayed_work *dwork = to_delayed_work(work);
2263 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2264 					   kvmclock_update_work);
2265 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2266 	struct kvm_vcpu *vcpu;
2267 
2268 	kvm_for_each_vcpu(i, vcpu, kvm) {
2269 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2270 		kvm_vcpu_kick(vcpu);
2271 	}
2272 }
2273 
2274 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2275 {
2276 	struct kvm *kvm = v->kvm;
2277 
2278 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2279 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2280 					KVMCLOCK_UPDATE_DELAY);
2281 }
2282 
2283 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2284 
2285 static void kvmclock_sync_fn(struct work_struct *work)
2286 {
2287 	struct delayed_work *dwork = to_delayed_work(work);
2288 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2289 					   kvmclock_sync_work);
2290 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2291 
2292 	if (!kvmclock_periodic_sync)
2293 		return;
2294 
2295 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2296 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2297 					KVMCLOCK_SYNC_PERIOD);
2298 }
2299 
2300 /*
2301  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2302  */
2303 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2304 {
2305 	/* McStatusWrEn enabled? */
2306 	if (guest_cpuid_is_amd(vcpu))
2307 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2308 
2309 	return false;
2310 }
2311 
2312 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2313 {
2314 	u64 mcg_cap = vcpu->arch.mcg_cap;
2315 	unsigned bank_num = mcg_cap & 0xff;
2316 	u32 msr = msr_info->index;
2317 	u64 data = msr_info->data;
2318 
2319 	switch (msr) {
2320 	case MSR_IA32_MCG_STATUS:
2321 		vcpu->arch.mcg_status = data;
2322 		break;
2323 	case MSR_IA32_MCG_CTL:
2324 		if (!(mcg_cap & MCG_CTL_P) &&
2325 		    (data || !msr_info->host_initiated))
2326 			return 1;
2327 		if (data != 0 && data != ~(u64)0)
2328 			return 1;
2329 		vcpu->arch.mcg_ctl = data;
2330 		break;
2331 	default:
2332 		if (msr >= MSR_IA32_MC0_CTL &&
2333 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2334 			u32 offset = msr - MSR_IA32_MC0_CTL;
2335 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2336 			 * some Linux kernels though clear bit 10 in bank 4 to
2337 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2338 			 * this to avoid an uncatched #GP in the guest
2339 			 */
2340 			if ((offset & 0x3) == 0 &&
2341 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2342 				return -1;
2343 
2344 			/* MCi_STATUS */
2345 			if (!msr_info->host_initiated &&
2346 			    (offset & 0x3) == 1 && data != 0) {
2347 				if (!can_set_mci_status(vcpu))
2348 					return -1;
2349 			}
2350 
2351 			vcpu->arch.mce_banks[offset] = data;
2352 			break;
2353 		}
2354 		return 1;
2355 	}
2356 	return 0;
2357 }
2358 
2359 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2360 {
2361 	struct kvm *kvm = vcpu->kvm;
2362 	int lm = is_long_mode(vcpu);
2363 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2364 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2365 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2366 		: kvm->arch.xen_hvm_config.blob_size_32;
2367 	u32 page_num = data & ~PAGE_MASK;
2368 	u64 page_addr = data & PAGE_MASK;
2369 	u8 *page;
2370 	int r;
2371 
2372 	r = -E2BIG;
2373 	if (page_num >= blob_size)
2374 		goto out;
2375 	r = -ENOMEM;
2376 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2377 	if (IS_ERR(page)) {
2378 		r = PTR_ERR(page);
2379 		goto out;
2380 	}
2381 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2382 		goto out_free;
2383 	r = 0;
2384 out_free:
2385 	kfree(page);
2386 out:
2387 	return r;
2388 }
2389 
2390 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2391 {
2392 	gpa_t gpa = data & ~0x3f;
2393 
2394 	/* Bits 3:5 are reserved, Should be zero */
2395 	if (data & 0x38)
2396 		return 1;
2397 
2398 	vcpu->arch.apf.msr_val = data;
2399 
2400 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2401 		kvm_clear_async_pf_completion_queue(vcpu);
2402 		kvm_async_pf_hash_reset(vcpu);
2403 		return 0;
2404 	}
2405 
2406 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2407 					sizeof(u32)))
2408 		return 1;
2409 
2410 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2411 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2412 	kvm_async_pf_wakeup_all(vcpu);
2413 	return 0;
2414 }
2415 
2416 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2417 {
2418 	vcpu->arch.pv_time_enabled = false;
2419 }
2420 
2421 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2422 {
2423 	++vcpu->stat.tlb_flush;
2424 	kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2425 }
2426 
2427 static void record_steal_time(struct kvm_vcpu *vcpu)
2428 {
2429 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2430 		return;
2431 
2432 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2433 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2434 		return;
2435 
2436 	/*
2437 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2438 	 * expensive IPIs.
2439 	 */
2440 	if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2441 		kvm_vcpu_flush_tlb(vcpu, false);
2442 
2443 	if (vcpu->arch.st.steal.version & 1)
2444 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2445 
2446 	vcpu->arch.st.steal.version += 1;
2447 
2448 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2449 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2450 
2451 	smp_wmb();
2452 
2453 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2454 		vcpu->arch.st.last_steal;
2455 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2456 
2457 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2458 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2459 
2460 	smp_wmb();
2461 
2462 	vcpu->arch.st.steal.version += 1;
2463 
2464 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2465 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2466 }
2467 
2468 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2469 {
2470 	bool pr = false;
2471 	u32 msr = msr_info->index;
2472 	u64 data = msr_info->data;
2473 
2474 	switch (msr) {
2475 	case MSR_AMD64_NB_CFG:
2476 	case MSR_IA32_UCODE_WRITE:
2477 	case MSR_VM_HSAVE_PA:
2478 	case MSR_AMD64_PATCH_LOADER:
2479 	case MSR_AMD64_BU_CFG2:
2480 	case MSR_AMD64_DC_CFG:
2481 	case MSR_F15H_EX_CFG:
2482 		break;
2483 
2484 	case MSR_IA32_UCODE_REV:
2485 		if (msr_info->host_initiated)
2486 			vcpu->arch.microcode_version = data;
2487 		break;
2488 	case MSR_IA32_ARCH_CAPABILITIES:
2489 		if (!msr_info->host_initiated)
2490 			return 1;
2491 		vcpu->arch.arch_capabilities = data;
2492 		break;
2493 	case MSR_EFER:
2494 		return set_efer(vcpu, msr_info);
2495 	case MSR_K7_HWCR:
2496 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2497 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2498 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2499 
2500 		/* Handle McStatusWrEn */
2501 		if (data == BIT_ULL(18)) {
2502 			vcpu->arch.msr_hwcr = data;
2503 		} else if (data != 0) {
2504 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2505 				    data);
2506 			return 1;
2507 		}
2508 		break;
2509 	case MSR_FAM10H_MMIO_CONF_BASE:
2510 		if (data != 0) {
2511 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2512 				    "0x%llx\n", data);
2513 			return 1;
2514 		}
2515 		break;
2516 	case MSR_IA32_DEBUGCTLMSR:
2517 		if (!data) {
2518 			/* We support the non-activated case already */
2519 			break;
2520 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2521 			/* Values other than LBR and BTF are vendor-specific,
2522 			   thus reserved and should throw a #GP */
2523 			return 1;
2524 		}
2525 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2526 			    __func__, data);
2527 		break;
2528 	case 0x200 ... 0x2ff:
2529 		return kvm_mtrr_set_msr(vcpu, msr, data);
2530 	case MSR_IA32_APICBASE:
2531 		return kvm_set_apic_base(vcpu, msr_info);
2532 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2533 		return kvm_x2apic_msr_write(vcpu, msr, data);
2534 	case MSR_IA32_TSCDEADLINE:
2535 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2536 		break;
2537 	case MSR_IA32_TSC_ADJUST:
2538 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2539 			if (!msr_info->host_initiated) {
2540 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2541 				adjust_tsc_offset_guest(vcpu, adj);
2542 			}
2543 			vcpu->arch.ia32_tsc_adjust_msr = data;
2544 		}
2545 		break;
2546 	case MSR_IA32_MISC_ENABLE:
2547 		vcpu->arch.ia32_misc_enable_msr = data;
2548 		break;
2549 	case MSR_IA32_SMBASE:
2550 		if (!msr_info->host_initiated)
2551 			return 1;
2552 		vcpu->arch.smbase = data;
2553 		break;
2554 	case MSR_IA32_TSC:
2555 		kvm_write_tsc(vcpu, msr_info);
2556 		break;
2557 	case MSR_SMI_COUNT:
2558 		if (!msr_info->host_initiated)
2559 			return 1;
2560 		vcpu->arch.smi_count = data;
2561 		break;
2562 	case MSR_KVM_WALL_CLOCK_NEW:
2563 	case MSR_KVM_WALL_CLOCK:
2564 		vcpu->kvm->arch.wall_clock = data;
2565 		kvm_write_wall_clock(vcpu->kvm, data);
2566 		break;
2567 	case MSR_KVM_SYSTEM_TIME_NEW:
2568 	case MSR_KVM_SYSTEM_TIME: {
2569 		struct kvm_arch *ka = &vcpu->kvm->arch;
2570 
2571 		kvmclock_reset(vcpu);
2572 
2573 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2574 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2575 
2576 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2577 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2578 
2579 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2580 		}
2581 
2582 		vcpu->arch.time = data;
2583 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2584 
2585 		/* we verify if the enable bit is set... */
2586 		if (!(data & 1))
2587 			break;
2588 
2589 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2590 		     &vcpu->arch.pv_time, data & ~1ULL,
2591 		     sizeof(struct pvclock_vcpu_time_info)))
2592 			vcpu->arch.pv_time_enabled = false;
2593 		else
2594 			vcpu->arch.pv_time_enabled = true;
2595 
2596 		break;
2597 	}
2598 	case MSR_KVM_ASYNC_PF_EN:
2599 		if (kvm_pv_enable_async_pf(vcpu, data))
2600 			return 1;
2601 		break;
2602 	case MSR_KVM_STEAL_TIME:
2603 
2604 		if (unlikely(!sched_info_on()))
2605 			return 1;
2606 
2607 		if (data & KVM_STEAL_RESERVED_MASK)
2608 			return 1;
2609 
2610 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2611 						data & KVM_STEAL_VALID_BITS,
2612 						sizeof(struct kvm_steal_time)))
2613 			return 1;
2614 
2615 		vcpu->arch.st.msr_val = data;
2616 
2617 		if (!(data & KVM_MSR_ENABLED))
2618 			break;
2619 
2620 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2621 
2622 		break;
2623 	case MSR_KVM_PV_EOI_EN:
2624 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2625 			return 1;
2626 		break;
2627 
2628 	case MSR_IA32_MCG_CTL:
2629 	case MSR_IA32_MCG_STATUS:
2630 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2631 		return set_msr_mce(vcpu, msr_info);
2632 
2633 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2634 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2635 		pr = true; /* fall through */
2636 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2637 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2638 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2639 			return kvm_pmu_set_msr(vcpu, msr_info);
2640 
2641 		if (pr || data != 0)
2642 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2643 				    "0x%x data 0x%llx\n", msr, data);
2644 		break;
2645 	case MSR_K7_CLK_CTL:
2646 		/*
2647 		 * Ignore all writes to this no longer documented MSR.
2648 		 * Writes are only relevant for old K7 processors,
2649 		 * all pre-dating SVM, but a recommended workaround from
2650 		 * AMD for these chips. It is possible to specify the
2651 		 * affected processor models on the command line, hence
2652 		 * the need to ignore the workaround.
2653 		 */
2654 		break;
2655 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2656 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2657 	case HV_X64_MSR_CRASH_CTL:
2658 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2659 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2660 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2661 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2662 		return kvm_hv_set_msr_common(vcpu, msr, data,
2663 					     msr_info->host_initiated);
2664 	case MSR_IA32_BBL_CR_CTL3:
2665 		/* Drop writes to this legacy MSR -- see rdmsr
2666 		 * counterpart for further detail.
2667 		 */
2668 		if (report_ignored_msrs)
2669 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2670 				msr, data);
2671 		break;
2672 	case MSR_AMD64_OSVW_ID_LENGTH:
2673 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2674 			return 1;
2675 		vcpu->arch.osvw.length = data;
2676 		break;
2677 	case MSR_AMD64_OSVW_STATUS:
2678 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2679 			return 1;
2680 		vcpu->arch.osvw.status = data;
2681 		break;
2682 	case MSR_PLATFORM_INFO:
2683 		if (!msr_info->host_initiated ||
2684 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2685 		     cpuid_fault_enabled(vcpu)))
2686 			return 1;
2687 		vcpu->arch.msr_platform_info = data;
2688 		break;
2689 	case MSR_MISC_FEATURES_ENABLES:
2690 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2691 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2692 		     !supports_cpuid_fault(vcpu)))
2693 			return 1;
2694 		vcpu->arch.msr_misc_features_enables = data;
2695 		break;
2696 	default:
2697 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2698 			return xen_hvm_config(vcpu, data);
2699 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2700 			return kvm_pmu_set_msr(vcpu, msr_info);
2701 		if (!ignore_msrs) {
2702 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2703 				    msr, data);
2704 			return 1;
2705 		} else {
2706 			if (report_ignored_msrs)
2707 				vcpu_unimpl(vcpu,
2708 					"ignored wrmsr: 0x%x data 0x%llx\n",
2709 					msr, data);
2710 			break;
2711 		}
2712 	}
2713 	return 0;
2714 }
2715 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2716 
2717 
2718 /*
2719  * Reads an msr value (of 'msr_index') into 'pdata'.
2720  * Returns 0 on success, non-0 otherwise.
2721  * Assumes vcpu_load() was already called.
2722  */
2723 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2724 {
2725 	return kvm_x86_ops->get_msr(vcpu, msr);
2726 }
2727 EXPORT_SYMBOL_GPL(kvm_get_msr);
2728 
2729 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2730 {
2731 	u64 data;
2732 	u64 mcg_cap = vcpu->arch.mcg_cap;
2733 	unsigned bank_num = mcg_cap & 0xff;
2734 
2735 	switch (msr) {
2736 	case MSR_IA32_P5_MC_ADDR:
2737 	case MSR_IA32_P5_MC_TYPE:
2738 		data = 0;
2739 		break;
2740 	case MSR_IA32_MCG_CAP:
2741 		data = vcpu->arch.mcg_cap;
2742 		break;
2743 	case MSR_IA32_MCG_CTL:
2744 		if (!(mcg_cap & MCG_CTL_P) && !host)
2745 			return 1;
2746 		data = vcpu->arch.mcg_ctl;
2747 		break;
2748 	case MSR_IA32_MCG_STATUS:
2749 		data = vcpu->arch.mcg_status;
2750 		break;
2751 	default:
2752 		if (msr >= MSR_IA32_MC0_CTL &&
2753 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2754 			u32 offset = msr - MSR_IA32_MC0_CTL;
2755 			data = vcpu->arch.mce_banks[offset];
2756 			break;
2757 		}
2758 		return 1;
2759 	}
2760 	*pdata = data;
2761 	return 0;
2762 }
2763 
2764 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2765 {
2766 	switch (msr_info->index) {
2767 	case MSR_IA32_PLATFORM_ID:
2768 	case MSR_IA32_EBL_CR_POWERON:
2769 	case MSR_IA32_DEBUGCTLMSR:
2770 	case MSR_IA32_LASTBRANCHFROMIP:
2771 	case MSR_IA32_LASTBRANCHTOIP:
2772 	case MSR_IA32_LASTINTFROMIP:
2773 	case MSR_IA32_LASTINTTOIP:
2774 	case MSR_K8_SYSCFG:
2775 	case MSR_K8_TSEG_ADDR:
2776 	case MSR_K8_TSEG_MASK:
2777 	case MSR_VM_HSAVE_PA:
2778 	case MSR_K8_INT_PENDING_MSG:
2779 	case MSR_AMD64_NB_CFG:
2780 	case MSR_FAM10H_MMIO_CONF_BASE:
2781 	case MSR_AMD64_BU_CFG2:
2782 	case MSR_IA32_PERF_CTL:
2783 	case MSR_AMD64_DC_CFG:
2784 	case MSR_F15H_EX_CFG:
2785 		msr_info->data = 0;
2786 		break;
2787 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2788 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2789 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2790 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2791 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2792 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2793 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2794 		msr_info->data = 0;
2795 		break;
2796 	case MSR_IA32_UCODE_REV:
2797 		msr_info->data = vcpu->arch.microcode_version;
2798 		break;
2799 	case MSR_IA32_ARCH_CAPABILITIES:
2800 		if (!msr_info->host_initiated &&
2801 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2802 			return 1;
2803 		msr_info->data = vcpu->arch.arch_capabilities;
2804 		break;
2805 	case MSR_IA32_TSC:
2806 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2807 		break;
2808 	case MSR_MTRRcap:
2809 	case 0x200 ... 0x2ff:
2810 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2811 	case 0xcd: /* fsb frequency */
2812 		msr_info->data = 3;
2813 		break;
2814 		/*
2815 		 * MSR_EBC_FREQUENCY_ID
2816 		 * Conservative value valid for even the basic CPU models.
2817 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2818 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2819 		 * and 266MHz for model 3, or 4. Set Core Clock
2820 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2821 		 * 31:24) even though these are only valid for CPU
2822 		 * models > 2, however guests may end up dividing or
2823 		 * multiplying by zero otherwise.
2824 		 */
2825 	case MSR_EBC_FREQUENCY_ID:
2826 		msr_info->data = 1 << 24;
2827 		break;
2828 	case MSR_IA32_APICBASE:
2829 		msr_info->data = kvm_get_apic_base(vcpu);
2830 		break;
2831 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2832 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2833 		break;
2834 	case MSR_IA32_TSCDEADLINE:
2835 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2836 		break;
2837 	case MSR_IA32_TSC_ADJUST:
2838 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2839 		break;
2840 	case MSR_IA32_MISC_ENABLE:
2841 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2842 		break;
2843 	case MSR_IA32_SMBASE:
2844 		if (!msr_info->host_initiated)
2845 			return 1;
2846 		msr_info->data = vcpu->arch.smbase;
2847 		break;
2848 	case MSR_SMI_COUNT:
2849 		msr_info->data = vcpu->arch.smi_count;
2850 		break;
2851 	case MSR_IA32_PERF_STATUS:
2852 		/* TSC increment by tick */
2853 		msr_info->data = 1000ULL;
2854 		/* CPU multiplier */
2855 		msr_info->data |= (((uint64_t)4ULL) << 40);
2856 		break;
2857 	case MSR_EFER:
2858 		msr_info->data = vcpu->arch.efer;
2859 		break;
2860 	case MSR_KVM_WALL_CLOCK:
2861 	case MSR_KVM_WALL_CLOCK_NEW:
2862 		msr_info->data = vcpu->kvm->arch.wall_clock;
2863 		break;
2864 	case MSR_KVM_SYSTEM_TIME:
2865 	case MSR_KVM_SYSTEM_TIME_NEW:
2866 		msr_info->data = vcpu->arch.time;
2867 		break;
2868 	case MSR_KVM_ASYNC_PF_EN:
2869 		msr_info->data = vcpu->arch.apf.msr_val;
2870 		break;
2871 	case MSR_KVM_STEAL_TIME:
2872 		msr_info->data = vcpu->arch.st.msr_val;
2873 		break;
2874 	case MSR_KVM_PV_EOI_EN:
2875 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2876 		break;
2877 	case MSR_IA32_P5_MC_ADDR:
2878 	case MSR_IA32_P5_MC_TYPE:
2879 	case MSR_IA32_MCG_CAP:
2880 	case MSR_IA32_MCG_CTL:
2881 	case MSR_IA32_MCG_STATUS:
2882 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2883 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2884 				   msr_info->host_initiated);
2885 	case MSR_K7_CLK_CTL:
2886 		/*
2887 		 * Provide expected ramp-up count for K7. All other
2888 		 * are set to zero, indicating minimum divisors for
2889 		 * every field.
2890 		 *
2891 		 * This prevents guest kernels on AMD host with CPU
2892 		 * type 6, model 8 and higher from exploding due to
2893 		 * the rdmsr failing.
2894 		 */
2895 		msr_info->data = 0x20000000;
2896 		break;
2897 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2898 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2899 	case HV_X64_MSR_CRASH_CTL:
2900 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2901 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2902 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2903 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2904 		return kvm_hv_get_msr_common(vcpu,
2905 					     msr_info->index, &msr_info->data,
2906 					     msr_info->host_initiated);
2907 		break;
2908 	case MSR_IA32_BBL_CR_CTL3:
2909 		/* This legacy MSR exists but isn't fully documented in current
2910 		 * silicon.  It is however accessed by winxp in very narrow
2911 		 * scenarios where it sets bit #19, itself documented as
2912 		 * a "reserved" bit.  Best effort attempt to source coherent
2913 		 * read data here should the balance of the register be
2914 		 * interpreted by the guest:
2915 		 *
2916 		 * L2 cache control register 3: 64GB range, 256KB size,
2917 		 * enabled, latency 0x1, configured
2918 		 */
2919 		msr_info->data = 0xbe702111;
2920 		break;
2921 	case MSR_AMD64_OSVW_ID_LENGTH:
2922 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2923 			return 1;
2924 		msr_info->data = vcpu->arch.osvw.length;
2925 		break;
2926 	case MSR_AMD64_OSVW_STATUS:
2927 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2928 			return 1;
2929 		msr_info->data = vcpu->arch.osvw.status;
2930 		break;
2931 	case MSR_PLATFORM_INFO:
2932 		if (!msr_info->host_initiated &&
2933 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2934 			return 1;
2935 		msr_info->data = vcpu->arch.msr_platform_info;
2936 		break;
2937 	case MSR_MISC_FEATURES_ENABLES:
2938 		msr_info->data = vcpu->arch.msr_misc_features_enables;
2939 		break;
2940 	case MSR_K7_HWCR:
2941 		msr_info->data = vcpu->arch.msr_hwcr;
2942 		break;
2943 	default:
2944 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2945 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2946 		if (!ignore_msrs) {
2947 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2948 					       msr_info->index);
2949 			return 1;
2950 		} else {
2951 			if (report_ignored_msrs)
2952 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2953 					msr_info->index);
2954 			msr_info->data = 0;
2955 		}
2956 		break;
2957 	}
2958 	return 0;
2959 }
2960 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2961 
2962 /*
2963  * Read or write a bunch of msrs. All parameters are kernel addresses.
2964  *
2965  * @return number of msrs set successfully.
2966  */
2967 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2968 		    struct kvm_msr_entry *entries,
2969 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2970 				  unsigned index, u64 *data))
2971 {
2972 	int i;
2973 
2974 	for (i = 0; i < msrs->nmsrs; ++i)
2975 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2976 			break;
2977 
2978 	return i;
2979 }
2980 
2981 /*
2982  * Read or write a bunch of msrs. Parameters are user addresses.
2983  *
2984  * @return number of msrs set successfully.
2985  */
2986 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2987 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2988 				unsigned index, u64 *data),
2989 		  int writeback)
2990 {
2991 	struct kvm_msrs msrs;
2992 	struct kvm_msr_entry *entries;
2993 	int r, n;
2994 	unsigned size;
2995 
2996 	r = -EFAULT;
2997 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
2998 		goto out;
2999 
3000 	r = -E2BIG;
3001 	if (msrs.nmsrs >= MAX_IO_MSRS)
3002 		goto out;
3003 
3004 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3005 	entries = memdup_user(user_msrs->entries, size);
3006 	if (IS_ERR(entries)) {
3007 		r = PTR_ERR(entries);
3008 		goto out;
3009 	}
3010 
3011 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3012 	if (r < 0)
3013 		goto out_free;
3014 
3015 	r = -EFAULT;
3016 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3017 		goto out_free;
3018 
3019 	r = n;
3020 
3021 out_free:
3022 	kfree(entries);
3023 out:
3024 	return r;
3025 }
3026 
3027 static inline bool kvm_can_mwait_in_guest(void)
3028 {
3029 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3030 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3031 		boot_cpu_has(X86_FEATURE_ARAT);
3032 }
3033 
3034 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3035 {
3036 	int r = 0;
3037 
3038 	switch (ext) {
3039 	case KVM_CAP_IRQCHIP:
3040 	case KVM_CAP_HLT:
3041 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3042 	case KVM_CAP_SET_TSS_ADDR:
3043 	case KVM_CAP_EXT_CPUID:
3044 	case KVM_CAP_EXT_EMUL_CPUID:
3045 	case KVM_CAP_CLOCKSOURCE:
3046 	case KVM_CAP_PIT:
3047 	case KVM_CAP_NOP_IO_DELAY:
3048 	case KVM_CAP_MP_STATE:
3049 	case KVM_CAP_SYNC_MMU:
3050 	case KVM_CAP_USER_NMI:
3051 	case KVM_CAP_REINJECT_CONTROL:
3052 	case KVM_CAP_IRQ_INJECT_STATUS:
3053 	case KVM_CAP_IOEVENTFD:
3054 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3055 	case KVM_CAP_PIT2:
3056 	case KVM_CAP_PIT_STATE2:
3057 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3058 	case KVM_CAP_XEN_HVM:
3059 	case KVM_CAP_VCPU_EVENTS:
3060 	case KVM_CAP_HYPERV:
3061 	case KVM_CAP_HYPERV_VAPIC:
3062 	case KVM_CAP_HYPERV_SPIN:
3063 	case KVM_CAP_HYPERV_SYNIC:
3064 	case KVM_CAP_HYPERV_SYNIC2:
3065 	case KVM_CAP_HYPERV_VP_INDEX:
3066 	case KVM_CAP_HYPERV_EVENTFD:
3067 	case KVM_CAP_HYPERV_TLBFLUSH:
3068 	case KVM_CAP_HYPERV_SEND_IPI:
3069 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3070 	case KVM_CAP_HYPERV_CPUID:
3071 	case KVM_CAP_PCI_SEGMENT:
3072 	case KVM_CAP_DEBUGREGS:
3073 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3074 	case KVM_CAP_XSAVE:
3075 	case KVM_CAP_ASYNC_PF:
3076 	case KVM_CAP_GET_TSC_KHZ:
3077 	case KVM_CAP_KVMCLOCK_CTRL:
3078 	case KVM_CAP_READONLY_MEM:
3079 	case KVM_CAP_HYPERV_TIME:
3080 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3081 	case KVM_CAP_TSC_DEADLINE_TIMER:
3082 	case KVM_CAP_DISABLE_QUIRKS:
3083 	case KVM_CAP_SET_BOOT_CPU_ID:
3084  	case KVM_CAP_SPLIT_IRQCHIP:
3085 	case KVM_CAP_IMMEDIATE_EXIT:
3086 	case KVM_CAP_GET_MSR_FEATURES:
3087 	case KVM_CAP_MSR_PLATFORM_INFO:
3088 	case KVM_CAP_EXCEPTION_PAYLOAD:
3089 		r = 1;
3090 		break;
3091 	case KVM_CAP_SYNC_REGS:
3092 		r = KVM_SYNC_X86_VALID_FIELDS;
3093 		break;
3094 	case KVM_CAP_ADJUST_CLOCK:
3095 		r = KVM_CLOCK_TSC_STABLE;
3096 		break;
3097 	case KVM_CAP_X86_DISABLE_EXITS:
3098 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
3099 		if(kvm_can_mwait_in_guest())
3100 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3101 		break;
3102 	case KVM_CAP_X86_SMM:
3103 		/* SMBASE is usually relocated above 1M on modern chipsets,
3104 		 * and SMM handlers might indeed rely on 4G segment limits,
3105 		 * so do not report SMM to be available if real mode is
3106 		 * emulated via vm86 mode.  Still, do not go to great lengths
3107 		 * to avoid userspace's usage of the feature, because it is a
3108 		 * fringe case that is not enabled except via specific settings
3109 		 * of the module parameters.
3110 		 */
3111 		r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3112 		break;
3113 	case KVM_CAP_VAPIC:
3114 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3115 		break;
3116 	case KVM_CAP_NR_VCPUS:
3117 		r = KVM_SOFT_MAX_VCPUS;
3118 		break;
3119 	case KVM_CAP_MAX_VCPUS:
3120 		r = KVM_MAX_VCPUS;
3121 		break;
3122 	case KVM_CAP_MAX_VCPU_ID:
3123 		r = KVM_MAX_VCPU_ID;
3124 		break;
3125 	case KVM_CAP_PV_MMU:	/* obsolete */
3126 		r = 0;
3127 		break;
3128 	case KVM_CAP_MCE:
3129 		r = KVM_MAX_MCE_BANKS;
3130 		break;
3131 	case KVM_CAP_XCRS:
3132 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3133 		break;
3134 	case KVM_CAP_TSC_CONTROL:
3135 		r = kvm_has_tsc_control;
3136 		break;
3137 	case KVM_CAP_X2APIC_API:
3138 		r = KVM_X2APIC_API_VALID_FLAGS;
3139 		break;
3140 	case KVM_CAP_NESTED_STATE:
3141 		r = kvm_x86_ops->get_nested_state ?
3142 			kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3143 		break;
3144 	default:
3145 		break;
3146 	}
3147 	return r;
3148 
3149 }
3150 
3151 long kvm_arch_dev_ioctl(struct file *filp,
3152 			unsigned int ioctl, unsigned long arg)
3153 {
3154 	void __user *argp = (void __user *)arg;
3155 	long r;
3156 
3157 	switch (ioctl) {
3158 	case KVM_GET_MSR_INDEX_LIST: {
3159 		struct kvm_msr_list __user *user_msr_list = argp;
3160 		struct kvm_msr_list msr_list;
3161 		unsigned n;
3162 
3163 		r = -EFAULT;
3164 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3165 			goto out;
3166 		n = msr_list.nmsrs;
3167 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3168 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3169 			goto out;
3170 		r = -E2BIG;
3171 		if (n < msr_list.nmsrs)
3172 			goto out;
3173 		r = -EFAULT;
3174 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3175 				 num_msrs_to_save * sizeof(u32)))
3176 			goto out;
3177 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3178 				 &emulated_msrs,
3179 				 num_emulated_msrs * sizeof(u32)))
3180 			goto out;
3181 		r = 0;
3182 		break;
3183 	}
3184 	case KVM_GET_SUPPORTED_CPUID:
3185 	case KVM_GET_EMULATED_CPUID: {
3186 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3187 		struct kvm_cpuid2 cpuid;
3188 
3189 		r = -EFAULT;
3190 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3191 			goto out;
3192 
3193 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3194 					    ioctl);
3195 		if (r)
3196 			goto out;
3197 
3198 		r = -EFAULT;
3199 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3200 			goto out;
3201 		r = 0;
3202 		break;
3203 	}
3204 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3205 		r = -EFAULT;
3206 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3207 				 sizeof(kvm_mce_cap_supported)))
3208 			goto out;
3209 		r = 0;
3210 		break;
3211 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3212 		struct kvm_msr_list __user *user_msr_list = argp;
3213 		struct kvm_msr_list msr_list;
3214 		unsigned int n;
3215 
3216 		r = -EFAULT;
3217 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3218 			goto out;
3219 		n = msr_list.nmsrs;
3220 		msr_list.nmsrs = num_msr_based_features;
3221 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3222 			goto out;
3223 		r = -E2BIG;
3224 		if (n < msr_list.nmsrs)
3225 			goto out;
3226 		r = -EFAULT;
3227 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3228 				 num_msr_based_features * sizeof(u32)))
3229 			goto out;
3230 		r = 0;
3231 		break;
3232 	}
3233 	case KVM_GET_MSRS:
3234 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3235 		break;
3236 	}
3237 	default:
3238 		r = -EINVAL;
3239 	}
3240 out:
3241 	return r;
3242 }
3243 
3244 static void wbinvd_ipi(void *garbage)
3245 {
3246 	wbinvd();
3247 }
3248 
3249 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3250 {
3251 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3252 }
3253 
3254 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3255 {
3256 	/* Address WBINVD may be executed by guest */
3257 	if (need_emulate_wbinvd(vcpu)) {
3258 		if (kvm_x86_ops->has_wbinvd_exit())
3259 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3260 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3261 			smp_call_function_single(vcpu->cpu,
3262 					wbinvd_ipi, NULL, 1);
3263 	}
3264 
3265 	kvm_x86_ops->vcpu_load(vcpu, cpu);
3266 
3267 	/* Apply any externally detected TSC adjustments (due to suspend) */
3268 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3269 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3270 		vcpu->arch.tsc_offset_adjustment = 0;
3271 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3272 	}
3273 
3274 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3275 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3276 				rdtsc() - vcpu->arch.last_host_tsc;
3277 		if (tsc_delta < 0)
3278 			mark_tsc_unstable("KVM discovered backwards TSC");
3279 
3280 		if (kvm_check_tsc_unstable()) {
3281 			u64 offset = kvm_compute_tsc_offset(vcpu,
3282 						vcpu->arch.last_guest_tsc);
3283 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3284 			vcpu->arch.tsc_catchup = 1;
3285 		}
3286 
3287 		if (kvm_lapic_hv_timer_in_use(vcpu))
3288 			kvm_lapic_restart_hv_timer(vcpu);
3289 
3290 		/*
3291 		 * On a host with synchronized TSC, there is no need to update
3292 		 * kvmclock on vcpu->cpu migration
3293 		 */
3294 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3295 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3296 		if (vcpu->cpu != cpu)
3297 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3298 		vcpu->cpu = cpu;
3299 	}
3300 
3301 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3302 }
3303 
3304 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3305 {
3306 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3307 		return;
3308 
3309 	vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3310 
3311 	kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3312 			&vcpu->arch.st.steal.preempted,
3313 			offsetof(struct kvm_steal_time, preempted),
3314 			sizeof(vcpu->arch.st.steal.preempted));
3315 }
3316 
3317 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3318 {
3319 	int idx;
3320 
3321 	if (vcpu->preempted)
3322 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3323 
3324 	/*
3325 	 * Disable page faults because we're in atomic context here.
3326 	 * kvm_write_guest_offset_cached() would call might_fault()
3327 	 * that relies on pagefault_disable() to tell if there's a
3328 	 * bug. NOTE: the write to guest memory may not go through if
3329 	 * during postcopy live migration or if there's heavy guest
3330 	 * paging.
3331 	 */
3332 	pagefault_disable();
3333 	/*
3334 	 * kvm_memslots() will be called by
3335 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3336 	 */
3337 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3338 	kvm_steal_time_set_preempted(vcpu);
3339 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3340 	pagefault_enable();
3341 	kvm_x86_ops->vcpu_put(vcpu);
3342 	vcpu->arch.last_host_tsc = rdtsc();
3343 	/*
3344 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3345 	 * on every vmexit, but if not, we might have a stale dr6 from the
3346 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3347 	 */
3348 	set_debugreg(0, 6);
3349 }
3350 
3351 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3352 				    struct kvm_lapic_state *s)
3353 {
3354 	if (vcpu->arch.apicv_active)
3355 		kvm_x86_ops->sync_pir_to_irr(vcpu);
3356 
3357 	return kvm_apic_get_state(vcpu, s);
3358 }
3359 
3360 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3361 				    struct kvm_lapic_state *s)
3362 {
3363 	int r;
3364 
3365 	r = kvm_apic_set_state(vcpu, s);
3366 	if (r)
3367 		return r;
3368 	update_cr8_intercept(vcpu);
3369 
3370 	return 0;
3371 }
3372 
3373 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3374 {
3375 	return (!lapic_in_kernel(vcpu) ||
3376 		kvm_apic_accept_pic_intr(vcpu));
3377 }
3378 
3379 /*
3380  * if userspace requested an interrupt window, check that the
3381  * interrupt window is open.
3382  *
3383  * No need to exit to userspace if we already have an interrupt queued.
3384  */
3385 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3386 {
3387 	return kvm_arch_interrupt_allowed(vcpu) &&
3388 		!kvm_cpu_has_interrupt(vcpu) &&
3389 		!kvm_event_needs_reinjection(vcpu) &&
3390 		kvm_cpu_accept_dm_intr(vcpu);
3391 }
3392 
3393 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3394 				    struct kvm_interrupt *irq)
3395 {
3396 	if (irq->irq >= KVM_NR_INTERRUPTS)
3397 		return -EINVAL;
3398 
3399 	if (!irqchip_in_kernel(vcpu->kvm)) {
3400 		kvm_queue_interrupt(vcpu, irq->irq, false);
3401 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3402 		return 0;
3403 	}
3404 
3405 	/*
3406 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3407 	 * fail for in-kernel 8259.
3408 	 */
3409 	if (pic_in_kernel(vcpu->kvm))
3410 		return -ENXIO;
3411 
3412 	if (vcpu->arch.pending_external_vector != -1)
3413 		return -EEXIST;
3414 
3415 	vcpu->arch.pending_external_vector = irq->irq;
3416 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3417 	return 0;
3418 }
3419 
3420 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3421 {
3422 	kvm_inject_nmi(vcpu);
3423 
3424 	return 0;
3425 }
3426 
3427 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3428 {
3429 	kvm_make_request(KVM_REQ_SMI, vcpu);
3430 
3431 	return 0;
3432 }
3433 
3434 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3435 					   struct kvm_tpr_access_ctl *tac)
3436 {
3437 	if (tac->flags)
3438 		return -EINVAL;
3439 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3440 	return 0;
3441 }
3442 
3443 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3444 					u64 mcg_cap)
3445 {
3446 	int r;
3447 	unsigned bank_num = mcg_cap & 0xff, bank;
3448 
3449 	r = -EINVAL;
3450 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3451 		goto out;
3452 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3453 		goto out;
3454 	r = 0;
3455 	vcpu->arch.mcg_cap = mcg_cap;
3456 	/* Init IA32_MCG_CTL to all 1s */
3457 	if (mcg_cap & MCG_CTL_P)
3458 		vcpu->arch.mcg_ctl = ~(u64)0;
3459 	/* Init IA32_MCi_CTL to all 1s */
3460 	for (bank = 0; bank < bank_num; bank++)
3461 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3462 
3463 	if (kvm_x86_ops->setup_mce)
3464 		kvm_x86_ops->setup_mce(vcpu);
3465 out:
3466 	return r;
3467 }
3468 
3469 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3470 				      struct kvm_x86_mce *mce)
3471 {
3472 	u64 mcg_cap = vcpu->arch.mcg_cap;
3473 	unsigned bank_num = mcg_cap & 0xff;
3474 	u64 *banks = vcpu->arch.mce_banks;
3475 
3476 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3477 		return -EINVAL;
3478 	/*
3479 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3480 	 * reporting is disabled
3481 	 */
3482 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3483 	    vcpu->arch.mcg_ctl != ~(u64)0)
3484 		return 0;
3485 	banks += 4 * mce->bank;
3486 	/*
3487 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3488 	 * reporting is disabled for the bank
3489 	 */
3490 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3491 		return 0;
3492 	if (mce->status & MCI_STATUS_UC) {
3493 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3494 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3495 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3496 			return 0;
3497 		}
3498 		if (banks[1] & MCI_STATUS_VAL)
3499 			mce->status |= MCI_STATUS_OVER;
3500 		banks[2] = mce->addr;
3501 		banks[3] = mce->misc;
3502 		vcpu->arch.mcg_status = mce->mcg_status;
3503 		banks[1] = mce->status;
3504 		kvm_queue_exception(vcpu, MC_VECTOR);
3505 	} else if (!(banks[1] & MCI_STATUS_VAL)
3506 		   || !(banks[1] & MCI_STATUS_UC)) {
3507 		if (banks[1] & MCI_STATUS_VAL)
3508 			mce->status |= MCI_STATUS_OVER;
3509 		banks[2] = mce->addr;
3510 		banks[3] = mce->misc;
3511 		banks[1] = mce->status;
3512 	} else
3513 		banks[1] |= MCI_STATUS_OVER;
3514 	return 0;
3515 }
3516 
3517 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3518 					       struct kvm_vcpu_events *events)
3519 {
3520 	process_nmi(vcpu);
3521 
3522 	/*
3523 	 * The API doesn't provide the instruction length for software
3524 	 * exceptions, so don't report them. As long as the guest RIP
3525 	 * isn't advanced, we should expect to encounter the exception
3526 	 * again.
3527 	 */
3528 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3529 		events->exception.injected = 0;
3530 		events->exception.pending = 0;
3531 	} else {
3532 		events->exception.injected = vcpu->arch.exception.injected;
3533 		events->exception.pending = vcpu->arch.exception.pending;
3534 		/*
3535 		 * For ABI compatibility, deliberately conflate
3536 		 * pending and injected exceptions when
3537 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3538 		 */
3539 		if (!vcpu->kvm->arch.exception_payload_enabled)
3540 			events->exception.injected |=
3541 				vcpu->arch.exception.pending;
3542 	}
3543 	events->exception.nr = vcpu->arch.exception.nr;
3544 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3545 	events->exception.error_code = vcpu->arch.exception.error_code;
3546 	events->exception_has_payload = vcpu->arch.exception.has_payload;
3547 	events->exception_payload = vcpu->arch.exception.payload;
3548 
3549 	events->interrupt.injected =
3550 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3551 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3552 	events->interrupt.soft = 0;
3553 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3554 
3555 	events->nmi.injected = vcpu->arch.nmi_injected;
3556 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3557 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3558 	events->nmi.pad = 0;
3559 
3560 	events->sipi_vector = 0; /* never valid when reporting to user space */
3561 
3562 	events->smi.smm = is_smm(vcpu);
3563 	events->smi.pending = vcpu->arch.smi_pending;
3564 	events->smi.smm_inside_nmi =
3565 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3566 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3567 
3568 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3569 			 | KVM_VCPUEVENT_VALID_SHADOW
3570 			 | KVM_VCPUEVENT_VALID_SMM);
3571 	if (vcpu->kvm->arch.exception_payload_enabled)
3572 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3573 
3574 	memset(&events->reserved, 0, sizeof(events->reserved));
3575 }
3576 
3577 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3578 
3579 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3580 					      struct kvm_vcpu_events *events)
3581 {
3582 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3583 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3584 			      | KVM_VCPUEVENT_VALID_SHADOW
3585 			      | KVM_VCPUEVENT_VALID_SMM
3586 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
3587 		return -EINVAL;
3588 
3589 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3590 		if (!vcpu->kvm->arch.exception_payload_enabled)
3591 			return -EINVAL;
3592 		if (events->exception.pending)
3593 			events->exception.injected = 0;
3594 		else
3595 			events->exception_has_payload = 0;
3596 	} else {
3597 		events->exception.pending = 0;
3598 		events->exception_has_payload = 0;
3599 	}
3600 
3601 	if ((events->exception.injected || events->exception.pending) &&
3602 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3603 		return -EINVAL;
3604 
3605 	/* INITs are latched while in SMM */
3606 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3607 	    (events->smi.smm || events->smi.pending) &&
3608 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3609 		return -EINVAL;
3610 
3611 	process_nmi(vcpu);
3612 	vcpu->arch.exception.injected = events->exception.injected;
3613 	vcpu->arch.exception.pending = events->exception.pending;
3614 	vcpu->arch.exception.nr = events->exception.nr;
3615 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3616 	vcpu->arch.exception.error_code = events->exception.error_code;
3617 	vcpu->arch.exception.has_payload = events->exception_has_payload;
3618 	vcpu->arch.exception.payload = events->exception_payload;
3619 
3620 	vcpu->arch.interrupt.injected = events->interrupt.injected;
3621 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3622 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3623 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3624 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3625 						  events->interrupt.shadow);
3626 
3627 	vcpu->arch.nmi_injected = events->nmi.injected;
3628 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3629 		vcpu->arch.nmi_pending = events->nmi.pending;
3630 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3631 
3632 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3633 	    lapic_in_kernel(vcpu))
3634 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3635 
3636 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3637 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3638 			if (events->smi.smm)
3639 				vcpu->arch.hflags |= HF_SMM_MASK;
3640 			else
3641 				vcpu->arch.hflags &= ~HF_SMM_MASK;
3642 			kvm_smm_changed(vcpu);
3643 		}
3644 
3645 		vcpu->arch.smi_pending = events->smi.pending;
3646 
3647 		if (events->smi.smm) {
3648 			if (events->smi.smm_inside_nmi)
3649 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3650 			else
3651 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3652 			if (lapic_in_kernel(vcpu)) {
3653 				if (events->smi.latched_init)
3654 					set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3655 				else
3656 					clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3657 			}
3658 		}
3659 	}
3660 
3661 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3662 
3663 	return 0;
3664 }
3665 
3666 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3667 					     struct kvm_debugregs *dbgregs)
3668 {
3669 	unsigned long val;
3670 
3671 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3672 	kvm_get_dr(vcpu, 6, &val);
3673 	dbgregs->dr6 = val;
3674 	dbgregs->dr7 = vcpu->arch.dr7;
3675 	dbgregs->flags = 0;
3676 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3677 }
3678 
3679 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3680 					    struct kvm_debugregs *dbgregs)
3681 {
3682 	if (dbgregs->flags)
3683 		return -EINVAL;
3684 
3685 	if (dbgregs->dr6 & ~0xffffffffull)
3686 		return -EINVAL;
3687 	if (dbgregs->dr7 & ~0xffffffffull)
3688 		return -EINVAL;
3689 
3690 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3691 	kvm_update_dr0123(vcpu);
3692 	vcpu->arch.dr6 = dbgregs->dr6;
3693 	kvm_update_dr6(vcpu);
3694 	vcpu->arch.dr7 = dbgregs->dr7;
3695 	kvm_update_dr7(vcpu);
3696 
3697 	return 0;
3698 }
3699 
3700 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3701 
3702 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3703 {
3704 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3705 	u64 xstate_bv = xsave->header.xfeatures;
3706 	u64 valid;
3707 
3708 	/*
3709 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3710 	 * leaves 0 and 1 in the loop below.
3711 	 */
3712 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3713 
3714 	/* Set XSTATE_BV */
3715 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3716 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3717 
3718 	/*
3719 	 * Copy each region from the possibly compacted offset to the
3720 	 * non-compacted offset.
3721 	 */
3722 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3723 	while (valid) {
3724 		u64 xfeature_mask = valid & -valid;
3725 		int xfeature_nr = fls64(xfeature_mask) - 1;
3726 		void *src = get_xsave_addr(xsave, xfeature_nr);
3727 
3728 		if (src) {
3729 			u32 size, offset, ecx, edx;
3730 			cpuid_count(XSTATE_CPUID, xfeature_nr,
3731 				    &size, &offset, &ecx, &edx);
3732 			if (xfeature_nr == XFEATURE_PKRU)
3733 				memcpy(dest + offset, &vcpu->arch.pkru,
3734 				       sizeof(vcpu->arch.pkru));
3735 			else
3736 				memcpy(dest + offset, src, size);
3737 
3738 		}
3739 
3740 		valid -= xfeature_mask;
3741 	}
3742 }
3743 
3744 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3745 {
3746 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3747 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3748 	u64 valid;
3749 
3750 	/*
3751 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3752 	 * leaves 0 and 1 in the loop below.
3753 	 */
3754 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3755 
3756 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3757 	xsave->header.xfeatures = xstate_bv;
3758 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3759 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3760 
3761 	/*
3762 	 * Copy each region from the non-compacted offset to the
3763 	 * possibly compacted offset.
3764 	 */
3765 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3766 	while (valid) {
3767 		u64 xfeature_mask = valid & -valid;
3768 		int xfeature_nr = fls64(xfeature_mask) - 1;
3769 		void *dest = get_xsave_addr(xsave, xfeature_nr);
3770 
3771 		if (dest) {
3772 			u32 size, offset, ecx, edx;
3773 			cpuid_count(XSTATE_CPUID, xfeature_nr,
3774 				    &size, &offset, &ecx, &edx);
3775 			if (xfeature_nr == XFEATURE_PKRU)
3776 				memcpy(&vcpu->arch.pkru, src + offset,
3777 				       sizeof(vcpu->arch.pkru));
3778 			else
3779 				memcpy(dest, src + offset, size);
3780 		}
3781 
3782 		valid -= xfeature_mask;
3783 	}
3784 }
3785 
3786 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3787 					 struct kvm_xsave *guest_xsave)
3788 {
3789 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3790 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3791 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3792 	} else {
3793 		memcpy(guest_xsave->region,
3794 			&vcpu->arch.guest_fpu->state.fxsave,
3795 			sizeof(struct fxregs_state));
3796 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3797 			XFEATURE_MASK_FPSSE;
3798 	}
3799 }
3800 
3801 #define XSAVE_MXCSR_OFFSET 24
3802 
3803 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3804 					struct kvm_xsave *guest_xsave)
3805 {
3806 	u64 xstate_bv =
3807 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3808 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3809 
3810 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3811 		/*
3812 		 * Here we allow setting states that are not present in
3813 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3814 		 * with old userspace.
3815 		 */
3816 		if (xstate_bv & ~kvm_supported_xcr0() ||
3817 			mxcsr & ~mxcsr_feature_mask)
3818 			return -EINVAL;
3819 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3820 	} else {
3821 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3822 			mxcsr & ~mxcsr_feature_mask)
3823 			return -EINVAL;
3824 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
3825 			guest_xsave->region, sizeof(struct fxregs_state));
3826 	}
3827 	return 0;
3828 }
3829 
3830 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3831 					struct kvm_xcrs *guest_xcrs)
3832 {
3833 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3834 		guest_xcrs->nr_xcrs = 0;
3835 		return;
3836 	}
3837 
3838 	guest_xcrs->nr_xcrs = 1;
3839 	guest_xcrs->flags = 0;
3840 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3841 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3842 }
3843 
3844 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3845 				       struct kvm_xcrs *guest_xcrs)
3846 {
3847 	int i, r = 0;
3848 
3849 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3850 		return -EINVAL;
3851 
3852 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3853 		return -EINVAL;
3854 
3855 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3856 		/* Only support XCR0 currently */
3857 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3858 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3859 				guest_xcrs->xcrs[i].value);
3860 			break;
3861 		}
3862 	if (r)
3863 		r = -EINVAL;
3864 	return r;
3865 }
3866 
3867 /*
3868  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3869  * stopped by the hypervisor.  This function will be called from the host only.
3870  * EINVAL is returned when the host attempts to set the flag for a guest that
3871  * does not support pv clocks.
3872  */
3873 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3874 {
3875 	if (!vcpu->arch.pv_time_enabled)
3876 		return -EINVAL;
3877 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3878 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3879 	return 0;
3880 }
3881 
3882 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3883 				     struct kvm_enable_cap *cap)
3884 {
3885 	int r;
3886 	uint16_t vmcs_version;
3887 	void __user *user_ptr;
3888 
3889 	if (cap->flags)
3890 		return -EINVAL;
3891 
3892 	switch (cap->cap) {
3893 	case KVM_CAP_HYPERV_SYNIC2:
3894 		if (cap->args[0])
3895 			return -EINVAL;
3896 		/* fall through */
3897 
3898 	case KVM_CAP_HYPERV_SYNIC:
3899 		if (!irqchip_in_kernel(vcpu->kvm))
3900 			return -EINVAL;
3901 		return kvm_hv_activate_synic(vcpu, cap->cap ==
3902 					     KVM_CAP_HYPERV_SYNIC2);
3903 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3904 		if (!kvm_x86_ops->nested_enable_evmcs)
3905 			return -ENOTTY;
3906 		r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
3907 		if (!r) {
3908 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
3909 			if (copy_to_user(user_ptr, &vmcs_version,
3910 					 sizeof(vmcs_version)))
3911 				r = -EFAULT;
3912 		}
3913 		return r;
3914 
3915 	default:
3916 		return -EINVAL;
3917 	}
3918 }
3919 
3920 long kvm_arch_vcpu_ioctl(struct file *filp,
3921 			 unsigned int ioctl, unsigned long arg)
3922 {
3923 	struct kvm_vcpu *vcpu = filp->private_data;
3924 	void __user *argp = (void __user *)arg;
3925 	int r;
3926 	union {
3927 		struct kvm_lapic_state *lapic;
3928 		struct kvm_xsave *xsave;
3929 		struct kvm_xcrs *xcrs;
3930 		void *buffer;
3931 	} u;
3932 
3933 	vcpu_load(vcpu);
3934 
3935 	u.buffer = NULL;
3936 	switch (ioctl) {
3937 	case KVM_GET_LAPIC: {
3938 		r = -EINVAL;
3939 		if (!lapic_in_kernel(vcpu))
3940 			goto out;
3941 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
3942 				GFP_KERNEL_ACCOUNT);
3943 
3944 		r = -ENOMEM;
3945 		if (!u.lapic)
3946 			goto out;
3947 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3948 		if (r)
3949 			goto out;
3950 		r = -EFAULT;
3951 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3952 			goto out;
3953 		r = 0;
3954 		break;
3955 	}
3956 	case KVM_SET_LAPIC: {
3957 		r = -EINVAL;
3958 		if (!lapic_in_kernel(vcpu))
3959 			goto out;
3960 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3961 		if (IS_ERR(u.lapic)) {
3962 			r = PTR_ERR(u.lapic);
3963 			goto out_nofree;
3964 		}
3965 
3966 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3967 		break;
3968 	}
3969 	case KVM_INTERRUPT: {
3970 		struct kvm_interrupt irq;
3971 
3972 		r = -EFAULT;
3973 		if (copy_from_user(&irq, argp, sizeof(irq)))
3974 			goto out;
3975 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3976 		break;
3977 	}
3978 	case KVM_NMI: {
3979 		r = kvm_vcpu_ioctl_nmi(vcpu);
3980 		break;
3981 	}
3982 	case KVM_SMI: {
3983 		r = kvm_vcpu_ioctl_smi(vcpu);
3984 		break;
3985 	}
3986 	case KVM_SET_CPUID: {
3987 		struct kvm_cpuid __user *cpuid_arg = argp;
3988 		struct kvm_cpuid cpuid;
3989 
3990 		r = -EFAULT;
3991 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3992 			goto out;
3993 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3994 		break;
3995 	}
3996 	case KVM_SET_CPUID2: {
3997 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3998 		struct kvm_cpuid2 cpuid;
3999 
4000 		r = -EFAULT;
4001 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4002 			goto out;
4003 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4004 					      cpuid_arg->entries);
4005 		break;
4006 	}
4007 	case KVM_GET_CPUID2: {
4008 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4009 		struct kvm_cpuid2 cpuid;
4010 
4011 		r = -EFAULT;
4012 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4013 			goto out;
4014 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4015 					      cpuid_arg->entries);
4016 		if (r)
4017 			goto out;
4018 		r = -EFAULT;
4019 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4020 			goto out;
4021 		r = 0;
4022 		break;
4023 	}
4024 	case KVM_GET_MSRS: {
4025 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4026 		r = msr_io(vcpu, argp, do_get_msr, 1);
4027 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4028 		break;
4029 	}
4030 	case KVM_SET_MSRS: {
4031 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4032 		r = msr_io(vcpu, argp, do_set_msr, 0);
4033 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4034 		break;
4035 	}
4036 	case KVM_TPR_ACCESS_REPORTING: {
4037 		struct kvm_tpr_access_ctl tac;
4038 
4039 		r = -EFAULT;
4040 		if (copy_from_user(&tac, argp, sizeof(tac)))
4041 			goto out;
4042 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4043 		if (r)
4044 			goto out;
4045 		r = -EFAULT;
4046 		if (copy_to_user(argp, &tac, sizeof(tac)))
4047 			goto out;
4048 		r = 0;
4049 		break;
4050 	};
4051 	case KVM_SET_VAPIC_ADDR: {
4052 		struct kvm_vapic_addr va;
4053 		int idx;
4054 
4055 		r = -EINVAL;
4056 		if (!lapic_in_kernel(vcpu))
4057 			goto out;
4058 		r = -EFAULT;
4059 		if (copy_from_user(&va, argp, sizeof(va)))
4060 			goto out;
4061 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4062 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4063 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4064 		break;
4065 	}
4066 	case KVM_X86_SETUP_MCE: {
4067 		u64 mcg_cap;
4068 
4069 		r = -EFAULT;
4070 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4071 			goto out;
4072 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4073 		break;
4074 	}
4075 	case KVM_X86_SET_MCE: {
4076 		struct kvm_x86_mce mce;
4077 
4078 		r = -EFAULT;
4079 		if (copy_from_user(&mce, argp, sizeof(mce)))
4080 			goto out;
4081 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4082 		break;
4083 	}
4084 	case KVM_GET_VCPU_EVENTS: {
4085 		struct kvm_vcpu_events events;
4086 
4087 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4088 
4089 		r = -EFAULT;
4090 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4091 			break;
4092 		r = 0;
4093 		break;
4094 	}
4095 	case KVM_SET_VCPU_EVENTS: {
4096 		struct kvm_vcpu_events events;
4097 
4098 		r = -EFAULT;
4099 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4100 			break;
4101 
4102 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4103 		break;
4104 	}
4105 	case KVM_GET_DEBUGREGS: {
4106 		struct kvm_debugregs dbgregs;
4107 
4108 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4109 
4110 		r = -EFAULT;
4111 		if (copy_to_user(argp, &dbgregs,
4112 				 sizeof(struct kvm_debugregs)))
4113 			break;
4114 		r = 0;
4115 		break;
4116 	}
4117 	case KVM_SET_DEBUGREGS: {
4118 		struct kvm_debugregs dbgregs;
4119 
4120 		r = -EFAULT;
4121 		if (copy_from_user(&dbgregs, argp,
4122 				   sizeof(struct kvm_debugregs)))
4123 			break;
4124 
4125 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4126 		break;
4127 	}
4128 	case KVM_GET_XSAVE: {
4129 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4130 		r = -ENOMEM;
4131 		if (!u.xsave)
4132 			break;
4133 
4134 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4135 
4136 		r = -EFAULT;
4137 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4138 			break;
4139 		r = 0;
4140 		break;
4141 	}
4142 	case KVM_SET_XSAVE: {
4143 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4144 		if (IS_ERR(u.xsave)) {
4145 			r = PTR_ERR(u.xsave);
4146 			goto out_nofree;
4147 		}
4148 
4149 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4150 		break;
4151 	}
4152 	case KVM_GET_XCRS: {
4153 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4154 		r = -ENOMEM;
4155 		if (!u.xcrs)
4156 			break;
4157 
4158 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4159 
4160 		r = -EFAULT;
4161 		if (copy_to_user(argp, u.xcrs,
4162 				 sizeof(struct kvm_xcrs)))
4163 			break;
4164 		r = 0;
4165 		break;
4166 	}
4167 	case KVM_SET_XCRS: {
4168 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4169 		if (IS_ERR(u.xcrs)) {
4170 			r = PTR_ERR(u.xcrs);
4171 			goto out_nofree;
4172 		}
4173 
4174 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4175 		break;
4176 	}
4177 	case KVM_SET_TSC_KHZ: {
4178 		u32 user_tsc_khz;
4179 
4180 		r = -EINVAL;
4181 		user_tsc_khz = (u32)arg;
4182 
4183 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4184 			goto out;
4185 
4186 		if (user_tsc_khz == 0)
4187 			user_tsc_khz = tsc_khz;
4188 
4189 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4190 			r = 0;
4191 
4192 		goto out;
4193 	}
4194 	case KVM_GET_TSC_KHZ: {
4195 		r = vcpu->arch.virtual_tsc_khz;
4196 		goto out;
4197 	}
4198 	case KVM_KVMCLOCK_CTRL: {
4199 		r = kvm_set_guest_paused(vcpu);
4200 		goto out;
4201 	}
4202 	case KVM_ENABLE_CAP: {
4203 		struct kvm_enable_cap cap;
4204 
4205 		r = -EFAULT;
4206 		if (copy_from_user(&cap, argp, sizeof(cap)))
4207 			goto out;
4208 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4209 		break;
4210 	}
4211 	case KVM_GET_NESTED_STATE: {
4212 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4213 		u32 user_data_size;
4214 
4215 		r = -EINVAL;
4216 		if (!kvm_x86_ops->get_nested_state)
4217 			break;
4218 
4219 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4220 		r = -EFAULT;
4221 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4222 			break;
4223 
4224 		r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4225 						  user_data_size);
4226 		if (r < 0)
4227 			break;
4228 
4229 		if (r > user_data_size) {
4230 			if (put_user(r, &user_kvm_nested_state->size))
4231 				r = -EFAULT;
4232 			else
4233 				r = -E2BIG;
4234 			break;
4235 		}
4236 
4237 		r = 0;
4238 		break;
4239 	}
4240 	case KVM_SET_NESTED_STATE: {
4241 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4242 		struct kvm_nested_state kvm_state;
4243 
4244 		r = -EINVAL;
4245 		if (!kvm_x86_ops->set_nested_state)
4246 			break;
4247 
4248 		r = -EFAULT;
4249 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4250 			break;
4251 
4252 		r = -EINVAL;
4253 		if (kvm_state.size < sizeof(kvm_state))
4254 			break;
4255 
4256 		if (kvm_state.flags &
4257 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4258 		      | KVM_STATE_NESTED_EVMCS))
4259 			break;
4260 
4261 		/* nested_run_pending implies guest_mode.  */
4262 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4263 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4264 			break;
4265 
4266 		r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4267 		break;
4268 	}
4269 	case KVM_GET_SUPPORTED_HV_CPUID: {
4270 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4271 		struct kvm_cpuid2 cpuid;
4272 
4273 		r = -EFAULT;
4274 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4275 			goto out;
4276 
4277 		r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4278 						cpuid_arg->entries);
4279 		if (r)
4280 			goto out;
4281 
4282 		r = -EFAULT;
4283 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4284 			goto out;
4285 		r = 0;
4286 		break;
4287 	}
4288 	default:
4289 		r = -EINVAL;
4290 	}
4291 out:
4292 	kfree(u.buffer);
4293 out_nofree:
4294 	vcpu_put(vcpu);
4295 	return r;
4296 }
4297 
4298 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4299 {
4300 	return VM_FAULT_SIGBUS;
4301 }
4302 
4303 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4304 {
4305 	int ret;
4306 
4307 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
4308 		return -EINVAL;
4309 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4310 	return ret;
4311 }
4312 
4313 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4314 					      u64 ident_addr)
4315 {
4316 	return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4317 }
4318 
4319 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4320 					 unsigned long kvm_nr_mmu_pages)
4321 {
4322 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4323 		return -EINVAL;
4324 
4325 	mutex_lock(&kvm->slots_lock);
4326 
4327 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4328 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4329 
4330 	mutex_unlock(&kvm->slots_lock);
4331 	return 0;
4332 }
4333 
4334 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4335 {
4336 	return kvm->arch.n_max_mmu_pages;
4337 }
4338 
4339 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4340 {
4341 	struct kvm_pic *pic = kvm->arch.vpic;
4342 	int r;
4343 
4344 	r = 0;
4345 	switch (chip->chip_id) {
4346 	case KVM_IRQCHIP_PIC_MASTER:
4347 		memcpy(&chip->chip.pic, &pic->pics[0],
4348 			sizeof(struct kvm_pic_state));
4349 		break;
4350 	case KVM_IRQCHIP_PIC_SLAVE:
4351 		memcpy(&chip->chip.pic, &pic->pics[1],
4352 			sizeof(struct kvm_pic_state));
4353 		break;
4354 	case KVM_IRQCHIP_IOAPIC:
4355 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
4356 		break;
4357 	default:
4358 		r = -EINVAL;
4359 		break;
4360 	}
4361 	return r;
4362 }
4363 
4364 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4365 {
4366 	struct kvm_pic *pic = kvm->arch.vpic;
4367 	int r;
4368 
4369 	r = 0;
4370 	switch (chip->chip_id) {
4371 	case KVM_IRQCHIP_PIC_MASTER:
4372 		spin_lock(&pic->lock);
4373 		memcpy(&pic->pics[0], &chip->chip.pic,
4374 			sizeof(struct kvm_pic_state));
4375 		spin_unlock(&pic->lock);
4376 		break;
4377 	case KVM_IRQCHIP_PIC_SLAVE:
4378 		spin_lock(&pic->lock);
4379 		memcpy(&pic->pics[1], &chip->chip.pic,
4380 			sizeof(struct kvm_pic_state));
4381 		spin_unlock(&pic->lock);
4382 		break;
4383 	case KVM_IRQCHIP_IOAPIC:
4384 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
4385 		break;
4386 	default:
4387 		r = -EINVAL;
4388 		break;
4389 	}
4390 	kvm_pic_update_irq(pic);
4391 	return r;
4392 }
4393 
4394 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4395 {
4396 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4397 
4398 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4399 
4400 	mutex_lock(&kps->lock);
4401 	memcpy(ps, &kps->channels, sizeof(*ps));
4402 	mutex_unlock(&kps->lock);
4403 	return 0;
4404 }
4405 
4406 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4407 {
4408 	int i;
4409 	struct kvm_pit *pit = kvm->arch.vpit;
4410 
4411 	mutex_lock(&pit->pit_state.lock);
4412 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4413 	for (i = 0; i < 3; i++)
4414 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4415 	mutex_unlock(&pit->pit_state.lock);
4416 	return 0;
4417 }
4418 
4419 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4420 {
4421 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
4422 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4423 		sizeof(ps->channels));
4424 	ps->flags = kvm->arch.vpit->pit_state.flags;
4425 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4426 	memset(&ps->reserved, 0, sizeof(ps->reserved));
4427 	return 0;
4428 }
4429 
4430 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4431 {
4432 	int start = 0;
4433 	int i;
4434 	u32 prev_legacy, cur_legacy;
4435 	struct kvm_pit *pit = kvm->arch.vpit;
4436 
4437 	mutex_lock(&pit->pit_state.lock);
4438 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4439 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4440 	if (!prev_legacy && cur_legacy)
4441 		start = 1;
4442 	memcpy(&pit->pit_state.channels, &ps->channels,
4443 	       sizeof(pit->pit_state.channels));
4444 	pit->pit_state.flags = ps->flags;
4445 	for (i = 0; i < 3; i++)
4446 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4447 				   start && i == 0);
4448 	mutex_unlock(&pit->pit_state.lock);
4449 	return 0;
4450 }
4451 
4452 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4453 				 struct kvm_reinject_control *control)
4454 {
4455 	struct kvm_pit *pit = kvm->arch.vpit;
4456 
4457 	if (!pit)
4458 		return -ENXIO;
4459 
4460 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
4461 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4462 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4463 	 */
4464 	mutex_lock(&pit->pit_state.lock);
4465 	kvm_pit_set_reinject(pit, control->pit_reinject);
4466 	mutex_unlock(&pit->pit_state.lock);
4467 
4468 	return 0;
4469 }
4470 
4471 /**
4472  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4473  * @kvm: kvm instance
4474  * @log: slot id and address to which we copy the log
4475  *
4476  * Steps 1-4 below provide general overview of dirty page logging. See
4477  * kvm_get_dirty_log_protect() function description for additional details.
4478  *
4479  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4480  * always flush the TLB (step 4) even if previous step failed  and the dirty
4481  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4482  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4483  * writes will be marked dirty for next log read.
4484  *
4485  *   1. Take a snapshot of the bit and clear it if needed.
4486  *   2. Write protect the corresponding page.
4487  *   3. Copy the snapshot to the userspace.
4488  *   4. Flush TLB's if needed.
4489  */
4490 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4491 {
4492 	bool flush = false;
4493 	int r;
4494 
4495 	mutex_lock(&kvm->slots_lock);
4496 
4497 	/*
4498 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4499 	 */
4500 	if (kvm_x86_ops->flush_log_dirty)
4501 		kvm_x86_ops->flush_log_dirty(kvm);
4502 
4503 	r = kvm_get_dirty_log_protect(kvm, log, &flush);
4504 
4505 	/*
4506 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4507 	 * kvm_mmu_slot_remove_write_access().
4508 	 */
4509 	lockdep_assert_held(&kvm->slots_lock);
4510 	if (flush)
4511 		kvm_flush_remote_tlbs(kvm);
4512 
4513 	mutex_unlock(&kvm->slots_lock);
4514 	return r;
4515 }
4516 
4517 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4518 {
4519 	bool flush = false;
4520 	int r;
4521 
4522 	mutex_lock(&kvm->slots_lock);
4523 
4524 	/*
4525 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4526 	 */
4527 	if (kvm_x86_ops->flush_log_dirty)
4528 		kvm_x86_ops->flush_log_dirty(kvm);
4529 
4530 	r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4531 
4532 	/*
4533 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4534 	 * kvm_mmu_slot_remove_write_access().
4535 	 */
4536 	lockdep_assert_held(&kvm->slots_lock);
4537 	if (flush)
4538 		kvm_flush_remote_tlbs(kvm);
4539 
4540 	mutex_unlock(&kvm->slots_lock);
4541 	return r;
4542 }
4543 
4544 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4545 			bool line_status)
4546 {
4547 	if (!irqchip_in_kernel(kvm))
4548 		return -ENXIO;
4549 
4550 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4551 					irq_event->irq, irq_event->level,
4552 					line_status);
4553 	return 0;
4554 }
4555 
4556 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4557 			    struct kvm_enable_cap *cap)
4558 {
4559 	int r;
4560 
4561 	if (cap->flags)
4562 		return -EINVAL;
4563 
4564 	switch (cap->cap) {
4565 	case KVM_CAP_DISABLE_QUIRKS:
4566 		kvm->arch.disabled_quirks = cap->args[0];
4567 		r = 0;
4568 		break;
4569 	case KVM_CAP_SPLIT_IRQCHIP: {
4570 		mutex_lock(&kvm->lock);
4571 		r = -EINVAL;
4572 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4573 			goto split_irqchip_unlock;
4574 		r = -EEXIST;
4575 		if (irqchip_in_kernel(kvm))
4576 			goto split_irqchip_unlock;
4577 		if (kvm->created_vcpus)
4578 			goto split_irqchip_unlock;
4579 		r = kvm_setup_empty_irq_routing(kvm);
4580 		if (r)
4581 			goto split_irqchip_unlock;
4582 		/* Pairs with irqchip_in_kernel. */
4583 		smp_wmb();
4584 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4585 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4586 		r = 0;
4587 split_irqchip_unlock:
4588 		mutex_unlock(&kvm->lock);
4589 		break;
4590 	}
4591 	case KVM_CAP_X2APIC_API:
4592 		r = -EINVAL;
4593 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4594 			break;
4595 
4596 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4597 			kvm->arch.x2apic_format = true;
4598 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4599 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4600 
4601 		r = 0;
4602 		break;
4603 	case KVM_CAP_X86_DISABLE_EXITS:
4604 		r = -EINVAL;
4605 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4606 			break;
4607 
4608 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4609 			kvm_can_mwait_in_guest())
4610 			kvm->arch.mwait_in_guest = true;
4611 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4612 			kvm->arch.hlt_in_guest = true;
4613 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4614 			kvm->arch.pause_in_guest = true;
4615 		r = 0;
4616 		break;
4617 	case KVM_CAP_MSR_PLATFORM_INFO:
4618 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4619 		r = 0;
4620 		break;
4621 	case KVM_CAP_EXCEPTION_PAYLOAD:
4622 		kvm->arch.exception_payload_enabled = cap->args[0];
4623 		r = 0;
4624 		break;
4625 	default:
4626 		r = -EINVAL;
4627 		break;
4628 	}
4629 	return r;
4630 }
4631 
4632 long kvm_arch_vm_ioctl(struct file *filp,
4633 		       unsigned int ioctl, unsigned long arg)
4634 {
4635 	struct kvm *kvm = filp->private_data;
4636 	void __user *argp = (void __user *)arg;
4637 	int r = -ENOTTY;
4638 	/*
4639 	 * This union makes it completely explicit to gcc-3.x
4640 	 * that these two variables' stack usage should be
4641 	 * combined, not added together.
4642 	 */
4643 	union {
4644 		struct kvm_pit_state ps;
4645 		struct kvm_pit_state2 ps2;
4646 		struct kvm_pit_config pit_config;
4647 	} u;
4648 
4649 	switch (ioctl) {
4650 	case KVM_SET_TSS_ADDR:
4651 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4652 		break;
4653 	case KVM_SET_IDENTITY_MAP_ADDR: {
4654 		u64 ident_addr;
4655 
4656 		mutex_lock(&kvm->lock);
4657 		r = -EINVAL;
4658 		if (kvm->created_vcpus)
4659 			goto set_identity_unlock;
4660 		r = -EFAULT;
4661 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4662 			goto set_identity_unlock;
4663 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4664 set_identity_unlock:
4665 		mutex_unlock(&kvm->lock);
4666 		break;
4667 	}
4668 	case KVM_SET_NR_MMU_PAGES:
4669 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4670 		break;
4671 	case KVM_GET_NR_MMU_PAGES:
4672 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4673 		break;
4674 	case KVM_CREATE_IRQCHIP: {
4675 		mutex_lock(&kvm->lock);
4676 
4677 		r = -EEXIST;
4678 		if (irqchip_in_kernel(kvm))
4679 			goto create_irqchip_unlock;
4680 
4681 		r = -EINVAL;
4682 		if (kvm->created_vcpus)
4683 			goto create_irqchip_unlock;
4684 
4685 		r = kvm_pic_init(kvm);
4686 		if (r)
4687 			goto create_irqchip_unlock;
4688 
4689 		r = kvm_ioapic_init(kvm);
4690 		if (r) {
4691 			kvm_pic_destroy(kvm);
4692 			goto create_irqchip_unlock;
4693 		}
4694 
4695 		r = kvm_setup_default_irq_routing(kvm);
4696 		if (r) {
4697 			kvm_ioapic_destroy(kvm);
4698 			kvm_pic_destroy(kvm);
4699 			goto create_irqchip_unlock;
4700 		}
4701 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4702 		smp_wmb();
4703 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4704 	create_irqchip_unlock:
4705 		mutex_unlock(&kvm->lock);
4706 		break;
4707 	}
4708 	case KVM_CREATE_PIT:
4709 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4710 		goto create_pit;
4711 	case KVM_CREATE_PIT2:
4712 		r = -EFAULT;
4713 		if (copy_from_user(&u.pit_config, argp,
4714 				   sizeof(struct kvm_pit_config)))
4715 			goto out;
4716 	create_pit:
4717 		mutex_lock(&kvm->lock);
4718 		r = -EEXIST;
4719 		if (kvm->arch.vpit)
4720 			goto create_pit_unlock;
4721 		r = -ENOMEM;
4722 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4723 		if (kvm->arch.vpit)
4724 			r = 0;
4725 	create_pit_unlock:
4726 		mutex_unlock(&kvm->lock);
4727 		break;
4728 	case KVM_GET_IRQCHIP: {
4729 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4730 		struct kvm_irqchip *chip;
4731 
4732 		chip = memdup_user(argp, sizeof(*chip));
4733 		if (IS_ERR(chip)) {
4734 			r = PTR_ERR(chip);
4735 			goto out;
4736 		}
4737 
4738 		r = -ENXIO;
4739 		if (!irqchip_kernel(kvm))
4740 			goto get_irqchip_out;
4741 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4742 		if (r)
4743 			goto get_irqchip_out;
4744 		r = -EFAULT;
4745 		if (copy_to_user(argp, chip, sizeof(*chip)))
4746 			goto get_irqchip_out;
4747 		r = 0;
4748 	get_irqchip_out:
4749 		kfree(chip);
4750 		break;
4751 	}
4752 	case KVM_SET_IRQCHIP: {
4753 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4754 		struct kvm_irqchip *chip;
4755 
4756 		chip = memdup_user(argp, sizeof(*chip));
4757 		if (IS_ERR(chip)) {
4758 			r = PTR_ERR(chip);
4759 			goto out;
4760 		}
4761 
4762 		r = -ENXIO;
4763 		if (!irqchip_kernel(kvm))
4764 			goto set_irqchip_out;
4765 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4766 		if (r)
4767 			goto set_irqchip_out;
4768 		r = 0;
4769 	set_irqchip_out:
4770 		kfree(chip);
4771 		break;
4772 	}
4773 	case KVM_GET_PIT: {
4774 		r = -EFAULT;
4775 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4776 			goto out;
4777 		r = -ENXIO;
4778 		if (!kvm->arch.vpit)
4779 			goto out;
4780 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4781 		if (r)
4782 			goto out;
4783 		r = -EFAULT;
4784 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4785 			goto out;
4786 		r = 0;
4787 		break;
4788 	}
4789 	case KVM_SET_PIT: {
4790 		r = -EFAULT;
4791 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4792 			goto out;
4793 		r = -ENXIO;
4794 		if (!kvm->arch.vpit)
4795 			goto out;
4796 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4797 		break;
4798 	}
4799 	case KVM_GET_PIT2: {
4800 		r = -ENXIO;
4801 		if (!kvm->arch.vpit)
4802 			goto out;
4803 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4804 		if (r)
4805 			goto out;
4806 		r = -EFAULT;
4807 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4808 			goto out;
4809 		r = 0;
4810 		break;
4811 	}
4812 	case KVM_SET_PIT2: {
4813 		r = -EFAULT;
4814 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4815 			goto out;
4816 		r = -ENXIO;
4817 		if (!kvm->arch.vpit)
4818 			goto out;
4819 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4820 		break;
4821 	}
4822 	case KVM_REINJECT_CONTROL: {
4823 		struct kvm_reinject_control control;
4824 		r =  -EFAULT;
4825 		if (copy_from_user(&control, argp, sizeof(control)))
4826 			goto out;
4827 		r = kvm_vm_ioctl_reinject(kvm, &control);
4828 		break;
4829 	}
4830 	case KVM_SET_BOOT_CPU_ID:
4831 		r = 0;
4832 		mutex_lock(&kvm->lock);
4833 		if (kvm->created_vcpus)
4834 			r = -EBUSY;
4835 		else
4836 			kvm->arch.bsp_vcpu_id = arg;
4837 		mutex_unlock(&kvm->lock);
4838 		break;
4839 	case KVM_XEN_HVM_CONFIG: {
4840 		struct kvm_xen_hvm_config xhc;
4841 		r = -EFAULT;
4842 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
4843 			goto out;
4844 		r = -EINVAL;
4845 		if (xhc.flags)
4846 			goto out;
4847 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4848 		r = 0;
4849 		break;
4850 	}
4851 	case KVM_SET_CLOCK: {
4852 		struct kvm_clock_data user_ns;
4853 		u64 now_ns;
4854 
4855 		r = -EFAULT;
4856 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4857 			goto out;
4858 
4859 		r = -EINVAL;
4860 		if (user_ns.flags)
4861 			goto out;
4862 
4863 		r = 0;
4864 		/*
4865 		 * TODO: userspace has to take care of races with VCPU_RUN, so
4866 		 * kvm_gen_update_masterclock() can be cut down to locked
4867 		 * pvclock_update_vm_gtod_copy().
4868 		 */
4869 		kvm_gen_update_masterclock(kvm);
4870 		now_ns = get_kvmclock_ns(kvm);
4871 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4872 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4873 		break;
4874 	}
4875 	case KVM_GET_CLOCK: {
4876 		struct kvm_clock_data user_ns;
4877 		u64 now_ns;
4878 
4879 		now_ns = get_kvmclock_ns(kvm);
4880 		user_ns.clock = now_ns;
4881 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4882 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4883 
4884 		r = -EFAULT;
4885 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4886 			goto out;
4887 		r = 0;
4888 		break;
4889 	}
4890 	case KVM_MEMORY_ENCRYPT_OP: {
4891 		r = -ENOTTY;
4892 		if (kvm_x86_ops->mem_enc_op)
4893 			r = kvm_x86_ops->mem_enc_op(kvm, argp);
4894 		break;
4895 	}
4896 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
4897 		struct kvm_enc_region region;
4898 
4899 		r = -EFAULT;
4900 		if (copy_from_user(&region, argp, sizeof(region)))
4901 			goto out;
4902 
4903 		r = -ENOTTY;
4904 		if (kvm_x86_ops->mem_enc_reg_region)
4905 			r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4906 		break;
4907 	}
4908 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4909 		struct kvm_enc_region region;
4910 
4911 		r = -EFAULT;
4912 		if (copy_from_user(&region, argp, sizeof(region)))
4913 			goto out;
4914 
4915 		r = -ENOTTY;
4916 		if (kvm_x86_ops->mem_enc_unreg_region)
4917 			r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4918 		break;
4919 	}
4920 	case KVM_HYPERV_EVENTFD: {
4921 		struct kvm_hyperv_eventfd hvevfd;
4922 
4923 		r = -EFAULT;
4924 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4925 			goto out;
4926 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4927 		break;
4928 	}
4929 	default:
4930 		r = -ENOTTY;
4931 	}
4932 out:
4933 	return r;
4934 }
4935 
4936 static void kvm_init_msr_list(void)
4937 {
4938 	u32 dummy[2];
4939 	unsigned i, j;
4940 
4941 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4942 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4943 			continue;
4944 
4945 		/*
4946 		 * Even MSRs that are valid in the host may not be exposed
4947 		 * to the guests in some cases.
4948 		 */
4949 		switch (msrs_to_save[i]) {
4950 		case MSR_IA32_BNDCFGS:
4951 			if (!kvm_mpx_supported())
4952 				continue;
4953 			break;
4954 		case MSR_TSC_AUX:
4955 			if (!kvm_x86_ops->rdtscp_supported())
4956 				continue;
4957 			break;
4958 		case MSR_IA32_RTIT_CTL:
4959 		case MSR_IA32_RTIT_STATUS:
4960 			if (!kvm_x86_ops->pt_supported())
4961 				continue;
4962 			break;
4963 		case MSR_IA32_RTIT_CR3_MATCH:
4964 			if (!kvm_x86_ops->pt_supported() ||
4965 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
4966 				continue;
4967 			break;
4968 		case MSR_IA32_RTIT_OUTPUT_BASE:
4969 		case MSR_IA32_RTIT_OUTPUT_MASK:
4970 			if (!kvm_x86_ops->pt_supported() ||
4971 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
4972 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
4973 				continue;
4974 			break;
4975 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
4976 			if (!kvm_x86_ops->pt_supported() ||
4977 				msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >=
4978 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
4979 				continue;
4980 			break;
4981 		}
4982 		default:
4983 			break;
4984 		}
4985 
4986 		if (j < i)
4987 			msrs_to_save[j] = msrs_to_save[i];
4988 		j++;
4989 	}
4990 	num_msrs_to_save = j;
4991 
4992 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4993 		if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4994 			continue;
4995 
4996 		if (j < i)
4997 			emulated_msrs[j] = emulated_msrs[i];
4998 		j++;
4999 	}
5000 	num_emulated_msrs = j;
5001 
5002 	for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
5003 		struct kvm_msr_entry msr;
5004 
5005 		msr.index = msr_based_features[i];
5006 		if (kvm_get_msr_feature(&msr))
5007 			continue;
5008 
5009 		if (j < i)
5010 			msr_based_features[j] = msr_based_features[i];
5011 		j++;
5012 	}
5013 	num_msr_based_features = j;
5014 }
5015 
5016 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5017 			   const void *v)
5018 {
5019 	int handled = 0;
5020 	int n;
5021 
5022 	do {
5023 		n = min(len, 8);
5024 		if (!(lapic_in_kernel(vcpu) &&
5025 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5026 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5027 			break;
5028 		handled += n;
5029 		addr += n;
5030 		len -= n;
5031 		v += n;
5032 	} while (len);
5033 
5034 	return handled;
5035 }
5036 
5037 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5038 {
5039 	int handled = 0;
5040 	int n;
5041 
5042 	do {
5043 		n = min(len, 8);
5044 		if (!(lapic_in_kernel(vcpu) &&
5045 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5046 					 addr, n, v))
5047 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5048 			break;
5049 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5050 		handled += n;
5051 		addr += n;
5052 		len -= n;
5053 		v += n;
5054 	} while (len);
5055 
5056 	return handled;
5057 }
5058 
5059 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5060 			struct kvm_segment *var, int seg)
5061 {
5062 	kvm_x86_ops->set_segment(vcpu, var, seg);
5063 }
5064 
5065 void kvm_get_segment(struct kvm_vcpu *vcpu,
5066 		     struct kvm_segment *var, int seg)
5067 {
5068 	kvm_x86_ops->get_segment(vcpu, var, seg);
5069 }
5070 
5071 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5072 			   struct x86_exception *exception)
5073 {
5074 	gpa_t t_gpa;
5075 
5076 	BUG_ON(!mmu_is_nested(vcpu));
5077 
5078 	/* NPT walks are always user-walks */
5079 	access |= PFERR_USER_MASK;
5080 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5081 
5082 	return t_gpa;
5083 }
5084 
5085 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5086 			      struct x86_exception *exception)
5087 {
5088 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5089 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5090 }
5091 
5092  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5093 				struct x86_exception *exception)
5094 {
5095 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5096 	access |= PFERR_FETCH_MASK;
5097 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5098 }
5099 
5100 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5101 			       struct x86_exception *exception)
5102 {
5103 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5104 	access |= PFERR_WRITE_MASK;
5105 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5106 }
5107 
5108 /* uses this to access any guest's mapped memory without checking CPL */
5109 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5110 				struct x86_exception *exception)
5111 {
5112 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5113 }
5114 
5115 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5116 				      struct kvm_vcpu *vcpu, u32 access,
5117 				      struct x86_exception *exception)
5118 {
5119 	void *data = val;
5120 	int r = X86EMUL_CONTINUE;
5121 
5122 	while (bytes) {
5123 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5124 							    exception);
5125 		unsigned offset = addr & (PAGE_SIZE-1);
5126 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5127 		int ret;
5128 
5129 		if (gpa == UNMAPPED_GVA)
5130 			return X86EMUL_PROPAGATE_FAULT;
5131 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5132 					       offset, toread);
5133 		if (ret < 0) {
5134 			r = X86EMUL_IO_NEEDED;
5135 			goto out;
5136 		}
5137 
5138 		bytes -= toread;
5139 		data += toread;
5140 		addr += toread;
5141 	}
5142 out:
5143 	return r;
5144 }
5145 
5146 /* used for instruction fetching */
5147 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5148 				gva_t addr, void *val, unsigned int bytes,
5149 				struct x86_exception *exception)
5150 {
5151 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5152 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5153 	unsigned offset;
5154 	int ret;
5155 
5156 	/* Inline kvm_read_guest_virt_helper for speed.  */
5157 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5158 						    exception);
5159 	if (unlikely(gpa == UNMAPPED_GVA))
5160 		return X86EMUL_PROPAGATE_FAULT;
5161 
5162 	offset = addr & (PAGE_SIZE-1);
5163 	if (WARN_ON(offset + bytes > PAGE_SIZE))
5164 		bytes = (unsigned)PAGE_SIZE - offset;
5165 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5166 				       offset, bytes);
5167 	if (unlikely(ret < 0))
5168 		return X86EMUL_IO_NEEDED;
5169 
5170 	return X86EMUL_CONTINUE;
5171 }
5172 
5173 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5174 			       gva_t addr, void *val, unsigned int bytes,
5175 			       struct x86_exception *exception)
5176 {
5177 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5178 
5179 	/*
5180 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5181 	 * is returned, but our callers are not ready for that and they blindly
5182 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5183 	 * uninitialized kernel stack memory into cr2 and error code.
5184 	 */
5185 	memset(exception, 0, sizeof(*exception));
5186 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5187 					  exception);
5188 }
5189 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5190 
5191 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5192 			     gva_t addr, void *val, unsigned int bytes,
5193 			     struct x86_exception *exception, bool system)
5194 {
5195 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5196 	u32 access = 0;
5197 
5198 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5199 		access |= PFERR_USER_MASK;
5200 
5201 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5202 }
5203 
5204 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5205 		unsigned long addr, void *val, unsigned int bytes)
5206 {
5207 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5208 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5209 
5210 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5211 }
5212 
5213 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5214 				      struct kvm_vcpu *vcpu, u32 access,
5215 				      struct x86_exception *exception)
5216 {
5217 	void *data = val;
5218 	int r = X86EMUL_CONTINUE;
5219 
5220 	while (bytes) {
5221 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5222 							     access,
5223 							     exception);
5224 		unsigned offset = addr & (PAGE_SIZE-1);
5225 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5226 		int ret;
5227 
5228 		if (gpa == UNMAPPED_GVA)
5229 			return X86EMUL_PROPAGATE_FAULT;
5230 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5231 		if (ret < 0) {
5232 			r = X86EMUL_IO_NEEDED;
5233 			goto out;
5234 		}
5235 
5236 		bytes -= towrite;
5237 		data += towrite;
5238 		addr += towrite;
5239 	}
5240 out:
5241 	return r;
5242 }
5243 
5244 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5245 			      unsigned int bytes, struct x86_exception *exception,
5246 			      bool system)
5247 {
5248 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5249 	u32 access = PFERR_WRITE_MASK;
5250 
5251 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5252 		access |= PFERR_USER_MASK;
5253 
5254 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5255 					   access, exception);
5256 }
5257 
5258 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5259 				unsigned int bytes, struct x86_exception *exception)
5260 {
5261 	/* kvm_write_guest_virt_system can pull in tons of pages. */
5262 	vcpu->arch.l1tf_flush_l1d = true;
5263 
5264 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5265 					   PFERR_WRITE_MASK, exception);
5266 }
5267 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5268 
5269 int handle_ud(struct kvm_vcpu *vcpu)
5270 {
5271 	int emul_type = EMULTYPE_TRAP_UD;
5272 	enum emulation_result er;
5273 	char sig[5]; /* ud2; .ascii "kvm" */
5274 	struct x86_exception e;
5275 
5276 	if (force_emulation_prefix &&
5277 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5278 				sig, sizeof(sig), &e) == 0 &&
5279 	    memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5280 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5281 		emul_type = 0;
5282 	}
5283 
5284 	er = kvm_emulate_instruction(vcpu, emul_type);
5285 	if (er == EMULATE_USER_EXIT)
5286 		return 0;
5287 	if (er != EMULATE_DONE)
5288 		kvm_queue_exception(vcpu, UD_VECTOR);
5289 	return 1;
5290 }
5291 EXPORT_SYMBOL_GPL(handle_ud);
5292 
5293 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5294 			    gpa_t gpa, bool write)
5295 {
5296 	/* For APIC access vmexit */
5297 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5298 		return 1;
5299 
5300 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5301 		trace_vcpu_match_mmio(gva, gpa, write, true);
5302 		return 1;
5303 	}
5304 
5305 	return 0;
5306 }
5307 
5308 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5309 				gpa_t *gpa, struct x86_exception *exception,
5310 				bool write)
5311 {
5312 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5313 		| (write ? PFERR_WRITE_MASK : 0);
5314 
5315 	/*
5316 	 * currently PKRU is only applied to ept enabled guest so
5317 	 * there is no pkey in EPT page table for L1 guest or EPT
5318 	 * shadow page table for L2 guest.
5319 	 */
5320 	if (vcpu_match_mmio_gva(vcpu, gva)
5321 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5322 				 vcpu->arch.access, 0, access)) {
5323 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5324 					(gva & (PAGE_SIZE - 1));
5325 		trace_vcpu_match_mmio(gva, *gpa, write, false);
5326 		return 1;
5327 	}
5328 
5329 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5330 
5331 	if (*gpa == UNMAPPED_GVA)
5332 		return -1;
5333 
5334 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5335 }
5336 
5337 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5338 			const void *val, int bytes)
5339 {
5340 	int ret;
5341 
5342 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5343 	if (ret < 0)
5344 		return 0;
5345 	kvm_page_track_write(vcpu, gpa, val, bytes);
5346 	return 1;
5347 }
5348 
5349 struct read_write_emulator_ops {
5350 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5351 				  int bytes);
5352 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5353 				  void *val, int bytes);
5354 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5355 			       int bytes, void *val);
5356 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5357 				    void *val, int bytes);
5358 	bool write;
5359 };
5360 
5361 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5362 {
5363 	if (vcpu->mmio_read_completed) {
5364 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5365 			       vcpu->mmio_fragments[0].gpa, val);
5366 		vcpu->mmio_read_completed = 0;
5367 		return 1;
5368 	}
5369 
5370 	return 0;
5371 }
5372 
5373 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5374 			void *val, int bytes)
5375 {
5376 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5377 }
5378 
5379 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5380 			 void *val, int bytes)
5381 {
5382 	return emulator_write_phys(vcpu, gpa, val, bytes);
5383 }
5384 
5385 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5386 {
5387 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5388 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
5389 }
5390 
5391 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5392 			  void *val, int bytes)
5393 {
5394 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5395 	return X86EMUL_IO_NEEDED;
5396 }
5397 
5398 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5399 			   void *val, int bytes)
5400 {
5401 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5402 
5403 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5404 	return X86EMUL_CONTINUE;
5405 }
5406 
5407 static const struct read_write_emulator_ops read_emultor = {
5408 	.read_write_prepare = read_prepare,
5409 	.read_write_emulate = read_emulate,
5410 	.read_write_mmio = vcpu_mmio_read,
5411 	.read_write_exit_mmio = read_exit_mmio,
5412 };
5413 
5414 static const struct read_write_emulator_ops write_emultor = {
5415 	.read_write_emulate = write_emulate,
5416 	.read_write_mmio = write_mmio,
5417 	.read_write_exit_mmio = write_exit_mmio,
5418 	.write = true,
5419 };
5420 
5421 static int emulator_read_write_onepage(unsigned long addr, void *val,
5422 				       unsigned int bytes,
5423 				       struct x86_exception *exception,
5424 				       struct kvm_vcpu *vcpu,
5425 				       const struct read_write_emulator_ops *ops)
5426 {
5427 	gpa_t gpa;
5428 	int handled, ret;
5429 	bool write = ops->write;
5430 	struct kvm_mmio_fragment *frag;
5431 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5432 
5433 	/*
5434 	 * If the exit was due to a NPF we may already have a GPA.
5435 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5436 	 * Note, this cannot be used on string operations since string
5437 	 * operation using rep will only have the initial GPA from the NPF
5438 	 * occurred.
5439 	 */
5440 	if (vcpu->arch.gpa_available &&
5441 	    emulator_can_use_gpa(ctxt) &&
5442 	    (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5443 		gpa = vcpu->arch.gpa_val;
5444 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5445 	} else {
5446 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5447 		if (ret < 0)
5448 			return X86EMUL_PROPAGATE_FAULT;
5449 	}
5450 
5451 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5452 		return X86EMUL_CONTINUE;
5453 
5454 	/*
5455 	 * Is this MMIO handled locally?
5456 	 */
5457 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5458 	if (handled == bytes)
5459 		return X86EMUL_CONTINUE;
5460 
5461 	gpa += handled;
5462 	bytes -= handled;
5463 	val += handled;
5464 
5465 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5466 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5467 	frag->gpa = gpa;
5468 	frag->data = val;
5469 	frag->len = bytes;
5470 	return X86EMUL_CONTINUE;
5471 }
5472 
5473 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5474 			unsigned long addr,
5475 			void *val, unsigned int bytes,
5476 			struct x86_exception *exception,
5477 			const struct read_write_emulator_ops *ops)
5478 {
5479 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5480 	gpa_t gpa;
5481 	int rc;
5482 
5483 	if (ops->read_write_prepare &&
5484 		  ops->read_write_prepare(vcpu, val, bytes))
5485 		return X86EMUL_CONTINUE;
5486 
5487 	vcpu->mmio_nr_fragments = 0;
5488 
5489 	/* Crossing a page boundary? */
5490 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5491 		int now;
5492 
5493 		now = -addr & ~PAGE_MASK;
5494 		rc = emulator_read_write_onepage(addr, val, now, exception,
5495 						 vcpu, ops);
5496 
5497 		if (rc != X86EMUL_CONTINUE)
5498 			return rc;
5499 		addr += now;
5500 		if (ctxt->mode != X86EMUL_MODE_PROT64)
5501 			addr = (u32)addr;
5502 		val += now;
5503 		bytes -= now;
5504 	}
5505 
5506 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
5507 					 vcpu, ops);
5508 	if (rc != X86EMUL_CONTINUE)
5509 		return rc;
5510 
5511 	if (!vcpu->mmio_nr_fragments)
5512 		return rc;
5513 
5514 	gpa = vcpu->mmio_fragments[0].gpa;
5515 
5516 	vcpu->mmio_needed = 1;
5517 	vcpu->mmio_cur_fragment = 0;
5518 
5519 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5520 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5521 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
5522 	vcpu->run->mmio.phys_addr = gpa;
5523 
5524 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5525 }
5526 
5527 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5528 				  unsigned long addr,
5529 				  void *val,
5530 				  unsigned int bytes,
5531 				  struct x86_exception *exception)
5532 {
5533 	return emulator_read_write(ctxt, addr, val, bytes,
5534 				   exception, &read_emultor);
5535 }
5536 
5537 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5538 			    unsigned long addr,
5539 			    const void *val,
5540 			    unsigned int bytes,
5541 			    struct x86_exception *exception)
5542 {
5543 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
5544 				   exception, &write_emultor);
5545 }
5546 
5547 #define CMPXCHG_TYPE(t, ptr, old, new) \
5548 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5549 
5550 #ifdef CONFIG_X86_64
5551 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5552 #else
5553 #  define CMPXCHG64(ptr, old, new) \
5554 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5555 #endif
5556 
5557 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5558 				     unsigned long addr,
5559 				     const void *old,
5560 				     const void *new,
5561 				     unsigned int bytes,
5562 				     struct x86_exception *exception)
5563 {
5564 	struct kvm_host_map map;
5565 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5566 	gpa_t gpa;
5567 	char *kaddr;
5568 	bool exchanged;
5569 
5570 	/* guests cmpxchg8b have to be emulated atomically */
5571 	if (bytes > 8 || (bytes & (bytes - 1)))
5572 		goto emul_write;
5573 
5574 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5575 
5576 	if (gpa == UNMAPPED_GVA ||
5577 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5578 		goto emul_write;
5579 
5580 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5581 		goto emul_write;
5582 
5583 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5584 		goto emul_write;
5585 
5586 	kaddr = map.hva + offset_in_page(gpa);
5587 
5588 	switch (bytes) {
5589 	case 1:
5590 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5591 		break;
5592 	case 2:
5593 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5594 		break;
5595 	case 4:
5596 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5597 		break;
5598 	case 8:
5599 		exchanged = CMPXCHG64(kaddr, old, new);
5600 		break;
5601 	default:
5602 		BUG();
5603 	}
5604 
5605 	kvm_vcpu_unmap(vcpu, &map, true);
5606 
5607 	if (!exchanged)
5608 		return X86EMUL_CMPXCHG_FAILED;
5609 
5610 	kvm_page_track_write(vcpu, gpa, new, bytes);
5611 
5612 	return X86EMUL_CONTINUE;
5613 
5614 emul_write:
5615 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5616 
5617 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5618 }
5619 
5620 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5621 {
5622 	int r = 0, i;
5623 
5624 	for (i = 0; i < vcpu->arch.pio.count; i++) {
5625 		if (vcpu->arch.pio.in)
5626 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5627 					    vcpu->arch.pio.size, pd);
5628 		else
5629 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5630 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
5631 					     pd);
5632 		if (r)
5633 			break;
5634 		pd += vcpu->arch.pio.size;
5635 	}
5636 	return r;
5637 }
5638 
5639 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5640 			       unsigned short port, void *val,
5641 			       unsigned int count, bool in)
5642 {
5643 	vcpu->arch.pio.port = port;
5644 	vcpu->arch.pio.in = in;
5645 	vcpu->arch.pio.count  = count;
5646 	vcpu->arch.pio.size = size;
5647 
5648 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5649 		vcpu->arch.pio.count = 0;
5650 		return 1;
5651 	}
5652 
5653 	vcpu->run->exit_reason = KVM_EXIT_IO;
5654 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5655 	vcpu->run->io.size = size;
5656 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5657 	vcpu->run->io.count = count;
5658 	vcpu->run->io.port = port;
5659 
5660 	return 0;
5661 }
5662 
5663 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5664 				    int size, unsigned short port, void *val,
5665 				    unsigned int count)
5666 {
5667 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5668 	int ret;
5669 
5670 	if (vcpu->arch.pio.count)
5671 		goto data_avail;
5672 
5673 	memset(vcpu->arch.pio_data, 0, size * count);
5674 
5675 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5676 	if (ret) {
5677 data_avail:
5678 		memcpy(val, vcpu->arch.pio_data, size * count);
5679 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5680 		vcpu->arch.pio.count = 0;
5681 		return 1;
5682 	}
5683 
5684 	return 0;
5685 }
5686 
5687 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5688 				     int size, unsigned short port,
5689 				     const void *val, unsigned int count)
5690 {
5691 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5692 
5693 	memcpy(vcpu->arch.pio_data, val, size * count);
5694 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5695 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5696 }
5697 
5698 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5699 {
5700 	return kvm_x86_ops->get_segment_base(vcpu, seg);
5701 }
5702 
5703 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5704 {
5705 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5706 }
5707 
5708 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5709 {
5710 	if (!need_emulate_wbinvd(vcpu))
5711 		return X86EMUL_CONTINUE;
5712 
5713 	if (kvm_x86_ops->has_wbinvd_exit()) {
5714 		int cpu = get_cpu();
5715 
5716 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5717 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5718 				wbinvd_ipi, NULL, 1);
5719 		put_cpu();
5720 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5721 	} else
5722 		wbinvd();
5723 	return X86EMUL_CONTINUE;
5724 }
5725 
5726 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5727 {
5728 	kvm_emulate_wbinvd_noskip(vcpu);
5729 	return kvm_skip_emulated_instruction(vcpu);
5730 }
5731 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5732 
5733 
5734 
5735 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5736 {
5737 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5738 }
5739 
5740 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5741 			   unsigned long *dest)
5742 {
5743 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5744 }
5745 
5746 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5747 			   unsigned long value)
5748 {
5749 
5750 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5751 }
5752 
5753 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5754 {
5755 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5756 }
5757 
5758 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5759 {
5760 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5761 	unsigned long value;
5762 
5763 	switch (cr) {
5764 	case 0:
5765 		value = kvm_read_cr0(vcpu);
5766 		break;
5767 	case 2:
5768 		value = vcpu->arch.cr2;
5769 		break;
5770 	case 3:
5771 		value = kvm_read_cr3(vcpu);
5772 		break;
5773 	case 4:
5774 		value = kvm_read_cr4(vcpu);
5775 		break;
5776 	case 8:
5777 		value = kvm_get_cr8(vcpu);
5778 		break;
5779 	default:
5780 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5781 		return 0;
5782 	}
5783 
5784 	return value;
5785 }
5786 
5787 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5788 {
5789 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5790 	int res = 0;
5791 
5792 	switch (cr) {
5793 	case 0:
5794 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5795 		break;
5796 	case 2:
5797 		vcpu->arch.cr2 = val;
5798 		break;
5799 	case 3:
5800 		res = kvm_set_cr3(vcpu, val);
5801 		break;
5802 	case 4:
5803 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5804 		break;
5805 	case 8:
5806 		res = kvm_set_cr8(vcpu, val);
5807 		break;
5808 	default:
5809 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5810 		res = -1;
5811 	}
5812 
5813 	return res;
5814 }
5815 
5816 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5817 {
5818 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5819 }
5820 
5821 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5822 {
5823 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5824 }
5825 
5826 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5827 {
5828 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5829 }
5830 
5831 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5832 {
5833 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5834 }
5835 
5836 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5837 {
5838 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5839 }
5840 
5841 static unsigned long emulator_get_cached_segment_base(
5842 	struct x86_emulate_ctxt *ctxt, int seg)
5843 {
5844 	return get_segment_base(emul_to_vcpu(ctxt), seg);
5845 }
5846 
5847 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5848 				 struct desc_struct *desc, u32 *base3,
5849 				 int seg)
5850 {
5851 	struct kvm_segment var;
5852 
5853 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5854 	*selector = var.selector;
5855 
5856 	if (var.unusable) {
5857 		memset(desc, 0, sizeof(*desc));
5858 		if (base3)
5859 			*base3 = 0;
5860 		return false;
5861 	}
5862 
5863 	if (var.g)
5864 		var.limit >>= 12;
5865 	set_desc_limit(desc, var.limit);
5866 	set_desc_base(desc, (unsigned long)var.base);
5867 #ifdef CONFIG_X86_64
5868 	if (base3)
5869 		*base3 = var.base >> 32;
5870 #endif
5871 	desc->type = var.type;
5872 	desc->s = var.s;
5873 	desc->dpl = var.dpl;
5874 	desc->p = var.present;
5875 	desc->avl = var.avl;
5876 	desc->l = var.l;
5877 	desc->d = var.db;
5878 	desc->g = var.g;
5879 
5880 	return true;
5881 }
5882 
5883 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5884 				 struct desc_struct *desc, u32 base3,
5885 				 int seg)
5886 {
5887 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5888 	struct kvm_segment var;
5889 
5890 	var.selector = selector;
5891 	var.base = get_desc_base(desc);
5892 #ifdef CONFIG_X86_64
5893 	var.base |= ((u64)base3) << 32;
5894 #endif
5895 	var.limit = get_desc_limit(desc);
5896 	if (desc->g)
5897 		var.limit = (var.limit << 12) | 0xfff;
5898 	var.type = desc->type;
5899 	var.dpl = desc->dpl;
5900 	var.db = desc->d;
5901 	var.s = desc->s;
5902 	var.l = desc->l;
5903 	var.g = desc->g;
5904 	var.avl = desc->avl;
5905 	var.present = desc->p;
5906 	var.unusable = !var.present;
5907 	var.padding = 0;
5908 
5909 	kvm_set_segment(vcpu, &var, seg);
5910 	return;
5911 }
5912 
5913 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5914 			    u32 msr_index, u64 *pdata)
5915 {
5916 	struct msr_data msr;
5917 	int r;
5918 
5919 	msr.index = msr_index;
5920 	msr.host_initiated = false;
5921 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5922 	if (r)
5923 		return r;
5924 
5925 	*pdata = msr.data;
5926 	return 0;
5927 }
5928 
5929 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5930 			    u32 msr_index, u64 data)
5931 {
5932 	struct msr_data msr;
5933 
5934 	msr.data = data;
5935 	msr.index = msr_index;
5936 	msr.host_initiated = false;
5937 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5938 }
5939 
5940 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5941 {
5942 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5943 
5944 	return vcpu->arch.smbase;
5945 }
5946 
5947 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5948 {
5949 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5950 
5951 	vcpu->arch.smbase = smbase;
5952 }
5953 
5954 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5955 			      u32 pmc)
5956 {
5957 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5958 }
5959 
5960 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5961 			     u32 pmc, u64 *pdata)
5962 {
5963 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5964 }
5965 
5966 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5967 {
5968 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
5969 }
5970 
5971 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5972 			      struct x86_instruction_info *info,
5973 			      enum x86_intercept_stage stage)
5974 {
5975 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5976 }
5977 
5978 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5979 			u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5980 {
5981 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5982 }
5983 
5984 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5985 {
5986 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5987 }
5988 
5989 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5990 {
5991 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5992 }
5993 
5994 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5995 {
5996 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5997 }
5998 
5999 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6000 {
6001 	return emul_to_vcpu(ctxt)->arch.hflags;
6002 }
6003 
6004 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6005 {
6006 	emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6007 }
6008 
6009 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6010 				  const char *smstate)
6011 {
6012 	return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6013 }
6014 
6015 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6016 {
6017 	kvm_smm_changed(emul_to_vcpu(ctxt));
6018 }
6019 
6020 static const struct x86_emulate_ops emulate_ops = {
6021 	.read_gpr            = emulator_read_gpr,
6022 	.write_gpr           = emulator_write_gpr,
6023 	.read_std            = emulator_read_std,
6024 	.write_std           = emulator_write_std,
6025 	.read_phys           = kvm_read_guest_phys_system,
6026 	.fetch               = kvm_fetch_guest_virt,
6027 	.read_emulated       = emulator_read_emulated,
6028 	.write_emulated      = emulator_write_emulated,
6029 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
6030 	.invlpg              = emulator_invlpg,
6031 	.pio_in_emulated     = emulator_pio_in_emulated,
6032 	.pio_out_emulated    = emulator_pio_out_emulated,
6033 	.get_segment         = emulator_get_segment,
6034 	.set_segment         = emulator_set_segment,
6035 	.get_cached_segment_base = emulator_get_cached_segment_base,
6036 	.get_gdt             = emulator_get_gdt,
6037 	.get_idt	     = emulator_get_idt,
6038 	.set_gdt             = emulator_set_gdt,
6039 	.set_idt	     = emulator_set_idt,
6040 	.get_cr              = emulator_get_cr,
6041 	.set_cr              = emulator_set_cr,
6042 	.cpl                 = emulator_get_cpl,
6043 	.get_dr              = emulator_get_dr,
6044 	.set_dr              = emulator_set_dr,
6045 	.get_smbase          = emulator_get_smbase,
6046 	.set_smbase          = emulator_set_smbase,
6047 	.set_msr             = emulator_set_msr,
6048 	.get_msr             = emulator_get_msr,
6049 	.check_pmc	     = emulator_check_pmc,
6050 	.read_pmc            = emulator_read_pmc,
6051 	.halt                = emulator_halt,
6052 	.wbinvd              = emulator_wbinvd,
6053 	.fix_hypercall       = emulator_fix_hypercall,
6054 	.intercept           = emulator_intercept,
6055 	.get_cpuid           = emulator_get_cpuid,
6056 	.set_nmi_mask        = emulator_set_nmi_mask,
6057 	.get_hflags          = emulator_get_hflags,
6058 	.set_hflags          = emulator_set_hflags,
6059 	.pre_leave_smm       = emulator_pre_leave_smm,
6060 	.post_leave_smm      = emulator_post_leave_smm,
6061 };
6062 
6063 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6064 {
6065 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6066 	/*
6067 	 * an sti; sti; sequence only disable interrupts for the first
6068 	 * instruction. So, if the last instruction, be it emulated or
6069 	 * not, left the system with the INT_STI flag enabled, it
6070 	 * means that the last instruction is an sti. We should not
6071 	 * leave the flag on in this case. The same goes for mov ss
6072 	 */
6073 	if (int_shadow & mask)
6074 		mask = 0;
6075 	if (unlikely(int_shadow || mask)) {
6076 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6077 		if (!mask)
6078 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6079 	}
6080 }
6081 
6082 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6083 {
6084 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6085 	if (ctxt->exception.vector == PF_VECTOR)
6086 		return kvm_propagate_fault(vcpu, &ctxt->exception);
6087 
6088 	if (ctxt->exception.error_code_valid)
6089 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6090 				      ctxt->exception.error_code);
6091 	else
6092 		kvm_queue_exception(vcpu, ctxt->exception.vector);
6093 	return false;
6094 }
6095 
6096 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6097 {
6098 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6099 	int cs_db, cs_l;
6100 
6101 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6102 
6103 	ctxt->eflags = kvm_get_rflags(vcpu);
6104 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6105 
6106 	ctxt->eip = kvm_rip_read(vcpu);
6107 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
6108 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
6109 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
6110 		     cs_db				? X86EMUL_MODE_PROT32 :
6111 							  X86EMUL_MODE_PROT16;
6112 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6113 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6114 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6115 
6116 	init_decode_cache(ctxt);
6117 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6118 }
6119 
6120 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6121 {
6122 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6123 	int ret;
6124 
6125 	init_emulate_ctxt(vcpu);
6126 
6127 	ctxt->op_bytes = 2;
6128 	ctxt->ad_bytes = 2;
6129 	ctxt->_eip = ctxt->eip + inc_eip;
6130 	ret = emulate_int_real(ctxt, irq);
6131 
6132 	if (ret != X86EMUL_CONTINUE)
6133 		return EMULATE_FAIL;
6134 
6135 	ctxt->eip = ctxt->_eip;
6136 	kvm_rip_write(vcpu, ctxt->eip);
6137 	kvm_set_rflags(vcpu, ctxt->eflags);
6138 
6139 	return EMULATE_DONE;
6140 }
6141 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6142 
6143 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6144 {
6145 	int r = EMULATE_DONE;
6146 
6147 	++vcpu->stat.insn_emulation_fail;
6148 	trace_kvm_emulate_insn_failed(vcpu);
6149 
6150 	if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
6151 		return EMULATE_FAIL;
6152 
6153 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6154 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6155 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6156 		vcpu->run->internal.ndata = 0;
6157 		r = EMULATE_USER_EXIT;
6158 	}
6159 
6160 	kvm_queue_exception(vcpu, UD_VECTOR);
6161 
6162 	return r;
6163 }
6164 
6165 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6166 				  bool write_fault_to_shadow_pgtable,
6167 				  int emulation_type)
6168 {
6169 	gpa_t gpa = cr2;
6170 	kvm_pfn_t pfn;
6171 
6172 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6173 		return false;
6174 
6175 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6176 		return false;
6177 
6178 	if (!vcpu->arch.mmu->direct_map) {
6179 		/*
6180 		 * Write permission should be allowed since only
6181 		 * write access need to be emulated.
6182 		 */
6183 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6184 
6185 		/*
6186 		 * If the mapping is invalid in guest, let cpu retry
6187 		 * it to generate fault.
6188 		 */
6189 		if (gpa == UNMAPPED_GVA)
6190 			return true;
6191 	}
6192 
6193 	/*
6194 	 * Do not retry the unhandleable instruction if it faults on the
6195 	 * readonly host memory, otherwise it will goto a infinite loop:
6196 	 * retry instruction -> write #PF -> emulation fail -> retry
6197 	 * instruction -> ...
6198 	 */
6199 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6200 
6201 	/*
6202 	 * If the instruction failed on the error pfn, it can not be fixed,
6203 	 * report the error to userspace.
6204 	 */
6205 	if (is_error_noslot_pfn(pfn))
6206 		return false;
6207 
6208 	kvm_release_pfn_clean(pfn);
6209 
6210 	/* The instructions are well-emulated on direct mmu. */
6211 	if (vcpu->arch.mmu->direct_map) {
6212 		unsigned int indirect_shadow_pages;
6213 
6214 		spin_lock(&vcpu->kvm->mmu_lock);
6215 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6216 		spin_unlock(&vcpu->kvm->mmu_lock);
6217 
6218 		if (indirect_shadow_pages)
6219 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6220 
6221 		return true;
6222 	}
6223 
6224 	/*
6225 	 * if emulation was due to access to shadowed page table
6226 	 * and it failed try to unshadow page and re-enter the
6227 	 * guest to let CPU execute the instruction.
6228 	 */
6229 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6230 
6231 	/*
6232 	 * If the access faults on its page table, it can not
6233 	 * be fixed by unprotecting shadow page and it should
6234 	 * be reported to userspace.
6235 	 */
6236 	return !write_fault_to_shadow_pgtable;
6237 }
6238 
6239 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6240 			      unsigned long cr2,  int emulation_type)
6241 {
6242 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6243 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6244 
6245 	last_retry_eip = vcpu->arch.last_retry_eip;
6246 	last_retry_addr = vcpu->arch.last_retry_addr;
6247 
6248 	/*
6249 	 * If the emulation is caused by #PF and it is non-page_table
6250 	 * writing instruction, it means the VM-EXIT is caused by shadow
6251 	 * page protected, we can zap the shadow page and retry this
6252 	 * instruction directly.
6253 	 *
6254 	 * Note: if the guest uses a non-page-table modifying instruction
6255 	 * on the PDE that points to the instruction, then we will unmap
6256 	 * the instruction and go to an infinite loop. So, we cache the
6257 	 * last retried eip and the last fault address, if we meet the eip
6258 	 * and the address again, we can break out of the potential infinite
6259 	 * loop.
6260 	 */
6261 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6262 
6263 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6264 		return false;
6265 
6266 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6267 		return false;
6268 
6269 	if (x86_page_table_writing_insn(ctxt))
6270 		return false;
6271 
6272 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6273 		return false;
6274 
6275 	vcpu->arch.last_retry_eip = ctxt->eip;
6276 	vcpu->arch.last_retry_addr = cr2;
6277 
6278 	if (!vcpu->arch.mmu->direct_map)
6279 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6280 
6281 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6282 
6283 	return true;
6284 }
6285 
6286 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6287 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6288 
6289 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6290 {
6291 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6292 		/* This is a good place to trace that we are exiting SMM.  */
6293 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6294 
6295 		/* Process a latched INIT or SMI, if any.  */
6296 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6297 	}
6298 
6299 	kvm_mmu_reset_context(vcpu);
6300 }
6301 
6302 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6303 				unsigned long *db)
6304 {
6305 	u32 dr6 = 0;
6306 	int i;
6307 	u32 enable, rwlen;
6308 
6309 	enable = dr7;
6310 	rwlen = dr7 >> 16;
6311 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6312 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6313 			dr6 |= (1 << i);
6314 	return dr6;
6315 }
6316 
6317 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6318 {
6319 	struct kvm_run *kvm_run = vcpu->run;
6320 
6321 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6322 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6323 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6324 		kvm_run->debug.arch.exception = DB_VECTOR;
6325 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
6326 		*r = EMULATE_USER_EXIT;
6327 	} else {
6328 		kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6329 	}
6330 }
6331 
6332 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6333 {
6334 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6335 	int r = EMULATE_DONE;
6336 
6337 	kvm_x86_ops->skip_emulated_instruction(vcpu);
6338 
6339 	/*
6340 	 * rflags is the old, "raw" value of the flags.  The new value has
6341 	 * not been saved yet.
6342 	 *
6343 	 * This is correct even for TF set by the guest, because "the
6344 	 * processor will not generate this exception after the instruction
6345 	 * that sets the TF flag".
6346 	 */
6347 	if (unlikely(rflags & X86_EFLAGS_TF))
6348 		kvm_vcpu_do_singlestep(vcpu, &r);
6349 	return r == EMULATE_DONE;
6350 }
6351 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6352 
6353 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6354 {
6355 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6356 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6357 		struct kvm_run *kvm_run = vcpu->run;
6358 		unsigned long eip = kvm_get_linear_rip(vcpu);
6359 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6360 					   vcpu->arch.guest_debug_dr7,
6361 					   vcpu->arch.eff_db);
6362 
6363 		if (dr6 != 0) {
6364 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6365 			kvm_run->debug.arch.pc = eip;
6366 			kvm_run->debug.arch.exception = DB_VECTOR;
6367 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
6368 			*r = EMULATE_USER_EXIT;
6369 			return true;
6370 		}
6371 	}
6372 
6373 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6374 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6375 		unsigned long eip = kvm_get_linear_rip(vcpu);
6376 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6377 					   vcpu->arch.dr7,
6378 					   vcpu->arch.db);
6379 
6380 		if (dr6 != 0) {
6381 			vcpu->arch.dr6 &= ~15;
6382 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
6383 			kvm_queue_exception(vcpu, DB_VECTOR);
6384 			*r = EMULATE_DONE;
6385 			return true;
6386 		}
6387 	}
6388 
6389 	return false;
6390 }
6391 
6392 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6393 {
6394 	switch (ctxt->opcode_len) {
6395 	case 1:
6396 		switch (ctxt->b) {
6397 		case 0xe4:	/* IN */
6398 		case 0xe5:
6399 		case 0xec:
6400 		case 0xed:
6401 		case 0xe6:	/* OUT */
6402 		case 0xe7:
6403 		case 0xee:
6404 		case 0xef:
6405 		case 0x6c:	/* INS */
6406 		case 0x6d:
6407 		case 0x6e:	/* OUTS */
6408 		case 0x6f:
6409 			return true;
6410 		}
6411 		break;
6412 	case 2:
6413 		switch (ctxt->b) {
6414 		case 0x33:	/* RDPMC */
6415 			return true;
6416 		}
6417 		break;
6418 	}
6419 
6420 	return false;
6421 }
6422 
6423 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6424 			    unsigned long cr2,
6425 			    int emulation_type,
6426 			    void *insn,
6427 			    int insn_len)
6428 {
6429 	int r;
6430 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6431 	bool writeback = true;
6432 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6433 
6434 	vcpu->arch.l1tf_flush_l1d = true;
6435 
6436 	/*
6437 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
6438 	 * never reused.
6439 	 */
6440 	vcpu->arch.write_fault_to_shadow_pgtable = false;
6441 	kvm_clear_exception_queue(vcpu);
6442 
6443 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6444 		init_emulate_ctxt(vcpu);
6445 
6446 		/*
6447 		 * We will reenter on the same instruction since
6448 		 * we do not set complete_userspace_io.  This does not
6449 		 * handle watchpoints yet, those would be handled in
6450 		 * the emulate_ops.
6451 		 */
6452 		if (!(emulation_type & EMULTYPE_SKIP) &&
6453 		    kvm_vcpu_check_breakpoint(vcpu, &r))
6454 			return r;
6455 
6456 		ctxt->interruptibility = 0;
6457 		ctxt->have_exception = false;
6458 		ctxt->exception.vector = -1;
6459 		ctxt->perm_ok = false;
6460 
6461 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6462 
6463 		r = x86_decode_insn(ctxt, insn, insn_len);
6464 
6465 		trace_kvm_emulate_insn_start(vcpu);
6466 		++vcpu->stat.insn_emulation;
6467 		if (r != EMULATION_OK)  {
6468 			if (emulation_type & EMULTYPE_TRAP_UD)
6469 				return EMULATE_FAIL;
6470 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6471 						emulation_type))
6472 				return EMULATE_DONE;
6473 			if (ctxt->have_exception && inject_emulated_exception(vcpu))
6474 				return EMULATE_DONE;
6475 			if (emulation_type & EMULTYPE_SKIP)
6476 				return EMULATE_FAIL;
6477 			return handle_emulation_failure(vcpu, emulation_type);
6478 		}
6479 	}
6480 
6481 	if ((emulation_type & EMULTYPE_VMWARE) &&
6482 	    !is_vmware_backdoor_opcode(ctxt))
6483 		return EMULATE_FAIL;
6484 
6485 	if (emulation_type & EMULTYPE_SKIP) {
6486 		kvm_rip_write(vcpu, ctxt->_eip);
6487 		if (ctxt->eflags & X86_EFLAGS_RF)
6488 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6489 		return EMULATE_DONE;
6490 	}
6491 
6492 	if (retry_instruction(ctxt, cr2, emulation_type))
6493 		return EMULATE_DONE;
6494 
6495 	/* this is needed for vmware backdoor interface to work since it
6496 	   changes registers values  during IO operation */
6497 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6498 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6499 		emulator_invalidate_register_cache(ctxt);
6500 	}
6501 
6502 restart:
6503 	/* Save the faulting GPA (cr2) in the address field */
6504 	ctxt->exception.address = cr2;
6505 
6506 	r = x86_emulate_insn(ctxt);
6507 
6508 	if (r == EMULATION_INTERCEPTED)
6509 		return EMULATE_DONE;
6510 
6511 	if (r == EMULATION_FAILED) {
6512 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6513 					emulation_type))
6514 			return EMULATE_DONE;
6515 
6516 		return handle_emulation_failure(vcpu, emulation_type);
6517 	}
6518 
6519 	if (ctxt->have_exception) {
6520 		r = EMULATE_DONE;
6521 		if (inject_emulated_exception(vcpu))
6522 			return r;
6523 	} else if (vcpu->arch.pio.count) {
6524 		if (!vcpu->arch.pio.in) {
6525 			/* FIXME: return into emulator if single-stepping.  */
6526 			vcpu->arch.pio.count = 0;
6527 		} else {
6528 			writeback = false;
6529 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
6530 		}
6531 		r = EMULATE_USER_EXIT;
6532 	} else if (vcpu->mmio_needed) {
6533 		if (!vcpu->mmio_is_write)
6534 			writeback = false;
6535 		r = EMULATE_USER_EXIT;
6536 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6537 	} else if (r == EMULATION_RESTART)
6538 		goto restart;
6539 	else
6540 		r = EMULATE_DONE;
6541 
6542 	if (writeback) {
6543 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6544 		toggle_interruptibility(vcpu, ctxt->interruptibility);
6545 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6546 		kvm_rip_write(vcpu, ctxt->eip);
6547 		if (r == EMULATE_DONE && ctxt->tf)
6548 			kvm_vcpu_do_singlestep(vcpu, &r);
6549 		if (!ctxt->have_exception ||
6550 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6551 			__kvm_set_rflags(vcpu, ctxt->eflags);
6552 
6553 		/*
6554 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6555 		 * do nothing, and it will be requested again as soon as
6556 		 * the shadow expires.  But we still need to check here,
6557 		 * because POPF has no interrupt shadow.
6558 		 */
6559 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6560 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6561 	} else
6562 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6563 
6564 	return r;
6565 }
6566 
6567 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6568 {
6569 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6570 }
6571 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6572 
6573 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6574 					void *insn, int insn_len)
6575 {
6576 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6577 }
6578 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6579 
6580 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6581 {
6582 	vcpu->arch.pio.count = 0;
6583 	return 1;
6584 }
6585 
6586 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6587 {
6588 	vcpu->arch.pio.count = 0;
6589 
6590 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6591 		return 1;
6592 
6593 	return kvm_skip_emulated_instruction(vcpu);
6594 }
6595 
6596 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6597 			    unsigned short port)
6598 {
6599 	unsigned long val = kvm_rax_read(vcpu);
6600 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6601 					    size, port, &val, 1);
6602 	if (ret)
6603 		return ret;
6604 
6605 	/*
6606 	 * Workaround userspace that relies on old KVM behavior of %rip being
6607 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
6608 	 */
6609 	if (port == 0x7e &&
6610 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6611 		vcpu->arch.complete_userspace_io =
6612 			complete_fast_pio_out_port_0x7e;
6613 		kvm_skip_emulated_instruction(vcpu);
6614 	} else {
6615 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6616 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6617 	}
6618 	return 0;
6619 }
6620 
6621 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6622 {
6623 	unsigned long val;
6624 
6625 	/* We should only ever be called with arch.pio.count equal to 1 */
6626 	BUG_ON(vcpu->arch.pio.count != 1);
6627 
6628 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6629 		vcpu->arch.pio.count = 0;
6630 		return 1;
6631 	}
6632 
6633 	/* For size less than 4 we merge, else we zero extend */
6634 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6635 
6636 	/*
6637 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6638 	 * the copy and tracing
6639 	 */
6640 	emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6641 				 vcpu->arch.pio.port, &val, 1);
6642 	kvm_rax_write(vcpu, val);
6643 
6644 	return kvm_skip_emulated_instruction(vcpu);
6645 }
6646 
6647 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6648 			   unsigned short port)
6649 {
6650 	unsigned long val;
6651 	int ret;
6652 
6653 	/* For size less than 4 we merge, else we zero extend */
6654 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
6655 
6656 	ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6657 				       &val, 1);
6658 	if (ret) {
6659 		kvm_rax_write(vcpu, val);
6660 		return ret;
6661 	}
6662 
6663 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6664 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6665 
6666 	return 0;
6667 }
6668 
6669 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6670 {
6671 	int ret;
6672 
6673 	if (in)
6674 		ret = kvm_fast_pio_in(vcpu, size, port);
6675 	else
6676 		ret = kvm_fast_pio_out(vcpu, size, port);
6677 	return ret && kvm_skip_emulated_instruction(vcpu);
6678 }
6679 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6680 
6681 static int kvmclock_cpu_down_prep(unsigned int cpu)
6682 {
6683 	__this_cpu_write(cpu_tsc_khz, 0);
6684 	return 0;
6685 }
6686 
6687 static void tsc_khz_changed(void *data)
6688 {
6689 	struct cpufreq_freqs *freq = data;
6690 	unsigned long khz = 0;
6691 
6692 	if (data)
6693 		khz = freq->new;
6694 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6695 		khz = cpufreq_quick_get(raw_smp_processor_id());
6696 	if (!khz)
6697 		khz = tsc_khz;
6698 	__this_cpu_write(cpu_tsc_khz, khz);
6699 }
6700 
6701 #ifdef CONFIG_X86_64
6702 static void kvm_hyperv_tsc_notifier(void)
6703 {
6704 	struct kvm *kvm;
6705 	struct kvm_vcpu *vcpu;
6706 	int cpu;
6707 
6708 	spin_lock(&kvm_lock);
6709 	list_for_each_entry(kvm, &vm_list, vm_list)
6710 		kvm_make_mclock_inprogress_request(kvm);
6711 
6712 	hyperv_stop_tsc_emulation();
6713 
6714 	/* TSC frequency always matches when on Hyper-V */
6715 	for_each_present_cpu(cpu)
6716 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6717 	kvm_max_guest_tsc_khz = tsc_khz;
6718 
6719 	list_for_each_entry(kvm, &vm_list, vm_list) {
6720 		struct kvm_arch *ka = &kvm->arch;
6721 
6722 		spin_lock(&ka->pvclock_gtod_sync_lock);
6723 
6724 		pvclock_update_vm_gtod_copy(kvm);
6725 
6726 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6727 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6728 
6729 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6730 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6731 
6732 		spin_unlock(&ka->pvclock_gtod_sync_lock);
6733 	}
6734 	spin_unlock(&kvm_lock);
6735 }
6736 #endif
6737 
6738 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
6739 {
6740 	struct kvm *kvm;
6741 	struct kvm_vcpu *vcpu;
6742 	int i, send_ipi = 0;
6743 
6744 	/*
6745 	 * We allow guests to temporarily run on slowing clocks,
6746 	 * provided we notify them after, or to run on accelerating
6747 	 * clocks, provided we notify them before.  Thus time never
6748 	 * goes backwards.
6749 	 *
6750 	 * However, we have a problem.  We can't atomically update
6751 	 * the frequency of a given CPU from this function; it is
6752 	 * merely a notifier, which can be called from any CPU.
6753 	 * Changing the TSC frequency at arbitrary points in time
6754 	 * requires a recomputation of local variables related to
6755 	 * the TSC for each VCPU.  We must flag these local variables
6756 	 * to be updated and be sure the update takes place with the
6757 	 * new frequency before any guests proceed.
6758 	 *
6759 	 * Unfortunately, the combination of hotplug CPU and frequency
6760 	 * change creates an intractable locking scenario; the order
6761 	 * of when these callouts happen is undefined with respect to
6762 	 * CPU hotplug, and they can race with each other.  As such,
6763 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6764 	 * undefined; you can actually have a CPU frequency change take
6765 	 * place in between the computation of X and the setting of the
6766 	 * variable.  To protect against this problem, all updates of
6767 	 * the per_cpu tsc_khz variable are done in an interrupt
6768 	 * protected IPI, and all callers wishing to update the value
6769 	 * must wait for a synchronous IPI to complete (which is trivial
6770 	 * if the caller is on the CPU already).  This establishes the
6771 	 * necessary total order on variable updates.
6772 	 *
6773 	 * Note that because a guest time update may take place
6774 	 * anytime after the setting of the VCPU's request bit, the
6775 	 * correct TSC value must be set before the request.  However,
6776 	 * to ensure the update actually makes it to any guest which
6777 	 * starts running in hardware virtualization between the set
6778 	 * and the acquisition of the spinlock, we must also ping the
6779 	 * CPU after setting the request bit.
6780 	 *
6781 	 */
6782 
6783 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6784 
6785 	spin_lock(&kvm_lock);
6786 	list_for_each_entry(kvm, &vm_list, vm_list) {
6787 		kvm_for_each_vcpu(i, vcpu, kvm) {
6788 			if (vcpu->cpu != cpu)
6789 				continue;
6790 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6791 			if (vcpu->cpu != smp_processor_id())
6792 				send_ipi = 1;
6793 		}
6794 	}
6795 	spin_unlock(&kvm_lock);
6796 
6797 	if (freq->old < freq->new && send_ipi) {
6798 		/*
6799 		 * We upscale the frequency.  Must make the guest
6800 		 * doesn't see old kvmclock values while running with
6801 		 * the new frequency, otherwise we risk the guest sees
6802 		 * time go backwards.
6803 		 *
6804 		 * In case we update the frequency for another cpu
6805 		 * (which might be in guest context) send an interrupt
6806 		 * to kick the cpu out of guest context.  Next time
6807 		 * guest context is entered kvmclock will be updated,
6808 		 * so the guest will not see stale values.
6809 		 */
6810 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6811 	}
6812 }
6813 
6814 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6815 				     void *data)
6816 {
6817 	struct cpufreq_freqs *freq = data;
6818 	int cpu;
6819 
6820 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6821 		return 0;
6822 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6823 		return 0;
6824 
6825 	for_each_cpu(cpu, freq->policy->cpus)
6826 		__kvmclock_cpufreq_notifier(freq, cpu);
6827 
6828 	return 0;
6829 }
6830 
6831 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6832 	.notifier_call  = kvmclock_cpufreq_notifier
6833 };
6834 
6835 static int kvmclock_cpu_online(unsigned int cpu)
6836 {
6837 	tsc_khz_changed(NULL);
6838 	return 0;
6839 }
6840 
6841 static void kvm_timer_init(void)
6842 {
6843 	max_tsc_khz = tsc_khz;
6844 
6845 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6846 #ifdef CONFIG_CPU_FREQ
6847 		struct cpufreq_policy policy;
6848 		int cpu;
6849 
6850 		memset(&policy, 0, sizeof(policy));
6851 		cpu = get_cpu();
6852 		cpufreq_get_policy(&policy, cpu);
6853 		if (policy.cpuinfo.max_freq)
6854 			max_tsc_khz = policy.cpuinfo.max_freq;
6855 		put_cpu();
6856 #endif
6857 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6858 					  CPUFREQ_TRANSITION_NOTIFIER);
6859 	}
6860 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6861 
6862 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6863 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
6864 }
6865 
6866 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6867 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6868 
6869 int kvm_is_in_guest(void)
6870 {
6871 	return __this_cpu_read(current_vcpu) != NULL;
6872 }
6873 
6874 static int kvm_is_user_mode(void)
6875 {
6876 	int user_mode = 3;
6877 
6878 	if (__this_cpu_read(current_vcpu))
6879 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6880 
6881 	return user_mode != 0;
6882 }
6883 
6884 static unsigned long kvm_get_guest_ip(void)
6885 {
6886 	unsigned long ip = 0;
6887 
6888 	if (__this_cpu_read(current_vcpu))
6889 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6890 
6891 	return ip;
6892 }
6893 
6894 static void kvm_handle_intel_pt_intr(void)
6895 {
6896 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
6897 
6898 	kvm_make_request(KVM_REQ_PMI, vcpu);
6899 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
6900 			(unsigned long *)&vcpu->arch.pmu.global_status);
6901 }
6902 
6903 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6904 	.is_in_guest		= kvm_is_in_guest,
6905 	.is_user_mode		= kvm_is_user_mode,
6906 	.get_guest_ip		= kvm_get_guest_ip,
6907 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
6908 };
6909 
6910 static void kvm_set_mmio_spte_mask(void)
6911 {
6912 	u64 mask;
6913 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
6914 
6915 	/*
6916 	 * Set the reserved bits and the present bit of an paging-structure
6917 	 * entry to generate page fault with PFER.RSV = 1.
6918 	 */
6919 
6920 	/*
6921 	 * Mask the uppermost physical address bit, which would be reserved as
6922 	 * long as the supported physical address width is less than 52.
6923 	 */
6924 	mask = 1ull << 51;
6925 
6926 	/* Set the present bit. */
6927 	mask |= 1ull;
6928 
6929 	/*
6930 	 * If reserved bit is not supported, clear the present bit to disable
6931 	 * mmio page fault.
6932 	 */
6933 	if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52)
6934 		mask &= ~1ull;
6935 
6936 	kvm_mmu_set_mmio_spte_mask(mask, mask);
6937 }
6938 
6939 #ifdef CONFIG_X86_64
6940 static void pvclock_gtod_update_fn(struct work_struct *work)
6941 {
6942 	struct kvm *kvm;
6943 
6944 	struct kvm_vcpu *vcpu;
6945 	int i;
6946 
6947 	spin_lock(&kvm_lock);
6948 	list_for_each_entry(kvm, &vm_list, vm_list)
6949 		kvm_for_each_vcpu(i, vcpu, kvm)
6950 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6951 	atomic_set(&kvm_guest_has_master_clock, 0);
6952 	spin_unlock(&kvm_lock);
6953 }
6954 
6955 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6956 
6957 /*
6958  * Notification about pvclock gtod data update.
6959  */
6960 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6961 			       void *priv)
6962 {
6963 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6964 	struct timekeeper *tk = priv;
6965 
6966 	update_pvclock_gtod(tk);
6967 
6968 	/* disable master clock if host does not trust, or does not
6969 	 * use, TSC based clocksource.
6970 	 */
6971 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6972 	    atomic_read(&kvm_guest_has_master_clock) != 0)
6973 		queue_work(system_long_wq, &pvclock_gtod_work);
6974 
6975 	return 0;
6976 }
6977 
6978 static struct notifier_block pvclock_gtod_notifier = {
6979 	.notifier_call = pvclock_gtod_notify,
6980 };
6981 #endif
6982 
6983 int kvm_arch_init(void *opaque)
6984 {
6985 	int r;
6986 	struct kvm_x86_ops *ops = opaque;
6987 
6988 	if (kvm_x86_ops) {
6989 		printk(KERN_ERR "kvm: already loaded the other module\n");
6990 		r = -EEXIST;
6991 		goto out;
6992 	}
6993 
6994 	if (!ops->cpu_has_kvm_support()) {
6995 		printk(KERN_ERR "kvm: no hardware support\n");
6996 		r = -EOPNOTSUPP;
6997 		goto out;
6998 	}
6999 	if (ops->disabled_by_bios()) {
7000 		printk(KERN_ERR "kvm: disabled by bios\n");
7001 		r = -EOPNOTSUPP;
7002 		goto out;
7003 	}
7004 
7005 	/*
7006 	 * KVM explicitly assumes that the guest has an FPU and
7007 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7008 	 * vCPU's FPU state as a fxregs_state struct.
7009 	 */
7010 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7011 		printk(KERN_ERR "kvm: inadequate fpu\n");
7012 		r = -EOPNOTSUPP;
7013 		goto out;
7014 	}
7015 
7016 	r = -ENOMEM;
7017 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7018 					  __alignof__(struct fpu), SLAB_ACCOUNT,
7019 					  NULL);
7020 	if (!x86_fpu_cache) {
7021 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7022 		goto out;
7023 	}
7024 
7025 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7026 	if (!shared_msrs) {
7027 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7028 		goto out_free_x86_fpu_cache;
7029 	}
7030 
7031 	r = kvm_mmu_module_init();
7032 	if (r)
7033 		goto out_free_percpu;
7034 
7035 	kvm_set_mmio_spte_mask();
7036 
7037 	kvm_x86_ops = ops;
7038 
7039 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7040 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
7041 			PT_PRESENT_MASK, 0, sme_me_mask);
7042 	kvm_timer_init();
7043 
7044 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
7045 
7046 	if (boot_cpu_has(X86_FEATURE_XSAVE))
7047 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7048 
7049 	kvm_lapic_init();
7050 #ifdef CONFIG_X86_64
7051 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7052 
7053 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7054 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7055 #endif
7056 
7057 	return 0;
7058 
7059 out_free_percpu:
7060 	free_percpu(shared_msrs);
7061 out_free_x86_fpu_cache:
7062 	kmem_cache_destroy(x86_fpu_cache);
7063 out:
7064 	return r;
7065 }
7066 
7067 void kvm_arch_exit(void)
7068 {
7069 #ifdef CONFIG_X86_64
7070 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7071 		clear_hv_tscchange_cb();
7072 #endif
7073 	kvm_lapic_exit();
7074 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7075 
7076 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7077 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7078 					    CPUFREQ_TRANSITION_NOTIFIER);
7079 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7080 #ifdef CONFIG_X86_64
7081 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7082 #endif
7083 	kvm_x86_ops = NULL;
7084 	kvm_mmu_module_exit();
7085 	free_percpu(shared_msrs);
7086 	kmem_cache_destroy(x86_fpu_cache);
7087 }
7088 
7089 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7090 {
7091 	++vcpu->stat.halt_exits;
7092 	if (lapic_in_kernel(vcpu)) {
7093 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7094 		return 1;
7095 	} else {
7096 		vcpu->run->exit_reason = KVM_EXIT_HLT;
7097 		return 0;
7098 	}
7099 }
7100 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7101 
7102 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7103 {
7104 	int ret = kvm_skip_emulated_instruction(vcpu);
7105 	/*
7106 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7107 	 * KVM_EXIT_DEBUG here.
7108 	 */
7109 	return kvm_vcpu_halt(vcpu) && ret;
7110 }
7111 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7112 
7113 #ifdef CONFIG_X86_64
7114 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7115 			        unsigned long clock_type)
7116 {
7117 	struct kvm_clock_pairing clock_pairing;
7118 	struct timespec64 ts;
7119 	u64 cycle;
7120 	int ret;
7121 
7122 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7123 		return -KVM_EOPNOTSUPP;
7124 
7125 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7126 		return -KVM_EOPNOTSUPP;
7127 
7128 	clock_pairing.sec = ts.tv_sec;
7129 	clock_pairing.nsec = ts.tv_nsec;
7130 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7131 	clock_pairing.flags = 0;
7132 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7133 
7134 	ret = 0;
7135 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7136 			    sizeof(struct kvm_clock_pairing)))
7137 		ret = -KVM_EFAULT;
7138 
7139 	return ret;
7140 }
7141 #endif
7142 
7143 /*
7144  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7145  *
7146  * @apicid - apicid of vcpu to be kicked.
7147  */
7148 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7149 {
7150 	struct kvm_lapic_irq lapic_irq;
7151 
7152 	lapic_irq.shorthand = 0;
7153 	lapic_irq.dest_mode = 0;
7154 	lapic_irq.level = 0;
7155 	lapic_irq.dest_id = apicid;
7156 	lapic_irq.msi_redir_hint = false;
7157 
7158 	lapic_irq.delivery_mode = APIC_DM_REMRD;
7159 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7160 }
7161 
7162 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7163 {
7164 	if (!lapic_in_kernel(vcpu)) {
7165 		WARN_ON_ONCE(vcpu->arch.apicv_active);
7166 		return;
7167 	}
7168 	if (!vcpu->arch.apicv_active)
7169 		return;
7170 
7171 	vcpu->arch.apicv_active = false;
7172 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7173 }
7174 
7175 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7176 {
7177 	unsigned long nr, a0, a1, a2, a3, ret;
7178 	int op_64_bit;
7179 
7180 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
7181 		return kvm_hv_hypercall(vcpu);
7182 
7183 	nr = kvm_rax_read(vcpu);
7184 	a0 = kvm_rbx_read(vcpu);
7185 	a1 = kvm_rcx_read(vcpu);
7186 	a2 = kvm_rdx_read(vcpu);
7187 	a3 = kvm_rsi_read(vcpu);
7188 
7189 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
7190 
7191 	op_64_bit = is_64_bit_mode(vcpu);
7192 	if (!op_64_bit) {
7193 		nr &= 0xFFFFFFFF;
7194 		a0 &= 0xFFFFFFFF;
7195 		a1 &= 0xFFFFFFFF;
7196 		a2 &= 0xFFFFFFFF;
7197 		a3 &= 0xFFFFFFFF;
7198 	}
7199 
7200 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7201 		ret = -KVM_EPERM;
7202 		goto out;
7203 	}
7204 
7205 	switch (nr) {
7206 	case KVM_HC_VAPIC_POLL_IRQ:
7207 		ret = 0;
7208 		break;
7209 	case KVM_HC_KICK_CPU:
7210 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7211 		ret = 0;
7212 		break;
7213 #ifdef CONFIG_X86_64
7214 	case KVM_HC_CLOCK_PAIRING:
7215 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7216 		break;
7217 #endif
7218 	case KVM_HC_SEND_IPI:
7219 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7220 		break;
7221 	default:
7222 		ret = -KVM_ENOSYS;
7223 		break;
7224 	}
7225 out:
7226 	if (!op_64_bit)
7227 		ret = (u32)ret;
7228 	kvm_rax_write(vcpu, ret);
7229 
7230 	++vcpu->stat.hypercalls;
7231 	return kvm_skip_emulated_instruction(vcpu);
7232 }
7233 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7234 
7235 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7236 {
7237 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7238 	char instruction[3];
7239 	unsigned long rip = kvm_rip_read(vcpu);
7240 
7241 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
7242 
7243 	return emulator_write_emulated(ctxt, rip, instruction, 3,
7244 		&ctxt->exception);
7245 }
7246 
7247 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7248 {
7249 	return vcpu->run->request_interrupt_window &&
7250 		likely(!pic_in_kernel(vcpu->kvm));
7251 }
7252 
7253 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7254 {
7255 	struct kvm_run *kvm_run = vcpu->run;
7256 
7257 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7258 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7259 	kvm_run->cr8 = kvm_get_cr8(vcpu);
7260 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
7261 	kvm_run->ready_for_interrupt_injection =
7262 		pic_in_kernel(vcpu->kvm) ||
7263 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
7264 }
7265 
7266 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7267 {
7268 	int max_irr, tpr;
7269 
7270 	if (!kvm_x86_ops->update_cr8_intercept)
7271 		return;
7272 
7273 	if (!lapic_in_kernel(vcpu))
7274 		return;
7275 
7276 	if (vcpu->arch.apicv_active)
7277 		return;
7278 
7279 	if (!vcpu->arch.apic->vapic_addr)
7280 		max_irr = kvm_lapic_find_highest_irr(vcpu);
7281 	else
7282 		max_irr = -1;
7283 
7284 	if (max_irr != -1)
7285 		max_irr >>= 4;
7286 
7287 	tpr = kvm_lapic_get_cr8(vcpu);
7288 
7289 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7290 }
7291 
7292 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7293 {
7294 	int r;
7295 
7296 	/* try to reinject previous events if any */
7297 
7298 	if (vcpu->arch.exception.injected)
7299 		kvm_x86_ops->queue_exception(vcpu);
7300 	/*
7301 	 * Do not inject an NMI or interrupt if there is a pending
7302 	 * exception.  Exceptions and interrupts are recognized at
7303 	 * instruction boundaries, i.e. the start of an instruction.
7304 	 * Trap-like exceptions, e.g. #DB, have higher priority than
7305 	 * NMIs and interrupts, i.e. traps are recognized before an
7306 	 * NMI/interrupt that's pending on the same instruction.
7307 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7308 	 * priority, but are only generated (pended) during instruction
7309 	 * execution, i.e. a pending fault-like exception means the
7310 	 * fault occurred on the *previous* instruction and must be
7311 	 * serviced prior to recognizing any new events in order to
7312 	 * fully complete the previous instruction.
7313 	 */
7314 	else if (!vcpu->arch.exception.pending) {
7315 		if (vcpu->arch.nmi_injected)
7316 			kvm_x86_ops->set_nmi(vcpu);
7317 		else if (vcpu->arch.interrupt.injected)
7318 			kvm_x86_ops->set_irq(vcpu);
7319 	}
7320 
7321 	/*
7322 	 * Call check_nested_events() even if we reinjected a previous event
7323 	 * in order for caller to determine if it should require immediate-exit
7324 	 * from L2 to L1 due to pending L1 events which require exit
7325 	 * from L2 to L1.
7326 	 */
7327 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7328 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7329 		if (r != 0)
7330 			return r;
7331 	}
7332 
7333 	/* try to inject new event if pending */
7334 	if (vcpu->arch.exception.pending) {
7335 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
7336 					vcpu->arch.exception.has_error_code,
7337 					vcpu->arch.exception.error_code);
7338 
7339 		WARN_ON_ONCE(vcpu->arch.exception.injected);
7340 		vcpu->arch.exception.pending = false;
7341 		vcpu->arch.exception.injected = true;
7342 
7343 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7344 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7345 					     X86_EFLAGS_RF);
7346 
7347 		if (vcpu->arch.exception.nr == DB_VECTOR) {
7348 			/*
7349 			 * This code assumes that nSVM doesn't use
7350 			 * check_nested_events(). If it does, the
7351 			 * DR6/DR7 changes should happen before L1
7352 			 * gets a #VMEXIT for an intercepted #DB in
7353 			 * L2.  (Under VMX, on the other hand, the
7354 			 * DR6/DR7 changes should not happen in the
7355 			 * event of a VM-exit to L1 for an intercepted
7356 			 * #DB in L2.)
7357 			 */
7358 			kvm_deliver_exception_payload(vcpu);
7359 			if (vcpu->arch.dr7 & DR7_GD) {
7360 				vcpu->arch.dr7 &= ~DR7_GD;
7361 				kvm_update_dr7(vcpu);
7362 			}
7363 		}
7364 
7365 		kvm_x86_ops->queue_exception(vcpu);
7366 	}
7367 
7368 	/* Don't consider new event if we re-injected an event */
7369 	if (kvm_event_needs_reinjection(vcpu))
7370 		return 0;
7371 
7372 	if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7373 	    kvm_x86_ops->smi_allowed(vcpu)) {
7374 		vcpu->arch.smi_pending = false;
7375 		++vcpu->arch.smi_count;
7376 		enter_smm(vcpu);
7377 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7378 		--vcpu->arch.nmi_pending;
7379 		vcpu->arch.nmi_injected = true;
7380 		kvm_x86_ops->set_nmi(vcpu);
7381 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
7382 		/*
7383 		 * Because interrupts can be injected asynchronously, we are
7384 		 * calling check_nested_events again here to avoid a race condition.
7385 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7386 		 * proposal and current concerns.  Perhaps we should be setting
7387 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
7388 		 */
7389 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7390 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7391 			if (r != 0)
7392 				return r;
7393 		}
7394 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7395 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7396 					    false);
7397 			kvm_x86_ops->set_irq(vcpu);
7398 		}
7399 	}
7400 
7401 	return 0;
7402 }
7403 
7404 static void process_nmi(struct kvm_vcpu *vcpu)
7405 {
7406 	unsigned limit = 2;
7407 
7408 	/*
7409 	 * x86 is limited to one NMI running, and one NMI pending after it.
7410 	 * If an NMI is already in progress, limit further NMIs to just one.
7411 	 * Otherwise, allow two (and we'll inject the first one immediately).
7412 	 */
7413 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7414 		limit = 1;
7415 
7416 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7417 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7418 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7419 }
7420 
7421 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7422 {
7423 	u32 flags = 0;
7424 	flags |= seg->g       << 23;
7425 	flags |= seg->db      << 22;
7426 	flags |= seg->l       << 21;
7427 	flags |= seg->avl     << 20;
7428 	flags |= seg->present << 15;
7429 	flags |= seg->dpl     << 13;
7430 	flags |= seg->s       << 12;
7431 	flags |= seg->type    << 8;
7432 	return flags;
7433 }
7434 
7435 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7436 {
7437 	struct kvm_segment seg;
7438 	int offset;
7439 
7440 	kvm_get_segment(vcpu, &seg, n);
7441 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7442 
7443 	if (n < 3)
7444 		offset = 0x7f84 + n * 12;
7445 	else
7446 		offset = 0x7f2c + (n - 3) * 12;
7447 
7448 	put_smstate(u32, buf, offset + 8, seg.base);
7449 	put_smstate(u32, buf, offset + 4, seg.limit);
7450 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7451 }
7452 
7453 #ifdef CONFIG_X86_64
7454 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7455 {
7456 	struct kvm_segment seg;
7457 	int offset;
7458 	u16 flags;
7459 
7460 	kvm_get_segment(vcpu, &seg, n);
7461 	offset = 0x7e00 + n * 16;
7462 
7463 	flags = enter_smm_get_segment_flags(&seg) >> 8;
7464 	put_smstate(u16, buf, offset, seg.selector);
7465 	put_smstate(u16, buf, offset + 2, flags);
7466 	put_smstate(u32, buf, offset + 4, seg.limit);
7467 	put_smstate(u64, buf, offset + 8, seg.base);
7468 }
7469 #endif
7470 
7471 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7472 {
7473 	struct desc_ptr dt;
7474 	struct kvm_segment seg;
7475 	unsigned long val;
7476 	int i;
7477 
7478 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7479 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7480 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7481 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7482 
7483 	for (i = 0; i < 8; i++)
7484 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7485 
7486 	kvm_get_dr(vcpu, 6, &val);
7487 	put_smstate(u32, buf, 0x7fcc, (u32)val);
7488 	kvm_get_dr(vcpu, 7, &val);
7489 	put_smstate(u32, buf, 0x7fc8, (u32)val);
7490 
7491 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7492 	put_smstate(u32, buf, 0x7fc4, seg.selector);
7493 	put_smstate(u32, buf, 0x7f64, seg.base);
7494 	put_smstate(u32, buf, 0x7f60, seg.limit);
7495 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7496 
7497 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7498 	put_smstate(u32, buf, 0x7fc0, seg.selector);
7499 	put_smstate(u32, buf, 0x7f80, seg.base);
7500 	put_smstate(u32, buf, 0x7f7c, seg.limit);
7501 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7502 
7503 	kvm_x86_ops->get_gdt(vcpu, &dt);
7504 	put_smstate(u32, buf, 0x7f74, dt.address);
7505 	put_smstate(u32, buf, 0x7f70, dt.size);
7506 
7507 	kvm_x86_ops->get_idt(vcpu, &dt);
7508 	put_smstate(u32, buf, 0x7f58, dt.address);
7509 	put_smstate(u32, buf, 0x7f54, dt.size);
7510 
7511 	for (i = 0; i < 6; i++)
7512 		enter_smm_save_seg_32(vcpu, buf, i);
7513 
7514 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7515 
7516 	/* revision id */
7517 	put_smstate(u32, buf, 0x7efc, 0x00020000);
7518 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7519 }
7520 
7521 #ifdef CONFIG_X86_64
7522 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7523 {
7524 	struct desc_ptr dt;
7525 	struct kvm_segment seg;
7526 	unsigned long val;
7527 	int i;
7528 
7529 	for (i = 0; i < 16; i++)
7530 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7531 
7532 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7533 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7534 
7535 	kvm_get_dr(vcpu, 6, &val);
7536 	put_smstate(u64, buf, 0x7f68, val);
7537 	kvm_get_dr(vcpu, 7, &val);
7538 	put_smstate(u64, buf, 0x7f60, val);
7539 
7540 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7541 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7542 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7543 
7544 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7545 
7546 	/* revision id */
7547 	put_smstate(u32, buf, 0x7efc, 0x00020064);
7548 
7549 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7550 
7551 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7552 	put_smstate(u16, buf, 0x7e90, seg.selector);
7553 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7554 	put_smstate(u32, buf, 0x7e94, seg.limit);
7555 	put_smstate(u64, buf, 0x7e98, seg.base);
7556 
7557 	kvm_x86_ops->get_idt(vcpu, &dt);
7558 	put_smstate(u32, buf, 0x7e84, dt.size);
7559 	put_smstate(u64, buf, 0x7e88, dt.address);
7560 
7561 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7562 	put_smstate(u16, buf, 0x7e70, seg.selector);
7563 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7564 	put_smstate(u32, buf, 0x7e74, seg.limit);
7565 	put_smstate(u64, buf, 0x7e78, seg.base);
7566 
7567 	kvm_x86_ops->get_gdt(vcpu, &dt);
7568 	put_smstate(u32, buf, 0x7e64, dt.size);
7569 	put_smstate(u64, buf, 0x7e68, dt.address);
7570 
7571 	for (i = 0; i < 6; i++)
7572 		enter_smm_save_seg_64(vcpu, buf, i);
7573 }
7574 #endif
7575 
7576 static void enter_smm(struct kvm_vcpu *vcpu)
7577 {
7578 	struct kvm_segment cs, ds;
7579 	struct desc_ptr dt;
7580 	char buf[512];
7581 	u32 cr0;
7582 
7583 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7584 	memset(buf, 0, 512);
7585 #ifdef CONFIG_X86_64
7586 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7587 		enter_smm_save_state_64(vcpu, buf);
7588 	else
7589 #endif
7590 		enter_smm_save_state_32(vcpu, buf);
7591 
7592 	/*
7593 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7594 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
7595 	 * the SMM state-save area.
7596 	 */
7597 	kvm_x86_ops->pre_enter_smm(vcpu, buf);
7598 
7599 	vcpu->arch.hflags |= HF_SMM_MASK;
7600 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7601 
7602 	if (kvm_x86_ops->get_nmi_mask(vcpu))
7603 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7604 	else
7605 		kvm_x86_ops->set_nmi_mask(vcpu, true);
7606 
7607 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7608 	kvm_rip_write(vcpu, 0x8000);
7609 
7610 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7611 	kvm_x86_ops->set_cr0(vcpu, cr0);
7612 	vcpu->arch.cr0 = cr0;
7613 
7614 	kvm_x86_ops->set_cr4(vcpu, 0);
7615 
7616 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
7617 	dt.address = dt.size = 0;
7618 	kvm_x86_ops->set_idt(vcpu, &dt);
7619 
7620 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7621 
7622 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7623 	cs.base = vcpu->arch.smbase;
7624 
7625 	ds.selector = 0;
7626 	ds.base = 0;
7627 
7628 	cs.limit    = ds.limit = 0xffffffff;
7629 	cs.type     = ds.type = 0x3;
7630 	cs.dpl      = ds.dpl = 0;
7631 	cs.db       = ds.db = 0;
7632 	cs.s        = ds.s = 1;
7633 	cs.l        = ds.l = 0;
7634 	cs.g        = ds.g = 1;
7635 	cs.avl      = ds.avl = 0;
7636 	cs.present  = ds.present = 1;
7637 	cs.unusable = ds.unusable = 0;
7638 	cs.padding  = ds.padding = 0;
7639 
7640 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7641 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7642 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7643 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7644 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7645 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7646 
7647 #ifdef CONFIG_X86_64
7648 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7649 		kvm_x86_ops->set_efer(vcpu, 0);
7650 #endif
7651 
7652 	kvm_update_cpuid(vcpu);
7653 	kvm_mmu_reset_context(vcpu);
7654 }
7655 
7656 static void process_smi(struct kvm_vcpu *vcpu)
7657 {
7658 	vcpu->arch.smi_pending = true;
7659 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7660 }
7661 
7662 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7663 {
7664 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7665 }
7666 
7667 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7668 {
7669 	if (!kvm_apic_present(vcpu))
7670 		return;
7671 
7672 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7673 
7674 	if (irqchip_split(vcpu->kvm))
7675 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7676 	else {
7677 		if (vcpu->arch.apicv_active)
7678 			kvm_x86_ops->sync_pir_to_irr(vcpu);
7679 		if (ioapic_in_kernel(vcpu->kvm))
7680 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7681 	}
7682 
7683 	if (is_guest_mode(vcpu))
7684 		vcpu->arch.load_eoi_exitmap_pending = true;
7685 	else
7686 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7687 }
7688 
7689 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7690 {
7691 	u64 eoi_exit_bitmap[4];
7692 
7693 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7694 		return;
7695 
7696 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7697 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
7698 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7699 }
7700 
7701 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7702 		unsigned long start, unsigned long end,
7703 		bool blockable)
7704 {
7705 	unsigned long apic_address;
7706 
7707 	/*
7708 	 * The physical address of apic access page is stored in the VMCS.
7709 	 * Update it when it becomes invalid.
7710 	 */
7711 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7712 	if (start <= apic_address && apic_address < end)
7713 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7714 
7715 	return 0;
7716 }
7717 
7718 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7719 {
7720 	struct page *page = NULL;
7721 
7722 	if (!lapic_in_kernel(vcpu))
7723 		return;
7724 
7725 	if (!kvm_x86_ops->set_apic_access_page_addr)
7726 		return;
7727 
7728 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7729 	if (is_error_page(page))
7730 		return;
7731 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7732 
7733 	/*
7734 	 * Do not pin apic access page in memory, the MMU notifier
7735 	 * will call us again if it is migrated or swapped out.
7736 	 */
7737 	put_page(page);
7738 }
7739 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7740 
7741 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7742 {
7743 	smp_send_reschedule(vcpu->cpu);
7744 }
7745 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7746 
7747 /*
7748  * Returns 1 to let vcpu_run() continue the guest execution loop without
7749  * exiting to the userspace.  Otherwise, the value will be returned to the
7750  * userspace.
7751  */
7752 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7753 {
7754 	int r;
7755 	bool req_int_win =
7756 		dm_request_for_irq_injection(vcpu) &&
7757 		kvm_cpu_accept_dm_intr(vcpu);
7758 
7759 	bool req_immediate_exit = false;
7760 
7761 	if (kvm_request_pending(vcpu)) {
7762 		if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7763 			kvm_x86_ops->get_vmcs12_pages(vcpu);
7764 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7765 			kvm_mmu_unload(vcpu);
7766 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7767 			__kvm_migrate_timers(vcpu);
7768 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7769 			kvm_gen_update_masterclock(vcpu->kvm);
7770 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7771 			kvm_gen_kvmclock_update(vcpu);
7772 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7773 			r = kvm_guest_time_update(vcpu);
7774 			if (unlikely(r))
7775 				goto out;
7776 		}
7777 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7778 			kvm_mmu_sync_roots(vcpu);
7779 		if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7780 			kvm_mmu_load_cr3(vcpu);
7781 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7782 			kvm_vcpu_flush_tlb(vcpu, true);
7783 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7784 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7785 			r = 0;
7786 			goto out;
7787 		}
7788 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7789 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7790 			vcpu->mmio_needed = 0;
7791 			r = 0;
7792 			goto out;
7793 		}
7794 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7795 			/* Page is swapped out. Do synthetic halt */
7796 			vcpu->arch.apf.halted = true;
7797 			r = 1;
7798 			goto out;
7799 		}
7800 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7801 			record_steal_time(vcpu);
7802 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
7803 			process_smi(vcpu);
7804 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
7805 			process_nmi(vcpu);
7806 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
7807 			kvm_pmu_handle_event(vcpu);
7808 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
7809 			kvm_pmu_deliver_pmi(vcpu);
7810 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7811 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7812 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
7813 				     vcpu->arch.ioapic_handled_vectors)) {
7814 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7815 				vcpu->run->eoi.vector =
7816 						vcpu->arch.pending_ioapic_eoi;
7817 				r = 0;
7818 				goto out;
7819 			}
7820 		}
7821 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7822 			vcpu_scan_ioapic(vcpu);
7823 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7824 			vcpu_load_eoi_exitmap(vcpu);
7825 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7826 			kvm_vcpu_reload_apic_access_page(vcpu);
7827 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7828 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7829 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7830 			r = 0;
7831 			goto out;
7832 		}
7833 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7834 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7835 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7836 			r = 0;
7837 			goto out;
7838 		}
7839 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7840 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7841 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7842 			r = 0;
7843 			goto out;
7844 		}
7845 
7846 		/*
7847 		 * KVM_REQ_HV_STIMER has to be processed after
7848 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7849 		 * depend on the guest clock being up-to-date
7850 		 */
7851 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7852 			kvm_hv_process_stimers(vcpu);
7853 	}
7854 
7855 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7856 		++vcpu->stat.req_event;
7857 		kvm_apic_accept_events(vcpu);
7858 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7859 			r = 1;
7860 			goto out;
7861 		}
7862 
7863 		if (inject_pending_event(vcpu, req_int_win) != 0)
7864 			req_immediate_exit = true;
7865 		else {
7866 			/* Enable SMI/NMI/IRQ window open exits if needed.
7867 			 *
7868 			 * SMIs have three cases:
7869 			 * 1) They can be nested, and then there is nothing to
7870 			 *    do here because RSM will cause a vmexit anyway.
7871 			 * 2) There is an ISA-specific reason why SMI cannot be
7872 			 *    injected, and the moment when this changes can be
7873 			 *    intercepted.
7874 			 * 3) Or the SMI can be pending because
7875 			 *    inject_pending_event has completed the injection
7876 			 *    of an IRQ or NMI from the previous vmexit, and
7877 			 *    then we request an immediate exit to inject the
7878 			 *    SMI.
7879 			 */
7880 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
7881 				if (!kvm_x86_ops->enable_smi_window(vcpu))
7882 					req_immediate_exit = true;
7883 			if (vcpu->arch.nmi_pending)
7884 				kvm_x86_ops->enable_nmi_window(vcpu);
7885 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7886 				kvm_x86_ops->enable_irq_window(vcpu);
7887 			WARN_ON(vcpu->arch.exception.pending);
7888 		}
7889 
7890 		if (kvm_lapic_enabled(vcpu)) {
7891 			update_cr8_intercept(vcpu);
7892 			kvm_lapic_sync_to_vapic(vcpu);
7893 		}
7894 	}
7895 
7896 	r = kvm_mmu_reload(vcpu);
7897 	if (unlikely(r)) {
7898 		goto cancel_injection;
7899 	}
7900 
7901 	preempt_disable();
7902 
7903 	kvm_x86_ops->prepare_guest_switch(vcpu);
7904 
7905 	/*
7906 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7907 	 * IPI are then delayed after guest entry, which ensures that they
7908 	 * result in virtual interrupt delivery.
7909 	 */
7910 	local_irq_disable();
7911 	vcpu->mode = IN_GUEST_MODE;
7912 
7913 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7914 
7915 	/*
7916 	 * 1) We should set ->mode before checking ->requests.  Please see
7917 	 * the comment in kvm_vcpu_exiting_guest_mode().
7918 	 *
7919 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
7920 	 * pairs with the memory barrier implicit in pi_test_and_set_on
7921 	 * (see vmx_deliver_posted_interrupt).
7922 	 *
7923 	 * 3) This also orders the write to mode from any reads to the page
7924 	 * tables done while the VCPU is running.  Please see the comment
7925 	 * in kvm_flush_remote_tlbs.
7926 	 */
7927 	smp_mb__after_srcu_read_unlock();
7928 
7929 	/*
7930 	 * This handles the case where a posted interrupt was
7931 	 * notified with kvm_vcpu_kick.
7932 	 */
7933 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7934 		kvm_x86_ops->sync_pir_to_irr(vcpu);
7935 
7936 	if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7937 	    || need_resched() || signal_pending(current)) {
7938 		vcpu->mode = OUTSIDE_GUEST_MODE;
7939 		smp_wmb();
7940 		local_irq_enable();
7941 		preempt_enable();
7942 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7943 		r = 1;
7944 		goto cancel_injection;
7945 	}
7946 
7947 	if (req_immediate_exit) {
7948 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7949 		kvm_x86_ops->request_immediate_exit(vcpu);
7950 	}
7951 
7952 	trace_kvm_entry(vcpu->vcpu_id);
7953 	if (lapic_in_kernel(vcpu) &&
7954 	    vcpu->arch.apic->lapic_timer.timer_advance_ns)
7955 		wait_lapic_expire(vcpu);
7956 	guest_enter_irqoff();
7957 
7958 	fpregs_assert_state_consistent();
7959 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
7960 		switch_fpu_return();
7961 
7962 	if (unlikely(vcpu->arch.switch_db_regs)) {
7963 		set_debugreg(0, 7);
7964 		set_debugreg(vcpu->arch.eff_db[0], 0);
7965 		set_debugreg(vcpu->arch.eff_db[1], 1);
7966 		set_debugreg(vcpu->arch.eff_db[2], 2);
7967 		set_debugreg(vcpu->arch.eff_db[3], 3);
7968 		set_debugreg(vcpu->arch.dr6, 6);
7969 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7970 	}
7971 
7972 	kvm_x86_ops->run(vcpu);
7973 
7974 	/*
7975 	 * Do this here before restoring debug registers on the host.  And
7976 	 * since we do this before handling the vmexit, a DR access vmexit
7977 	 * can (a) read the correct value of the debug registers, (b) set
7978 	 * KVM_DEBUGREG_WONT_EXIT again.
7979 	 */
7980 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7981 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7982 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7983 		kvm_update_dr0123(vcpu);
7984 		kvm_update_dr6(vcpu);
7985 		kvm_update_dr7(vcpu);
7986 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7987 	}
7988 
7989 	/*
7990 	 * If the guest has used debug registers, at least dr7
7991 	 * will be disabled while returning to the host.
7992 	 * If we don't have active breakpoints in the host, we don't
7993 	 * care about the messed up debug address registers. But if
7994 	 * we have some of them active, restore the old state.
7995 	 */
7996 	if (hw_breakpoint_active())
7997 		hw_breakpoint_restore();
7998 
7999 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8000 
8001 	vcpu->mode = OUTSIDE_GUEST_MODE;
8002 	smp_wmb();
8003 
8004 	kvm_before_interrupt(vcpu);
8005 	kvm_x86_ops->handle_external_intr(vcpu);
8006 	kvm_after_interrupt(vcpu);
8007 
8008 	++vcpu->stat.exits;
8009 
8010 	guest_exit_irqoff();
8011 
8012 	local_irq_enable();
8013 	preempt_enable();
8014 
8015 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8016 
8017 	/*
8018 	 * Profile KVM exit RIPs:
8019 	 */
8020 	if (unlikely(prof_on == KVM_PROFILING)) {
8021 		unsigned long rip = kvm_rip_read(vcpu);
8022 		profile_hit(KVM_PROFILING, (void *)rip);
8023 	}
8024 
8025 	if (unlikely(vcpu->arch.tsc_always_catchup))
8026 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8027 
8028 	if (vcpu->arch.apic_attention)
8029 		kvm_lapic_sync_from_vapic(vcpu);
8030 
8031 	vcpu->arch.gpa_available = false;
8032 	r = kvm_x86_ops->handle_exit(vcpu);
8033 	return r;
8034 
8035 cancel_injection:
8036 	kvm_x86_ops->cancel_injection(vcpu);
8037 	if (unlikely(vcpu->arch.apic_attention))
8038 		kvm_lapic_sync_from_vapic(vcpu);
8039 out:
8040 	return r;
8041 }
8042 
8043 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8044 {
8045 	if (!kvm_arch_vcpu_runnable(vcpu) &&
8046 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8047 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8048 		kvm_vcpu_block(vcpu);
8049 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8050 
8051 		if (kvm_x86_ops->post_block)
8052 			kvm_x86_ops->post_block(vcpu);
8053 
8054 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8055 			return 1;
8056 	}
8057 
8058 	kvm_apic_accept_events(vcpu);
8059 	switch(vcpu->arch.mp_state) {
8060 	case KVM_MP_STATE_HALTED:
8061 		vcpu->arch.pv.pv_unhalted = false;
8062 		vcpu->arch.mp_state =
8063 			KVM_MP_STATE_RUNNABLE;
8064 		/* fall through */
8065 	case KVM_MP_STATE_RUNNABLE:
8066 		vcpu->arch.apf.halted = false;
8067 		break;
8068 	case KVM_MP_STATE_INIT_RECEIVED:
8069 		break;
8070 	default:
8071 		return -EINTR;
8072 		break;
8073 	}
8074 	return 1;
8075 }
8076 
8077 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8078 {
8079 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8080 		kvm_x86_ops->check_nested_events(vcpu, false);
8081 
8082 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8083 		!vcpu->arch.apf.halted);
8084 }
8085 
8086 static int vcpu_run(struct kvm_vcpu *vcpu)
8087 {
8088 	int r;
8089 	struct kvm *kvm = vcpu->kvm;
8090 
8091 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8092 	vcpu->arch.l1tf_flush_l1d = true;
8093 
8094 	for (;;) {
8095 		if (kvm_vcpu_running(vcpu)) {
8096 			r = vcpu_enter_guest(vcpu);
8097 		} else {
8098 			r = vcpu_block(kvm, vcpu);
8099 		}
8100 
8101 		if (r <= 0)
8102 			break;
8103 
8104 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8105 		if (kvm_cpu_has_pending_timer(vcpu))
8106 			kvm_inject_pending_timer_irqs(vcpu);
8107 
8108 		if (dm_request_for_irq_injection(vcpu) &&
8109 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8110 			r = 0;
8111 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8112 			++vcpu->stat.request_irq_exits;
8113 			break;
8114 		}
8115 
8116 		kvm_check_async_pf_completion(vcpu);
8117 
8118 		if (signal_pending(current)) {
8119 			r = -EINTR;
8120 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8121 			++vcpu->stat.signal_exits;
8122 			break;
8123 		}
8124 		if (need_resched()) {
8125 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8126 			cond_resched();
8127 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8128 		}
8129 	}
8130 
8131 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8132 
8133 	return r;
8134 }
8135 
8136 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8137 {
8138 	int r;
8139 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8140 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8141 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8142 	if (r != EMULATE_DONE)
8143 		return 0;
8144 	return 1;
8145 }
8146 
8147 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8148 {
8149 	BUG_ON(!vcpu->arch.pio.count);
8150 
8151 	return complete_emulated_io(vcpu);
8152 }
8153 
8154 /*
8155  * Implements the following, as a state machine:
8156  *
8157  * read:
8158  *   for each fragment
8159  *     for each mmio piece in the fragment
8160  *       write gpa, len
8161  *       exit
8162  *       copy data
8163  *   execute insn
8164  *
8165  * write:
8166  *   for each fragment
8167  *     for each mmio piece in the fragment
8168  *       write gpa, len
8169  *       copy data
8170  *       exit
8171  */
8172 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8173 {
8174 	struct kvm_run *run = vcpu->run;
8175 	struct kvm_mmio_fragment *frag;
8176 	unsigned len;
8177 
8178 	BUG_ON(!vcpu->mmio_needed);
8179 
8180 	/* Complete previous fragment */
8181 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8182 	len = min(8u, frag->len);
8183 	if (!vcpu->mmio_is_write)
8184 		memcpy(frag->data, run->mmio.data, len);
8185 
8186 	if (frag->len <= 8) {
8187 		/* Switch to the next fragment. */
8188 		frag++;
8189 		vcpu->mmio_cur_fragment++;
8190 	} else {
8191 		/* Go forward to the next mmio piece. */
8192 		frag->data += len;
8193 		frag->gpa += len;
8194 		frag->len -= len;
8195 	}
8196 
8197 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8198 		vcpu->mmio_needed = 0;
8199 
8200 		/* FIXME: return into emulator if single-stepping.  */
8201 		if (vcpu->mmio_is_write)
8202 			return 1;
8203 		vcpu->mmio_read_completed = 1;
8204 		return complete_emulated_io(vcpu);
8205 	}
8206 
8207 	run->exit_reason = KVM_EXIT_MMIO;
8208 	run->mmio.phys_addr = frag->gpa;
8209 	if (vcpu->mmio_is_write)
8210 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8211 	run->mmio.len = min(8u, frag->len);
8212 	run->mmio.is_write = vcpu->mmio_is_write;
8213 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8214 	return 0;
8215 }
8216 
8217 /* Swap (qemu) user FPU context for the guest FPU context. */
8218 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8219 {
8220 	fpregs_lock();
8221 
8222 	copy_fpregs_to_fpstate(&current->thread.fpu);
8223 	/* PKRU is separately restored in kvm_x86_ops->run.  */
8224 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8225 				~XFEATURE_MASK_PKRU);
8226 
8227 	fpregs_mark_activate();
8228 	fpregs_unlock();
8229 
8230 	trace_kvm_fpu(1);
8231 }
8232 
8233 /* When vcpu_run ends, restore user space FPU context. */
8234 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8235 {
8236 	fpregs_lock();
8237 
8238 	copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8239 	copy_kernel_to_fpregs(&current->thread.fpu.state);
8240 
8241 	fpregs_mark_activate();
8242 	fpregs_unlock();
8243 
8244 	++vcpu->stat.fpu_reload;
8245 	trace_kvm_fpu(0);
8246 }
8247 
8248 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8249 {
8250 	int r;
8251 
8252 	vcpu_load(vcpu);
8253 	kvm_sigset_activate(vcpu);
8254 	kvm_load_guest_fpu(vcpu);
8255 
8256 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8257 		if (kvm_run->immediate_exit) {
8258 			r = -EINTR;
8259 			goto out;
8260 		}
8261 		kvm_vcpu_block(vcpu);
8262 		kvm_apic_accept_events(vcpu);
8263 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8264 		r = -EAGAIN;
8265 		if (signal_pending(current)) {
8266 			r = -EINTR;
8267 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8268 			++vcpu->stat.signal_exits;
8269 		}
8270 		goto out;
8271 	}
8272 
8273 	if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8274 		r = -EINVAL;
8275 		goto out;
8276 	}
8277 
8278 	if (vcpu->run->kvm_dirty_regs) {
8279 		r = sync_regs(vcpu);
8280 		if (r != 0)
8281 			goto out;
8282 	}
8283 
8284 	/* re-sync apic's tpr */
8285 	if (!lapic_in_kernel(vcpu)) {
8286 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8287 			r = -EINVAL;
8288 			goto out;
8289 		}
8290 	}
8291 
8292 	if (unlikely(vcpu->arch.complete_userspace_io)) {
8293 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8294 		vcpu->arch.complete_userspace_io = NULL;
8295 		r = cui(vcpu);
8296 		if (r <= 0)
8297 			goto out;
8298 	} else
8299 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8300 
8301 	if (kvm_run->immediate_exit)
8302 		r = -EINTR;
8303 	else
8304 		r = vcpu_run(vcpu);
8305 
8306 out:
8307 	kvm_put_guest_fpu(vcpu);
8308 	if (vcpu->run->kvm_valid_regs)
8309 		store_regs(vcpu);
8310 	post_kvm_run_save(vcpu);
8311 	kvm_sigset_deactivate(vcpu);
8312 
8313 	vcpu_put(vcpu);
8314 	return r;
8315 }
8316 
8317 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8318 {
8319 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8320 		/*
8321 		 * We are here if userspace calls get_regs() in the middle of
8322 		 * instruction emulation. Registers state needs to be copied
8323 		 * back from emulation context to vcpu. Userspace shouldn't do
8324 		 * that usually, but some bad designed PV devices (vmware
8325 		 * backdoor interface) need this to work
8326 		 */
8327 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8328 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8329 	}
8330 	regs->rax = kvm_rax_read(vcpu);
8331 	regs->rbx = kvm_rbx_read(vcpu);
8332 	regs->rcx = kvm_rcx_read(vcpu);
8333 	regs->rdx = kvm_rdx_read(vcpu);
8334 	regs->rsi = kvm_rsi_read(vcpu);
8335 	regs->rdi = kvm_rdi_read(vcpu);
8336 	regs->rsp = kvm_rsp_read(vcpu);
8337 	regs->rbp = kvm_rbp_read(vcpu);
8338 #ifdef CONFIG_X86_64
8339 	regs->r8 = kvm_r8_read(vcpu);
8340 	regs->r9 = kvm_r9_read(vcpu);
8341 	regs->r10 = kvm_r10_read(vcpu);
8342 	regs->r11 = kvm_r11_read(vcpu);
8343 	regs->r12 = kvm_r12_read(vcpu);
8344 	regs->r13 = kvm_r13_read(vcpu);
8345 	regs->r14 = kvm_r14_read(vcpu);
8346 	regs->r15 = kvm_r15_read(vcpu);
8347 #endif
8348 
8349 	regs->rip = kvm_rip_read(vcpu);
8350 	regs->rflags = kvm_get_rflags(vcpu);
8351 }
8352 
8353 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8354 {
8355 	vcpu_load(vcpu);
8356 	__get_regs(vcpu, regs);
8357 	vcpu_put(vcpu);
8358 	return 0;
8359 }
8360 
8361 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8362 {
8363 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8364 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8365 
8366 	kvm_rax_write(vcpu, regs->rax);
8367 	kvm_rbx_write(vcpu, regs->rbx);
8368 	kvm_rcx_write(vcpu, regs->rcx);
8369 	kvm_rdx_write(vcpu, regs->rdx);
8370 	kvm_rsi_write(vcpu, regs->rsi);
8371 	kvm_rdi_write(vcpu, regs->rdi);
8372 	kvm_rsp_write(vcpu, regs->rsp);
8373 	kvm_rbp_write(vcpu, regs->rbp);
8374 #ifdef CONFIG_X86_64
8375 	kvm_r8_write(vcpu, regs->r8);
8376 	kvm_r9_write(vcpu, regs->r9);
8377 	kvm_r10_write(vcpu, regs->r10);
8378 	kvm_r11_write(vcpu, regs->r11);
8379 	kvm_r12_write(vcpu, regs->r12);
8380 	kvm_r13_write(vcpu, regs->r13);
8381 	kvm_r14_write(vcpu, regs->r14);
8382 	kvm_r15_write(vcpu, regs->r15);
8383 #endif
8384 
8385 	kvm_rip_write(vcpu, regs->rip);
8386 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8387 
8388 	vcpu->arch.exception.pending = false;
8389 
8390 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8391 }
8392 
8393 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8394 {
8395 	vcpu_load(vcpu);
8396 	__set_regs(vcpu, regs);
8397 	vcpu_put(vcpu);
8398 	return 0;
8399 }
8400 
8401 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8402 {
8403 	struct kvm_segment cs;
8404 
8405 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8406 	*db = cs.db;
8407 	*l = cs.l;
8408 }
8409 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8410 
8411 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8412 {
8413 	struct desc_ptr dt;
8414 
8415 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8416 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8417 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8418 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8419 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8420 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8421 
8422 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8423 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8424 
8425 	kvm_x86_ops->get_idt(vcpu, &dt);
8426 	sregs->idt.limit = dt.size;
8427 	sregs->idt.base = dt.address;
8428 	kvm_x86_ops->get_gdt(vcpu, &dt);
8429 	sregs->gdt.limit = dt.size;
8430 	sregs->gdt.base = dt.address;
8431 
8432 	sregs->cr0 = kvm_read_cr0(vcpu);
8433 	sregs->cr2 = vcpu->arch.cr2;
8434 	sregs->cr3 = kvm_read_cr3(vcpu);
8435 	sregs->cr4 = kvm_read_cr4(vcpu);
8436 	sregs->cr8 = kvm_get_cr8(vcpu);
8437 	sregs->efer = vcpu->arch.efer;
8438 	sregs->apic_base = kvm_get_apic_base(vcpu);
8439 
8440 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8441 
8442 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8443 		set_bit(vcpu->arch.interrupt.nr,
8444 			(unsigned long *)sregs->interrupt_bitmap);
8445 }
8446 
8447 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8448 				  struct kvm_sregs *sregs)
8449 {
8450 	vcpu_load(vcpu);
8451 	__get_sregs(vcpu, sregs);
8452 	vcpu_put(vcpu);
8453 	return 0;
8454 }
8455 
8456 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8457 				    struct kvm_mp_state *mp_state)
8458 {
8459 	vcpu_load(vcpu);
8460 
8461 	kvm_apic_accept_events(vcpu);
8462 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8463 					vcpu->arch.pv.pv_unhalted)
8464 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8465 	else
8466 		mp_state->mp_state = vcpu->arch.mp_state;
8467 
8468 	vcpu_put(vcpu);
8469 	return 0;
8470 }
8471 
8472 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8473 				    struct kvm_mp_state *mp_state)
8474 {
8475 	int ret = -EINVAL;
8476 
8477 	vcpu_load(vcpu);
8478 
8479 	if (!lapic_in_kernel(vcpu) &&
8480 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8481 		goto out;
8482 
8483 	/* INITs are latched while in SMM */
8484 	if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8485 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8486 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8487 		goto out;
8488 
8489 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8490 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8491 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8492 	} else
8493 		vcpu->arch.mp_state = mp_state->mp_state;
8494 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8495 
8496 	ret = 0;
8497 out:
8498 	vcpu_put(vcpu);
8499 	return ret;
8500 }
8501 
8502 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8503 		    int reason, bool has_error_code, u32 error_code)
8504 {
8505 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8506 	int ret;
8507 
8508 	init_emulate_ctxt(vcpu);
8509 
8510 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8511 				   has_error_code, error_code);
8512 
8513 	if (ret)
8514 		return EMULATE_FAIL;
8515 
8516 	kvm_rip_write(vcpu, ctxt->eip);
8517 	kvm_set_rflags(vcpu, ctxt->eflags);
8518 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8519 	return EMULATE_DONE;
8520 }
8521 EXPORT_SYMBOL_GPL(kvm_task_switch);
8522 
8523 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8524 {
8525 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8526 			(sregs->cr4 & X86_CR4_OSXSAVE))
8527 		return  -EINVAL;
8528 
8529 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8530 		/*
8531 		 * When EFER.LME and CR0.PG are set, the processor is in
8532 		 * 64-bit mode (though maybe in a 32-bit code segment).
8533 		 * CR4.PAE and EFER.LMA must be set.
8534 		 */
8535 		if (!(sregs->cr4 & X86_CR4_PAE)
8536 		    || !(sregs->efer & EFER_LMA))
8537 			return -EINVAL;
8538 	} else {
8539 		/*
8540 		 * Not in 64-bit mode: EFER.LMA is clear and the code
8541 		 * segment cannot be 64-bit.
8542 		 */
8543 		if (sregs->efer & EFER_LMA || sregs->cs.l)
8544 			return -EINVAL;
8545 	}
8546 
8547 	return 0;
8548 }
8549 
8550 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8551 {
8552 	struct msr_data apic_base_msr;
8553 	int mmu_reset_needed = 0;
8554 	int cpuid_update_needed = 0;
8555 	int pending_vec, max_bits, idx;
8556 	struct desc_ptr dt;
8557 	int ret = -EINVAL;
8558 
8559 	if (kvm_valid_sregs(vcpu, sregs))
8560 		goto out;
8561 
8562 	apic_base_msr.data = sregs->apic_base;
8563 	apic_base_msr.host_initiated = true;
8564 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
8565 		goto out;
8566 
8567 	dt.size = sregs->idt.limit;
8568 	dt.address = sregs->idt.base;
8569 	kvm_x86_ops->set_idt(vcpu, &dt);
8570 	dt.size = sregs->gdt.limit;
8571 	dt.address = sregs->gdt.base;
8572 	kvm_x86_ops->set_gdt(vcpu, &dt);
8573 
8574 	vcpu->arch.cr2 = sregs->cr2;
8575 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8576 	vcpu->arch.cr3 = sregs->cr3;
8577 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8578 
8579 	kvm_set_cr8(vcpu, sregs->cr8);
8580 
8581 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8582 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
8583 
8584 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8585 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8586 	vcpu->arch.cr0 = sregs->cr0;
8587 
8588 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8589 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8590 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
8591 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8592 	if (cpuid_update_needed)
8593 		kvm_update_cpuid(vcpu);
8594 
8595 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8596 	if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) {
8597 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8598 		mmu_reset_needed = 1;
8599 	}
8600 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8601 
8602 	if (mmu_reset_needed)
8603 		kvm_mmu_reset_context(vcpu);
8604 
8605 	max_bits = KVM_NR_INTERRUPTS;
8606 	pending_vec = find_first_bit(
8607 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
8608 	if (pending_vec < max_bits) {
8609 		kvm_queue_interrupt(vcpu, pending_vec, false);
8610 		pr_debug("Set back pending irq %d\n", pending_vec);
8611 	}
8612 
8613 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8614 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8615 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8616 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8617 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8618 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8619 
8620 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8621 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8622 
8623 	update_cr8_intercept(vcpu);
8624 
8625 	/* Older userspace won't unhalt the vcpu on reset. */
8626 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8627 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8628 	    !is_protmode(vcpu))
8629 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8630 
8631 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8632 
8633 	ret = 0;
8634 out:
8635 	return ret;
8636 }
8637 
8638 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8639 				  struct kvm_sregs *sregs)
8640 {
8641 	int ret;
8642 
8643 	vcpu_load(vcpu);
8644 	ret = __set_sregs(vcpu, sregs);
8645 	vcpu_put(vcpu);
8646 	return ret;
8647 }
8648 
8649 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8650 					struct kvm_guest_debug *dbg)
8651 {
8652 	unsigned long rflags;
8653 	int i, r;
8654 
8655 	vcpu_load(vcpu);
8656 
8657 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8658 		r = -EBUSY;
8659 		if (vcpu->arch.exception.pending)
8660 			goto out;
8661 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8662 			kvm_queue_exception(vcpu, DB_VECTOR);
8663 		else
8664 			kvm_queue_exception(vcpu, BP_VECTOR);
8665 	}
8666 
8667 	/*
8668 	 * Read rflags as long as potentially injected trace flags are still
8669 	 * filtered out.
8670 	 */
8671 	rflags = kvm_get_rflags(vcpu);
8672 
8673 	vcpu->guest_debug = dbg->control;
8674 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8675 		vcpu->guest_debug = 0;
8676 
8677 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8678 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
8679 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8680 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8681 	} else {
8682 		for (i = 0; i < KVM_NR_DB_REGS; i++)
8683 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8684 	}
8685 	kvm_update_dr7(vcpu);
8686 
8687 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8688 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8689 			get_segment_base(vcpu, VCPU_SREG_CS);
8690 
8691 	/*
8692 	 * Trigger an rflags update that will inject or remove the trace
8693 	 * flags.
8694 	 */
8695 	kvm_set_rflags(vcpu, rflags);
8696 
8697 	kvm_x86_ops->update_bp_intercept(vcpu);
8698 
8699 	r = 0;
8700 
8701 out:
8702 	vcpu_put(vcpu);
8703 	return r;
8704 }
8705 
8706 /*
8707  * Translate a guest virtual address to a guest physical address.
8708  */
8709 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8710 				    struct kvm_translation *tr)
8711 {
8712 	unsigned long vaddr = tr->linear_address;
8713 	gpa_t gpa;
8714 	int idx;
8715 
8716 	vcpu_load(vcpu);
8717 
8718 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8719 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8720 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8721 	tr->physical_address = gpa;
8722 	tr->valid = gpa != UNMAPPED_GVA;
8723 	tr->writeable = 1;
8724 	tr->usermode = 0;
8725 
8726 	vcpu_put(vcpu);
8727 	return 0;
8728 }
8729 
8730 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8731 {
8732 	struct fxregs_state *fxsave;
8733 
8734 	vcpu_load(vcpu);
8735 
8736 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8737 	memcpy(fpu->fpr, fxsave->st_space, 128);
8738 	fpu->fcw = fxsave->cwd;
8739 	fpu->fsw = fxsave->swd;
8740 	fpu->ftwx = fxsave->twd;
8741 	fpu->last_opcode = fxsave->fop;
8742 	fpu->last_ip = fxsave->rip;
8743 	fpu->last_dp = fxsave->rdp;
8744 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8745 
8746 	vcpu_put(vcpu);
8747 	return 0;
8748 }
8749 
8750 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8751 {
8752 	struct fxregs_state *fxsave;
8753 
8754 	vcpu_load(vcpu);
8755 
8756 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8757 
8758 	memcpy(fxsave->st_space, fpu->fpr, 128);
8759 	fxsave->cwd = fpu->fcw;
8760 	fxsave->swd = fpu->fsw;
8761 	fxsave->twd = fpu->ftwx;
8762 	fxsave->fop = fpu->last_opcode;
8763 	fxsave->rip = fpu->last_ip;
8764 	fxsave->rdp = fpu->last_dp;
8765 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8766 
8767 	vcpu_put(vcpu);
8768 	return 0;
8769 }
8770 
8771 static void store_regs(struct kvm_vcpu *vcpu)
8772 {
8773 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8774 
8775 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8776 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
8777 
8778 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8779 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8780 
8781 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8782 		kvm_vcpu_ioctl_x86_get_vcpu_events(
8783 				vcpu, &vcpu->run->s.regs.events);
8784 }
8785 
8786 static int sync_regs(struct kvm_vcpu *vcpu)
8787 {
8788 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8789 		return -EINVAL;
8790 
8791 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8792 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
8793 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8794 	}
8795 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8796 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8797 			return -EINVAL;
8798 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8799 	}
8800 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8801 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8802 				vcpu, &vcpu->run->s.regs.events))
8803 			return -EINVAL;
8804 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8805 	}
8806 
8807 	return 0;
8808 }
8809 
8810 static void fx_init(struct kvm_vcpu *vcpu)
8811 {
8812 	fpstate_init(&vcpu->arch.guest_fpu->state);
8813 	if (boot_cpu_has(X86_FEATURE_XSAVES))
8814 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
8815 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
8816 
8817 	/*
8818 	 * Ensure guest xcr0 is valid for loading
8819 	 */
8820 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8821 
8822 	vcpu->arch.cr0 |= X86_CR0_ET;
8823 }
8824 
8825 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8826 {
8827 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8828 
8829 	kvmclock_reset(vcpu);
8830 
8831 	kvm_x86_ops->vcpu_free(vcpu);
8832 	free_cpumask_var(wbinvd_dirty_mask);
8833 }
8834 
8835 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8836 						unsigned int id)
8837 {
8838 	struct kvm_vcpu *vcpu;
8839 
8840 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8841 		printk_once(KERN_WARNING
8842 		"kvm: SMP vm created on host with unstable TSC; "
8843 		"guest TSC will not be reliable\n");
8844 
8845 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8846 
8847 	return vcpu;
8848 }
8849 
8850 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8851 {
8852 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
8853 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8854 	kvm_vcpu_mtrr_init(vcpu);
8855 	vcpu_load(vcpu);
8856 	kvm_vcpu_reset(vcpu, false);
8857 	kvm_init_mmu(vcpu, false);
8858 	vcpu_put(vcpu);
8859 	return 0;
8860 }
8861 
8862 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8863 {
8864 	struct msr_data msr;
8865 	struct kvm *kvm = vcpu->kvm;
8866 
8867 	kvm_hv_vcpu_postcreate(vcpu);
8868 
8869 	if (mutex_lock_killable(&vcpu->mutex))
8870 		return;
8871 	vcpu_load(vcpu);
8872 	msr.data = 0x0;
8873 	msr.index = MSR_IA32_TSC;
8874 	msr.host_initiated = true;
8875 	kvm_write_tsc(vcpu, &msr);
8876 	vcpu_put(vcpu);
8877 	mutex_unlock(&vcpu->mutex);
8878 
8879 	if (!kvmclock_periodic_sync)
8880 		return;
8881 
8882 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8883 					KVMCLOCK_SYNC_PERIOD);
8884 }
8885 
8886 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8887 {
8888 	vcpu->arch.apf.msr_val = 0;
8889 
8890 	vcpu_load(vcpu);
8891 	kvm_mmu_unload(vcpu);
8892 	vcpu_put(vcpu);
8893 
8894 	kvm_x86_ops->vcpu_free(vcpu);
8895 }
8896 
8897 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8898 {
8899 	kvm_lapic_reset(vcpu, init_event);
8900 
8901 	vcpu->arch.hflags = 0;
8902 
8903 	vcpu->arch.smi_pending = 0;
8904 	vcpu->arch.smi_count = 0;
8905 	atomic_set(&vcpu->arch.nmi_queued, 0);
8906 	vcpu->arch.nmi_pending = 0;
8907 	vcpu->arch.nmi_injected = false;
8908 	kvm_clear_interrupt_queue(vcpu);
8909 	kvm_clear_exception_queue(vcpu);
8910 	vcpu->arch.exception.pending = false;
8911 
8912 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8913 	kvm_update_dr0123(vcpu);
8914 	vcpu->arch.dr6 = DR6_INIT;
8915 	kvm_update_dr6(vcpu);
8916 	vcpu->arch.dr7 = DR7_FIXED_1;
8917 	kvm_update_dr7(vcpu);
8918 
8919 	vcpu->arch.cr2 = 0;
8920 
8921 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8922 	vcpu->arch.apf.msr_val = 0;
8923 	vcpu->arch.st.msr_val = 0;
8924 
8925 	kvmclock_reset(vcpu);
8926 
8927 	kvm_clear_async_pf_completion_queue(vcpu);
8928 	kvm_async_pf_hash_reset(vcpu);
8929 	vcpu->arch.apf.halted = false;
8930 
8931 	if (kvm_mpx_supported()) {
8932 		void *mpx_state_buffer;
8933 
8934 		/*
8935 		 * To avoid have the INIT path from kvm_apic_has_events() that be
8936 		 * called with loaded FPU and does not let userspace fix the state.
8937 		 */
8938 		if (init_event)
8939 			kvm_put_guest_fpu(vcpu);
8940 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
8941 					XFEATURE_BNDREGS);
8942 		if (mpx_state_buffer)
8943 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8944 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
8945 					XFEATURE_BNDCSR);
8946 		if (mpx_state_buffer)
8947 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8948 		if (init_event)
8949 			kvm_load_guest_fpu(vcpu);
8950 	}
8951 
8952 	if (!init_event) {
8953 		kvm_pmu_reset(vcpu);
8954 		vcpu->arch.smbase = 0x30000;
8955 
8956 		vcpu->arch.msr_misc_features_enables = 0;
8957 
8958 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8959 	}
8960 
8961 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8962 	vcpu->arch.regs_avail = ~0;
8963 	vcpu->arch.regs_dirty = ~0;
8964 
8965 	vcpu->arch.ia32_xss = 0;
8966 
8967 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
8968 }
8969 
8970 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8971 {
8972 	struct kvm_segment cs;
8973 
8974 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8975 	cs.selector = vector << 8;
8976 	cs.base = vector << 12;
8977 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8978 	kvm_rip_write(vcpu, 0);
8979 }
8980 
8981 int kvm_arch_hardware_enable(void)
8982 {
8983 	struct kvm *kvm;
8984 	struct kvm_vcpu *vcpu;
8985 	int i;
8986 	int ret;
8987 	u64 local_tsc;
8988 	u64 max_tsc = 0;
8989 	bool stable, backwards_tsc = false;
8990 
8991 	kvm_shared_msr_cpu_online();
8992 	ret = kvm_x86_ops->hardware_enable();
8993 	if (ret != 0)
8994 		return ret;
8995 
8996 	local_tsc = rdtsc();
8997 	stable = !kvm_check_tsc_unstable();
8998 	list_for_each_entry(kvm, &vm_list, vm_list) {
8999 		kvm_for_each_vcpu(i, vcpu, kvm) {
9000 			if (!stable && vcpu->cpu == smp_processor_id())
9001 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9002 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9003 				backwards_tsc = true;
9004 				if (vcpu->arch.last_host_tsc > max_tsc)
9005 					max_tsc = vcpu->arch.last_host_tsc;
9006 			}
9007 		}
9008 	}
9009 
9010 	/*
9011 	 * Sometimes, even reliable TSCs go backwards.  This happens on
9012 	 * platforms that reset TSC during suspend or hibernate actions, but
9013 	 * maintain synchronization.  We must compensate.  Fortunately, we can
9014 	 * detect that condition here, which happens early in CPU bringup,
9015 	 * before any KVM threads can be running.  Unfortunately, we can't
9016 	 * bring the TSCs fully up to date with real time, as we aren't yet far
9017 	 * enough into CPU bringup that we know how much real time has actually
9018 	 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
9019 	 * variables that haven't been updated yet.
9020 	 *
9021 	 * So we simply find the maximum observed TSC above, then record the
9022 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9023 	 * the adjustment will be applied.  Note that we accumulate
9024 	 * adjustments, in case multiple suspend cycles happen before some VCPU
9025 	 * gets a chance to run again.  In the event that no KVM threads get a
9026 	 * chance to run, we will miss the entire elapsed period, as we'll have
9027 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9028 	 * loose cycle time.  This isn't too big a deal, since the loss will be
9029 	 * uniform across all VCPUs (not to mention the scenario is extremely
9030 	 * unlikely). It is possible that a second hibernate recovery happens
9031 	 * much faster than a first, causing the observed TSC here to be
9032 	 * smaller; this would require additional padding adjustment, which is
9033 	 * why we set last_host_tsc to the local tsc observed here.
9034 	 *
9035 	 * N.B. - this code below runs only on platforms with reliable TSC,
9036 	 * as that is the only way backwards_tsc is set above.  Also note
9037 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9038 	 * have the same delta_cyc adjustment applied if backwards_tsc
9039 	 * is detected.  Note further, this adjustment is only done once,
9040 	 * as we reset last_host_tsc on all VCPUs to stop this from being
9041 	 * called multiple times (one for each physical CPU bringup).
9042 	 *
9043 	 * Platforms with unreliable TSCs don't have to deal with this, they
9044 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
9045 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
9046 	 * guarantee that they stay in perfect synchronization.
9047 	 */
9048 	if (backwards_tsc) {
9049 		u64 delta_cyc = max_tsc - local_tsc;
9050 		list_for_each_entry(kvm, &vm_list, vm_list) {
9051 			kvm->arch.backwards_tsc_observed = true;
9052 			kvm_for_each_vcpu(i, vcpu, kvm) {
9053 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
9054 				vcpu->arch.last_host_tsc = local_tsc;
9055 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9056 			}
9057 
9058 			/*
9059 			 * We have to disable TSC offset matching.. if you were
9060 			 * booting a VM while issuing an S4 host suspend....
9061 			 * you may have some problem.  Solving this issue is
9062 			 * left as an exercise to the reader.
9063 			 */
9064 			kvm->arch.last_tsc_nsec = 0;
9065 			kvm->arch.last_tsc_write = 0;
9066 		}
9067 
9068 	}
9069 	return 0;
9070 }
9071 
9072 void kvm_arch_hardware_disable(void)
9073 {
9074 	kvm_x86_ops->hardware_disable();
9075 	drop_user_return_notifiers();
9076 }
9077 
9078 int kvm_arch_hardware_setup(void)
9079 {
9080 	int r;
9081 
9082 	r = kvm_x86_ops->hardware_setup();
9083 	if (r != 0)
9084 		return r;
9085 
9086 	if (kvm_has_tsc_control) {
9087 		/*
9088 		 * Make sure the user can only configure tsc_khz values that
9089 		 * fit into a signed integer.
9090 		 * A min value is not calculated because it will always
9091 		 * be 1 on all machines.
9092 		 */
9093 		u64 max = min(0x7fffffffULL,
9094 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9095 		kvm_max_guest_tsc_khz = max;
9096 
9097 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9098 	}
9099 
9100 	kvm_init_msr_list();
9101 	return 0;
9102 }
9103 
9104 void kvm_arch_hardware_unsetup(void)
9105 {
9106 	kvm_x86_ops->hardware_unsetup();
9107 }
9108 
9109 void kvm_arch_check_processor_compat(void *rtn)
9110 {
9111 	kvm_x86_ops->check_processor_compatibility(rtn);
9112 }
9113 
9114 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9115 {
9116 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9117 }
9118 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9119 
9120 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9121 {
9122 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9123 }
9124 
9125 struct static_key kvm_no_apic_vcpu __read_mostly;
9126 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9127 
9128 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9129 {
9130 	struct page *page;
9131 	int r;
9132 
9133 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9134 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9135 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9136 	else
9137 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9138 
9139 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9140 	if (!page) {
9141 		r = -ENOMEM;
9142 		goto fail;
9143 	}
9144 	vcpu->arch.pio_data = page_address(page);
9145 
9146 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
9147 
9148 	r = kvm_mmu_create(vcpu);
9149 	if (r < 0)
9150 		goto fail_free_pio_data;
9151 
9152 	if (irqchip_in_kernel(vcpu->kvm)) {
9153 		vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
9154 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9155 		if (r < 0)
9156 			goto fail_mmu_destroy;
9157 	} else
9158 		static_key_slow_inc(&kvm_no_apic_vcpu);
9159 
9160 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9161 				       GFP_KERNEL_ACCOUNT);
9162 	if (!vcpu->arch.mce_banks) {
9163 		r = -ENOMEM;
9164 		goto fail_free_lapic;
9165 	}
9166 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9167 
9168 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9169 				GFP_KERNEL_ACCOUNT)) {
9170 		r = -ENOMEM;
9171 		goto fail_free_mce_banks;
9172 	}
9173 
9174 	fx_init(vcpu);
9175 
9176 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9177 
9178 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9179 
9180 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9181 
9182 	kvm_async_pf_hash_reset(vcpu);
9183 	kvm_pmu_init(vcpu);
9184 
9185 	vcpu->arch.pending_external_vector = -1;
9186 	vcpu->arch.preempted_in_kernel = false;
9187 
9188 	kvm_hv_vcpu_init(vcpu);
9189 
9190 	return 0;
9191 
9192 fail_free_mce_banks:
9193 	kfree(vcpu->arch.mce_banks);
9194 fail_free_lapic:
9195 	kvm_free_lapic(vcpu);
9196 fail_mmu_destroy:
9197 	kvm_mmu_destroy(vcpu);
9198 fail_free_pio_data:
9199 	free_page((unsigned long)vcpu->arch.pio_data);
9200 fail:
9201 	return r;
9202 }
9203 
9204 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9205 {
9206 	int idx;
9207 
9208 	kvm_hv_vcpu_uninit(vcpu);
9209 	kvm_pmu_destroy(vcpu);
9210 	kfree(vcpu->arch.mce_banks);
9211 	kvm_free_lapic(vcpu);
9212 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9213 	kvm_mmu_destroy(vcpu);
9214 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9215 	free_page((unsigned long)vcpu->arch.pio_data);
9216 	if (!lapic_in_kernel(vcpu))
9217 		static_key_slow_dec(&kvm_no_apic_vcpu);
9218 }
9219 
9220 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9221 {
9222 	vcpu->arch.l1tf_flush_l1d = true;
9223 	kvm_x86_ops->sched_in(vcpu, cpu);
9224 }
9225 
9226 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9227 {
9228 	if (type)
9229 		return -EINVAL;
9230 
9231 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9232 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9233 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9234 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9235 
9236 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9237 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9238 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9239 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9240 		&kvm->arch.irq_sources_bitmap);
9241 
9242 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9243 	mutex_init(&kvm->arch.apic_map_lock);
9244 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9245 
9246 	kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
9247 	pvclock_update_vm_gtod_copy(kvm);
9248 
9249 	kvm->arch.guest_can_read_msr_platform_info = true;
9250 
9251 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9252 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9253 
9254 	kvm_hv_init_vm(kvm);
9255 	kvm_page_track_init(kvm);
9256 	kvm_mmu_init_vm(kvm);
9257 
9258 	if (kvm_x86_ops->vm_init)
9259 		return kvm_x86_ops->vm_init(kvm);
9260 
9261 	return 0;
9262 }
9263 
9264 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9265 {
9266 	vcpu_load(vcpu);
9267 	kvm_mmu_unload(vcpu);
9268 	vcpu_put(vcpu);
9269 }
9270 
9271 static void kvm_free_vcpus(struct kvm *kvm)
9272 {
9273 	unsigned int i;
9274 	struct kvm_vcpu *vcpu;
9275 
9276 	/*
9277 	 * Unpin any mmu pages first.
9278 	 */
9279 	kvm_for_each_vcpu(i, vcpu, kvm) {
9280 		kvm_clear_async_pf_completion_queue(vcpu);
9281 		kvm_unload_vcpu_mmu(vcpu);
9282 	}
9283 	kvm_for_each_vcpu(i, vcpu, kvm)
9284 		kvm_arch_vcpu_free(vcpu);
9285 
9286 	mutex_lock(&kvm->lock);
9287 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9288 		kvm->vcpus[i] = NULL;
9289 
9290 	atomic_set(&kvm->online_vcpus, 0);
9291 	mutex_unlock(&kvm->lock);
9292 }
9293 
9294 void kvm_arch_sync_events(struct kvm *kvm)
9295 {
9296 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9297 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9298 	kvm_free_pit(kvm);
9299 }
9300 
9301 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9302 {
9303 	int i, r;
9304 	unsigned long hva;
9305 	struct kvm_memslots *slots = kvm_memslots(kvm);
9306 	struct kvm_memory_slot *slot, old;
9307 
9308 	/* Called with kvm->slots_lock held.  */
9309 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9310 		return -EINVAL;
9311 
9312 	slot = id_to_memslot(slots, id);
9313 	if (size) {
9314 		if (slot->npages)
9315 			return -EEXIST;
9316 
9317 		/*
9318 		 * MAP_SHARED to prevent internal slot pages from being moved
9319 		 * by fork()/COW.
9320 		 */
9321 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9322 			      MAP_SHARED | MAP_ANONYMOUS, 0);
9323 		if (IS_ERR((void *)hva))
9324 			return PTR_ERR((void *)hva);
9325 	} else {
9326 		if (!slot->npages)
9327 			return 0;
9328 
9329 		hva = 0;
9330 	}
9331 
9332 	old = *slot;
9333 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9334 		struct kvm_userspace_memory_region m;
9335 
9336 		m.slot = id | (i << 16);
9337 		m.flags = 0;
9338 		m.guest_phys_addr = gpa;
9339 		m.userspace_addr = hva;
9340 		m.memory_size = size;
9341 		r = __kvm_set_memory_region(kvm, &m);
9342 		if (r < 0)
9343 			return r;
9344 	}
9345 
9346 	if (!size)
9347 		vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9348 
9349 	return 0;
9350 }
9351 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9352 
9353 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9354 {
9355 	int r;
9356 
9357 	mutex_lock(&kvm->slots_lock);
9358 	r = __x86_set_memory_region(kvm, id, gpa, size);
9359 	mutex_unlock(&kvm->slots_lock);
9360 
9361 	return r;
9362 }
9363 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9364 
9365 void kvm_arch_destroy_vm(struct kvm *kvm)
9366 {
9367 	if (current->mm == kvm->mm) {
9368 		/*
9369 		 * Free memory regions allocated on behalf of userspace,
9370 		 * unless the the memory map has changed due to process exit
9371 		 * or fd copying.
9372 		 */
9373 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9374 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9375 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9376 	}
9377 	if (kvm_x86_ops->vm_destroy)
9378 		kvm_x86_ops->vm_destroy(kvm);
9379 	kvm_pic_destroy(kvm);
9380 	kvm_ioapic_destroy(kvm);
9381 	kvm_free_vcpus(kvm);
9382 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9383 	kvm_mmu_uninit_vm(kvm);
9384 	kvm_page_track_cleanup(kvm);
9385 	kvm_hv_destroy_vm(kvm);
9386 }
9387 
9388 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9389 			   struct kvm_memory_slot *dont)
9390 {
9391 	int i;
9392 
9393 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9394 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9395 			kvfree(free->arch.rmap[i]);
9396 			free->arch.rmap[i] = NULL;
9397 		}
9398 		if (i == 0)
9399 			continue;
9400 
9401 		if (!dont || free->arch.lpage_info[i - 1] !=
9402 			     dont->arch.lpage_info[i - 1]) {
9403 			kvfree(free->arch.lpage_info[i - 1]);
9404 			free->arch.lpage_info[i - 1] = NULL;
9405 		}
9406 	}
9407 
9408 	kvm_page_track_free_memslot(free, dont);
9409 }
9410 
9411 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9412 			    unsigned long npages)
9413 {
9414 	int i;
9415 
9416 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9417 		struct kvm_lpage_info *linfo;
9418 		unsigned long ugfn;
9419 		int lpages;
9420 		int level = i + 1;
9421 
9422 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
9423 				      slot->base_gfn, level) + 1;
9424 
9425 		slot->arch.rmap[i] =
9426 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9427 				 GFP_KERNEL_ACCOUNT);
9428 		if (!slot->arch.rmap[i])
9429 			goto out_free;
9430 		if (i == 0)
9431 			continue;
9432 
9433 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9434 		if (!linfo)
9435 			goto out_free;
9436 
9437 		slot->arch.lpage_info[i - 1] = linfo;
9438 
9439 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9440 			linfo[0].disallow_lpage = 1;
9441 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9442 			linfo[lpages - 1].disallow_lpage = 1;
9443 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
9444 		/*
9445 		 * If the gfn and userspace address are not aligned wrt each
9446 		 * other, or if explicitly asked to, disable large page
9447 		 * support for this slot
9448 		 */
9449 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9450 		    !kvm_largepages_enabled()) {
9451 			unsigned long j;
9452 
9453 			for (j = 0; j < lpages; ++j)
9454 				linfo[j].disallow_lpage = 1;
9455 		}
9456 	}
9457 
9458 	if (kvm_page_track_create_memslot(slot, npages))
9459 		goto out_free;
9460 
9461 	return 0;
9462 
9463 out_free:
9464 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9465 		kvfree(slot->arch.rmap[i]);
9466 		slot->arch.rmap[i] = NULL;
9467 		if (i == 0)
9468 			continue;
9469 
9470 		kvfree(slot->arch.lpage_info[i - 1]);
9471 		slot->arch.lpage_info[i - 1] = NULL;
9472 	}
9473 	return -ENOMEM;
9474 }
9475 
9476 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9477 {
9478 	/*
9479 	 * memslots->generation has been incremented.
9480 	 * mmio generation may have reached its maximum value.
9481 	 */
9482 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9483 }
9484 
9485 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9486 				struct kvm_memory_slot *memslot,
9487 				const struct kvm_userspace_memory_region *mem,
9488 				enum kvm_mr_change change)
9489 {
9490 	return 0;
9491 }
9492 
9493 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9494 				     struct kvm_memory_slot *new)
9495 {
9496 	/* Still write protect RO slot */
9497 	if (new->flags & KVM_MEM_READONLY) {
9498 		kvm_mmu_slot_remove_write_access(kvm, new);
9499 		return;
9500 	}
9501 
9502 	/*
9503 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
9504 	 *
9505 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
9506 	 *
9507 	 *  - KVM_MR_CREATE with dirty logging is disabled
9508 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9509 	 *
9510 	 * The reason is, in case of PML, we need to set D-bit for any slots
9511 	 * with dirty logging disabled in order to eliminate unnecessary GPA
9512 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
9513 	 * guarantees leaving PML enabled during guest's lifetime won't have
9514 	 * any additional overhead from PML when guest is running with dirty
9515 	 * logging disabled for memory slots.
9516 	 *
9517 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9518 	 * to dirty logging mode.
9519 	 *
9520 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9521 	 *
9522 	 * In case of write protect:
9523 	 *
9524 	 * Write protect all pages for dirty logging.
9525 	 *
9526 	 * All the sptes including the large sptes which point to this
9527 	 * slot are set to readonly. We can not create any new large
9528 	 * spte on this slot until the end of the logging.
9529 	 *
9530 	 * See the comments in fast_page_fault().
9531 	 */
9532 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9533 		if (kvm_x86_ops->slot_enable_log_dirty)
9534 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9535 		else
9536 			kvm_mmu_slot_remove_write_access(kvm, new);
9537 	} else {
9538 		if (kvm_x86_ops->slot_disable_log_dirty)
9539 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9540 	}
9541 }
9542 
9543 void kvm_arch_commit_memory_region(struct kvm *kvm,
9544 				const struct kvm_userspace_memory_region *mem,
9545 				const struct kvm_memory_slot *old,
9546 				const struct kvm_memory_slot *new,
9547 				enum kvm_mr_change change)
9548 {
9549 	if (!kvm->arch.n_requested_mmu_pages)
9550 		kvm_mmu_change_mmu_pages(kvm,
9551 				kvm_mmu_calculate_default_mmu_pages(kvm));
9552 
9553 	/*
9554 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
9555 	 * sptes have to be split.  If live migration is successful, the guest
9556 	 * in the source machine will be destroyed and large sptes will be
9557 	 * created in the destination. However, if the guest continues to run
9558 	 * in the source machine (for example if live migration fails), small
9559 	 * sptes will remain around and cause bad performance.
9560 	 *
9561 	 * Scan sptes if dirty logging has been stopped, dropping those
9562 	 * which can be collapsed into a single large-page spte.  Later
9563 	 * page faults will create the large-page sptes.
9564 	 */
9565 	if ((change != KVM_MR_DELETE) &&
9566 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9567 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9568 		kvm_mmu_zap_collapsible_sptes(kvm, new);
9569 
9570 	/*
9571 	 * Set up write protection and/or dirty logging for the new slot.
9572 	 *
9573 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9574 	 * been zapped so no dirty logging staff is needed for old slot. For
9575 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9576 	 * new and it's also covered when dealing with the new slot.
9577 	 *
9578 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
9579 	 */
9580 	if (change != KVM_MR_DELETE)
9581 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9582 }
9583 
9584 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9585 {
9586 	kvm_mmu_zap_all(kvm);
9587 }
9588 
9589 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9590 				   struct kvm_memory_slot *slot)
9591 {
9592 	kvm_page_track_flush_slot(kvm, slot);
9593 }
9594 
9595 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9596 {
9597 	return (is_guest_mode(vcpu) &&
9598 			kvm_x86_ops->guest_apic_has_interrupt &&
9599 			kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9600 }
9601 
9602 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9603 {
9604 	if (!list_empty_careful(&vcpu->async_pf.done))
9605 		return true;
9606 
9607 	if (kvm_apic_has_events(vcpu))
9608 		return true;
9609 
9610 	if (vcpu->arch.pv.pv_unhalted)
9611 		return true;
9612 
9613 	if (vcpu->arch.exception.pending)
9614 		return true;
9615 
9616 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9617 	    (vcpu->arch.nmi_pending &&
9618 	     kvm_x86_ops->nmi_allowed(vcpu)))
9619 		return true;
9620 
9621 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9622 	    (vcpu->arch.smi_pending && !is_smm(vcpu)))
9623 		return true;
9624 
9625 	if (kvm_arch_interrupt_allowed(vcpu) &&
9626 	    (kvm_cpu_has_interrupt(vcpu) ||
9627 	    kvm_guest_apic_has_interrupt(vcpu)))
9628 		return true;
9629 
9630 	if (kvm_hv_has_stimer_pending(vcpu))
9631 		return true;
9632 
9633 	return false;
9634 }
9635 
9636 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9637 {
9638 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9639 }
9640 
9641 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9642 {
9643 	return vcpu->arch.preempted_in_kernel;
9644 }
9645 
9646 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9647 {
9648 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9649 }
9650 
9651 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9652 {
9653 	return kvm_x86_ops->interrupt_allowed(vcpu);
9654 }
9655 
9656 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9657 {
9658 	if (is_64_bit_mode(vcpu))
9659 		return kvm_rip_read(vcpu);
9660 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9661 		     kvm_rip_read(vcpu));
9662 }
9663 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9664 
9665 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9666 {
9667 	return kvm_get_linear_rip(vcpu) == linear_rip;
9668 }
9669 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9670 
9671 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9672 {
9673 	unsigned long rflags;
9674 
9675 	rflags = kvm_x86_ops->get_rflags(vcpu);
9676 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9677 		rflags &= ~X86_EFLAGS_TF;
9678 	return rflags;
9679 }
9680 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9681 
9682 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9683 {
9684 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9685 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9686 		rflags |= X86_EFLAGS_TF;
9687 	kvm_x86_ops->set_rflags(vcpu, rflags);
9688 }
9689 
9690 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9691 {
9692 	__kvm_set_rflags(vcpu, rflags);
9693 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9694 }
9695 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9696 
9697 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9698 {
9699 	int r;
9700 
9701 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9702 	      work->wakeup_all)
9703 		return;
9704 
9705 	r = kvm_mmu_reload(vcpu);
9706 	if (unlikely(r))
9707 		return;
9708 
9709 	if (!vcpu->arch.mmu->direct_map &&
9710 	      work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9711 		return;
9712 
9713 	vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9714 }
9715 
9716 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9717 {
9718 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9719 }
9720 
9721 static inline u32 kvm_async_pf_next_probe(u32 key)
9722 {
9723 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9724 }
9725 
9726 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9727 {
9728 	u32 key = kvm_async_pf_hash_fn(gfn);
9729 
9730 	while (vcpu->arch.apf.gfns[key] != ~0)
9731 		key = kvm_async_pf_next_probe(key);
9732 
9733 	vcpu->arch.apf.gfns[key] = gfn;
9734 }
9735 
9736 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9737 {
9738 	int i;
9739 	u32 key = kvm_async_pf_hash_fn(gfn);
9740 
9741 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9742 		     (vcpu->arch.apf.gfns[key] != gfn &&
9743 		      vcpu->arch.apf.gfns[key] != ~0); i++)
9744 		key = kvm_async_pf_next_probe(key);
9745 
9746 	return key;
9747 }
9748 
9749 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9750 {
9751 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9752 }
9753 
9754 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9755 {
9756 	u32 i, j, k;
9757 
9758 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9759 	while (true) {
9760 		vcpu->arch.apf.gfns[i] = ~0;
9761 		do {
9762 			j = kvm_async_pf_next_probe(j);
9763 			if (vcpu->arch.apf.gfns[j] == ~0)
9764 				return;
9765 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9766 			/*
9767 			 * k lies cyclically in ]i,j]
9768 			 * |    i.k.j |
9769 			 * |....j i.k.| or  |.k..j i...|
9770 			 */
9771 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9772 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9773 		i = j;
9774 	}
9775 }
9776 
9777 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9778 {
9779 
9780 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9781 				      sizeof(val));
9782 }
9783 
9784 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9785 {
9786 
9787 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9788 				      sizeof(u32));
9789 }
9790 
9791 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9792 				     struct kvm_async_pf *work)
9793 {
9794 	struct x86_exception fault;
9795 
9796 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9797 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9798 
9799 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9800 	    (vcpu->arch.apf.send_user_only &&
9801 	     kvm_x86_ops->get_cpl(vcpu) == 0))
9802 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9803 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9804 		fault.vector = PF_VECTOR;
9805 		fault.error_code_valid = true;
9806 		fault.error_code = 0;
9807 		fault.nested_page_fault = false;
9808 		fault.address = work->arch.token;
9809 		fault.async_page_fault = true;
9810 		kvm_inject_page_fault(vcpu, &fault);
9811 	}
9812 }
9813 
9814 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9815 				 struct kvm_async_pf *work)
9816 {
9817 	struct x86_exception fault;
9818 	u32 val;
9819 
9820 	if (work->wakeup_all)
9821 		work->arch.token = ~0; /* broadcast wakeup */
9822 	else
9823 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9824 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
9825 
9826 	if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9827 	    !apf_get_user(vcpu, &val)) {
9828 		if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9829 		    vcpu->arch.exception.pending &&
9830 		    vcpu->arch.exception.nr == PF_VECTOR &&
9831 		    !apf_put_user(vcpu, 0)) {
9832 			vcpu->arch.exception.injected = false;
9833 			vcpu->arch.exception.pending = false;
9834 			vcpu->arch.exception.nr = 0;
9835 			vcpu->arch.exception.has_error_code = false;
9836 			vcpu->arch.exception.error_code = 0;
9837 			vcpu->arch.exception.has_payload = false;
9838 			vcpu->arch.exception.payload = 0;
9839 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9840 			fault.vector = PF_VECTOR;
9841 			fault.error_code_valid = true;
9842 			fault.error_code = 0;
9843 			fault.nested_page_fault = false;
9844 			fault.address = work->arch.token;
9845 			fault.async_page_fault = true;
9846 			kvm_inject_page_fault(vcpu, &fault);
9847 		}
9848 	}
9849 	vcpu->arch.apf.halted = false;
9850 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9851 }
9852 
9853 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9854 {
9855 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9856 		return true;
9857 	else
9858 		return kvm_can_do_async_pf(vcpu);
9859 }
9860 
9861 void kvm_arch_start_assignment(struct kvm *kvm)
9862 {
9863 	atomic_inc(&kvm->arch.assigned_device_count);
9864 }
9865 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9866 
9867 void kvm_arch_end_assignment(struct kvm *kvm)
9868 {
9869 	atomic_dec(&kvm->arch.assigned_device_count);
9870 }
9871 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9872 
9873 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9874 {
9875 	return atomic_read(&kvm->arch.assigned_device_count);
9876 }
9877 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9878 
9879 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9880 {
9881 	atomic_inc(&kvm->arch.noncoherent_dma_count);
9882 }
9883 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9884 
9885 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9886 {
9887 	atomic_dec(&kvm->arch.noncoherent_dma_count);
9888 }
9889 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9890 
9891 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9892 {
9893 	return atomic_read(&kvm->arch.noncoherent_dma_count);
9894 }
9895 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9896 
9897 bool kvm_arch_has_irq_bypass(void)
9898 {
9899 	return kvm_x86_ops->update_pi_irte != NULL;
9900 }
9901 
9902 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9903 				      struct irq_bypass_producer *prod)
9904 {
9905 	struct kvm_kernel_irqfd *irqfd =
9906 		container_of(cons, struct kvm_kernel_irqfd, consumer);
9907 
9908 	irqfd->producer = prod;
9909 
9910 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9911 					   prod->irq, irqfd->gsi, 1);
9912 }
9913 
9914 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9915 				      struct irq_bypass_producer *prod)
9916 {
9917 	int ret;
9918 	struct kvm_kernel_irqfd *irqfd =
9919 		container_of(cons, struct kvm_kernel_irqfd, consumer);
9920 
9921 	WARN_ON(irqfd->producer != prod);
9922 	irqfd->producer = NULL;
9923 
9924 	/*
9925 	 * When producer of consumer is unregistered, we change back to
9926 	 * remapped mode, so we can re-use the current implementation
9927 	 * when the irq is masked/disabled or the consumer side (KVM
9928 	 * int this case doesn't want to receive the interrupts.
9929 	*/
9930 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9931 	if (ret)
9932 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9933 		       " fails: %d\n", irqfd->consumer.token, ret);
9934 }
9935 
9936 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9937 				   uint32_t guest_irq, bool set)
9938 {
9939 	if (!kvm_x86_ops->update_pi_irte)
9940 		return -EINVAL;
9941 
9942 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9943 }
9944 
9945 bool kvm_vector_hashing_enabled(void)
9946 {
9947 	return vector_hashing;
9948 }
9949 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9950 
9951 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9952 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9953 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9954 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9955 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9956 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9957 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9958 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9959 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9960 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9961 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9962 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9963 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9964 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9965 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9966 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9967 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9968 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9969 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
9970