xref: /linux/arch/x86/kvm/x86.c (revision 52338415)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "mmu.h"
22 #include "i8254.h"
23 #include "tss.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28 #include "hyperv.h"
29 
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/export.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <linux/kvm_irqfd.h>
52 #include <linux/irqbypass.h>
53 #include <linux/sched/stat.h>
54 #include <linux/sched/isolation.h>
55 #include <linux/mem_encrypt.h>
56 
57 #include <trace/events/kvm.h>
58 
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68 #include <asm/mshyperv.h>
69 #include <asm/hypervisor.h>
70 #include <asm/intel_pt.h>
71 #include <clocksource/hyperv_timer.h>
72 
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75 
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80 
81 #define emul_to_vcpu(ctxt) \
82 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83 
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94 
95 #define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__
96 #define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__
97 
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100 
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107 
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110 
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113 
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116 
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119 
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122 
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133 
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137 
138 /*
139  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
140  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
141  * advancement entirely.  Any other value is used as-is and disables adaptive
142  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
143  */
144 static int __read_mostly lapic_timer_advance_ns = -1;
145 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
146 
147 static bool __read_mostly vector_hashing = true;
148 module_param(vector_hashing, bool, S_IRUGO);
149 
150 bool __read_mostly enable_vmware_backdoor = false;
151 module_param(enable_vmware_backdoor, bool, S_IRUGO);
152 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
153 
154 static bool __read_mostly force_emulation_prefix = false;
155 module_param(force_emulation_prefix, bool, S_IRUGO);
156 
157 int __read_mostly pi_inject_timer = -1;
158 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
159 
160 #define KVM_NR_SHARED_MSRS 16
161 
162 struct kvm_shared_msrs_global {
163 	int nr;
164 	u32 msrs[KVM_NR_SHARED_MSRS];
165 };
166 
167 struct kvm_shared_msrs {
168 	struct user_return_notifier urn;
169 	bool registered;
170 	struct kvm_shared_msr_values {
171 		u64 host;
172 		u64 curr;
173 	} values[KVM_NR_SHARED_MSRS];
174 };
175 
176 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
177 static struct kvm_shared_msrs __percpu *shared_msrs;
178 
179 struct kvm_stats_debugfs_item debugfs_entries[] = {
180 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
181 	{ "pf_guest", VCPU_STAT(pf_guest) },
182 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
183 	{ "invlpg", VCPU_STAT(invlpg) },
184 	{ "exits", VCPU_STAT(exits) },
185 	{ "io_exits", VCPU_STAT(io_exits) },
186 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
187 	{ "signal_exits", VCPU_STAT(signal_exits) },
188 	{ "irq_window", VCPU_STAT(irq_window_exits) },
189 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
190 	{ "halt_exits", VCPU_STAT(halt_exits) },
191 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
192 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
193 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
194 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
195 	{ "hypercalls", VCPU_STAT(hypercalls) },
196 	{ "request_irq", VCPU_STAT(request_irq_exits) },
197 	{ "irq_exits", VCPU_STAT(irq_exits) },
198 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
199 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
200 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
201 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
202 	{ "irq_injections", VCPU_STAT(irq_injections) },
203 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
204 	{ "req_event", VCPU_STAT(req_event) },
205 	{ "l1d_flush", VCPU_STAT(l1d_flush) },
206 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
207 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
208 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
209 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
210 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
211 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
212 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
213 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
214 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
215 	{ "largepages", VM_STAT(lpages, .mode = 0444) },
216 	{ "max_mmu_page_hash_collisions",
217 		VM_STAT(max_mmu_page_hash_collisions) },
218 	{ NULL }
219 };
220 
221 u64 __read_mostly host_xcr0;
222 
223 struct kmem_cache *x86_fpu_cache;
224 EXPORT_SYMBOL_GPL(x86_fpu_cache);
225 
226 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
227 
228 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
229 {
230 	int i;
231 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
232 		vcpu->arch.apf.gfns[i] = ~0;
233 }
234 
235 static void kvm_on_user_return(struct user_return_notifier *urn)
236 {
237 	unsigned slot;
238 	struct kvm_shared_msrs *locals
239 		= container_of(urn, struct kvm_shared_msrs, urn);
240 	struct kvm_shared_msr_values *values;
241 	unsigned long flags;
242 
243 	/*
244 	 * Disabling irqs at this point since the following code could be
245 	 * interrupted and executed through kvm_arch_hardware_disable()
246 	 */
247 	local_irq_save(flags);
248 	if (locals->registered) {
249 		locals->registered = false;
250 		user_return_notifier_unregister(urn);
251 	}
252 	local_irq_restore(flags);
253 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
254 		values = &locals->values[slot];
255 		if (values->host != values->curr) {
256 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
257 			values->curr = values->host;
258 		}
259 	}
260 }
261 
262 static void shared_msr_update(unsigned slot, u32 msr)
263 {
264 	u64 value;
265 	unsigned int cpu = smp_processor_id();
266 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
267 
268 	/* only read, and nobody should modify it at this time,
269 	 * so don't need lock */
270 	if (slot >= shared_msrs_global.nr) {
271 		printk(KERN_ERR "kvm: invalid MSR slot!");
272 		return;
273 	}
274 	rdmsrl_safe(msr, &value);
275 	smsr->values[slot].host = value;
276 	smsr->values[slot].curr = value;
277 }
278 
279 void kvm_define_shared_msr(unsigned slot, u32 msr)
280 {
281 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
282 	shared_msrs_global.msrs[slot] = msr;
283 	if (slot >= shared_msrs_global.nr)
284 		shared_msrs_global.nr = slot + 1;
285 }
286 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
287 
288 static void kvm_shared_msr_cpu_online(void)
289 {
290 	unsigned i;
291 
292 	for (i = 0; i < shared_msrs_global.nr; ++i)
293 		shared_msr_update(i, shared_msrs_global.msrs[i]);
294 }
295 
296 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
297 {
298 	unsigned int cpu = smp_processor_id();
299 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
300 	int err;
301 
302 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
303 		return 0;
304 	smsr->values[slot].curr = value;
305 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
306 	if (err)
307 		return 1;
308 
309 	if (!smsr->registered) {
310 		smsr->urn.on_user_return = kvm_on_user_return;
311 		user_return_notifier_register(&smsr->urn);
312 		smsr->registered = true;
313 	}
314 	return 0;
315 }
316 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
317 
318 static void drop_user_return_notifiers(void)
319 {
320 	unsigned int cpu = smp_processor_id();
321 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
322 
323 	if (smsr->registered)
324 		kvm_on_user_return(&smsr->urn);
325 }
326 
327 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
328 {
329 	return vcpu->arch.apic_base;
330 }
331 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
332 
333 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
334 {
335 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
336 }
337 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
338 
339 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
340 {
341 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
342 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
343 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
344 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
345 
346 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
347 		return 1;
348 	if (!msr_info->host_initiated) {
349 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
350 			return 1;
351 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
352 			return 1;
353 	}
354 
355 	kvm_lapic_set_base(vcpu, msr_info->data);
356 	return 0;
357 }
358 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
359 
360 asmlinkage __visible void kvm_spurious_fault(void)
361 {
362 	/* Fault while not rebooting.  We want the trace. */
363 	BUG_ON(!kvm_rebooting);
364 }
365 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
366 
367 #define EXCPT_BENIGN		0
368 #define EXCPT_CONTRIBUTORY	1
369 #define EXCPT_PF		2
370 
371 static int exception_class(int vector)
372 {
373 	switch (vector) {
374 	case PF_VECTOR:
375 		return EXCPT_PF;
376 	case DE_VECTOR:
377 	case TS_VECTOR:
378 	case NP_VECTOR:
379 	case SS_VECTOR:
380 	case GP_VECTOR:
381 		return EXCPT_CONTRIBUTORY;
382 	default:
383 		break;
384 	}
385 	return EXCPT_BENIGN;
386 }
387 
388 #define EXCPT_FAULT		0
389 #define EXCPT_TRAP		1
390 #define EXCPT_ABORT		2
391 #define EXCPT_INTERRUPT		3
392 
393 static int exception_type(int vector)
394 {
395 	unsigned int mask;
396 
397 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
398 		return EXCPT_INTERRUPT;
399 
400 	mask = 1 << vector;
401 
402 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
403 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
404 		return EXCPT_TRAP;
405 
406 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
407 		return EXCPT_ABORT;
408 
409 	/* Reserved exceptions will result in fault */
410 	return EXCPT_FAULT;
411 }
412 
413 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
414 {
415 	unsigned nr = vcpu->arch.exception.nr;
416 	bool has_payload = vcpu->arch.exception.has_payload;
417 	unsigned long payload = vcpu->arch.exception.payload;
418 
419 	if (!has_payload)
420 		return;
421 
422 	switch (nr) {
423 	case DB_VECTOR:
424 		/*
425 		 * "Certain debug exceptions may clear bit 0-3.  The
426 		 * remaining contents of the DR6 register are never
427 		 * cleared by the processor".
428 		 */
429 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
430 		/*
431 		 * DR6.RTM is set by all #DB exceptions that don't clear it.
432 		 */
433 		vcpu->arch.dr6 |= DR6_RTM;
434 		vcpu->arch.dr6 |= payload;
435 		/*
436 		 * Bit 16 should be set in the payload whenever the #DB
437 		 * exception should clear DR6.RTM. This makes the payload
438 		 * compatible with the pending debug exceptions under VMX.
439 		 * Though not currently documented in the SDM, this also
440 		 * makes the payload compatible with the exit qualification
441 		 * for #DB exceptions under VMX.
442 		 */
443 		vcpu->arch.dr6 ^= payload & DR6_RTM;
444 		break;
445 	case PF_VECTOR:
446 		vcpu->arch.cr2 = payload;
447 		break;
448 	}
449 
450 	vcpu->arch.exception.has_payload = false;
451 	vcpu->arch.exception.payload = 0;
452 }
453 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
454 
455 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
456 		unsigned nr, bool has_error, u32 error_code,
457 	        bool has_payload, unsigned long payload, bool reinject)
458 {
459 	u32 prev_nr;
460 	int class1, class2;
461 
462 	kvm_make_request(KVM_REQ_EVENT, vcpu);
463 
464 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
465 	queue:
466 		if (has_error && !is_protmode(vcpu))
467 			has_error = false;
468 		if (reinject) {
469 			/*
470 			 * On vmentry, vcpu->arch.exception.pending is only
471 			 * true if an event injection was blocked by
472 			 * nested_run_pending.  In that case, however,
473 			 * vcpu_enter_guest requests an immediate exit,
474 			 * and the guest shouldn't proceed far enough to
475 			 * need reinjection.
476 			 */
477 			WARN_ON_ONCE(vcpu->arch.exception.pending);
478 			vcpu->arch.exception.injected = true;
479 			if (WARN_ON_ONCE(has_payload)) {
480 				/*
481 				 * A reinjected event has already
482 				 * delivered its payload.
483 				 */
484 				has_payload = false;
485 				payload = 0;
486 			}
487 		} else {
488 			vcpu->arch.exception.pending = true;
489 			vcpu->arch.exception.injected = false;
490 		}
491 		vcpu->arch.exception.has_error_code = has_error;
492 		vcpu->arch.exception.nr = nr;
493 		vcpu->arch.exception.error_code = error_code;
494 		vcpu->arch.exception.has_payload = has_payload;
495 		vcpu->arch.exception.payload = payload;
496 		/*
497 		 * In guest mode, payload delivery should be deferred,
498 		 * so that the L1 hypervisor can intercept #PF before
499 		 * CR2 is modified (or intercept #DB before DR6 is
500 		 * modified under nVMX).  However, for ABI
501 		 * compatibility with KVM_GET_VCPU_EVENTS and
502 		 * KVM_SET_VCPU_EVENTS, we can't delay payload
503 		 * delivery unless userspace has enabled this
504 		 * functionality via the per-VM capability,
505 		 * KVM_CAP_EXCEPTION_PAYLOAD.
506 		 */
507 		if (!vcpu->kvm->arch.exception_payload_enabled ||
508 		    !is_guest_mode(vcpu))
509 			kvm_deliver_exception_payload(vcpu);
510 		return;
511 	}
512 
513 	/* to check exception */
514 	prev_nr = vcpu->arch.exception.nr;
515 	if (prev_nr == DF_VECTOR) {
516 		/* triple fault -> shutdown */
517 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
518 		return;
519 	}
520 	class1 = exception_class(prev_nr);
521 	class2 = exception_class(nr);
522 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
523 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
524 		/*
525 		 * Generate double fault per SDM Table 5-5.  Set
526 		 * exception.pending = true so that the double fault
527 		 * can trigger a nested vmexit.
528 		 */
529 		vcpu->arch.exception.pending = true;
530 		vcpu->arch.exception.injected = false;
531 		vcpu->arch.exception.has_error_code = true;
532 		vcpu->arch.exception.nr = DF_VECTOR;
533 		vcpu->arch.exception.error_code = 0;
534 		vcpu->arch.exception.has_payload = false;
535 		vcpu->arch.exception.payload = 0;
536 	} else
537 		/* replace previous exception with a new one in a hope
538 		   that instruction re-execution will regenerate lost
539 		   exception */
540 		goto queue;
541 }
542 
543 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
544 {
545 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
546 }
547 EXPORT_SYMBOL_GPL(kvm_queue_exception);
548 
549 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
550 {
551 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
552 }
553 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
554 
555 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
556 				  unsigned long payload)
557 {
558 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
559 }
560 
561 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
562 				    u32 error_code, unsigned long payload)
563 {
564 	kvm_multiple_exception(vcpu, nr, true, error_code,
565 			       true, payload, false);
566 }
567 
568 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
569 {
570 	if (err)
571 		kvm_inject_gp(vcpu, 0);
572 	else
573 		return kvm_skip_emulated_instruction(vcpu);
574 
575 	return 1;
576 }
577 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
578 
579 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
580 {
581 	++vcpu->stat.pf_guest;
582 	vcpu->arch.exception.nested_apf =
583 		is_guest_mode(vcpu) && fault->async_page_fault;
584 	if (vcpu->arch.exception.nested_apf) {
585 		vcpu->arch.apf.nested_apf_token = fault->address;
586 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
587 	} else {
588 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
589 					fault->address);
590 	}
591 }
592 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
593 
594 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
595 {
596 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
597 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
598 	else
599 		vcpu->arch.mmu->inject_page_fault(vcpu, fault);
600 
601 	return fault->nested_page_fault;
602 }
603 
604 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
605 {
606 	atomic_inc(&vcpu->arch.nmi_queued);
607 	kvm_make_request(KVM_REQ_NMI, vcpu);
608 }
609 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
610 
611 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
612 {
613 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
614 }
615 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
616 
617 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
618 {
619 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
620 }
621 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
622 
623 /*
624  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
625  * a #GP and return false.
626  */
627 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
628 {
629 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
630 		return true;
631 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
632 	return false;
633 }
634 EXPORT_SYMBOL_GPL(kvm_require_cpl);
635 
636 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
637 {
638 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
639 		return true;
640 
641 	kvm_queue_exception(vcpu, UD_VECTOR);
642 	return false;
643 }
644 EXPORT_SYMBOL_GPL(kvm_require_dr);
645 
646 /*
647  * This function will be used to read from the physical memory of the currently
648  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
649  * can read from guest physical or from the guest's guest physical memory.
650  */
651 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
652 			    gfn_t ngfn, void *data, int offset, int len,
653 			    u32 access)
654 {
655 	struct x86_exception exception;
656 	gfn_t real_gfn;
657 	gpa_t ngpa;
658 
659 	ngpa     = gfn_to_gpa(ngfn);
660 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
661 	if (real_gfn == UNMAPPED_GVA)
662 		return -EFAULT;
663 
664 	real_gfn = gpa_to_gfn(real_gfn);
665 
666 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
667 }
668 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
669 
670 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
671 			       void *data, int offset, int len, u32 access)
672 {
673 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
674 				       data, offset, len, access);
675 }
676 
677 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
678 {
679 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
680 	       rsvd_bits(1, 2);
681 }
682 
683 /*
684  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
685  */
686 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
687 {
688 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
689 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
690 	int i;
691 	int ret;
692 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
693 
694 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
695 				      offset * sizeof(u64), sizeof(pdpte),
696 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
697 	if (ret < 0) {
698 		ret = 0;
699 		goto out;
700 	}
701 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
702 		if ((pdpte[i] & PT_PRESENT_MASK) &&
703 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
704 			ret = 0;
705 			goto out;
706 		}
707 	}
708 	ret = 1;
709 
710 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
711 	__set_bit(VCPU_EXREG_PDPTR,
712 		  (unsigned long *)&vcpu->arch.regs_avail);
713 	__set_bit(VCPU_EXREG_PDPTR,
714 		  (unsigned long *)&vcpu->arch.regs_dirty);
715 out:
716 
717 	return ret;
718 }
719 EXPORT_SYMBOL_GPL(load_pdptrs);
720 
721 bool pdptrs_changed(struct kvm_vcpu *vcpu)
722 {
723 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
724 	bool changed = true;
725 	int offset;
726 	gfn_t gfn;
727 	int r;
728 
729 	if (!is_pae_paging(vcpu))
730 		return false;
731 
732 	if (!test_bit(VCPU_EXREG_PDPTR,
733 		      (unsigned long *)&vcpu->arch.regs_avail))
734 		return true;
735 
736 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
737 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
738 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
739 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
740 	if (r < 0)
741 		goto out;
742 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
743 out:
744 
745 	return changed;
746 }
747 EXPORT_SYMBOL_GPL(pdptrs_changed);
748 
749 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
750 {
751 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
752 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
753 
754 	cr0 |= X86_CR0_ET;
755 
756 #ifdef CONFIG_X86_64
757 	if (cr0 & 0xffffffff00000000UL)
758 		return 1;
759 #endif
760 
761 	cr0 &= ~CR0_RESERVED_BITS;
762 
763 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
764 		return 1;
765 
766 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
767 		return 1;
768 
769 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
770 #ifdef CONFIG_X86_64
771 		if ((vcpu->arch.efer & EFER_LME)) {
772 			int cs_db, cs_l;
773 
774 			if (!is_pae(vcpu))
775 				return 1;
776 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
777 			if (cs_l)
778 				return 1;
779 		} else
780 #endif
781 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
782 						 kvm_read_cr3(vcpu)))
783 			return 1;
784 	}
785 
786 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
787 		return 1;
788 
789 	kvm_x86_ops->set_cr0(vcpu, cr0);
790 
791 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
792 		kvm_clear_async_pf_completion_queue(vcpu);
793 		kvm_async_pf_hash_reset(vcpu);
794 	}
795 
796 	if ((cr0 ^ old_cr0) & update_bits)
797 		kvm_mmu_reset_context(vcpu);
798 
799 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
800 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
801 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
802 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
803 
804 	return 0;
805 }
806 EXPORT_SYMBOL_GPL(kvm_set_cr0);
807 
808 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
809 {
810 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
811 }
812 EXPORT_SYMBOL_GPL(kvm_lmsw);
813 
814 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
815 {
816 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
817 			!vcpu->guest_xcr0_loaded) {
818 		/* kvm_set_xcr() also depends on this */
819 		if (vcpu->arch.xcr0 != host_xcr0)
820 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
821 		vcpu->guest_xcr0_loaded = 1;
822 	}
823 }
824 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0);
825 
826 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
827 {
828 	if (vcpu->guest_xcr0_loaded) {
829 		if (vcpu->arch.xcr0 != host_xcr0)
830 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
831 		vcpu->guest_xcr0_loaded = 0;
832 	}
833 }
834 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0);
835 
836 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
837 {
838 	u64 xcr0 = xcr;
839 	u64 old_xcr0 = vcpu->arch.xcr0;
840 	u64 valid_bits;
841 
842 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
843 	if (index != XCR_XFEATURE_ENABLED_MASK)
844 		return 1;
845 	if (!(xcr0 & XFEATURE_MASK_FP))
846 		return 1;
847 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
848 		return 1;
849 
850 	/*
851 	 * Do not allow the guest to set bits that we do not support
852 	 * saving.  However, xcr0 bit 0 is always set, even if the
853 	 * emulated CPU does not support XSAVE (see fx_init).
854 	 */
855 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
856 	if (xcr0 & ~valid_bits)
857 		return 1;
858 
859 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
860 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
861 		return 1;
862 
863 	if (xcr0 & XFEATURE_MASK_AVX512) {
864 		if (!(xcr0 & XFEATURE_MASK_YMM))
865 			return 1;
866 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
867 			return 1;
868 	}
869 	vcpu->arch.xcr0 = xcr0;
870 
871 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
872 		kvm_update_cpuid(vcpu);
873 	return 0;
874 }
875 
876 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
877 {
878 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
879 	    __kvm_set_xcr(vcpu, index, xcr)) {
880 		kvm_inject_gp(vcpu, 0);
881 		return 1;
882 	}
883 	return 0;
884 }
885 EXPORT_SYMBOL_GPL(kvm_set_xcr);
886 
887 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
888 {
889 	if (cr4 & CR4_RESERVED_BITS)
890 		return -EINVAL;
891 
892 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
893 		return -EINVAL;
894 
895 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
896 		return -EINVAL;
897 
898 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
899 		return -EINVAL;
900 
901 	if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
902 		return -EINVAL;
903 
904 	if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
905 		return -EINVAL;
906 
907 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
908 		return -EINVAL;
909 
910 	if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
911 		return -EINVAL;
912 
913 	return 0;
914 }
915 
916 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
917 {
918 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
919 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
920 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
921 
922 	if (kvm_valid_cr4(vcpu, cr4))
923 		return 1;
924 
925 	if (is_long_mode(vcpu)) {
926 		if (!(cr4 & X86_CR4_PAE))
927 			return 1;
928 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
929 		   && ((cr4 ^ old_cr4) & pdptr_bits)
930 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
931 				   kvm_read_cr3(vcpu)))
932 		return 1;
933 
934 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
935 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
936 			return 1;
937 
938 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
939 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
940 			return 1;
941 	}
942 
943 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
944 		return 1;
945 
946 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
947 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
948 		kvm_mmu_reset_context(vcpu);
949 
950 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
951 		kvm_update_cpuid(vcpu);
952 
953 	return 0;
954 }
955 EXPORT_SYMBOL_GPL(kvm_set_cr4);
956 
957 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
958 {
959 	bool skip_tlb_flush = false;
960 #ifdef CONFIG_X86_64
961 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
962 
963 	if (pcid_enabled) {
964 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
965 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
966 	}
967 #endif
968 
969 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
970 		if (!skip_tlb_flush) {
971 			kvm_mmu_sync_roots(vcpu);
972 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
973 		}
974 		return 0;
975 	}
976 
977 	if (is_long_mode(vcpu) &&
978 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
979 		return 1;
980 	else if (is_pae_paging(vcpu) &&
981 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
982 		return 1;
983 
984 	kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
985 	vcpu->arch.cr3 = cr3;
986 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
987 
988 	return 0;
989 }
990 EXPORT_SYMBOL_GPL(kvm_set_cr3);
991 
992 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
993 {
994 	if (cr8 & CR8_RESERVED_BITS)
995 		return 1;
996 	if (lapic_in_kernel(vcpu))
997 		kvm_lapic_set_tpr(vcpu, cr8);
998 	else
999 		vcpu->arch.cr8 = cr8;
1000 	return 0;
1001 }
1002 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1003 
1004 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1005 {
1006 	if (lapic_in_kernel(vcpu))
1007 		return kvm_lapic_get_cr8(vcpu);
1008 	else
1009 		return vcpu->arch.cr8;
1010 }
1011 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1012 
1013 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1014 {
1015 	int i;
1016 
1017 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1018 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1019 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1020 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1021 	}
1022 }
1023 
1024 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1025 {
1026 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1027 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1028 }
1029 
1030 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1031 {
1032 	unsigned long dr7;
1033 
1034 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1035 		dr7 = vcpu->arch.guest_debug_dr7;
1036 	else
1037 		dr7 = vcpu->arch.dr7;
1038 	kvm_x86_ops->set_dr7(vcpu, dr7);
1039 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1040 	if (dr7 & DR7_BP_EN_MASK)
1041 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1042 }
1043 
1044 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1045 {
1046 	u64 fixed = DR6_FIXED_1;
1047 
1048 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1049 		fixed |= DR6_RTM;
1050 	return fixed;
1051 }
1052 
1053 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1054 {
1055 	switch (dr) {
1056 	case 0 ... 3:
1057 		vcpu->arch.db[dr] = val;
1058 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1059 			vcpu->arch.eff_db[dr] = val;
1060 		break;
1061 	case 4:
1062 		/* fall through */
1063 	case 6:
1064 		if (val & 0xffffffff00000000ULL)
1065 			return -1; /* #GP */
1066 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1067 		kvm_update_dr6(vcpu);
1068 		break;
1069 	case 5:
1070 		/* fall through */
1071 	default: /* 7 */
1072 		if (val & 0xffffffff00000000ULL)
1073 			return -1; /* #GP */
1074 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1075 		kvm_update_dr7(vcpu);
1076 		break;
1077 	}
1078 
1079 	return 0;
1080 }
1081 
1082 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1083 {
1084 	if (__kvm_set_dr(vcpu, dr, val)) {
1085 		kvm_inject_gp(vcpu, 0);
1086 		return 1;
1087 	}
1088 	return 0;
1089 }
1090 EXPORT_SYMBOL_GPL(kvm_set_dr);
1091 
1092 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1093 {
1094 	switch (dr) {
1095 	case 0 ... 3:
1096 		*val = vcpu->arch.db[dr];
1097 		break;
1098 	case 4:
1099 		/* fall through */
1100 	case 6:
1101 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1102 			*val = vcpu->arch.dr6;
1103 		else
1104 			*val = kvm_x86_ops->get_dr6(vcpu);
1105 		break;
1106 	case 5:
1107 		/* fall through */
1108 	default: /* 7 */
1109 		*val = vcpu->arch.dr7;
1110 		break;
1111 	}
1112 	return 0;
1113 }
1114 EXPORT_SYMBOL_GPL(kvm_get_dr);
1115 
1116 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1117 {
1118 	u32 ecx = kvm_rcx_read(vcpu);
1119 	u64 data;
1120 	int err;
1121 
1122 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1123 	if (err)
1124 		return err;
1125 	kvm_rax_write(vcpu, (u32)data);
1126 	kvm_rdx_write(vcpu, data >> 32);
1127 	return err;
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1130 
1131 /*
1132  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1133  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1134  *
1135  * This list is modified at module load time to reflect the
1136  * capabilities of the host cpu. This capabilities test skips MSRs that are
1137  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1138  * may depend on host virtualization features rather than host cpu features.
1139  */
1140 
1141 static u32 msrs_to_save[] = {
1142 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1143 	MSR_STAR,
1144 #ifdef CONFIG_X86_64
1145 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1146 #endif
1147 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1148 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1149 	MSR_IA32_SPEC_CTRL,
1150 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1151 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1152 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1153 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1154 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1155 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1156 	MSR_IA32_UMWAIT_CONTROL,
1157 
1158 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1159 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1160 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1161 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1162 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1163 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1164 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1165 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1166 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1167 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1168 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1169 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1170 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1171 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1172 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1173 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1174 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1175 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1176 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1177 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1178 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1179 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1180 };
1181 
1182 static unsigned num_msrs_to_save;
1183 
1184 static u32 emulated_msrs[] = {
1185 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1186 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1187 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1188 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1189 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1190 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1191 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1192 	HV_X64_MSR_RESET,
1193 	HV_X64_MSR_VP_INDEX,
1194 	HV_X64_MSR_VP_RUNTIME,
1195 	HV_X64_MSR_SCONTROL,
1196 	HV_X64_MSR_STIMER0_CONFIG,
1197 	HV_X64_MSR_VP_ASSIST_PAGE,
1198 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1199 	HV_X64_MSR_TSC_EMULATION_STATUS,
1200 
1201 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1202 	MSR_KVM_PV_EOI_EN,
1203 
1204 	MSR_IA32_TSC_ADJUST,
1205 	MSR_IA32_TSCDEADLINE,
1206 	MSR_IA32_ARCH_CAPABILITIES,
1207 	MSR_IA32_MISC_ENABLE,
1208 	MSR_IA32_MCG_STATUS,
1209 	MSR_IA32_MCG_CTL,
1210 	MSR_IA32_MCG_EXT_CTL,
1211 	MSR_IA32_SMBASE,
1212 	MSR_SMI_COUNT,
1213 	MSR_PLATFORM_INFO,
1214 	MSR_MISC_FEATURES_ENABLES,
1215 	MSR_AMD64_VIRT_SPEC_CTRL,
1216 	MSR_IA32_POWER_CTL,
1217 
1218 	/*
1219 	 * The following list leaves out MSRs whose values are determined
1220 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1221 	 * We always support the "true" VMX control MSRs, even if the host
1222 	 * processor does not, so I am putting these registers here rather
1223 	 * than in msrs_to_save.
1224 	 */
1225 	MSR_IA32_VMX_BASIC,
1226 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1227 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1228 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1229 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1230 	MSR_IA32_VMX_MISC,
1231 	MSR_IA32_VMX_CR0_FIXED0,
1232 	MSR_IA32_VMX_CR4_FIXED0,
1233 	MSR_IA32_VMX_VMCS_ENUM,
1234 	MSR_IA32_VMX_PROCBASED_CTLS2,
1235 	MSR_IA32_VMX_EPT_VPID_CAP,
1236 	MSR_IA32_VMX_VMFUNC,
1237 
1238 	MSR_K7_HWCR,
1239 	MSR_KVM_POLL_CONTROL,
1240 };
1241 
1242 static unsigned num_emulated_msrs;
1243 
1244 /*
1245  * List of msr numbers which are used to expose MSR-based features that
1246  * can be used by a hypervisor to validate requested CPU features.
1247  */
1248 static u32 msr_based_features[] = {
1249 	MSR_IA32_VMX_BASIC,
1250 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1251 	MSR_IA32_VMX_PINBASED_CTLS,
1252 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1253 	MSR_IA32_VMX_PROCBASED_CTLS,
1254 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1255 	MSR_IA32_VMX_EXIT_CTLS,
1256 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1257 	MSR_IA32_VMX_ENTRY_CTLS,
1258 	MSR_IA32_VMX_MISC,
1259 	MSR_IA32_VMX_CR0_FIXED0,
1260 	MSR_IA32_VMX_CR0_FIXED1,
1261 	MSR_IA32_VMX_CR4_FIXED0,
1262 	MSR_IA32_VMX_CR4_FIXED1,
1263 	MSR_IA32_VMX_VMCS_ENUM,
1264 	MSR_IA32_VMX_PROCBASED_CTLS2,
1265 	MSR_IA32_VMX_EPT_VPID_CAP,
1266 	MSR_IA32_VMX_VMFUNC,
1267 
1268 	MSR_F10H_DECFG,
1269 	MSR_IA32_UCODE_REV,
1270 	MSR_IA32_ARCH_CAPABILITIES,
1271 };
1272 
1273 static unsigned int num_msr_based_features;
1274 
1275 static u64 kvm_get_arch_capabilities(void)
1276 {
1277 	u64 data = 0;
1278 
1279 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1280 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1281 
1282 	/*
1283 	 * If we're doing cache flushes (either "always" or "cond")
1284 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1285 	 * If an outer hypervisor is doing the cache flush for us
1286 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1287 	 * capability to the guest too, and if EPT is disabled we're not
1288 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1289 	 * require a nested hypervisor to do a flush of its own.
1290 	 */
1291 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1292 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1293 
1294 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1295 		data |= ARCH_CAP_RDCL_NO;
1296 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1297 		data |= ARCH_CAP_SSB_NO;
1298 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1299 		data |= ARCH_CAP_MDS_NO;
1300 
1301 	return data;
1302 }
1303 
1304 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1305 {
1306 	switch (msr->index) {
1307 	case MSR_IA32_ARCH_CAPABILITIES:
1308 		msr->data = kvm_get_arch_capabilities();
1309 		break;
1310 	case MSR_IA32_UCODE_REV:
1311 		rdmsrl_safe(msr->index, &msr->data);
1312 		break;
1313 	default:
1314 		if (kvm_x86_ops->get_msr_feature(msr))
1315 			return 1;
1316 	}
1317 	return 0;
1318 }
1319 
1320 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1321 {
1322 	struct kvm_msr_entry msr;
1323 	int r;
1324 
1325 	msr.index = index;
1326 	r = kvm_get_msr_feature(&msr);
1327 	if (r)
1328 		return r;
1329 
1330 	*data = msr.data;
1331 
1332 	return 0;
1333 }
1334 
1335 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1336 {
1337 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1338 		return false;
1339 
1340 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1341 		return false;
1342 
1343 	if (efer & (EFER_LME | EFER_LMA) &&
1344 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1345 		return false;
1346 
1347 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1348 		return false;
1349 
1350 	return true;
1351 
1352 }
1353 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1354 {
1355 	if (efer & efer_reserved_bits)
1356 		return false;
1357 
1358 	return __kvm_valid_efer(vcpu, efer);
1359 }
1360 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1361 
1362 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1363 {
1364 	u64 old_efer = vcpu->arch.efer;
1365 	u64 efer = msr_info->data;
1366 
1367 	if (efer & efer_reserved_bits)
1368 		return 1;
1369 
1370 	if (!msr_info->host_initiated) {
1371 		if (!__kvm_valid_efer(vcpu, efer))
1372 			return 1;
1373 
1374 		if (is_paging(vcpu) &&
1375 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1376 			return 1;
1377 	}
1378 
1379 	efer &= ~EFER_LMA;
1380 	efer |= vcpu->arch.efer & EFER_LMA;
1381 
1382 	kvm_x86_ops->set_efer(vcpu, efer);
1383 
1384 	/* Update reserved bits */
1385 	if ((efer ^ old_efer) & EFER_NX)
1386 		kvm_mmu_reset_context(vcpu);
1387 
1388 	return 0;
1389 }
1390 
1391 void kvm_enable_efer_bits(u64 mask)
1392 {
1393        efer_reserved_bits &= ~mask;
1394 }
1395 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1396 
1397 /*
1398  * Write @data into the MSR specified by @index.  Select MSR specific fault
1399  * checks are bypassed if @host_initiated is %true.
1400  * Returns 0 on success, non-0 otherwise.
1401  * Assumes vcpu_load() was already called.
1402  */
1403 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1404 			 bool host_initiated)
1405 {
1406 	struct msr_data msr;
1407 
1408 	switch (index) {
1409 	case MSR_FS_BASE:
1410 	case MSR_GS_BASE:
1411 	case MSR_KERNEL_GS_BASE:
1412 	case MSR_CSTAR:
1413 	case MSR_LSTAR:
1414 		if (is_noncanonical_address(data, vcpu))
1415 			return 1;
1416 		break;
1417 	case MSR_IA32_SYSENTER_EIP:
1418 	case MSR_IA32_SYSENTER_ESP:
1419 		/*
1420 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1421 		 * non-canonical address is written on Intel but not on
1422 		 * AMD (which ignores the top 32-bits, because it does
1423 		 * not implement 64-bit SYSENTER).
1424 		 *
1425 		 * 64-bit code should hence be able to write a non-canonical
1426 		 * value on AMD.  Making the address canonical ensures that
1427 		 * vmentry does not fail on Intel after writing a non-canonical
1428 		 * value, and that something deterministic happens if the guest
1429 		 * invokes 64-bit SYSENTER.
1430 		 */
1431 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1432 	}
1433 
1434 	msr.data = data;
1435 	msr.index = index;
1436 	msr.host_initiated = host_initiated;
1437 
1438 	return kvm_x86_ops->set_msr(vcpu, &msr);
1439 }
1440 
1441 /*
1442  * Read the MSR specified by @index into @data.  Select MSR specific fault
1443  * checks are bypassed if @host_initiated is %true.
1444  * Returns 0 on success, non-0 otherwise.
1445  * Assumes vcpu_load() was already called.
1446  */
1447 static int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1448 			 bool host_initiated)
1449 {
1450 	struct msr_data msr;
1451 	int ret;
1452 
1453 	msr.index = index;
1454 	msr.host_initiated = host_initiated;
1455 
1456 	ret = kvm_x86_ops->get_msr(vcpu, &msr);
1457 	if (!ret)
1458 		*data = msr.data;
1459 	return ret;
1460 }
1461 
1462 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1463 {
1464 	return __kvm_get_msr(vcpu, index, data, false);
1465 }
1466 EXPORT_SYMBOL_GPL(kvm_get_msr);
1467 
1468 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1469 {
1470 	return __kvm_set_msr(vcpu, index, data, false);
1471 }
1472 EXPORT_SYMBOL_GPL(kvm_set_msr);
1473 
1474 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1475 {
1476 	u32 ecx = kvm_rcx_read(vcpu);
1477 	u64 data;
1478 
1479 	if (kvm_get_msr(vcpu, ecx, &data)) {
1480 		trace_kvm_msr_read_ex(ecx);
1481 		kvm_inject_gp(vcpu, 0);
1482 		return 1;
1483 	}
1484 
1485 	trace_kvm_msr_read(ecx, data);
1486 
1487 	kvm_rax_write(vcpu, data & -1u);
1488 	kvm_rdx_write(vcpu, (data >> 32) & -1u);
1489 	return kvm_skip_emulated_instruction(vcpu);
1490 }
1491 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1492 
1493 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1494 {
1495 	u32 ecx = kvm_rcx_read(vcpu);
1496 	u64 data = kvm_read_edx_eax(vcpu);
1497 
1498 	if (kvm_set_msr(vcpu, ecx, data)) {
1499 		trace_kvm_msr_write_ex(ecx, data);
1500 		kvm_inject_gp(vcpu, 0);
1501 		return 1;
1502 	}
1503 
1504 	trace_kvm_msr_write(ecx, data);
1505 	return kvm_skip_emulated_instruction(vcpu);
1506 }
1507 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1508 
1509 /*
1510  * Adapt set_msr() to msr_io()'s calling convention
1511  */
1512 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1513 {
1514 	return __kvm_get_msr(vcpu, index, data, true);
1515 }
1516 
1517 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1518 {
1519 	return __kvm_set_msr(vcpu, index, *data, true);
1520 }
1521 
1522 #ifdef CONFIG_X86_64
1523 struct pvclock_gtod_data {
1524 	seqcount_t	seq;
1525 
1526 	struct { /* extract of a clocksource struct */
1527 		int vclock_mode;
1528 		u64	cycle_last;
1529 		u64	mask;
1530 		u32	mult;
1531 		u32	shift;
1532 	} clock;
1533 
1534 	u64		boot_ns;
1535 	u64		nsec_base;
1536 	u64		wall_time_sec;
1537 };
1538 
1539 static struct pvclock_gtod_data pvclock_gtod_data;
1540 
1541 static void update_pvclock_gtod(struct timekeeper *tk)
1542 {
1543 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1544 	u64 boot_ns;
1545 
1546 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1547 
1548 	write_seqcount_begin(&vdata->seq);
1549 
1550 	/* copy pvclock gtod data */
1551 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1552 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1553 	vdata->clock.mask		= tk->tkr_mono.mask;
1554 	vdata->clock.mult		= tk->tkr_mono.mult;
1555 	vdata->clock.shift		= tk->tkr_mono.shift;
1556 
1557 	vdata->boot_ns			= boot_ns;
1558 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1559 
1560 	vdata->wall_time_sec            = tk->xtime_sec;
1561 
1562 	write_seqcount_end(&vdata->seq);
1563 }
1564 #endif
1565 
1566 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1567 {
1568 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1569 	kvm_vcpu_kick(vcpu);
1570 }
1571 
1572 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1573 {
1574 	int version;
1575 	int r;
1576 	struct pvclock_wall_clock wc;
1577 	struct timespec64 boot;
1578 
1579 	if (!wall_clock)
1580 		return;
1581 
1582 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1583 	if (r)
1584 		return;
1585 
1586 	if (version & 1)
1587 		++version;  /* first time write, random junk */
1588 
1589 	++version;
1590 
1591 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1592 		return;
1593 
1594 	/*
1595 	 * The guest calculates current wall clock time by adding
1596 	 * system time (updated by kvm_guest_time_update below) to the
1597 	 * wall clock specified here.  guest system time equals host
1598 	 * system time for us, thus we must fill in host boot time here.
1599 	 */
1600 	getboottime64(&boot);
1601 
1602 	if (kvm->arch.kvmclock_offset) {
1603 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1604 		boot = timespec64_sub(boot, ts);
1605 	}
1606 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1607 	wc.nsec = boot.tv_nsec;
1608 	wc.version = version;
1609 
1610 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1611 
1612 	version++;
1613 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1614 }
1615 
1616 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1617 {
1618 	do_shl32_div32(dividend, divisor);
1619 	return dividend;
1620 }
1621 
1622 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1623 			       s8 *pshift, u32 *pmultiplier)
1624 {
1625 	uint64_t scaled64;
1626 	int32_t  shift = 0;
1627 	uint64_t tps64;
1628 	uint32_t tps32;
1629 
1630 	tps64 = base_hz;
1631 	scaled64 = scaled_hz;
1632 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1633 		tps64 >>= 1;
1634 		shift--;
1635 	}
1636 
1637 	tps32 = (uint32_t)tps64;
1638 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1639 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1640 			scaled64 >>= 1;
1641 		else
1642 			tps32 <<= 1;
1643 		shift++;
1644 	}
1645 
1646 	*pshift = shift;
1647 	*pmultiplier = div_frac(scaled64, tps32);
1648 }
1649 
1650 #ifdef CONFIG_X86_64
1651 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1652 #endif
1653 
1654 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1655 static unsigned long max_tsc_khz;
1656 
1657 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1658 {
1659 	u64 v = (u64)khz * (1000000 + ppm);
1660 	do_div(v, 1000000);
1661 	return v;
1662 }
1663 
1664 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1665 {
1666 	u64 ratio;
1667 
1668 	/* Guest TSC same frequency as host TSC? */
1669 	if (!scale) {
1670 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1671 		return 0;
1672 	}
1673 
1674 	/* TSC scaling supported? */
1675 	if (!kvm_has_tsc_control) {
1676 		if (user_tsc_khz > tsc_khz) {
1677 			vcpu->arch.tsc_catchup = 1;
1678 			vcpu->arch.tsc_always_catchup = 1;
1679 			return 0;
1680 		} else {
1681 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1682 			return -1;
1683 		}
1684 	}
1685 
1686 	/* TSC scaling required  - calculate ratio */
1687 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1688 				user_tsc_khz, tsc_khz);
1689 
1690 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1691 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1692 			            user_tsc_khz);
1693 		return -1;
1694 	}
1695 
1696 	vcpu->arch.tsc_scaling_ratio = ratio;
1697 	return 0;
1698 }
1699 
1700 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1701 {
1702 	u32 thresh_lo, thresh_hi;
1703 	int use_scaling = 0;
1704 
1705 	/* tsc_khz can be zero if TSC calibration fails */
1706 	if (user_tsc_khz == 0) {
1707 		/* set tsc_scaling_ratio to a safe value */
1708 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1709 		return -1;
1710 	}
1711 
1712 	/* Compute a scale to convert nanoseconds in TSC cycles */
1713 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1714 			   &vcpu->arch.virtual_tsc_shift,
1715 			   &vcpu->arch.virtual_tsc_mult);
1716 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1717 
1718 	/*
1719 	 * Compute the variation in TSC rate which is acceptable
1720 	 * within the range of tolerance and decide if the
1721 	 * rate being applied is within that bounds of the hardware
1722 	 * rate.  If so, no scaling or compensation need be done.
1723 	 */
1724 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1725 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1726 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1727 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1728 		use_scaling = 1;
1729 	}
1730 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1731 }
1732 
1733 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1734 {
1735 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1736 				      vcpu->arch.virtual_tsc_mult,
1737 				      vcpu->arch.virtual_tsc_shift);
1738 	tsc += vcpu->arch.this_tsc_write;
1739 	return tsc;
1740 }
1741 
1742 static inline int gtod_is_based_on_tsc(int mode)
1743 {
1744 	return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1745 }
1746 
1747 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1748 {
1749 #ifdef CONFIG_X86_64
1750 	bool vcpus_matched;
1751 	struct kvm_arch *ka = &vcpu->kvm->arch;
1752 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1753 
1754 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1755 			 atomic_read(&vcpu->kvm->online_vcpus));
1756 
1757 	/*
1758 	 * Once the masterclock is enabled, always perform request in
1759 	 * order to update it.
1760 	 *
1761 	 * In order to enable masterclock, the host clocksource must be TSC
1762 	 * and the vcpus need to have matched TSCs.  When that happens,
1763 	 * perform request to enable masterclock.
1764 	 */
1765 	if (ka->use_master_clock ||
1766 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1767 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1768 
1769 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1770 			    atomic_read(&vcpu->kvm->online_vcpus),
1771 		            ka->use_master_clock, gtod->clock.vclock_mode);
1772 #endif
1773 }
1774 
1775 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1776 {
1777 	u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1778 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1779 }
1780 
1781 /*
1782  * Multiply tsc by a fixed point number represented by ratio.
1783  *
1784  * The most significant 64-N bits (mult) of ratio represent the
1785  * integral part of the fixed point number; the remaining N bits
1786  * (frac) represent the fractional part, ie. ratio represents a fixed
1787  * point number (mult + frac * 2^(-N)).
1788  *
1789  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1790  */
1791 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1792 {
1793 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1794 }
1795 
1796 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1797 {
1798 	u64 _tsc = tsc;
1799 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1800 
1801 	if (ratio != kvm_default_tsc_scaling_ratio)
1802 		_tsc = __scale_tsc(ratio, tsc);
1803 
1804 	return _tsc;
1805 }
1806 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1807 
1808 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1809 {
1810 	u64 tsc;
1811 
1812 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1813 
1814 	return target_tsc - tsc;
1815 }
1816 
1817 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1818 {
1819 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1820 
1821 	return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1822 }
1823 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1824 
1825 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1826 {
1827 	vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1828 }
1829 
1830 static inline bool kvm_check_tsc_unstable(void)
1831 {
1832 #ifdef CONFIG_X86_64
1833 	/*
1834 	 * TSC is marked unstable when we're running on Hyper-V,
1835 	 * 'TSC page' clocksource is good.
1836 	 */
1837 	if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1838 		return false;
1839 #endif
1840 	return check_tsc_unstable();
1841 }
1842 
1843 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1844 {
1845 	struct kvm *kvm = vcpu->kvm;
1846 	u64 offset, ns, elapsed;
1847 	unsigned long flags;
1848 	bool matched;
1849 	bool already_matched;
1850 	u64 data = msr->data;
1851 	bool synchronizing = false;
1852 
1853 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1854 	offset = kvm_compute_tsc_offset(vcpu, data);
1855 	ns = ktime_get_boottime_ns();
1856 	elapsed = ns - kvm->arch.last_tsc_nsec;
1857 
1858 	if (vcpu->arch.virtual_tsc_khz) {
1859 		if (data == 0 && msr->host_initiated) {
1860 			/*
1861 			 * detection of vcpu initialization -- need to sync
1862 			 * with other vCPUs. This particularly helps to keep
1863 			 * kvm_clock stable after CPU hotplug
1864 			 */
1865 			synchronizing = true;
1866 		} else {
1867 			u64 tsc_exp = kvm->arch.last_tsc_write +
1868 						nsec_to_cycles(vcpu, elapsed);
1869 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1870 			/*
1871 			 * Special case: TSC write with a small delta (1 second)
1872 			 * of virtual cycle time against real time is
1873 			 * interpreted as an attempt to synchronize the CPU.
1874 			 */
1875 			synchronizing = data < tsc_exp + tsc_hz &&
1876 					data + tsc_hz > tsc_exp;
1877 		}
1878 	}
1879 
1880 	/*
1881 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1882 	 * TSC, we add elapsed time in this computation.  We could let the
1883 	 * compensation code attempt to catch up if we fall behind, but
1884 	 * it's better to try to match offsets from the beginning.
1885          */
1886 	if (synchronizing &&
1887 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1888 		if (!kvm_check_tsc_unstable()) {
1889 			offset = kvm->arch.cur_tsc_offset;
1890 		} else {
1891 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1892 			data += delta;
1893 			offset = kvm_compute_tsc_offset(vcpu, data);
1894 		}
1895 		matched = true;
1896 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1897 	} else {
1898 		/*
1899 		 * We split periods of matched TSC writes into generations.
1900 		 * For each generation, we track the original measured
1901 		 * nanosecond time, offset, and write, so if TSCs are in
1902 		 * sync, we can match exact offset, and if not, we can match
1903 		 * exact software computation in compute_guest_tsc()
1904 		 *
1905 		 * These values are tracked in kvm->arch.cur_xxx variables.
1906 		 */
1907 		kvm->arch.cur_tsc_generation++;
1908 		kvm->arch.cur_tsc_nsec = ns;
1909 		kvm->arch.cur_tsc_write = data;
1910 		kvm->arch.cur_tsc_offset = offset;
1911 		matched = false;
1912 	}
1913 
1914 	/*
1915 	 * We also track th most recent recorded KHZ, write and time to
1916 	 * allow the matching interval to be extended at each write.
1917 	 */
1918 	kvm->arch.last_tsc_nsec = ns;
1919 	kvm->arch.last_tsc_write = data;
1920 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1921 
1922 	vcpu->arch.last_guest_tsc = data;
1923 
1924 	/* Keep track of which generation this VCPU has synchronized to */
1925 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1926 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1927 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1928 
1929 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1930 		update_ia32_tsc_adjust_msr(vcpu, offset);
1931 
1932 	kvm_vcpu_write_tsc_offset(vcpu, offset);
1933 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1934 
1935 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1936 	if (!matched) {
1937 		kvm->arch.nr_vcpus_matched_tsc = 0;
1938 	} else if (!already_matched) {
1939 		kvm->arch.nr_vcpus_matched_tsc++;
1940 	}
1941 
1942 	kvm_track_tsc_matching(vcpu);
1943 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1944 }
1945 
1946 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1947 
1948 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1949 					   s64 adjustment)
1950 {
1951 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1952 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1953 }
1954 
1955 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1956 {
1957 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1958 		WARN_ON(adjustment < 0);
1959 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1960 	adjust_tsc_offset_guest(vcpu, adjustment);
1961 }
1962 
1963 #ifdef CONFIG_X86_64
1964 
1965 static u64 read_tsc(void)
1966 {
1967 	u64 ret = (u64)rdtsc_ordered();
1968 	u64 last = pvclock_gtod_data.clock.cycle_last;
1969 
1970 	if (likely(ret >= last))
1971 		return ret;
1972 
1973 	/*
1974 	 * GCC likes to generate cmov here, but this branch is extremely
1975 	 * predictable (it's just a function of time and the likely is
1976 	 * very likely) and there's a data dependence, so force GCC
1977 	 * to generate a branch instead.  I don't barrier() because
1978 	 * we don't actually need a barrier, and if this function
1979 	 * ever gets inlined it will generate worse code.
1980 	 */
1981 	asm volatile ("");
1982 	return last;
1983 }
1984 
1985 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1986 {
1987 	long v;
1988 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1989 	u64 tsc_pg_val;
1990 
1991 	switch (gtod->clock.vclock_mode) {
1992 	case VCLOCK_HVCLOCK:
1993 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1994 						  tsc_timestamp);
1995 		if (tsc_pg_val != U64_MAX) {
1996 			/* TSC page valid */
1997 			*mode = VCLOCK_HVCLOCK;
1998 			v = (tsc_pg_val - gtod->clock.cycle_last) &
1999 				gtod->clock.mask;
2000 		} else {
2001 			/* TSC page invalid */
2002 			*mode = VCLOCK_NONE;
2003 		}
2004 		break;
2005 	case VCLOCK_TSC:
2006 		*mode = VCLOCK_TSC;
2007 		*tsc_timestamp = read_tsc();
2008 		v = (*tsc_timestamp - gtod->clock.cycle_last) &
2009 			gtod->clock.mask;
2010 		break;
2011 	default:
2012 		*mode = VCLOCK_NONE;
2013 	}
2014 
2015 	if (*mode == VCLOCK_NONE)
2016 		*tsc_timestamp = v = 0;
2017 
2018 	return v * gtod->clock.mult;
2019 }
2020 
2021 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
2022 {
2023 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2024 	unsigned long seq;
2025 	int mode;
2026 	u64 ns;
2027 
2028 	do {
2029 		seq = read_seqcount_begin(&gtod->seq);
2030 		ns = gtod->nsec_base;
2031 		ns += vgettsc(tsc_timestamp, &mode);
2032 		ns >>= gtod->clock.shift;
2033 		ns += gtod->boot_ns;
2034 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2035 	*t = ns;
2036 
2037 	return mode;
2038 }
2039 
2040 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2041 {
2042 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2043 	unsigned long seq;
2044 	int mode;
2045 	u64 ns;
2046 
2047 	do {
2048 		seq = read_seqcount_begin(&gtod->seq);
2049 		ts->tv_sec = gtod->wall_time_sec;
2050 		ns = gtod->nsec_base;
2051 		ns += vgettsc(tsc_timestamp, &mode);
2052 		ns >>= gtod->clock.shift;
2053 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2054 
2055 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2056 	ts->tv_nsec = ns;
2057 
2058 	return mode;
2059 }
2060 
2061 /* returns true if host is using TSC based clocksource */
2062 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2063 {
2064 	/* checked again under seqlock below */
2065 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2066 		return false;
2067 
2068 	return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
2069 						      tsc_timestamp));
2070 }
2071 
2072 /* returns true if host is using TSC based clocksource */
2073 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2074 					   u64 *tsc_timestamp)
2075 {
2076 	/* checked again under seqlock below */
2077 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2078 		return false;
2079 
2080 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2081 }
2082 #endif
2083 
2084 /*
2085  *
2086  * Assuming a stable TSC across physical CPUS, and a stable TSC
2087  * across virtual CPUs, the following condition is possible.
2088  * Each numbered line represents an event visible to both
2089  * CPUs at the next numbered event.
2090  *
2091  * "timespecX" represents host monotonic time. "tscX" represents
2092  * RDTSC value.
2093  *
2094  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2095  *
2096  * 1.  read timespec0,tsc0
2097  * 2.					| timespec1 = timespec0 + N
2098  * 					| tsc1 = tsc0 + M
2099  * 3. transition to guest		| transition to guest
2100  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2101  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2102  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2103  *
2104  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2105  *
2106  * 	- ret0 < ret1
2107  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2108  *		...
2109  *	- 0 < N - M => M < N
2110  *
2111  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2112  * always the case (the difference between two distinct xtime instances
2113  * might be smaller then the difference between corresponding TSC reads,
2114  * when updating guest vcpus pvclock areas).
2115  *
2116  * To avoid that problem, do not allow visibility of distinct
2117  * system_timestamp/tsc_timestamp values simultaneously: use a master
2118  * copy of host monotonic time values. Update that master copy
2119  * in lockstep.
2120  *
2121  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2122  *
2123  */
2124 
2125 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2126 {
2127 #ifdef CONFIG_X86_64
2128 	struct kvm_arch *ka = &kvm->arch;
2129 	int vclock_mode;
2130 	bool host_tsc_clocksource, vcpus_matched;
2131 
2132 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2133 			atomic_read(&kvm->online_vcpus));
2134 
2135 	/*
2136 	 * If the host uses TSC clock, then passthrough TSC as stable
2137 	 * to the guest.
2138 	 */
2139 	host_tsc_clocksource = kvm_get_time_and_clockread(
2140 					&ka->master_kernel_ns,
2141 					&ka->master_cycle_now);
2142 
2143 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2144 				&& !ka->backwards_tsc_observed
2145 				&& !ka->boot_vcpu_runs_old_kvmclock;
2146 
2147 	if (ka->use_master_clock)
2148 		atomic_set(&kvm_guest_has_master_clock, 1);
2149 
2150 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2151 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2152 					vcpus_matched);
2153 #endif
2154 }
2155 
2156 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2157 {
2158 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2159 }
2160 
2161 static void kvm_gen_update_masterclock(struct kvm *kvm)
2162 {
2163 #ifdef CONFIG_X86_64
2164 	int i;
2165 	struct kvm_vcpu *vcpu;
2166 	struct kvm_arch *ka = &kvm->arch;
2167 
2168 	spin_lock(&ka->pvclock_gtod_sync_lock);
2169 	kvm_make_mclock_inprogress_request(kvm);
2170 	/* no guest entries from this point */
2171 	pvclock_update_vm_gtod_copy(kvm);
2172 
2173 	kvm_for_each_vcpu(i, vcpu, kvm)
2174 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2175 
2176 	/* guest entries allowed */
2177 	kvm_for_each_vcpu(i, vcpu, kvm)
2178 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2179 
2180 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2181 #endif
2182 }
2183 
2184 u64 get_kvmclock_ns(struct kvm *kvm)
2185 {
2186 	struct kvm_arch *ka = &kvm->arch;
2187 	struct pvclock_vcpu_time_info hv_clock;
2188 	u64 ret;
2189 
2190 	spin_lock(&ka->pvclock_gtod_sync_lock);
2191 	if (!ka->use_master_clock) {
2192 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2193 		return ktime_get_boottime_ns() + ka->kvmclock_offset;
2194 	}
2195 
2196 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2197 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2198 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2199 
2200 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2201 	get_cpu();
2202 
2203 	if (__this_cpu_read(cpu_tsc_khz)) {
2204 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2205 				   &hv_clock.tsc_shift,
2206 				   &hv_clock.tsc_to_system_mul);
2207 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2208 	} else
2209 		ret = ktime_get_boottime_ns() + ka->kvmclock_offset;
2210 
2211 	put_cpu();
2212 
2213 	return ret;
2214 }
2215 
2216 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2217 {
2218 	struct kvm_vcpu_arch *vcpu = &v->arch;
2219 	struct pvclock_vcpu_time_info guest_hv_clock;
2220 
2221 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2222 		&guest_hv_clock, sizeof(guest_hv_clock))))
2223 		return;
2224 
2225 	/* This VCPU is paused, but it's legal for a guest to read another
2226 	 * VCPU's kvmclock, so we really have to follow the specification where
2227 	 * it says that version is odd if data is being modified, and even after
2228 	 * it is consistent.
2229 	 *
2230 	 * Version field updates must be kept separate.  This is because
2231 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2232 	 * writes within a string instruction are weakly ordered.  So there
2233 	 * are three writes overall.
2234 	 *
2235 	 * As a small optimization, only write the version field in the first
2236 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2237 	 * version field is the first in the struct.
2238 	 */
2239 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2240 
2241 	if (guest_hv_clock.version & 1)
2242 		++guest_hv_clock.version;  /* first time write, random junk */
2243 
2244 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2245 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2246 				&vcpu->hv_clock,
2247 				sizeof(vcpu->hv_clock.version));
2248 
2249 	smp_wmb();
2250 
2251 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2252 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2253 
2254 	if (vcpu->pvclock_set_guest_stopped_request) {
2255 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2256 		vcpu->pvclock_set_guest_stopped_request = false;
2257 	}
2258 
2259 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2260 
2261 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2262 				&vcpu->hv_clock,
2263 				sizeof(vcpu->hv_clock));
2264 
2265 	smp_wmb();
2266 
2267 	vcpu->hv_clock.version++;
2268 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2269 				&vcpu->hv_clock,
2270 				sizeof(vcpu->hv_clock.version));
2271 }
2272 
2273 static int kvm_guest_time_update(struct kvm_vcpu *v)
2274 {
2275 	unsigned long flags, tgt_tsc_khz;
2276 	struct kvm_vcpu_arch *vcpu = &v->arch;
2277 	struct kvm_arch *ka = &v->kvm->arch;
2278 	s64 kernel_ns;
2279 	u64 tsc_timestamp, host_tsc;
2280 	u8 pvclock_flags;
2281 	bool use_master_clock;
2282 
2283 	kernel_ns = 0;
2284 	host_tsc = 0;
2285 
2286 	/*
2287 	 * If the host uses TSC clock, then passthrough TSC as stable
2288 	 * to the guest.
2289 	 */
2290 	spin_lock(&ka->pvclock_gtod_sync_lock);
2291 	use_master_clock = ka->use_master_clock;
2292 	if (use_master_clock) {
2293 		host_tsc = ka->master_cycle_now;
2294 		kernel_ns = ka->master_kernel_ns;
2295 	}
2296 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2297 
2298 	/* Keep irq disabled to prevent changes to the clock */
2299 	local_irq_save(flags);
2300 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2301 	if (unlikely(tgt_tsc_khz == 0)) {
2302 		local_irq_restore(flags);
2303 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2304 		return 1;
2305 	}
2306 	if (!use_master_clock) {
2307 		host_tsc = rdtsc();
2308 		kernel_ns = ktime_get_boottime_ns();
2309 	}
2310 
2311 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2312 
2313 	/*
2314 	 * We may have to catch up the TSC to match elapsed wall clock
2315 	 * time for two reasons, even if kvmclock is used.
2316 	 *   1) CPU could have been running below the maximum TSC rate
2317 	 *   2) Broken TSC compensation resets the base at each VCPU
2318 	 *      entry to avoid unknown leaps of TSC even when running
2319 	 *      again on the same CPU.  This may cause apparent elapsed
2320 	 *      time to disappear, and the guest to stand still or run
2321 	 *	very slowly.
2322 	 */
2323 	if (vcpu->tsc_catchup) {
2324 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2325 		if (tsc > tsc_timestamp) {
2326 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2327 			tsc_timestamp = tsc;
2328 		}
2329 	}
2330 
2331 	local_irq_restore(flags);
2332 
2333 	/* With all the info we got, fill in the values */
2334 
2335 	if (kvm_has_tsc_control)
2336 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2337 
2338 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2339 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2340 				   &vcpu->hv_clock.tsc_shift,
2341 				   &vcpu->hv_clock.tsc_to_system_mul);
2342 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2343 	}
2344 
2345 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2346 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2347 	vcpu->last_guest_tsc = tsc_timestamp;
2348 
2349 	/* If the host uses TSC clocksource, then it is stable */
2350 	pvclock_flags = 0;
2351 	if (use_master_clock)
2352 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2353 
2354 	vcpu->hv_clock.flags = pvclock_flags;
2355 
2356 	if (vcpu->pv_time_enabled)
2357 		kvm_setup_pvclock_page(v);
2358 	if (v == kvm_get_vcpu(v->kvm, 0))
2359 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2360 	return 0;
2361 }
2362 
2363 /*
2364  * kvmclock updates which are isolated to a given vcpu, such as
2365  * vcpu->cpu migration, should not allow system_timestamp from
2366  * the rest of the vcpus to remain static. Otherwise ntp frequency
2367  * correction applies to one vcpu's system_timestamp but not
2368  * the others.
2369  *
2370  * So in those cases, request a kvmclock update for all vcpus.
2371  * We need to rate-limit these requests though, as they can
2372  * considerably slow guests that have a large number of vcpus.
2373  * The time for a remote vcpu to update its kvmclock is bound
2374  * by the delay we use to rate-limit the updates.
2375  */
2376 
2377 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2378 
2379 static void kvmclock_update_fn(struct work_struct *work)
2380 {
2381 	int i;
2382 	struct delayed_work *dwork = to_delayed_work(work);
2383 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2384 					   kvmclock_update_work);
2385 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2386 	struct kvm_vcpu *vcpu;
2387 
2388 	kvm_for_each_vcpu(i, vcpu, kvm) {
2389 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2390 		kvm_vcpu_kick(vcpu);
2391 	}
2392 }
2393 
2394 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2395 {
2396 	struct kvm *kvm = v->kvm;
2397 
2398 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2399 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2400 					KVMCLOCK_UPDATE_DELAY);
2401 }
2402 
2403 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2404 
2405 static void kvmclock_sync_fn(struct work_struct *work)
2406 {
2407 	struct delayed_work *dwork = to_delayed_work(work);
2408 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2409 					   kvmclock_sync_work);
2410 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2411 
2412 	if (!kvmclock_periodic_sync)
2413 		return;
2414 
2415 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2416 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2417 					KVMCLOCK_SYNC_PERIOD);
2418 }
2419 
2420 /*
2421  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2422  */
2423 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2424 {
2425 	/* McStatusWrEn enabled? */
2426 	if (guest_cpuid_is_amd(vcpu))
2427 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2428 
2429 	return false;
2430 }
2431 
2432 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2433 {
2434 	u64 mcg_cap = vcpu->arch.mcg_cap;
2435 	unsigned bank_num = mcg_cap & 0xff;
2436 	u32 msr = msr_info->index;
2437 	u64 data = msr_info->data;
2438 
2439 	switch (msr) {
2440 	case MSR_IA32_MCG_STATUS:
2441 		vcpu->arch.mcg_status = data;
2442 		break;
2443 	case MSR_IA32_MCG_CTL:
2444 		if (!(mcg_cap & MCG_CTL_P) &&
2445 		    (data || !msr_info->host_initiated))
2446 			return 1;
2447 		if (data != 0 && data != ~(u64)0)
2448 			return 1;
2449 		vcpu->arch.mcg_ctl = data;
2450 		break;
2451 	default:
2452 		if (msr >= MSR_IA32_MC0_CTL &&
2453 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2454 			u32 offset = msr - MSR_IA32_MC0_CTL;
2455 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2456 			 * some Linux kernels though clear bit 10 in bank 4 to
2457 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2458 			 * this to avoid an uncatched #GP in the guest
2459 			 */
2460 			if ((offset & 0x3) == 0 &&
2461 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2462 				return -1;
2463 
2464 			/* MCi_STATUS */
2465 			if (!msr_info->host_initiated &&
2466 			    (offset & 0x3) == 1 && data != 0) {
2467 				if (!can_set_mci_status(vcpu))
2468 					return -1;
2469 			}
2470 
2471 			vcpu->arch.mce_banks[offset] = data;
2472 			break;
2473 		}
2474 		return 1;
2475 	}
2476 	return 0;
2477 }
2478 
2479 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2480 {
2481 	struct kvm *kvm = vcpu->kvm;
2482 	int lm = is_long_mode(vcpu);
2483 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2484 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2485 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2486 		: kvm->arch.xen_hvm_config.blob_size_32;
2487 	u32 page_num = data & ~PAGE_MASK;
2488 	u64 page_addr = data & PAGE_MASK;
2489 	u8 *page;
2490 	int r;
2491 
2492 	r = -E2BIG;
2493 	if (page_num >= blob_size)
2494 		goto out;
2495 	r = -ENOMEM;
2496 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2497 	if (IS_ERR(page)) {
2498 		r = PTR_ERR(page);
2499 		goto out;
2500 	}
2501 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2502 		goto out_free;
2503 	r = 0;
2504 out_free:
2505 	kfree(page);
2506 out:
2507 	return r;
2508 }
2509 
2510 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2511 {
2512 	gpa_t gpa = data & ~0x3f;
2513 
2514 	/* Bits 3:5 are reserved, Should be zero */
2515 	if (data & 0x38)
2516 		return 1;
2517 
2518 	vcpu->arch.apf.msr_val = data;
2519 
2520 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2521 		kvm_clear_async_pf_completion_queue(vcpu);
2522 		kvm_async_pf_hash_reset(vcpu);
2523 		return 0;
2524 	}
2525 
2526 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2527 					sizeof(u32)))
2528 		return 1;
2529 
2530 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2531 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2532 	kvm_async_pf_wakeup_all(vcpu);
2533 	return 0;
2534 }
2535 
2536 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2537 {
2538 	vcpu->arch.pv_time_enabled = false;
2539 	vcpu->arch.time = 0;
2540 }
2541 
2542 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2543 {
2544 	++vcpu->stat.tlb_flush;
2545 	kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2546 }
2547 
2548 static void record_steal_time(struct kvm_vcpu *vcpu)
2549 {
2550 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2551 		return;
2552 
2553 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2554 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2555 		return;
2556 
2557 	/*
2558 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2559 	 * expensive IPIs.
2560 	 */
2561 	trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2562 		vcpu->arch.st.steal.preempted & KVM_VCPU_FLUSH_TLB);
2563 	if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2564 		kvm_vcpu_flush_tlb(vcpu, false);
2565 
2566 	if (vcpu->arch.st.steal.version & 1)
2567 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2568 
2569 	vcpu->arch.st.steal.version += 1;
2570 
2571 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2572 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2573 
2574 	smp_wmb();
2575 
2576 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2577 		vcpu->arch.st.last_steal;
2578 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2579 
2580 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2581 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2582 
2583 	smp_wmb();
2584 
2585 	vcpu->arch.st.steal.version += 1;
2586 
2587 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2588 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2589 }
2590 
2591 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2592 {
2593 	bool pr = false;
2594 	u32 msr = msr_info->index;
2595 	u64 data = msr_info->data;
2596 
2597 	switch (msr) {
2598 	case MSR_AMD64_NB_CFG:
2599 	case MSR_IA32_UCODE_WRITE:
2600 	case MSR_VM_HSAVE_PA:
2601 	case MSR_AMD64_PATCH_LOADER:
2602 	case MSR_AMD64_BU_CFG2:
2603 	case MSR_AMD64_DC_CFG:
2604 	case MSR_F15H_EX_CFG:
2605 		break;
2606 
2607 	case MSR_IA32_UCODE_REV:
2608 		if (msr_info->host_initiated)
2609 			vcpu->arch.microcode_version = data;
2610 		break;
2611 	case MSR_IA32_ARCH_CAPABILITIES:
2612 		if (!msr_info->host_initiated)
2613 			return 1;
2614 		vcpu->arch.arch_capabilities = data;
2615 		break;
2616 	case MSR_EFER:
2617 		return set_efer(vcpu, msr_info);
2618 	case MSR_K7_HWCR:
2619 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2620 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2621 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2622 
2623 		/* Handle McStatusWrEn */
2624 		if (data == BIT_ULL(18)) {
2625 			vcpu->arch.msr_hwcr = data;
2626 		} else if (data != 0) {
2627 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2628 				    data);
2629 			return 1;
2630 		}
2631 		break;
2632 	case MSR_FAM10H_MMIO_CONF_BASE:
2633 		if (data != 0) {
2634 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2635 				    "0x%llx\n", data);
2636 			return 1;
2637 		}
2638 		break;
2639 	case MSR_IA32_DEBUGCTLMSR:
2640 		if (!data) {
2641 			/* We support the non-activated case already */
2642 			break;
2643 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2644 			/* Values other than LBR and BTF are vendor-specific,
2645 			   thus reserved and should throw a #GP */
2646 			return 1;
2647 		}
2648 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2649 			    __func__, data);
2650 		break;
2651 	case 0x200 ... 0x2ff:
2652 		return kvm_mtrr_set_msr(vcpu, msr, data);
2653 	case MSR_IA32_APICBASE:
2654 		return kvm_set_apic_base(vcpu, msr_info);
2655 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2656 		return kvm_x2apic_msr_write(vcpu, msr, data);
2657 	case MSR_IA32_TSCDEADLINE:
2658 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2659 		break;
2660 	case MSR_IA32_TSC_ADJUST:
2661 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2662 			if (!msr_info->host_initiated) {
2663 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2664 				adjust_tsc_offset_guest(vcpu, adj);
2665 			}
2666 			vcpu->arch.ia32_tsc_adjust_msr = data;
2667 		}
2668 		break;
2669 	case MSR_IA32_MISC_ENABLE:
2670 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2671 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2672 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2673 				return 1;
2674 			vcpu->arch.ia32_misc_enable_msr = data;
2675 			kvm_update_cpuid(vcpu);
2676 		} else {
2677 			vcpu->arch.ia32_misc_enable_msr = data;
2678 		}
2679 		break;
2680 	case MSR_IA32_SMBASE:
2681 		if (!msr_info->host_initiated)
2682 			return 1;
2683 		vcpu->arch.smbase = data;
2684 		break;
2685 	case MSR_IA32_POWER_CTL:
2686 		vcpu->arch.msr_ia32_power_ctl = data;
2687 		break;
2688 	case MSR_IA32_TSC:
2689 		kvm_write_tsc(vcpu, msr_info);
2690 		break;
2691 	case MSR_SMI_COUNT:
2692 		if (!msr_info->host_initiated)
2693 			return 1;
2694 		vcpu->arch.smi_count = data;
2695 		break;
2696 	case MSR_KVM_WALL_CLOCK_NEW:
2697 	case MSR_KVM_WALL_CLOCK:
2698 		vcpu->kvm->arch.wall_clock = data;
2699 		kvm_write_wall_clock(vcpu->kvm, data);
2700 		break;
2701 	case MSR_KVM_SYSTEM_TIME_NEW:
2702 	case MSR_KVM_SYSTEM_TIME: {
2703 		struct kvm_arch *ka = &vcpu->kvm->arch;
2704 
2705 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2706 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2707 
2708 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2709 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2710 
2711 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2712 		}
2713 
2714 		vcpu->arch.time = data;
2715 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2716 
2717 		/* we verify if the enable bit is set... */
2718 		vcpu->arch.pv_time_enabled = false;
2719 		if (!(data & 1))
2720 			break;
2721 
2722 		if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2723 		     &vcpu->arch.pv_time, data & ~1ULL,
2724 		     sizeof(struct pvclock_vcpu_time_info)))
2725 			vcpu->arch.pv_time_enabled = true;
2726 
2727 		break;
2728 	}
2729 	case MSR_KVM_ASYNC_PF_EN:
2730 		if (kvm_pv_enable_async_pf(vcpu, data))
2731 			return 1;
2732 		break;
2733 	case MSR_KVM_STEAL_TIME:
2734 
2735 		if (unlikely(!sched_info_on()))
2736 			return 1;
2737 
2738 		if (data & KVM_STEAL_RESERVED_MASK)
2739 			return 1;
2740 
2741 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2742 						data & KVM_STEAL_VALID_BITS,
2743 						sizeof(struct kvm_steal_time)))
2744 			return 1;
2745 
2746 		vcpu->arch.st.msr_val = data;
2747 
2748 		if (!(data & KVM_MSR_ENABLED))
2749 			break;
2750 
2751 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2752 
2753 		break;
2754 	case MSR_KVM_PV_EOI_EN:
2755 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2756 			return 1;
2757 		break;
2758 
2759 	case MSR_KVM_POLL_CONTROL:
2760 		/* only enable bit supported */
2761 		if (data & (-1ULL << 1))
2762 			return 1;
2763 
2764 		vcpu->arch.msr_kvm_poll_control = data;
2765 		break;
2766 
2767 	case MSR_IA32_MCG_CTL:
2768 	case MSR_IA32_MCG_STATUS:
2769 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2770 		return set_msr_mce(vcpu, msr_info);
2771 
2772 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2773 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2774 		pr = true; /* fall through */
2775 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2776 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2777 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2778 			return kvm_pmu_set_msr(vcpu, msr_info);
2779 
2780 		if (pr || data != 0)
2781 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2782 				    "0x%x data 0x%llx\n", msr, data);
2783 		break;
2784 	case MSR_K7_CLK_CTL:
2785 		/*
2786 		 * Ignore all writes to this no longer documented MSR.
2787 		 * Writes are only relevant for old K7 processors,
2788 		 * all pre-dating SVM, but a recommended workaround from
2789 		 * AMD for these chips. It is possible to specify the
2790 		 * affected processor models on the command line, hence
2791 		 * the need to ignore the workaround.
2792 		 */
2793 		break;
2794 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2795 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2796 	case HV_X64_MSR_CRASH_CTL:
2797 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2798 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2799 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2800 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2801 		return kvm_hv_set_msr_common(vcpu, msr, data,
2802 					     msr_info->host_initiated);
2803 	case MSR_IA32_BBL_CR_CTL3:
2804 		/* Drop writes to this legacy MSR -- see rdmsr
2805 		 * counterpart for further detail.
2806 		 */
2807 		if (report_ignored_msrs)
2808 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2809 				msr, data);
2810 		break;
2811 	case MSR_AMD64_OSVW_ID_LENGTH:
2812 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2813 			return 1;
2814 		vcpu->arch.osvw.length = data;
2815 		break;
2816 	case MSR_AMD64_OSVW_STATUS:
2817 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2818 			return 1;
2819 		vcpu->arch.osvw.status = data;
2820 		break;
2821 	case MSR_PLATFORM_INFO:
2822 		if (!msr_info->host_initiated ||
2823 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2824 		     cpuid_fault_enabled(vcpu)))
2825 			return 1;
2826 		vcpu->arch.msr_platform_info = data;
2827 		break;
2828 	case MSR_MISC_FEATURES_ENABLES:
2829 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2830 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2831 		     !supports_cpuid_fault(vcpu)))
2832 			return 1;
2833 		vcpu->arch.msr_misc_features_enables = data;
2834 		break;
2835 	default:
2836 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2837 			return xen_hvm_config(vcpu, data);
2838 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2839 			return kvm_pmu_set_msr(vcpu, msr_info);
2840 		if (!ignore_msrs) {
2841 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2842 				    msr, data);
2843 			return 1;
2844 		} else {
2845 			if (report_ignored_msrs)
2846 				vcpu_unimpl(vcpu,
2847 					"ignored wrmsr: 0x%x data 0x%llx\n",
2848 					msr, data);
2849 			break;
2850 		}
2851 	}
2852 	return 0;
2853 }
2854 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2855 
2856 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2857 {
2858 	u64 data;
2859 	u64 mcg_cap = vcpu->arch.mcg_cap;
2860 	unsigned bank_num = mcg_cap & 0xff;
2861 
2862 	switch (msr) {
2863 	case MSR_IA32_P5_MC_ADDR:
2864 	case MSR_IA32_P5_MC_TYPE:
2865 		data = 0;
2866 		break;
2867 	case MSR_IA32_MCG_CAP:
2868 		data = vcpu->arch.mcg_cap;
2869 		break;
2870 	case MSR_IA32_MCG_CTL:
2871 		if (!(mcg_cap & MCG_CTL_P) && !host)
2872 			return 1;
2873 		data = vcpu->arch.mcg_ctl;
2874 		break;
2875 	case MSR_IA32_MCG_STATUS:
2876 		data = vcpu->arch.mcg_status;
2877 		break;
2878 	default:
2879 		if (msr >= MSR_IA32_MC0_CTL &&
2880 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2881 			u32 offset = msr - MSR_IA32_MC0_CTL;
2882 			data = vcpu->arch.mce_banks[offset];
2883 			break;
2884 		}
2885 		return 1;
2886 	}
2887 	*pdata = data;
2888 	return 0;
2889 }
2890 
2891 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2892 {
2893 	switch (msr_info->index) {
2894 	case MSR_IA32_PLATFORM_ID:
2895 	case MSR_IA32_EBL_CR_POWERON:
2896 	case MSR_IA32_DEBUGCTLMSR:
2897 	case MSR_IA32_LASTBRANCHFROMIP:
2898 	case MSR_IA32_LASTBRANCHTOIP:
2899 	case MSR_IA32_LASTINTFROMIP:
2900 	case MSR_IA32_LASTINTTOIP:
2901 	case MSR_K8_SYSCFG:
2902 	case MSR_K8_TSEG_ADDR:
2903 	case MSR_K8_TSEG_MASK:
2904 	case MSR_VM_HSAVE_PA:
2905 	case MSR_K8_INT_PENDING_MSG:
2906 	case MSR_AMD64_NB_CFG:
2907 	case MSR_FAM10H_MMIO_CONF_BASE:
2908 	case MSR_AMD64_BU_CFG2:
2909 	case MSR_IA32_PERF_CTL:
2910 	case MSR_AMD64_DC_CFG:
2911 	case MSR_F15H_EX_CFG:
2912 		msr_info->data = 0;
2913 		break;
2914 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2915 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2916 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2917 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2918 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2919 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2920 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2921 		msr_info->data = 0;
2922 		break;
2923 	case MSR_IA32_UCODE_REV:
2924 		msr_info->data = vcpu->arch.microcode_version;
2925 		break;
2926 	case MSR_IA32_ARCH_CAPABILITIES:
2927 		if (!msr_info->host_initiated &&
2928 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2929 			return 1;
2930 		msr_info->data = vcpu->arch.arch_capabilities;
2931 		break;
2932 	case MSR_IA32_POWER_CTL:
2933 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
2934 		break;
2935 	case MSR_IA32_TSC:
2936 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2937 		break;
2938 	case MSR_MTRRcap:
2939 	case 0x200 ... 0x2ff:
2940 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2941 	case 0xcd: /* fsb frequency */
2942 		msr_info->data = 3;
2943 		break;
2944 		/*
2945 		 * MSR_EBC_FREQUENCY_ID
2946 		 * Conservative value valid for even the basic CPU models.
2947 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2948 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2949 		 * and 266MHz for model 3, or 4. Set Core Clock
2950 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2951 		 * 31:24) even though these are only valid for CPU
2952 		 * models > 2, however guests may end up dividing or
2953 		 * multiplying by zero otherwise.
2954 		 */
2955 	case MSR_EBC_FREQUENCY_ID:
2956 		msr_info->data = 1 << 24;
2957 		break;
2958 	case MSR_IA32_APICBASE:
2959 		msr_info->data = kvm_get_apic_base(vcpu);
2960 		break;
2961 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2962 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2963 		break;
2964 	case MSR_IA32_TSCDEADLINE:
2965 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2966 		break;
2967 	case MSR_IA32_TSC_ADJUST:
2968 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2969 		break;
2970 	case MSR_IA32_MISC_ENABLE:
2971 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2972 		break;
2973 	case MSR_IA32_SMBASE:
2974 		if (!msr_info->host_initiated)
2975 			return 1;
2976 		msr_info->data = vcpu->arch.smbase;
2977 		break;
2978 	case MSR_SMI_COUNT:
2979 		msr_info->data = vcpu->arch.smi_count;
2980 		break;
2981 	case MSR_IA32_PERF_STATUS:
2982 		/* TSC increment by tick */
2983 		msr_info->data = 1000ULL;
2984 		/* CPU multiplier */
2985 		msr_info->data |= (((uint64_t)4ULL) << 40);
2986 		break;
2987 	case MSR_EFER:
2988 		msr_info->data = vcpu->arch.efer;
2989 		break;
2990 	case MSR_KVM_WALL_CLOCK:
2991 	case MSR_KVM_WALL_CLOCK_NEW:
2992 		msr_info->data = vcpu->kvm->arch.wall_clock;
2993 		break;
2994 	case MSR_KVM_SYSTEM_TIME:
2995 	case MSR_KVM_SYSTEM_TIME_NEW:
2996 		msr_info->data = vcpu->arch.time;
2997 		break;
2998 	case MSR_KVM_ASYNC_PF_EN:
2999 		msr_info->data = vcpu->arch.apf.msr_val;
3000 		break;
3001 	case MSR_KVM_STEAL_TIME:
3002 		msr_info->data = vcpu->arch.st.msr_val;
3003 		break;
3004 	case MSR_KVM_PV_EOI_EN:
3005 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3006 		break;
3007 	case MSR_KVM_POLL_CONTROL:
3008 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3009 		break;
3010 	case MSR_IA32_P5_MC_ADDR:
3011 	case MSR_IA32_P5_MC_TYPE:
3012 	case MSR_IA32_MCG_CAP:
3013 	case MSR_IA32_MCG_CTL:
3014 	case MSR_IA32_MCG_STATUS:
3015 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3016 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3017 				   msr_info->host_initiated);
3018 	case MSR_K7_CLK_CTL:
3019 		/*
3020 		 * Provide expected ramp-up count for K7. All other
3021 		 * are set to zero, indicating minimum divisors for
3022 		 * every field.
3023 		 *
3024 		 * This prevents guest kernels on AMD host with CPU
3025 		 * type 6, model 8 and higher from exploding due to
3026 		 * the rdmsr failing.
3027 		 */
3028 		msr_info->data = 0x20000000;
3029 		break;
3030 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3031 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3032 	case HV_X64_MSR_CRASH_CTL:
3033 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3034 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3035 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3036 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3037 		return kvm_hv_get_msr_common(vcpu,
3038 					     msr_info->index, &msr_info->data,
3039 					     msr_info->host_initiated);
3040 		break;
3041 	case MSR_IA32_BBL_CR_CTL3:
3042 		/* This legacy MSR exists but isn't fully documented in current
3043 		 * silicon.  It is however accessed by winxp in very narrow
3044 		 * scenarios where it sets bit #19, itself documented as
3045 		 * a "reserved" bit.  Best effort attempt to source coherent
3046 		 * read data here should the balance of the register be
3047 		 * interpreted by the guest:
3048 		 *
3049 		 * L2 cache control register 3: 64GB range, 256KB size,
3050 		 * enabled, latency 0x1, configured
3051 		 */
3052 		msr_info->data = 0xbe702111;
3053 		break;
3054 	case MSR_AMD64_OSVW_ID_LENGTH:
3055 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3056 			return 1;
3057 		msr_info->data = vcpu->arch.osvw.length;
3058 		break;
3059 	case MSR_AMD64_OSVW_STATUS:
3060 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3061 			return 1;
3062 		msr_info->data = vcpu->arch.osvw.status;
3063 		break;
3064 	case MSR_PLATFORM_INFO:
3065 		if (!msr_info->host_initiated &&
3066 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3067 			return 1;
3068 		msr_info->data = vcpu->arch.msr_platform_info;
3069 		break;
3070 	case MSR_MISC_FEATURES_ENABLES:
3071 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3072 		break;
3073 	case MSR_K7_HWCR:
3074 		msr_info->data = vcpu->arch.msr_hwcr;
3075 		break;
3076 	default:
3077 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3078 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3079 		if (!ignore_msrs) {
3080 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
3081 					       msr_info->index);
3082 			return 1;
3083 		} else {
3084 			if (report_ignored_msrs)
3085 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3086 					msr_info->index);
3087 			msr_info->data = 0;
3088 		}
3089 		break;
3090 	}
3091 	return 0;
3092 }
3093 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3094 
3095 /*
3096  * Read or write a bunch of msrs. All parameters are kernel addresses.
3097  *
3098  * @return number of msrs set successfully.
3099  */
3100 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3101 		    struct kvm_msr_entry *entries,
3102 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3103 				  unsigned index, u64 *data))
3104 {
3105 	int i;
3106 
3107 	for (i = 0; i < msrs->nmsrs; ++i)
3108 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3109 			break;
3110 
3111 	return i;
3112 }
3113 
3114 /*
3115  * Read or write a bunch of msrs. Parameters are user addresses.
3116  *
3117  * @return number of msrs set successfully.
3118  */
3119 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3120 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3121 				unsigned index, u64 *data),
3122 		  int writeback)
3123 {
3124 	struct kvm_msrs msrs;
3125 	struct kvm_msr_entry *entries;
3126 	int r, n;
3127 	unsigned size;
3128 
3129 	r = -EFAULT;
3130 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3131 		goto out;
3132 
3133 	r = -E2BIG;
3134 	if (msrs.nmsrs >= MAX_IO_MSRS)
3135 		goto out;
3136 
3137 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3138 	entries = memdup_user(user_msrs->entries, size);
3139 	if (IS_ERR(entries)) {
3140 		r = PTR_ERR(entries);
3141 		goto out;
3142 	}
3143 
3144 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3145 	if (r < 0)
3146 		goto out_free;
3147 
3148 	r = -EFAULT;
3149 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3150 		goto out_free;
3151 
3152 	r = n;
3153 
3154 out_free:
3155 	kfree(entries);
3156 out:
3157 	return r;
3158 }
3159 
3160 static inline bool kvm_can_mwait_in_guest(void)
3161 {
3162 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3163 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3164 		boot_cpu_has(X86_FEATURE_ARAT);
3165 }
3166 
3167 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3168 {
3169 	int r = 0;
3170 
3171 	switch (ext) {
3172 	case KVM_CAP_IRQCHIP:
3173 	case KVM_CAP_HLT:
3174 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3175 	case KVM_CAP_SET_TSS_ADDR:
3176 	case KVM_CAP_EXT_CPUID:
3177 	case KVM_CAP_EXT_EMUL_CPUID:
3178 	case KVM_CAP_CLOCKSOURCE:
3179 	case KVM_CAP_PIT:
3180 	case KVM_CAP_NOP_IO_DELAY:
3181 	case KVM_CAP_MP_STATE:
3182 	case KVM_CAP_SYNC_MMU:
3183 	case KVM_CAP_USER_NMI:
3184 	case KVM_CAP_REINJECT_CONTROL:
3185 	case KVM_CAP_IRQ_INJECT_STATUS:
3186 	case KVM_CAP_IOEVENTFD:
3187 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3188 	case KVM_CAP_PIT2:
3189 	case KVM_CAP_PIT_STATE2:
3190 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3191 	case KVM_CAP_XEN_HVM:
3192 	case KVM_CAP_VCPU_EVENTS:
3193 	case KVM_CAP_HYPERV:
3194 	case KVM_CAP_HYPERV_VAPIC:
3195 	case KVM_CAP_HYPERV_SPIN:
3196 	case KVM_CAP_HYPERV_SYNIC:
3197 	case KVM_CAP_HYPERV_SYNIC2:
3198 	case KVM_CAP_HYPERV_VP_INDEX:
3199 	case KVM_CAP_HYPERV_EVENTFD:
3200 	case KVM_CAP_HYPERV_TLBFLUSH:
3201 	case KVM_CAP_HYPERV_SEND_IPI:
3202 	case KVM_CAP_HYPERV_CPUID:
3203 	case KVM_CAP_PCI_SEGMENT:
3204 	case KVM_CAP_DEBUGREGS:
3205 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3206 	case KVM_CAP_XSAVE:
3207 	case KVM_CAP_ASYNC_PF:
3208 	case KVM_CAP_GET_TSC_KHZ:
3209 	case KVM_CAP_KVMCLOCK_CTRL:
3210 	case KVM_CAP_READONLY_MEM:
3211 	case KVM_CAP_HYPERV_TIME:
3212 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3213 	case KVM_CAP_TSC_DEADLINE_TIMER:
3214 	case KVM_CAP_DISABLE_QUIRKS:
3215 	case KVM_CAP_SET_BOOT_CPU_ID:
3216  	case KVM_CAP_SPLIT_IRQCHIP:
3217 	case KVM_CAP_IMMEDIATE_EXIT:
3218 	case KVM_CAP_PMU_EVENT_FILTER:
3219 	case KVM_CAP_GET_MSR_FEATURES:
3220 	case KVM_CAP_MSR_PLATFORM_INFO:
3221 	case KVM_CAP_EXCEPTION_PAYLOAD:
3222 		r = 1;
3223 		break;
3224 	case KVM_CAP_SYNC_REGS:
3225 		r = KVM_SYNC_X86_VALID_FIELDS;
3226 		break;
3227 	case KVM_CAP_ADJUST_CLOCK:
3228 		r = KVM_CLOCK_TSC_STABLE;
3229 		break;
3230 	case KVM_CAP_X86_DISABLE_EXITS:
3231 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3232 		      KVM_X86_DISABLE_EXITS_CSTATE;
3233 		if(kvm_can_mwait_in_guest())
3234 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3235 		break;
3236 	case KVM_CAP_X86_SMM:
3237 		/* SMBASE is usually relocated above 1M on modern chipsets,
3238 		 * and SMM handlers might indeed rely on 4G segment limits,
3239 		 * so do not report SMM to be available if real mode is
3240 		 * emulated via vm86 mode.  Still, do not go to great lengths
3241 		 * to avoid userspace's usage of the feature, because it is a
3242 		 * fringe case that is not enabled except via specific settings
3243 		 * of the module parameters.
3244 		 */
3245 		r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3246 		break;
3247 	case KVM_CAP_VAPIC:
3248 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3249 		break;
3250 	case KVM_CAP_NR_VCPUS:
3251 		r = KVM_SOFT_MAX_VCPUS;
3252 		break;
3253 	case KVM_CAP_MAX_VCPUS:
3254 		r = KVM_MAX_VCPUS;
3255 		break;
3256 	case KVM_CAP_MAX_VCPU_ID:
3257 		r = KVM_MAX_VCPU_ID;
3258 		break;
3259 	case KVM_CAP_PV_MMU:	/* obsolete */
3260 		r = 0;
3261 		break;
3262 	case KVM_CAP_MCE:
3263 		r = KVM_MAX_MCE_BANKS;
3264 		break;
3265 	case KVM_CAP_XCRS:
3266 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3267 		break;
3268 	case KVM_CAP_TSC_CONTROL:
3269 		r = kvm_has_tsc_control;
3270 		break;
3271 	case KVM_CAP_X2APIC_API:
3272 		r = KVM_X2APIC_API_VALID_FLAGS;
3273 		break;
3274 	case KVM_CAP_NESTED_STATE:
3275 		r = kvm_x86_ops->get_nested_state ?
3276 			kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3277 		break;
3278 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3279 		r = kvm_x86_ops->enable_direct_tlbflush != NULL;
3280 		break;
3281 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3282 		r = kvm_x86_ops->nested_enable_evmcs != NULL;
3283 		break;
3284 	default:
3285 		break;
3286 	}
3287 	return r;
3288 
3289 }
3290 
3291 long kvm_arch_dev_ioctl(struct file *filp,
3292 			unsigned int ioctl, unsigned long arg)
3293 {
3294 	void __user *argp = (void __user *)arg;
3295 	long r;
3296 
3297 	switch (ioctl) {
3298 	case KVM_GET_MSR_INDEX_LIST: {
3299 		struct kvm_msr_list __user *user_msr_list = argp;
3300 		struct kvm_msr_list msr_list;
3301 		unsigned n;
3302 
3303 		r = -EFAULT;
3304 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3305 			goto out;
3306 		n = msr_list.nmsrs;
3307 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3308 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3309 			goto out;
3310 		r = -E2BIG;
3311 		if (n < msr_list.nmsrs)
3312 			goto out;
3313 		r = -EFAULT;
3314 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3315 				 num_msrs_to_save * sizeof(u32)))
3316 			goto out;
3317 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3318 				 &emulated_msrs,
3319 				 num_emulated_msrs * sizeof(u32)))
3320 			goto out;
3321 		r = 0;
3322 		break;
3323 	}
3324 	case KVM_GET_SUPPORTED_CPUID:
3325 	case KVM_GET_EMULATED_CPUID: {
3326 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3327 		struct kvm_cpuid2 cpuid;
3328 
3329 		r = -EFAULT;
3330 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3331 			goto out;
3332 
3333 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3334 					    ioctl);
3335 		if (r)
3336 			goto out;
3337 
3338 		r = -EFAULT;
3339 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3340 			goto out;
3341 		r = 0;
3342 		break;
3343 	}
3344 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3345 		r = -EFAULT;
3346 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3347 				 sizeof(kvm_mce_cap_supported)))
3348 			goto out;
3349 		r = 0;
3350 		break;
3351 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3352 		struct kvm_msr_list __user *user_msr_list = argp;
3353 		struct kvm_msr_list msr_list;
3354 		unsigned int n;
3355 
3356 		r = -EFAULT;
3357 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3358 			goto out;
3359 		n = msr_list.nmsrs;
3360 		msr_list.nmsrs = num_msr_based_features;
3361 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3362 			goto out;
3363 		r = -E2BIG;
3364 		if (n < msr_list.nmsrs)
3365 			goto out;
3366 		r = -EFAULT;
3367 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3368 				 num_msr_based_features * sizeof(u32)))
3369 			goto out;
3370 		r = 0;
3371 		break;
3372 	}
3373 	case KVM_GET_MSRS:
3374 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3375 		break;
3376 	}
3377 	default:
3378 		r = -EINVAL;
3379 	}
3380 out:
3381 	return r;
3382 }
3383 
3384 static void wbinvd_ipi(void *garbage)
3385 {
3386 	wbinvd();
3387 }
3388 
3389 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3390 {
3391 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3392 }
3393 
3394 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3395 {
3396 	/* Address WBINVD may be executed by guest */
3397 	if (need_emulate_wbinvd(vcpu)) {
3398 		if (kvm_x86_ops->has_wbinvd_exit())
3399 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3400 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3401 			smp_call_function_single(vcpu->cpu,
3402 					wbinvd_ipi, NULL, 1);
3403 	}
3404 
3405 	kvm_x86_ops->vcpu_load(vcpu, cpu);
3406 
3407 	fpregs_assert_state_consistent();
3408 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
3409 		switch_fpu_return();
3410 
3411 	/* Apply any externally detected TSC adjustments (due to suspend) */
3412 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3413 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3414 		vcpu->arch.tsc_offset_adjustment = 0;
3415 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3416 	}
3417 
3418 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3419 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3420 				rdtsc() - vcpu->arch.last_host_tsc;
3421 		if (tsc_delta < 0)
3422 			mark_tsc_unstable("KVM discovered backwards TSC");
3423 
3424 		if (kvm_check_tsc_unstable()) {
3425 			u64 offset = kvm_compute_tsc_offset(vcpu,
3426 						vcpu->arch.last_guest_tsc);
3427 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3428 			vcpu->arch.tsc_catchup = 1;
3429 		}
3430 
3431 		if (kvm_lapic_hv_timer_in_use(vcpu))
3432 			kvm_lapic_restart_hv_timer(vcpu);
3433 
3434 		/*
3435 		 * On a host with synchronized TSC, there is no need to update
3436 		 * kvmclock on vcpu->cpu migration
3437 		 */
3438 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3439 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3440 		if (vcpu->cpu != cpu)
3441 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3442 		vcpu->cpu = cpu;
3443 	}
3444 
3445 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3446 }
3447 
3448 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3449 {
3450 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3451 		return;
3452 
3453 	vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3454 
3455 	kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3456 			&vcpu->arch.st.steal.preempted,
3457 			offsetof(struct kvm_steal_time, preempted),
3458 			sizeof(vcpu->arch.st.steal.preempted));
3459 }
3460 
3461 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3462 {
3463 	int idx;
3464 
3465 	if (vcpu->preempted)
3466 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3467 
3468 	/*
3469 	 * Disable page faults because we're in atomic context here.
3470 	 * kvm_write_guest_offset_cached() would call might_fault()
3471 	 * that relies on pagefault_disable() to tell if there's a
3472 	 * bug. NOTE: the write to guest memory may not go through if
3473 	 * during postcopy live migration or if there's heavy guest
3474 	 * paging.
3475 	 */
3476 	pagefault_disable();
3477 	/*
3478 	 * kvm_memslots() will be called by
3479 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3480 	 */
3481 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3482 	kvm_steal_time_set_preempted(vcpu);
3483 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3484 	pagefault_enable();
3485 	kvm_x86_ops->vcpu_put(vcpu);
3486 	vcpu->arch.last_host_tsc = rdtsc();
3487 	/*
3488 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3489 	 * on every vmexit, but if not, we might have a stale dr6 from the
3490 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3491 	 */
3492 	set_debugreg(0, 6);
3493 }
3494 
3495 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3496 				    struct kvm_lapic_state *s)
3497 {
3498 	if (vcpu->arch.apicv_active)
3499 		kvm_x86_ops->sync_pir_to_irr(vcpu);
3500 
3501 	return kvm_apic_get_state(vcpu, s);
3502 }
3503 
3504 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3505 				    struct kvm_lapic_state *s)
3506 {
3507 	int r;
3508 
3509 	r = kvm_apic_set_state(vcpu, s);
3510 	if (r)
3511 		return r;
3512 	update_cr8_intercept(vcpu);
3513 
3514 	return 0;
3515 }
3516 
3517 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3518 {
3519 	return (!lapic_in_kernel(vcpu) ||
3520 		kvm_apic_accept_pic_intr(vcpu));
3521 }
3522 
3523 /*
3524  * if userspace requested an interrupt window, check that the
3525  * interrupt window is open.
3526  *
3527  * No need to exit to userspace if we already have an interrupt queued.
3528  */
3529 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3530 {
3531 	return kvm_arch_interrupt_allowed(vcpu) &&
3532 		!kvm_cpu_has_interrupt(vcpu) &&
3533 		!kvm_event_needs_reinjection(vcpu) &&
3534 		kvm_cpu_accept_dm_intr(vcpu);
3535 }
3536 
3537 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3538 				    struct kvm_interrupt *irq)
3539 {
3540 	if (irq->irq >= KVM_NR_INTERRUPTS)
3541 		return -EINVAL;
3542 
3543 	if (!irqchip_in_kernel(vcpu->kvm)) {
3544 		kvm_queue_interrupt(vcpu, irq->irq, false);
3545 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3546 		return 0;
3547 	}
3548 
3549 	/*
3550 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3551 	 * fail for in-kernel 8259.
3552 	 */
3553 	if (pic_in_kernel(vcpu->kvm))
3554 		return -ENXIO;
3555 
3556 	if (vcpu->arch.pending_external_vector != -1)
3557 		return -EEXIST;
3558 
3559 	vcpu->arch.pending_external_vector = irq->irq;
3560 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3561 	return 0;
3562 }
3563 
3564 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3565 {
3566 	kvm_inject_nmi(vcpu);
3567 
3568 	return 0;
3569 }
3570 
3571 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3572 {
3573 	kvm_make_request(KVM_REQ_SMI, vcpu);
3574 
3575 	return 0;
3576 }
3577 
3578 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3579 					   struct kvm_tpr_access_ctl *tac)
3580 {
3581 	if (tac->flags)
3582 		return -EINVAL;
3583 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3584 	return 0;
3585 }
3586 
3587 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3588 					u64 mcg_cap)
3589 {
3590 	int r;
3591 	unsigned bank_num = mcg_cap & 0xff, bank;
3592 
3593 	r = -EINVAL;
3594 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3595 		goto out;
3596 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3597 		goto out;
3598 	r = 0;
3599 	vcpu->arch.mcg_cap = mcg_cap;
3600 	/* Init IA32_MCG_CTL to all 1s */
3601 	if (mcg_cap & MCG_CTL_P)
3602 		vcpu->arch.mcg_ctl = ~(u64)0;
3603 	/* Init IA32_MCi_CTL to all 1s */
3604 	for (bank = 0; bank < bank_num; bank++)
3605 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3606 
3607 	kvm_x86_ops->setup_mce(vcpu);
3608 out:
3609 	return r;
3610 }
3611 
3612 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3613 				      struct kvm_x86_mce *mce)
3614 {
3615 	u64 mcg_cap = vcpu->arch.mcg_cap;
3616 	unsigned bank_num = mcg_cap & 0xff;
3617 	u64 *banks = vcpu->arch.mce_banks;
3618 
3619 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3620 		return -EINVAL;
3621 	/*
3622 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3623 	 * reporting is disabled
3624 	 */
3625 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3626 	    vcpu->arch.mcg_ctl != ~(u64)0)
3627 		return 0;
3628 	banks += 4 * mce->bank;
3629 	/*
3630 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3631 	 * reporting is disabled for the bank
3632 	 */
3633 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3634 		return 0;
3635 	if (mce->status & MCI_STATUS_UC) {
3636 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3637 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3638 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3639 			return 0;
3640 		}
3641 		if (banks[1] & MCI_STATUS_VAL)
3642 			mce->status |= MCI_STATUS_OVER;
3643 		banks[2] = mce->addr;
3644 		banks[3] = mce->misc;
3645 		vcpu->arch.mcg_status = mce->mcg_status;
3646 		banks[1] = mce->status;
3647 		kvm_queue_exception(vcpu, MC_VECTOR);
3648 	} else if (!(banks[1] & MCI_STATUS_VAL)
3649 		   || !(banks[1] & MCI_STATUS_UC)) {
3650 		if (banks[1] & MCI_STATUS_VAL)
3651 			mce->status |= MCI_STATUS_OVER;
3652 		banks[2] = mce->addr;
3653 		banks[3] = mce->misc;
3654 		banks[1] = mce->status;
3655 	} else
3656 		banks[1] |= MCI_STATUS_OVER;
3657 	return 0;
3658 }
3659 
3660 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3661 					       struct kvm_vcpu_events *events)
3662 {
3663 	process_nmi(vcpu);
3664 
3665 	/*
3666 	 * The API doesn't provide the instruction length for software
3667 	 * exceptions, so don't report them. As long as the guest RIP
3668 	 * isn't advanced, we should expect to encounter the exception
3669 	 * again.
3670 	 */
3671 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3672 		events->exception.injected = 0;
3673 		events->exception.pending = 0;
3674 	} else {
3675 		events->exception.injected = vcpu->arch.exception.injected;
3676 		events->exception.pending = vcpu->arch.exception.pending;
3677 		/*
3678 		 * For ABI compatibility, deliberately conflate
3679 		 * pending and injected exceptions when
3680 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3681 		 */
3682 		if (!vcpu->kvm->arch.exception_payload_enabled)
3683 			events->exception.injected |=
3684 				vcpu->arch.exception.pending;
3685 	}
3686 	events->exception.nr = vcpu->arch.exception.nr;
3687 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3688 	events->exception.error_code = vcpu->arch.exception.error_code;
3689 	events->exception_has_payload = vcpu->arch.exception.has_payload;
3690 	events->exception_payload = vcpu->arch.exception.payload;
3691 
3692 	events->interrupt.injected =
3693 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3694 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3695 	events->interrupt.soft = 0;
3696 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3697 
3698 	events->nmi.injected = vcpu->arch.nmi_injected;
3699 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3700 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3701 	events->nmi.pad = 0;
3702 
3703 	events->sipi_vector = 0; /* never valid when reporting to user space */
3704 
3705 	events->smi.smm = is_smm(vcpu);
3706 	events->smi.pending = vcpu->arch.smi_pending;
3707 	events->smi.smm_inside_nmi =
3708 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3709 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3710 
3711 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3712 			 | KVM_VCPUEVENT_VALID_SHADOW
3713 			 | KVM_VCPUEVENT_VALID_SMM);
3714 	if (vcpu->kvm->arch.exception_payload_enabled)
3715 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3716 
3717 	memset(&events->reserved, 0, sizeof(events->reserved));
3718 }
3719 
3720 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3721 
3722 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3723 					      struct kvm_vcpu_events *events)
3724 {
3725 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3726 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3727 			      | KVM_VCPUEVENT_VALID_SHADOW
3728 			      | KVM_VCPUEVENT_VALID_SMM
3729 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
3730 		return -EINVAL;
3731 
3732 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3733 		if (!vcpu->kvm->arch.exception_payload_enabled)
3734 			return -EINVAL;
3735 		if (events->exception.pending)
3736 			events->exception.injected = 0;
3737 		else
3738 			events->exception_has_payload = 0;
3739 	} else {
3740 		events->exception.pending = 0;
3741 		events->exception_has_payload = 0;
3742 	}
3743 
3744 	if ((events->exception.injected || events->exception.pending) &&
3745 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3746 		return -EINVAL;
3747 
3748 	/* INITs are latched while in SMM */
3749 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3750 	    (events->smi.smm || events->smi.pending) &&
3751 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3752 		return -EINVAL;
3753 
3754 	process_nmi(vcpu);
3755 	vcpu->arch.exception.injected = events->exception.injected;
3756 	vcpu->arch.exception.pending = events->exception.pending;
3757 	vcpu->arch.exception.nr = events->exception.nr;
3758 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3759 	vcpu->arch.exception.error_code = events->exception.error_code;
3760 	vcpu->arch.exception.has_payload = events->exception_has_payload;
3761 	vcpu->arch.exception.payload = events->exception_payload;
3762 
3763 	vcpu->arch.interrupt.injected = events->interrupt.injected;
3764 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3765 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3766 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3767 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3768 						  events->interrupt.shadow);
3769 
3770 	vcpu->arch.nmi_injected = events->nmi.injected;
3771 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3772 		vcpu->arch.nmi_pending = events->nmi.pending;
3773 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3774 
3775 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3776 	    lapic_in_kernel(vcpu))
3777 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3778 
3779 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3780 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3781 			if (events->smi.smm)
3782 				vcpu->arch.hflags |= HF_SMM_MASK;
3783 			else
3784 				vcpu->arch.hflags &= ~HF_SMM_MASK;
3785 			kvm_smm_changed(vcpu);
3786 		}
3787 
3788 		vcpu->arch.smi_pending = events->smi.pending;
3789 
3790 		if (events->smi.smm) {
3791 			if (events->smi.smm_inside_nmi)
3792 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3793 			else
3794 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3795 			if (lapic_in_kernel(vcpu)) {
3796 				if (events->smi.latched_init)
3797 					set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3798 				else
3799 					clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3800 			}
3801 		}
3802 	}
3803 
3804 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3805 
3806 	return 0;
3807 }
3808 
3809 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3810 					     struct kvm_debugregs *dbgregs)
3811 {
3812 	unsigned long val;
3813 
3814 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3815 	kvm_get_dr(vcpu, 6, &val);
3816 	dbgregs->dr6 = val;
3817 	dbgregs->dr7 = vcpu->arch.dr7;
3818 	dbgregs->flags = 0;
3819 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3820 }
3821 
3822 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3823 					    struct kvm_debugregs *dbgregs)
3824 {
3825 	if (dbgregs->flags)
3826 		return -EINVAL;
3827 
3828 	if (dbgregs->dr6 & ~0xffffffffull)
3829 		return -EINVAL;
3830 	if (dbgregs->dr7 & ~0xffffffffull)
3831 		return -EINVAL;
3832 
3833 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3834 	kvm_update_dr0123(vcpu);
3835 	vcpu->arch.dr6 = dbgregs->dr6;
3836 	kvm_update_dr6(vcpu);
3837 	vcpu->arch.dr7 = dbgregs->dr7;
3838 	kvm_update_dr7(vcpu);
3839 
3840 	return 0;
3841 }
3842 
3843 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3844 
3845 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3846 {
3847 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3848 	u64 xstate_bv = xsave->header.xfeatures;
3849 	u64 valid;
3850 
3851 	/*
3852 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3853 	 * leaves 0 and 1 in the loop below.
3854 	 */
3855 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3856 
3857 	/* Set XSTATE_BV */
3858 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3859 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3860 
3861 	/*
3862 	 * Copy each region from the possibly compacted offset to the
3863 	 * non-compacted offset.
3864 	 */
3865 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3866 	while (valid) {
3867 		u64 xfeature_mask = valid & -valid;
3868 		int xfeature_nr = fls64(xfeature_mask) - 1;
3869 		void *src = get_xsave_addr(xsave, xfeature_nr);
3870 
3871 		if (src) {
3872 			u32 size, offset, ecx, edx;
3873 			cpuid_count(XSTATE_CPUID, xfeature_nr,
3874 				    &size, &offset, &ecx, &edx);
3875 			if (xfeature_nr == XFEATURE_PKRU)
3876 				memcpy(dest + offset, &vcpu->arch.pkru,
3877 				       sizeof(vcpu->arch.pkru));
3878 			else
3879 				memcpy(dest + offset, src, size);
3880 
3881 		}
3882 
3883 		valid -= xfeature_mask;
3884 	}
3885 }
3886 
3887 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3888 {
3889 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3890 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3891 	u64 valid;
3892 
3893 	/*
3894 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3895 	 * leaves 0 and 1 in the loop below.
3896 	 */
3897 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3898 
3899 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3900 	xsave->header.xfeatures = xstate_bv;
3901 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3902 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3903 
3904 	/*
3905 	 * Copy each region from the non-compacted offset to the
3906 	 * possibly compacted offset.
3907 	 */
3908 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3909 	while (valid) {
3910 		u64 xfeature_mask = valid & -valid;
3911 		int xfeature_nr = fls64(xfeature_mask) - 1;
3912 		void *dest = get_xsave_addr(xsave, xfeature_nr);
3913 
3914 		if (dest) {
3915 			u32 size, offset, ecx, edx;
3916 			cpuid_count(XSTATE_CPUID, xfeature_nr,
3917 				    &size, &offset, &ecx, &edx);
3918 			if (xfeature_nr == XFEATURE_PKRU)
3919 				memcpy(&vcpu->arch.pkru, src + offset,
3920 				       sizeof(vcpu->arch.pkru));
3921 			else
3922 				memcpy(dest, src + offset, size);
3923 		}
3924 
3925 		valid -= xfeature_mask;
3926 	}
3927 }
3928 
3929 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3930 					 struct kvm_xsave *guest_xsave)
3931 {
3932 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3933 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3934 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3935 	} else {
3936 		memcpy(guest_xsave->region,
3937 			&vcpu->arch.guest_fpu->state.fxsave,
3938 			sizeof(struct fxregs_state));
3939 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3940 			XFEATURE_MASK_FPSSE;
3941 	}
3942 }
3943 
3944 #define XSAVE_MXCSR_OFFSET 24
3945 
3946 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3947 					struct kvm_xsave *guest_xsave)
3948 {
3949 	u64 xstate_bv =
3950 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3951 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3952 
3953 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3954 		/*
3955 		 * Here we allow setting states that are not present in
3956 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3957 		 * with old userspace.
3958 		 */
3959 		if (xstate_bv & ~kvm_supported_xcr0() ||
3960 			mxcsr & ~mxcsr_feature_mask)
3961 			return -EINVAL;
3962 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3963 	} else {
3964 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3965 			mxcsr & ~mxcsr_feature_mask)
3966 			return -EINVAL;
3967 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
3968 			guest_xsave->region, sizeof(struct fxregs_state));
3969 	}
3970 	return 0;
3971 }
3972 
3973 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3974 					struct kvm_xcrs *guest_xcrs)
3975 {
3976 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3977 		guest_xcrs->nr_xcrs = 0;
3978 		return;
3979 	}
3980 
3981 	guest_xcrs->nr_xcrs = 1;
3982 	guest_xcrs->flags = 0;
3983 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3984 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3985 }
3986 
3987 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3988 				       struct kvm_xcrs *guest_xcrs)
3989 {
3990 	int i, r = 0;
3991 
3992 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3993 		return -EINVAL;
3994 
3995 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3996 		return -EINVAL;
3997 
3998 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3999 		/* Only support XCR0 currently */
4000 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4001 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4002 				guest_xcrs->xcrs[i].value);
4003 			break;
4004 		}
4005 	if (r)
4006 		r = -EINVAL;
4007 	return r;
4008 }
4009 
4010 /*
4011  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4012  * stopped by the hypervisor.  This function will be called from the host only.
4013  * EINVAL is returned when the host attempts to set the flag for a guest that
4014  * does not support pv clocks.
4015  */
4016 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4017 {
4018 	if (!vcpu->arch.pv_time_enabled)
4019 		return -EINVAL;
4020 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4021 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4022 	return 0;
4023 }
4024 
4025 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4026 				     struct kvm_enable_cap *cap)
4027 {
4028 	int r;
4029 	uint16_t vmcs_version;
4030 	void __user *user_ptr;
4031 
4032 	if (cap->flags)
4033 		return -EINVAL;
4034 
4035 	switch (cap->cap) {
4036 	case KVM_CAP_HYPERV_SYNIC2:
4037 		if (cap->args[0])
4038 			return -EINVAL;
4039 		/* fall through */
4040 
4041 	case KVM_CAP_HYPERV_SYNIC:
4042 		if (!irqchip_in_kernel(vcpu->kvm))
4043 			return -EINVAL;
4044 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4045 					     KVM_CAP_HYPERV_SYNIC2);
4046 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4047 		if (!kvm_x86_ops->nested_enable_evmcs)
4048 			return -ENOTTY;
4049 		r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
4050 		if (!r) {
4051 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4052 			if (copy_to_user(user_ptr, &vmcs_version,
4053 					 sizeof(vmcs_version)))
4054 				r = -EFAULT;
4055 		}
4056 		return r;
4057 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4058 		if (!kvm_x86_ops->enable_direct_tlbflush)
4059 			return -ENOTTY;
4060 
4061 		return kvm_x86_ops->enable_direct_tlbflush(vcpu);
4062 
4063 	default:
4064 		return -EINVAL;
4065 	}
4066 }
4067 
4068 long kvm_arch_vcpu_ioctl(struct file *filp,
4069 			 unsigned int ioctl, unsigned long arg)
4070 {
4071 	struct kvm_vcpu *vcpu = filp->private_data;
4072 	void __user *argp = (void __user *)arg;
4073 	int r;
4074 	union {
4075 		struct kvm_lapic_state *lapic;
4076 		struct kvm_xsave *xsave;
4077 		struct kvm_xcrs *xcrs;
4078 		void *buffer;
4079 	} u;
4080 
4081 	vcpu_load(vcpu);
4082 
4083 	u.buffer = NULL;
4084 	switch (ioctl) {
4085 	case KVM_GET_LAPIC: {
4086 		r = -EINVAL;
4087 		if (!lapic_in_kernel(vcpu))
4088 			goto out;
4089 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4090 				GFP_KERNEL_ACCOUNT);
4091 
4092 		r = -ENOMEM;
4093 		if (!u.lapic)
4094 			goto out;
4095 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4096 		if (r)
4097 			goto out;
4098 		r = -EFAULT;
4099 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4100 			goto out;
4101 		r = 0;
4102 		break;
4103 	}
4104 	case KVM_SET_LAPIC: {
4105 		r = -EINVAL;
4106 		if (!lapic_in_kernel(vcpu))
4107 			goto out;
4108 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4109 		if (IS_ERR(u.lapic)) {
4110 			r = PTR_ERR(u.lapic);
4111 			goto out_nofree;
4112 		}
4113 
4114 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4115 		break;
4116 	}
4117 	case KVM_INTERRUPT: {
4118 		struct kvm_interrupt irq;
4119 
4120 		r = -EFAULT;
4121 		if (copy_from_user(&irq, argp, sizeof(irq)))
4122 			goto out;
4123 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4124 		break;
4125 	}
4126 	case KVM_NMI: {
4127 		r = kvm_vcpu_ioctl_nmi(vcpu);
4128 		break;
4129 	}
4130 	case KVM_SMI: {
4131 		r = kvm_vcpu_ioctl_smi(vcpu);
4132 		break;
4133 	}
4134 	case KVM_SET_CPUID: {
4135 		struct kvm_cpuid __user *cpuid_arg = argp;
4136 		struct kvm_cpuid cpuid;
4137 
4138 		r = -EFAULT;
4139 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4140 			goto out;
4141 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4142 		break;
4143 	}
4144 	case KVM_SET_CPUID2: {
4145 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4146 		struct kvm_cpuid2 cpuid;
4147 
4148 		r = -EFAULT;
4149 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4150 			goto out;
4151 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4152 					      cpuid_arg->entries);
4153 		break;
4154 	}
4155 	case KVM_GET_CPUID2: {
4156 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4157 		struct kvm_cpuid2 cpuid;
4158 
4159 		r = -EFAULT;
4160 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4161 			goto out;
4162 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4163 					      cpuid_arg->entries);
4164 		if (r)
4165 			goto out;
4166 		r = -EFAULT;
4167 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4168 			goto out;
4169 		r = 0;
4170 		break;
4171 	}
4172 	case KVM_GET_MSRS: {
4173 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4174 		r = msr_io(vcpu, argp, do_get_msr, 1);
4175 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4176 		break;
4177 	}
4178 	case KVM_SET_MSRS: {
4179 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4180 		r = msr_io(vcpu, argp, do_set_msr, 0);
4181 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4182 		break;
4183 	}
4184 	case KVM_TPR_ACCESS_REPORTING: {
4185 		struct kvm_tpr_access_ctl tac;
4186 
4187 		r = -EFAULT;
4188 		if (copy_from_user(&tac, argp, sizeof(tac)))
4189 			goto out;
4190 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4191 		if (r)
4192 			goto out;
4193 		r = -EFAULT;
4194 		if (copy_to_user(argp, &tac, sizeof(tac)))
4195 			goto out;
4196 		r = 0;
4197 		break;
4198 	};
4199 	case KVM_SET_VAPIC_ADDR: {
4200 		struct kvm_vapic_addr va;
4201 		int idx;
4202 
4203 		r = -EINVAL;
4204 		if (!lapic_in_kernel(vcpu))
4205 			goto out;
4206 		r = -EFAULT;
4207 		if (copy_from_user(&va, argp, sizeof(va)))
4208 			goto out;
4209 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4210 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4211 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4212 		break;
4213 	}
4214 	case KVM_X86_SETUP_MCE: {
4215 		u64 mcg_cap;
4216 
4217 		r = -EFAULT;
4218 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4219 			goto out;
4220 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4221 		break;
4222 	}
4223 	case KVM_X86_SET_MCE: {
4224 		struct kvm_x86_mce mce;
4225 
4226 		r = -EFAULT;
4227 		if (copy_from_user(&mce, argp, sizeof(mce)))
4228 			goto out;
4229 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4230 		break;
4231 	}
4232 	case KVM_GET_VCPU_EVENTS: {
4233 		struct kvm_vcpu_events events;
4234 
4235 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4236 
4237 		r = -EFAULT;
4238 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4239 			break;
4240 		r = 0;
4241 		break;
4242 	}
4243 	case KVM_SET_VCPU_EVENTS: {
4244 		struct kvm_vcpu_events events;
4245 
4246 		r = -EFAULT;
4247 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4248 			break;
4249 
4250 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4251 		break;
4252 	}
4253 	case KVM_GET_DEBUGREGS: {
4254 		struct kvm_debugregs dbgregs;
4255 
4256 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4257 
4258 		r = -EFAULT;
4259 		if (copy_to_user(argp, &dbgregs,
4260 				 sizeof(struct kvm_debugregs)))
4261 			break;
4262 		r = 0;
4263 		break;
4264 	}
4265 	case KVM_SET_DEBUGREGS: {
4266 		struct kvm_debugregs dbgregs;
4267 
4268 		r = -EFAULT;
4269 		if (copy_from_user(&dbgregs, argp,
4270 				   sizeof(struct kvm_debugregs)))
4271 			break;
4272 
4273 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4274 		break;
4275 	}
4276 	case KVM_GET_XSAVE: {
4277 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4278 		r = -ENOMEM;
4279 		if (!u.xsave)
4280 			break;
4281 
4282 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4283 
4284 		r = -EFAULT;
4285 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4286 			break;
4287 		r = 0;
4288 		break;
4289 	}
4290 	case KVM_SET_XSAVE: {
4291 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4292 		if (IS_ERR(u.xsave)) {
4293 			r = PTR_ERR(u.xsave);
4294 			goto out_nofree;
4295 		}
4296 
4297 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4298 		break;
4299 	}
4300 	case KVM_GET_XCRS: {
4301 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4302 		r = -ENOMEM;
4303 		if (!u.xcrs)
4304 			break;
4305 
4306 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4307 
4308 		r = -EFAULT;
4309 		if (copy_to_user(argp, u.xcrs,
4310 				 sizeof(struct kvm_xcrs)))
4311 			break;
4312 		r = 0;
4313 		break;
4314 	}
4315 	case KVM_SET_XCRS: {
4316 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4317 		if (IS_ERR(u.xcrs)) {
4318 			r = PTR_ERR(u.xcrs);
4319 			goto out_nofree;
4320 		}
4321 
4322 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4323 		break;
4324 	}
4325 	case KVM_SET_TSC_KHZ: {
4326 		u32 user_tsc_khz;
4327 
4328 		r = -EINVAL;
4329 		user_tsc_khz = (u32)arg;
4330 
4331 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4332 			goto out;
4333 
4334 		if (user_tsc_khz == 0)
4335 			user_tsc_khz = tsc_khz;
4336 
4337 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4338 			r = 0;
4339 
4340 		goto out;
4341 	}
4342 	case KVM_GET_TSC_KHZ: {
4343 		r = vcpu->arch.virtual_tsc_khz;
4344 		goto out;
4345 	}
4346 	case KVM_KVMCLOCK_CTRL: {
4347 		r = kvm_set_guest_paused(vcpu);
4348 		goto out;
4349 	}
4350 	case KVM_ENABLE_CAP: {
4351 		struct kvm_enable_cap cap;
4352 
4353 		r = -EFAULT;
4354 		if (copy_from_user(&cap, argp, sizeof(cap)))
4355 			goto out;
4356 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4357 		break;
4358 	}
4359 	case KVM_GET_NESTED_STATE: {
4360 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4361 		u32 user_data_size;
4362 
4363 		r = -EINVAL;
4364 		if (!kvm_x86_ops->get_nested_state)
4365 			break;
4366 
4367 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4368 		r = -EFAULT;
4369 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4370 			break;
4371 
4372 		r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4373 						  user_data_size);
4374 		if (r < 0)
4375 			break;
4376 
4377 		if (r > user_data_size) {
4378 			if (put_user(r, &user_kvm_nested_state->size))
4379 				r = -EFAULT;
4380 			else
4381 				r = -E2BIG;
4382 			break;
4383 		}
4384 
4385 		r = 0;
4386 		break;
4387 	}
4388 	case KVM_SET_NESTED_STATE: {
4389 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4390 		struct kvm_nested_state kvm_state;
4391 
4392 		r = -EINVAL;
4393 		if (!kvm_x86_ops->set_nested_state)
4394 			break;
4395 
4396 		r = -EFAULT;
4397 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4398 			break;
4399 
4400 		r = -EINVAL;
4401 		if (kvm_state.size < sizeof(kvm_state))
4402 			break;
4403 
4404 		if (kvm_state.flags &
4405 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4406 		      | KVM_STATE_NESTED_EVMCS))
4407 			break;
4408 
4409 		/* nested_run_pending implies guest_mode.  */
4410 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4411 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4412 			break;
4413 
4414 		r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4415 		break;
4416 	}
4417 	case KVM_GET_SUPPORTED_HV_CPUID: {
4418 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4419 		struct kvm_cpuid2 cpuid;
4420 
4421 		r = -EFAULT;
4422 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4423 			goto out;
4424 
4425 		r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4426 						cpuid_arg->entries);
4427 		if (r)
4428 			goto out;
4429 
4430 		r = -EFAULT;
4431 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4432 			goto out;
4433 		r = 0;
4434 		break;
4435 	}
4436 	default:
4437 		r = -EINVAL;
4438 	}
4439 out:
4440 	kfree(u.buffer);
4441 out_nofree:
4442 	vcpu_put(vcpu);
4443 	return r;
4444 }
4445 
4446 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4447 {
4448 	return VM_FAULT_SIGBUS;
4449 }
4450 
4451 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4452 {
4453 	int ret;
4454 
4455 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
4456 		return -EINVAL;
4457 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4458 	return ret;
4459 }
4460 
4461 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4462 					      u64 ident_addr)
4463 {
4464 	return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4465 }
4466 
4467 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4468 					 unsigned long kvm_nr_mmu_pages)
4469 {
4470 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4471 		return -EINVAL;
4472 
4473 	mutex_lock(&kvm->slots_lock);
4474 
4475 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4476 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4477 
4478 	mutex_unlock(&kvm->slots_lock);
4479 	return 0;
4480 }
4481 
4482 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4483 {
4484 	return kvm->arch.n_max_mmu_pages;
4485 }
4486 
4487 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4488 {
4489 	struct kvm_pic *pic = kvm->arch.vpic;
4490 	int r;
4491 
4492 	r = 0;
4493 	switch (chip->chip_id) {
4494 	case KVM_IRQCHIP_PIC_MASTER:
4495 		memcpy(&chip->chip.pic, &pic->pics[0],
4496 			sizeof(struct kvm_pic_state));
4497 		break;
4498 	case KVM_IRQCHIP_PIC_SLAVE:
4499 		memcpy(&chip->chip.pic, &pic->pics[1],
4500 			sizeof(struct kvm_pic_state));
4501 		break;
4502 	case KVM_IRQCHIP_IOAPIC:
4503 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
4504 		break;
4505 	default:
4506 		r = -EINVAL;
4507 		break;
4508 	}
4509 	return r;
4510 }
4511 
4512 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4513 {
4514 	struct kvm_pic *pic = kvm->arch.vpic;
4515 	int r;
4516 
4517 	r = 0;
4518 	switch (chip->chip_id) {
4519 	case KVM_IRQCHIP_PIC_MASTER:
4520 		spin_lock(&pic->lock);
4521 		memcpy(&pic->pics[0], &chip->chip.pic,
4522 			sizeof(struct kvm_pic_state));
4523 		spin_unlock(&pic->lock);
4524 		break;
4525 	case KVM_IRQCHIP_PIC_SLAVE:
4526 		spin_lock(&pic->lock);
4527 		memcpy(&pic->pics[1], &chip->chip.pic,
4528 			sizeof(struct kvm_pic_state));
4529 		spin_unlock(&pic->lock);
4530 		break;
4531 	case KVM_IRQCHIP_IOAPIC:
4532 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
4533 		break;
4534 	default:
4535 		r = -EINVAL;
4536 		break;
4537 	}
4538 	kvm_pic_update_irq(pic);
4539 	return r;
4540 }
4541 
4542 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4543 {
4544 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4545 
4546 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4547 
4548 	mutex_lock(&kps->lock);
4549 	memcpy(ps, &kps->channels, sizeof(*ps));
4550 	mutex_unlock(&kps->lock);
4551 	return 0;
4552 }
4553 
4554 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4555 {
4556 	int i;
4557 	struct kvm_pit *pit = kvm->arch.vpit;
4558 
4559 	mutex_lock(&pit->pit_state.lock);
4560 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4561 	for (i = 0; i < 3; i++)
4562 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4563 	mutex_unlock(&pit->pit_state.lock);
4564 	return 0;
4565 }
4566 
4567 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4568 {
4569 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
4570 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4571 		sizeof(ps->channels));
4572 	ps->flags = kvm->arch.vpit->pit_state.flags;
4573 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4574 	memset(&ps->reserved, 0, sizeof(ps->reserved));
4575 	return 0;
4576 }
4577 
4578 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4579 {
4580 	int start = 0;
4581 	int i;
4582 	u32 prev_legacy, cur_legacy;
4583 	struct kvm_pit *pit = kvm->arch.vpit;
4584 
4585 	mutex_lock(&pit->pit_state.lock);
4586 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4587 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4588 	if (!prev_legacy && cur_legacy)
4589 		start = 1;
4590 	memcpy(&pit->pit_state.channels, &ps->channels,
4591 	       sizeof(pit->pit_state.channels));
4592 	pit->pit_state.flags = ps->flags;
4593 	for (i = 0; i < 3; i++)
4594 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4595 				   start && i == 0);
4596 	mutex_unlock(&pit->pit_state.lock);
4597 	return 0;
4598 }
4599 
4600 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4601 				 struct kvm_reinject_control *control)
4602 {
4603 	struct kvm_pit *pit = kvm->arch.vpit;
4604 
4605 	if (!pit)
4606 		return -ENXIO;
4607 
4608 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
4609 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4610 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4611 	 */
4612 	mutex_lock(&pit->pit_state.lock);
4613 	kvm_pit_set_reinject(pit, control->pit_reinject);
4614 	mutex_unlock(&pit->pit_state.lock);
4615 
4616 	return 0;
4617 }
4618 
4619 /**
4620  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4621  * @kvm: kvm instance
4622  * @log: slot id and address to which we copy the log
4623  *
4624  * Steps 1-4 below provide general overview of dirty page logging. See
4625  * kvm_get_dirty_log_protect() function description for additional details.
4626  *
4627  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4628  * always flush the TLB (step 4) even if previous step failed  and the dirty
4629  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4630  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4631  * writes will be marked dirty for next log read.
4632  *
4633  *   1. Take a snapshot of the bit and clear it if needed.
4634  *   2. Write protect the corresponding page.
4635  *   3. Copy the snapshot to the userspace.
4636  *   4. Flush TLB's if needed.
4637  */
4638 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4639 {
4640 	bool flush = false;
4641 	int r;
4642 
4643 	mutex_lock(&kvm->slots_lock);
4644 
4645 	/*
4646 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4647 	 */
4648 	if (kvm_x86_ops->flush_log_dirty)
4649 		kvm_x86_ops->flush_log_dirty(kvm);
4650 
4651 	r = kvm_get_dirty_log_protect(kvm, log, &flush);
4652 
4653 	/*
4654 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4655 	 * kvm_mmu_slot_remove_write_access().
4656 	 */
4657 	lockdep_assert_held(&kvm->slots_lock);
4658 	if (flush)
4659 		kvm_flush_remote_tlbs(kvm);
4660 
4661 	mutex_unlock(&kvm->slots_lock);
4662 	return r;
4663 }
4664 
4665 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4666 {
4667 	bool flush = false;
4668 	int r;
4669 
4670 	mutex_lock(&kvm->slots_lock);
4671 
4672 	/*
4673 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4674 	 */
4675 	if (kvm_x86_ops->flush_log_dirty)
4676 		kvm_x86_ops->flush_log_dirty(kvm);
4677 
4678 	r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4679 
4680 	/*
4681 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4682 	 * kvm_mmu_slot_remove_write_access().
4683 	 */
4684 	lockdep_assert_held(&kvm->slots_lock);
4685 	if (flush)
4686 		kvm_flush_remote_tlbs(kvm);
4687 
4688 	mutex_unlock(&kvm->slots_lock);
4689 	return r;
4690 }
4691 
4692 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4693 			bool line_status)
4694 {
4695 	if (!irqchip_in_kernel(kvm))
4696 		return -ENXIO;
4697 
4698 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4699 					irq_event->irq, irq_event->level,
4700 					line_status);
4701 	return 0;
4702 }
4703 
4704 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4705 			    struct kvm_enable_cap *cap)
4706 {
4707 	int r;
4708 
4709 	if (cap->flags)
4710 		return -EINVAL;
4711 
4712 	switch (cap->cap) {
4713 	case KVM_CAP_DISABLE_QUIRKS:
4714 		kvm->arch.disabled_quirks = cap->args[0];
4715 		r = 0;
4716 		break;
4717 	case KVM_CAP_SPLIT_IRQCHIP: {
4718 		mutex_lock(&kvm->lock);
4719 		r = -EINVAL;
4720 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4721 			goto split_irqchip_unlock;
4722 		r = -EEXIST;
4723 		if (irqchip_in_kernel(kvm))
4724 			goto split_irqchip_unlock;
4725 		if (kvm->created_vcpus)
4726 			goto split_irqchip_unlock;
4727 		r = kvm_setup_empty_irq_routing(kvm);
4728 		if (r)
4729 			goto split_irqchip_unlock;
4730 		/* Pairs with irqchip_in_kernel. */
4731 		smp_wmb();
4732 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4733 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4734 		r = 0;
4735 split_irqchip_unlock:
4736 		mutex_unlock(&kvm->lock);
4737 		break;
4738 	}
4739 	case KVM_CAP_X2APIC_API:
4740 		r = -EINVAL;
4741 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4742 			break;
4743 
4744 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4745 			kvm->arch.x2apic_format = true;
4746 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4747 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4748 
4749 		r = 0;
4750 		break;
4751 	case KVM_CAP_X86_DISABLE_EXITS:
4752 		r = -EINVAL;
4753 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4754 			break;
4755 
4756 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4757 			kvm_can_mwait_in_guest())
4758 			kvm->arch.mwait_in_guest = true;
4759 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4760 			kvm->arch.hlt_in_guest = true;
4761 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4762 			kvm->arch.pause_in_guest = true;
4763 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4764 			kvm->arch.cstate_in_guest = true;
4765 		r = 0;
4766 		break;
4767 	case KVM_CAP_MSR_PLATFORM_INFO:
4768 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4769 		r = 0;
4770 		break;
4771 	case KVM_CAP_EXCEPTION_PAYLOAD:
4772 		kvm->arch.exception_payload_enabled = cap->args[0];
4773 		r = 0;
4774 		break;
4775 	default:
4776 		r = -EINVAL;
4777 		break;
4778 	}
4779 	return r;
4780 }
4781 
4782 long kvm_arch_vm_ioctl(struct file *filp,
4783 		       unsigned int ioctl, unsigned long arg)
4784 {
4785 	struct kvm *kvm = filp->private_data;
4786 	void __user *argp = (void __user *)arg;
4787 	int r = -ENOTTY;
4788 	/*
4789 	 * This union makes it completely explicit to gcc-3.x
4790 	 * that these two variables' stack usage should be
4791 	 * combined, not added together.
4792 	 */
4793 	union {
4794 		struct kvm_pit_state ps;
4795 		struct kvm_pit_state2 ps2;
4796 		struct kvm_pit_config pit_config;
4797 	} u;
4798 
4799 	switch (ioctl) {
4800 	case KVM_SET_TSS_ADDR:
4801 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4802 		break;
4803 	case KVM_SET_IDENTITY_MAP_ADDR: {
4804 		u64 ident_addr;
4805 
4806 		mutex_lock(&kvm->lock);
4807 		r = -EINVAL;
4808 		if (kvm->created_vcpus)
4809 			goto set_identity_unlock;
4810 		r = -EFAULT;
4811 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4812 			goto set_identity_unlock;
4813 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4814 set_identity_unlock:
4815 		mutex_unlock(&kvm->lock);
4816 		break;
4817 	}
4818 	case KVM_SET_NR_MMU_PAGES:
4819 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4820 		break;
4821 	case KVM_GET_NR_MMU_PAGES:
4822 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4823 		break;
4824 	case KVM_CREATE_IRQCHIP: {
4825 		mutex_lock(&kvm->lock);
4826 
4827 		r = -EEXIST;
4828 		if (irqchip_in_kernel(kvm))
4829 			goto create_irqchip_unlock;
4830 
4831 		r = -EINVAL;
4832 		if (kvm->created_vcpus)
4833 			goto create_irqchip_unlock;
4834 
4835 		r = kvm_pic_init(kvm);
4836 		if (r)
4837 			goto create_irqchip_unlock;
4838 
4839 		r = kvm_ioapic_init(kvm);
4840 		if (r) {
4841 			kvm_pic_destroy(kvm);
4842 			goto create_irqchip_unlock;
4843 		}
4844 
4845 		r = kvm_setup_default_irq_routing(kvm);
4846 		if (r) {
4847 			kvm_ioapic_destroy(kvm);
4848 			kvm_pic_destroy(kvm);
4849 			goto create_irqchip_unlock;
4850 		}
4851 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4852 		smp_wmb();
4853 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4854 	create_irqchip_unlock:
4855 		mutex_unlock(&kvm->lock);
4856 		break;
4857 	}
4858 	case KVM_CREATE_PIT:
4859 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4860 		goto create_pit;
4861 	case KVM_CREATE_PIT2:
4862 		r = -EFAULT;
4863 		if (copy_from_user(&u.pit_config, argp,
4864 				   sizeof(struct kvm_pit_config)))
4865 			goto out;
4866 	create_pit:
4867 		mutex_lock(&kvm->lock);
4868 		r = -EEXIST;
4869 		if (kvm->arch.vpit)
4870 			goto create_pit_unlock;
4871 		r = -ENOMEM;
4872 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4873 		if (kvm->arch.vpit)
4874 			r = 0;
4875 	create_pit_unlock:
4876 		mutex_unlock(&kvm->lock);
4877 		break;
4878 	case KVM_GET_IRQCHIP: {
4879 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4880 		struct kvm_irqchip *chip;
4881 
4882 		chip = memdup_user(argp, sizeof(*chip));
4883 		if (IS_ERR(chip)) {
4884 			r = PTR_ERR(chip);
4885 			goto out;
4886 		}
4887 
4888 		r = -ENXIO;
4889 		if (!irqchip_kernel(kvm))
4890 			goto get_irqchip_out;
4891 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4892 		if (r)
4893 			goto get_irqchip_out;
4894 		r = -EFAULT;
4895 		if (copy_to_user(argp, chip, sizeof(*chip)))
4896 			goto get_irqchip_out;
4897 		r = 0;
4898 	get_irqchip_out:
4899 		kfree(chip);
4900 		break;
4901 	}
4902 	case KVM_SET_IRQCHIP: {
4903 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4904 		struct kvm_irqchip *chip;
4905 
4906 		chip = memdup_user(argp, sizeof(*chip));
4907 		if (IS_ERR(chip)) {
4908 			r = PTR_ERR(chip);
4909 			goto out;
4910 		}
4911 
4912 		r = -ENXIO;
4913 		if (!irqchip_kernel(kvm))
4914 			goto set_irqchip_out;
4915 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4916 		if (r)
4917 			goto set_irqchip_out;
4918 		r = 0;
4919 	set_irqchip_out:
4920 		kfree(chip);
4921 		break;
4922 	}
4923 	case KVM_GET_PIT: {
4924 		r = -EFAULT;
4925 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4926 			goto out;
4927 		r = -ENXIO;
4928 		if (!kvm->arch.vpit)
4929 			goto out;
4930 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4931 		if (r)
4932 			goto out;
4933 		r = -EFAULT;
4934 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4935 			goto out;
4936 		r = 0;
4937 		break;
4938 	}
4939 	case KVM_SET_PIT: {
4940 		r = -EFAULT;
4941 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4942 			goto out;
4943 		r = -ENXIO;
4944 		if (!kvm->arch.vpit)
4945 			goto out;
4946 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4947 		break;
4948 	}
4949 	case KVM_GET_PIT2: {
4950 		r = -ENXIO;
4951 		if (!kvm->arch.vpit)
4952 			goto out;
4953 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4954 		if (r)
4955 			goto out;
4956 		r = -EFAULT;
4957 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4958 			goto out;
4959 		r = 0;
4960 		break;
4961 	}
4962 	case KVM_SET_PIT2: {
4963 		r = -EFAULT;
4964 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4965 			goto out;
4966 		r = -ENXIO;
4967 		if (!kvm->arch.vpit)
4968 			goto out;
4969 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4970 		break;
4971 	}
4972 	case KVM_REINJECT_CONTROL: {
4973 		struct kvm_reinject_control control;
4974 		r =  -EFAULT;
4975 		if (copy_from_user(&control, argp, sizeof(control)))
4976 			goto out;
4977 		r = kvm_vm_ioctl_reinject(kvm, &control);
4978 		break;
4979 	}
4980 	case KVM_SET_BOOT_CPU_ID:
4981 		r = 0;
4982 		mutex_lock(&kvm->lock);
4983 		if (kvm->created_vcpus)
4984 			r = -EBUSY;
4985 		else
4986 			kvm->arch.bsp_vcpu_id = arg;
4987 		mutex_unlock(&kvm->lock);
4988 		break;
4989 	case KVM_XEN_HVM_CONFIG: {
4990 		struct kvm_xen_hvm_config xhc;
4991 		r = -EFAULT;
4992 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
4993 			goto out;
4994 		r = -EINVAL;
4995 		if (xhc.flags)
4996 			goto out;
4997 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4998 		r = 0;
4999 		break;
5000 	}
5001 	case KVM_SET_CLOCK: {
5002 		struct kvm_clock_data user_ns;
5003 		u64 now_ns;
5004 
5005 		r = -EFAULT;
5006 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5007 			goto out;
5008 
5009 		r = -EINVAL;
5010 		if (user_ns.flags)
5011 			goto out;
5012 
5013 		r = 0;
5014 		/*
5015 		 * TODO: userspace has to take care of races with VCPU_RUN, so
5016 		 * kvm_gen_update_masterclock() can be cut down to locked
5017 		 * pvclock_update_vm_gtod_copy().
5018 		 */
5019 		kvm_gen_update_masterclock(kvm);
5020 		now_ns = get_kvmclock_ns(kvm);
5021 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5022 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5023 		break;
5024 	}
5025 	case KVM_GET_CLOCK: {
5026 		struct kvm_clock_data user_ns;
5027 		u64 now_ns;
5028 
5029 		now_ns = get_kvmclock_ns(kvm);
5030 		user_ns.clock = now_ns;
5031 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5032 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5033 
5034 		r = -EFAULT;
5035 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5036 			goto out;
5037 		r = 0;
5038 		break;
5039 	}
5040 	case KVM_MEMORY_ENCRYPT_OP: {
5041 		r = -ENOTTY;
5042 		if (kvm_x86_ops->mem_enc_op)
5043 			r = kvm_x86_ops->mem_enc_op(kvm, argp);
5044 		break;
5045 	}
5046 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
5047 		struct kvm_enc_region region;
5048 
5049 		r = -EFAULT;
5050 		if (copy_from_user(&region, argp, sizeof(region)))
5051 			goto out;
5052 
5053 		r = -ENOTTY;
5054 		if (kvm_x86_ops->mem_enc_reg_region)
5055 			r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
5056 		break;
5057 	}
5058 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5059 		struct kvm_enc_region region;
5060 
5061 		r = -EFAULT;
5062 		if (copy_from_user(&region, argp, sizeof(region)))
5063 			goto out;
5064 
5065 		r = -ENOTTY;
5066 		if (kvm_x86_ops->mem_enc_unreg_region)
5067 			r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
5068 		break;
5069 	}
5070 	case KVM_HYPERV_EVENTFD: {
5071 		struct kvm_hyperv_eventfd hvevfd;
5072 
5073 		r = -EFAULT;
5074 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5075 			goto out;
5076 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5077 		break;
5078 	}
5079 	case KVM_SET_PMU_EVENT_FILTER:
5080 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5081 		break;
5082 	default:
5083 		r = -ENOTTY;
5084 	}
5085 out:
5086 	return r;
5087 }
5088 
5089 static void kvm_init_msr_list(void)
5090 {
5091 	struct x86_pmu_capability x86_pmu;
5092 	u32 dummy[2];
5093 	unsigned i, j;
5094 
5095 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5096 			 "Please update the fixed PMCs in msrs_to_save[]");
5097 
5098 	perf_get_x86_pmu_capability(&x86_pmu);
5099 
5100 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
5101 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
5102 			continue;
5103 
5104 		/*
5105 		 * Even MSRs that are valid in the host may not be exposed
5106 		 * to the guests in some cases.
5107 		 */
5108 		switch (msrs_to_save[i]) {
5109 		case MSR_IA32_BNDCFGS:
5110 			if (!kvm_mpx_supported())
5111 				continue;
5112 			break;
5113 		case MSR_TSC_AUX:
5114 			if (!kvm_x86_ops->rdtscp_supported())
5115 				continue;
5116 			break;
5117 		case MSR_IA32_RTIT_CTL:
5118 		case MSR_IA32_RTIT_STATUS:
5119 			if (!kvm_x86_ops->pt_supported())
5120 				continue;
5121 			break;
5122 		case MSR_IA32_RTIT_CR3_MATCH:
5123 			if (!kvm_x86_ops->pt_supported() ||
5124 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5125 				continue;
5126 			break;
5127 		case MSR_IA32_RTIT_OUTPUT_BASE:
5128 		case MSR_IA32_RTIT_OUTPUT_MASK:
5129 			if (!kvm_x86_ops->pt_supported() ||
5130 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5131 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5132 				continue;
5133 			break;
5134 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
5135 			if (!kvm_x86_ops->pt_supported() ||
5136 				msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >=
5137 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5138 				continue;
5139 			break;
5140 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5141 			if (msrs_to_save[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5142 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5143 				continue;
5144 			break;
5145 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5146 			if (msrs_to_save[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5147 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5148 				continue;
5149 		}
5150 		default:
5151 			break;
5152 		}
5153 
5154 		if (j < i)
5155 			msrs_to_save[j] = msrs_to_save[i];
5156 		j++;
5157 	}
5158 	num_msrs_to_save = j;
5159 
5160 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
5161 		if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
5162 			continue;
5163 
5164 		if (j < i)
5165 			emulated_msrs[j] = emulated_msrs[i];
5166 		j++;
5167 	}
5168 	num_emulated_msrs = j;
5169 
5170 	for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
5171 		struct kvm_msr_entry msr;
5172 
5173 		msr.index = msr_based_features[i];
5174 		if (kvm_get_msr_feature(&msr))
5175 			continue;
5176 
5177 		if (j < i)
5178 			msr_based_features[j] = msr_based_features[i];
5179 		j++;
5180 	}
5181 	num_msr_based_features = j;
5182 }
5183 
5184 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5185 			   const void *v)
5186 {
5187 	int handled = 0;
5188 	int n;
5189 
5190 	do {
5191 		n = min(len, 8);
5192 		if (!(lapic_in_kernel(vcpu) &&
5193 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5194 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5195 			break;
5196 		handled += n;
5197 		addr += n;
5198 		len -= n;
5199 		v += n;
5200 	} while (len);
5201 
5202 	return handled;
5203 }
5204 
5205 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5206 {
5207 	int handled = 0;
5208 	int n;
5209 
5210 	do {
5211 		n = min(len, 8);
5212 		if (!(lapic_in_kernel(vcpu) &&
5213 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5214 					 addr, n, v))
5215 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5216 			break;
5217 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5218 		handled += n;
5219 		addr += n;
5220 		len -= n;
5221 		v += n;
5222 	} while (len);
5223 
5224 	return handled;
5225 }
5226 
5227 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5228 			struct kvm_segment *var, int seg)
5229 {
5230 	kvm_x86_ops->set_segment(vcpu, var, seg);
5231 }
5232 
5233 void kvm_get_segment(struct kvm_vcpu *vcpu,
5234 		     struct kvm_segment *var, int seg)
5235 {
5236 	kvm_x86_ops->get_segment(vcpu, var, seg);
5237 }
5238 
5239 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5240 			   struct x86_exception *exception)
5241 {
5242 	gpa_t t_gpa;
5243 
5244 	BUG_ON(!mmu_is_nested(vcpu));
5245 
5246 	/* NPT walks are always user-walks */
5247 	access |= PFERR_USER_MASK;
5248 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5249 
5250 	return t_gpa;
5251 }
5252 
5253 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5254 			      struct x86_exception *exception)
5255 {
5256 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5257 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5258 }
5259 
5260  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5261 				struct x86_exception *exception)
5262 {
5263 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5264 	access |= PFERR_FETCH_MASK;
5265 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5266 }
5267 
5268 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5269 			       struct x86_exception *exception)
5270 {
5271 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5272 	access |= PFERR_WRITE_MASK;
5273 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5274 }
5275 
5276 /* uses this to access any guest's mapped memory without checking CPL */
5277 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5278 				struct x86_exception *exception)
5279 {
5280 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5281 }
5282 
5283 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5284 				      struct kvm_vcpu *vcpu, u32 access,
5285 				      struct x86_exception *exception)
5286 {
5287 	void *data = val;
5288 	int r = X86EMUL_CONTINUE;
5289 
5290 	while (bytes) {
5291 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5292 							    exception);
5293 		unsigned offset = addr & (PAGE_SIZE-1);
5294 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5295 		int ret;
5296 
5297 		if (gpa == UNMAPPED_GVA)
5298 			return X86EMUL_PROPAGATE_FAULT;
5299 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5300 					       offset, toread);
5301 		if (ret < 0) {
5302 			r = X86EMUL_IO_NEEDED;
5303 			goto out;
5304 		}
5305 
5306 		bytes -= toread;
5307 		data += toread;
5308 		addr += toread;
5309 	}
5310 out:
5311 	return r;
5312 }
5313 
5314 /* used for instruction fetching */
5315 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5316 				gva_t addr, void *val, unsigned int bytes,
5317 				struct x86_exception *exception)
5318 {
5319 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5320 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5321 	unsigned offset;
5322 	int ret;
5323 
5324 	/* Inline kvm_read_guest_virt_helper for speed.  */
5325 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5326 						    exception);
5327 	if (unlikely(gpa == UNMAPPED_GVA))
5328 		return X86EMUL_PROPAGATE_FAULT;
5329 
5330 	offset = addr & (PAGE_SIZE-1);
5331 	if (WARN_ON(offset + bytes > PAGE_SIZE))
5332 		bytes = (unsigned)PAGE_SIZE - offset;
5333 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5334 				       offset, bytes);
5335 	if (unlikely(ret < 0))
5336 		return X86EMUL_IO_NEEDED;
5337 
5338 	return X86EMUL_CONTINUE;
5339 }
5340 
5341 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5342 			       gva_t addr, void *val, unsigned int bytes,
5343 			       struct x86_exception *exception)
5344 {
5345 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5346 
5347 	/*
5348 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5349 	 * is returned, but our callers are not ready for that and they blindly
5350 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5351 	 * uninitialized kernel stack memory into cr2 and error code.
5352 	 */
5353 	memset(exception, 0, sizeof(*exception));
5354 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5355 					  exception);
5356 }
5357 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5358 
5359 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5360 			     gva_t addr, void *val, unsigned int bytes,
5361 			     struct x86_exception *exception, bool system)
5362 {
5363 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5364 	u32 access = 0;
5365 
5366 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5367 		access |= PFERR_USER_MASK;
5368 
5369 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5370 }
5371 
5372 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5373 		unsigned long addr, void *val, unsigned int bytes)
5374 {
5375 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5376 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5377 
5378 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5379 }
5380 
5381 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5382 				      struct kvm_vcpu *vcpu, u32 access,
5383 				      struct x86_exception *exception)
5384 {
5385 	void *data = val;
5386 	int r = X86EMUL_CONTINUE;
5387 
5388 	while (bytes) {
5389 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5390 							     access,
5391 							     exception);
5392 		unsigned offset = addr & (PAGE_SIZE-1);
5393 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5394 		int ret;
5395 
5396 		if (gpa == UNMAPPED_GVA)
5397 			return X86EMUL_PROPAGATE_FAULT;
5398 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5399 		if (ret < 0) {
5400 			r = X86EMUL_IO_NEEDED;
5401 			goto out;
5402 		}
5403 
5404 		bytes -= towrite;
5405 		data += towrite;
5406 		addr += towrite;
5407 	}
5408 out:
5409 	return r;
5410 }
5411 
5412 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5413 			      unsigned int bytes, struct x86_exception *exception,
5414 			      bool system)
5415 {
5416 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5417 	u32 access = PFERR_WRITE_MASK;
5418 
5419 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5420 		access |= PFERR_USER_MASK;
5421 
5422 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5423 					   access, exception);
5424 }
5425 
5426 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5427 				unsigned int bytes, struct x86_exception *exception)
5428 {
5429 	/* kvm_write_guest_virt_system can pull in tons of pages. */
5430 	vcpu->arch.l1tf_flush_l1d = true;
5431 
5432 	/*
5433 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5434 	 * is returned, but our callers are not ready for that and they blindly
5435 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5436 	 * uninitialized kernel stack memory into cr2 and error code.
5437 	 */
5438 	memset(exception, 0, sizeof(*exception));
5439 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5440 					   PFERR_WRITE_MASK, exception);
5441 }
5442 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5443 
5444 int handle_ud(struct kvm_vcpu *vcpu)
5445 {
5446 	int emul_type = EMULTYPE_TRAP_UD;
5447 	char sig[5]; /* ud2; .ascii "kvm" */
5448 	struct x86_exception e;
5449 
5450 	if (force_emulation_prefix &&
5451 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5452 				sig, sizeof(sig), &e) == 0 &&
5453 	    memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5454 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5455 		emul_type = EMULTYPE_TRAP_UD_FORCED;
5456 	}
5457 
5458 	return kvm_emulate_instruction(vcpu, emul_type);
5459 }
5460 EXPORT_SYMBOL_GPL(handle_ud);
5461 
5462 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5463 			    gpa_t gpa, bool write)
5464 {
5465 	/* For APIC access vmexit */
5466 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5467 		return 1;
5468 
5469 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5470 		trace_vcpu_match_mmio(gva, gpa, write, true);
5471 		return 1;
5472 	}
5473 
5474 	return 0;
5475 }
5476 
5477 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5478 				gpa_t *gpa, struct x86_exception *exception,
5479 				bool write)
5480 {
5481 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5482 		| (write ? PFERR_WRITE_MASK : 0);
5483 
5484 	/*
5485 	 * currently PKRU is only applied to ept enabled guest so
5486 	 * there is no pkey in EPT page table for L1 guest or EPT
5487 	 * shadow page table for L2 guest.
5488 	 */
5489 	if (vcpu_match_mmio_gva(vcpu, gva)
5490 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5491 				 vcpu->arch.mmio_access, 0, access)) {
5492 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5493 					(gva & (PAGE_SIZE - 1));
5494 		trace_vcpu_match_mmio(gva, *gpa, write, false);
5495 		return 1;
5496 	}
5497 
5498 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5499 
5500 	if (*gpa == UNMAPPED_GVA)
5501 		return -1;
5502 
5503 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5504 }
5505 
5506 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5507 			const void *val, int bytes)
5508 {
5509 	int ret;
5510 
5511 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5512 	if (ret < 0)
5513 		return 0;
5514 	kvm_page_track_write(vcpu, gpa, val, bytes);
5515 	return 1;
5516 }
5517 
5518 struct read_write_emulator_ops {
5519 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5520 				  int bytes);
5521 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5522 				  void *val, int bytes);
5523 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5524 			       int bytes, void *val);
5525 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5526 				    void *val, int bytes);
5527 	bool write;
5528 };
5529 
5530 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5531 {
5532 	if (vcpu->mmio_read_completed) {
5533 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5534 			       vcpu->mmio_fragments[0].gpa, val);
5535 		vcpu->mmio_read_completed = 0;
5536 		return 1;
5537 	}
5538 
5539 	return 0;
5540 }
5541 
5542 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5543 			void *val, int bytes)
5544 {
5545 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5546 }
5547 
5548 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5549 			 void *val, int bytes)
5550 {
5551 	return emulator_write_phys(vcpu, gpa, val, bytes);
5552 }
5553 
5554 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5555 {
5556 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5557 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
5558 }
5559 
5560 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5561 			  void *val, int bytes)
5562 {
5563 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5564 	return X86EMUL_IO_NEEDED;
5565 }
5566 
5567 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5568 			   void *val, int bytes)
5569 {
5570 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5571 
5572 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5573 	return X86EMUL_CONTINUE;
5574 }
5575 
5576 static const struct read_write_emulator_ops read_emultor = {
5577 	.read_write_prepare = read_prepare,
5578 	.read_write_emulate = read_emulate,
5579 	.read_write_mmio = vcpu_mmio_read,
5580 	.read_write_exit_mmio = read_exit_mmio,
5581 };
5582 
5583 static const struct read_write_emulator_ops write_emultor = {
5584 	.read_write_emulate = write_emulate,
5585 	.read_write_mmio = write_mmio,
5586 	.read_write_exit_mmio = write_exit_mmio,
5587 	.write = true,
5588 };
5589 
5590 static int emulator_read_write_onepage(unsigned long addr, void *val,
5591 				       unsigned int bytes,
5592 				       struct x86_exception *exception,
5593 				       struct kvm_vcpu *vcpu,
5594 				       const struct read_write_emulator_ops *ops)
5595 {
5596 	gpa_t gpa;
5597 	int handled, ret;
5598 	bool write = ops->write;
5599 	struct kvm_mmio_fragment *frag;
5600 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5601 
5602 	/*
5603 	 * If the exit was due to a NPF we may already have a GPA.
5604 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5605 	 * Note, this cannot be used on string operations since string
5606 	 * operation using rep will only have the initial GPA from the NPF
5607 	 * occurred.
5608 	 */
5609 	if (vcpu->arch.gpa_available &&
5610 	    emulator_can_use_gpa(ctxt) &&
5611 	    (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5612 		gpa = vcpu->arch.gpa_val;
5613 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5614 	} else {
5615 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5616 		if (ret < 0)
5617 			return X86EMUL_PROPAGATE_FAULT;
5618 	}
5619 
5620 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5621 		return X86EMUL_CONTINUE;
5622 
5623 	/*
5624 	 * Is this MMIO handled locally?
5625 	 */
5626 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5627 	if (handled == bytes)
5628 		return X86EMUL_CONTINUE;
5629 
5630 	gpa += handled;
5631 	bytes -= handled;
5632 	val += handled;
5633 
5634 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5635 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5636 	frag->gpa = gpa;
5637 	frag->data = val;
5638 	frag->len = bytes;
5639 	return X86EMUL_CONTINUE;
5640 }
5641 
5642 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5643 			unsigned long addr,
5644 			void *val, unsigned int bytes,
5645 			struct x86_exception *exception,
5646 			const struct read_write_emulator_ops *ops)
5647 {
5648 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5649 	gpa_t gpa;
5650 	int rc;
5651 
5652 	if (ops->read_write_prepare &&
5653 		  ops->read_write_prepare(vcpu, val, bytes))
5654 		return X86EMUL_CONTINUE;
5655 
5656 	vcpu->mmio_nr_fragments = 0;
5657 
5658 	/* Crossing a page boundary? */
5659 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5660 		int now;
5661 
5662 		now = -addr & ~PAGE_MASK;
5663 		rc = emulator_read_write_onepage(addr, val, now, exception,
5664 						 vcpu, ops);
5665 
5666 		if (rc != X86EMUL_CONTINUE)
5667 			return rc;
5668 		addr += now;
5669 		if (ctxt->mode != X86EMUL_MODE_PROT64)
5670 			addr = (u32)addr;
5671 		val += now;
5672 		bytes -= now;
5673 	}
5674 
5675 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
5676 					 vcpu, ops);
5677 	if (rc != X86EMUL_CONTINUE)
5678 		return rc;
5679 
5680 	if (!vcpu->mmio_nr_fragments)
5681 		return rc;
5682 
5683 	gpa = vcpu->mmio_fragments[0].gpa;
5684 
5685 	vcpu->mmio_needed = 1;
5686 	vcpu->mmio_cur_fragment = 0;
5687 
5688 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5689 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5690 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
5691 	vcpu->run->mmio.phys_addr = gpa;
5692 
5693 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5694 }
5695 
5696 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5697 				  unsigned long addr,
5698 				  void *val,
5699 				  unsigned int bytes,
5700 				  struct x86_exception *exception)
5701 {
5702 	return emulator_read_write(ctxt, addr, val, bytes,
5703 				   exception, &read_emultor);
5704 }
5705 
5706 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5707 			    unsigned long addr,
5708 			    const void *val,
5709 			    unsigned int bytes,
5710 			    struct x86_exception *exception)
5711 {
5712 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
5713 				   exception, &write_emultor);
5714 }
5715 
5716 #define CMPXCHG_TYPE(t, ptr, old, new) \
5717 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5718 
5719 #ifdef CONFIG_X86_64
5720 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5721 #else
5722 #  define CMPXCHG64(ptr, old, new) \
5723 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5724 #endif
5725 
5726 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5727 				     unsigned long addr,
5728 				     const void *old,
5729 				     const void *new,
5730 				     unsigned int bytes,
5731 				     struct x86_exception *exception)
5732 {
5733 	struct kvm_host_map map;
5734 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5735 	gpa_t gpa;
5736 	char *kaddr;
5737 	bool exchanged;
5738 
5739 	/* guests cmpxchg8b have to be emulated atomically */
5740 	if (bytes > 8 || (bytes & (bytes - 1)))
5741 		goto emul_write;
5742 
5743 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5744 
5745 	if (gpa == UNMAPPED_GVA ||
5746 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5747 		goto emul_write;
5748 
5749 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5750 		goto emul_write;
5751 
5752 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5753 		goto emul_write;
5754 
5755 	kaddr = map.hva + offset_in_page(gpa);
5756 
5757 	switch (bytes) {
5758 	case 1:
5759 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5760 		break;
5761 	case 2:
5762 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5763 		break;
5764 	case 4:
5765 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5766 		break;
5767 	case 8:
5768 		exchanged = CMPXCHG64(kaddr, old, new);
5769 		break;
5770 	default:
5771 		BUG();
5772 	}
5773 
5774 	kvm_vcpu_unmap(vcpu, &map, true);
5775 
5776 	if (!exchanged)
5777 		return X86EMUL_CMPXCHG_FAILED;
5778 
5779 	kvm_page_track_write(vcpu, gpa, new, bytes);
5780 
5781 	return X86EMUL_CONTINUE;
5782 
5783 emul_write:
5784 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5785 
5786 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5787 }
5788 
5789 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5790 {
5791 	int r = 0, i;
5792 
5793 	for (i = 0; i < vcpu->arch.pio.count; i++) {
5794 		if (vcpu->arch.pio.in)
5795 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5796 					    vcpu->arch.pio.size, pd);
5797 		else
5798 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5799 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
5800 					     pd);
5801 		if (r)
5802 			break;
5803 		pd += vcpu->arch.pio.size;
5804 	}
5805 	return r;
5806 }
5807 
5808 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5809 			       unsigned short port, void *val,
5810 			       unsigned int count, bool in)
5811 {
5812 	vcpu->arch.pio.port = port;
5813 	vcpu->arch.pio.in = in;
5814 	vcpu->arch.pio.count  = count;
5815 	vcpu->arch.pio.size = size;
5816 
5817 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5818 		vcpu->arch.pio.count = 0;
5819 		return 1;
5820 	}
5821 
5822 	vcpu->run->exit_reason = KVM_EXIT_IO;
5823 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5824 	vcpu->run->io.size = size;
5825 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5826 	vcpu->run->io.count = count;
5827 	vcpu->run->io.port = port;
5828 
5829 	return 0;
5830 }
5831 
5832 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5833 				    int size, unsigned short port, void *val,
5834 				    unsigned int count)
5835 {
5836 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5837 	int ret;
5838 
5839 	if (vcpu->arch.pio.count)
5840 		goto data_avail;
5841 
5842 	memset(vcpu->arch.pio_data, 0, size * count);
5843 
5844 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5845 	if (ret) {
5846 data_avail:
5847 		memcpy(val, vcpu->arch.pio_data, size * count);
5848 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5849 		vcpu->arch.pio.count = 0;
5850 		return 1;
5851 	}
5852 
5853 	return 0;
5854 }
5855 
5856 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5857 				     int size, unsigned short port,
5858 				     const void *val, unsigned int count)
5859 {
5860 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5861 
5862 	memcpy(vcpu->arch.pio_data, val, size * count);
5863 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5864 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5865 }
5866 
5867 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5868 {
5869 	return kvm_x86_ops->get_segment_base(vcpu, seg);
5870 }
5871 
5872 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5873 {
5874 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5875 }
5876 
5877 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5878 {
5879 	if (!need_emulate_wbinvd(vcpu))
5880 		return X86EMUL_CONTINUE;
5881 
5882 	if (kvm_x86_ops->has_wbinvd_exit()) {
5883 		int cpu = get_cpu();
5884 
5885 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5886 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5887 				wbinvd_ipi, NULL, 1);
5888 		put_cpu();
5889 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5890 	} else
5891 		wbinvd();
5892 	return X86EMUL_CONTINUE;
5893 }
5894 
5895 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5896 {
5897 	kvm_emulate_wbinvd_noskip(vcpu);
5898 	return kvm_skip_emulated_instruction(vcpu);
5899 }
5900 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5901 
5902 
5903 
5904 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5905 {
5906 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5907 }
5908 
5909 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5910 			   unsigned long *dest)
5911 {
5912 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5913 }
5914 
5915 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5916 			   unsigned long value)
5917 {
5918 
5919 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5920 }
5921 
5922 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5923 {
5924 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5925 }
5926 
5927 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5928 {
5929 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5930 	unsigned long value;
5931 
5932 	switch (cr) {
5933 	case 0:
5934 		value = kvm_read_cr0(vcpu);
5935 		break;
5936 	case 2:
5937 		value = vcpu->arch.cr2;
5938 		break;
5939 	case 3:
5940 		value = kvm_read_cr3(vcpu);
5941 		break;
5942 	case 4:
5943 		value = kvm_read_cr4(vcpu);
5944 		break;
5945 	case 8:
5946 		value = kvm_get_cr8(vcpu);
5947 		break;
5948 	default:
5949 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5950 		return 0;
5951 	}
5952 
5953 	return value;
5954 }
5955 
5956 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5957 {
5958 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5959 	int res = 0;
5960 
5961 	switch (cr) {
5962 	case 0:
5963 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5964 		break;
5965 	case 2:
5966 		vcpu->arch.cr2 = val;
5967 		break;
5968 	case 3:
5969 		res = kvm_set_cr3(vcpu, val);
5970 		break;
5971 	case 4:
5972 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5973 		break;
5974 	case 8:
5975 		res = kvm_set_cr8(vcpu, val);
5976 		break;
5977 	default:
5978 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5979 		res = -1;
5980 	}
5981 
5982 	return res;
5983 }
5984 
5985 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5986 {
5987 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5988 }
5989 
5990 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5991 {
5992 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5993 }
5994 
5995 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5996 {
5997 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5998 }
5999 
6000 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6001 {
6002 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
6003 }
6004 
6005 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6006 {
6007 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
6008 }
6009 
6010 static unsigned long emulator_get_cached_segment_base(
6011 	struct x86_emulate_ctxt *ctxt, int seg)
6012 {
6013 	return get_segment_base(emul_to_vcpu(ctxt), seg);
6014 }
6015 
6016 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6017 				 struct desc_struct *desc, u32 *base3,
6018 				 int seg)
6019 {
6020 	struct kvm_segment var;
6021 
6022 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6023 	*selector = var.selector;
6024 
6025 	if (var.unusable) {
6026 		memset(desc, 0, sizeof(*desc));
6027 		if (base3)
6028 			*base3 = 0;
6029 		return false;
6030 	}
6031 
6032 	if (var.g)
6033 		var.limit >>= 12;
6034 	set_desc_limit(desc, var.limit);
6035 	set_desc_base(desc, (unsigned long)var.base);
6036 #ifdef CONFIG_X86_64
6037 	if (base3)
6038 		*base3 = var.base >> 32;
6039 #endif
6040 	desc->type = var.type;
6041 	desc->s = var.s;
6042 	desc->dpl = var.dpl;
6043 	desc->p = var.present;
6044 	desc->avl = var.avl;
6045 	desc->l = var.l;
6046 	desc->d = var.db;
6047 	desc->g = var.g;
6048 
6049 	return true;
6050 }
6051 
6052 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6053 				 struct desc_struct *desc, u32 base3,
6054 				 int seg)
6055 {
6056 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6057 	struct kvm_segment var;
6058 
6059 	var.selector = selector;
6060 	var.base = get_desc_base(desc);
6061 #ifdef CONFIG_X86_64
6062 	var.base |= ((u64)base3) << 32;
6063 #endif
6064 	var.limit = get_desc_limit(desc);
6065 	if (desc->g)
6066 		var.limit = (var.limit << 12) | 0xfff;
6067 	var.type = desc->type;
6068 	var.dpl = desc->dpl;
6069 	var.db = desc->d;
6070 	var.s = desc->s;
6071 	var.l = desc->l;
6072 	var.g = desc->g;
6073 	var.avl = desc->avl;
6074 	var.present = desc->p;
6075 	var.unusable = !var.present;
6076 	var.padding = 0;
6077 
6078 	kvm_set_segment(vcpu, &var, seg);
6079 	return;
6080 }
6081 
6082 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6083 			    u32 msr_index, u64 *pdata)
6084 {
6085 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6086 }
6087 
6088 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6089 			    u32 msr_index, u64 data)
6090 {
6091 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6092 }
6093 
6094 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6095 {
6096 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6097 
6098 	return vcpu->arch.smbase;
6099 }
6100 
6101 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6102 {
6103 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6104 
6105 	vcpu->arch.smbase = smbase;
6106 }
6107 
6108 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6109 			      u32 pmc)
6110 {
6111 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
6112 }
6113 
6114 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6115 			     u32 pmc, u64 *pdata)
6116 {
6117 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6118 }
6119 
6120 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6121 {
6122 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
6123 }
6124 
6125 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6126 			      struct x86_instruction_info *info,
6127 			      enum x86_intercept_stage stage)
6128 {
6129 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
6130 }
6131 
6132 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6133 			u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
6134 {
6135 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
6136 }
6137 
6138 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6139 {
6140 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
6141 }
6142 
6143 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6144 {
6145 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6146 }
6147 
6148 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6149 {
6150 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
6151 }
6152 
6153 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6154 {
6155 	return emul_to_vcpu(ctxt)->arch.hflags;
6156 }
6157 
6158 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6159 {
6160 	emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6161 }
6162 
6163 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6164 				  const char *smstate)
6165 {
6166 	return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6167 }
6168 
6169 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6170 {
6171 	kvm_smm_changed(emul_to_vcpu(ctxt));
6172 }
6173 
6174 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6175 {
6176 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6177 }
6178 
6179 static const struct x86_emulate_ops emulate_ops = {
6180 	.read_gpr            = emulator_read_gpr,
6181 	.write_gpr           = emulator_write_gpr,
6182 	.read_std            = emulator_read_std,
6183 	.write_std           = emulator_write_std,
6184 	.read_phys           = kvm_read_guest_phys_system,
6185 	.fetch               = kvm_fetch_guest_virt,
6186 	.read_emulated       = emulator_read_emulated,
6187 	.write_emulated      = emulator_write_emulated,
6188 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
6189 	.invlpg              = emulator_invlpg,
6190 	.pio_in_emulated     = emulator_pio_in_emulated,
6191 	.pio_out_emulated    = emulator_pio_out_emulated,
6192 	.get_segment         = emulator_get_segment,
6193 	.set_segment         = emulator_set_segment,
6194 	.get_cached_segment_base = emulator_get_cached_segment_base,
6195 	.get_gdt             = emulator_get_gdt,
6196 	.get_idt	     = emulator_get_idt,
6197 	.set_gdt             = emulator_set_gdt,
6198 	.set_idt	     = emulator_set_idt,
6199 	.get_cr              = emulator_get_cr,
6200 	.set_cr              = emulator_set_cr,
6201 	.cpl                 = emulator_get_cpl,
6202 	.get_dr              = emulator_get_dr,
6203 	.set_dr              = emulator_set_dr,
6204 	.get_smbase          = emulator_get_smbase,
6205 	.set_smbase          = emulator_set_smbase,
6206 	.set_msr             = emulator_set_msr,
6207 	.get_msr             = emulator_get_msr,
6208 	.check_pmc	     = emulator_check_pmc,
6209 	.read_pmc            = emulator_read_pmc,
6210 	.halt                = emulator_halt,
6211 	.wbinvd              = emulator_wbinvd,
6212 	.fix_hypercall       = emulator_fix_hypercall,
6213 	.intercept           = emulator_intercept,
6214 	.get_cpuid           = emulator_get_cpuid,
6215 	.set_nmi_mask        = emulator_set_nmi_mask,
6216 	.get_hflags          = emulator_get_hflags,
6217 	.set_hflags          = emulator_set_hflags,
6218 	.pre_leave_smm       = emulator_pre_leave_smm,
6219 	.post_leave_smm      = emulator_post_leave_smm,
6220 	.set_xcr             = emulator_set_xcr,
6221 };
6222 
6223 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6224 {
6225 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6226 	/*
6227 	 * an sti; sti; sequence only disable interrupts for the first
6228 	 * instruction. So, if the last instruction, be it emulated or
6229 	 * not, left the system with the INT_STI flag enabled, it
6230 	 * means that the last instruction is an sti. We should not
6231 	 * leave the flag on in this case. The same goes for mov ss
6232 	 */
6233 	if (int_shadow & mask)
6234 		mask = 0;
6235 	if (unlikely(int_shadow || mask)) {
6236 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6237 		if (!mask)
6238 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6239 	}
6240 }
6241 
6242 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6243 {
6244 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6245 	if (ctxt->exception.vector == PF_VECTOR)
6246 		return kvm_propagate_fault(vcpu, &ctxt->exception);
6247 
6248 	if (ctxt->exception.error_code_valid)
6249 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6250 				      ctxt->exception.error_code);
6251 	else
6252 		kvm_queue_exception(vcpu, ctxt->exception.vector);
6253 	return false;
6254 }
6255 
6256 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6257 {
6258 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6259 	int cs_db, cs_l;
6260 
6261 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6262 
6263 	ctxt->eflags = kvm_get_rflags(vcpu);
6264 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6265 
6266 	ctxt->eip = kvm_rip_read(vcpu);
6267 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
6268 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
6269 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
6270 		     cs_db				? X86EMUL_MODE_PROT32 :
6271 							  X86EMUL_MODE_PROT16;
6272 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6273 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6274 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6275 
6276 	init_decode_cache(ctxt);
6277 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6278 }
6279 
6280 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6281 {
6282 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6283 	int ret;
6284 
6285 	init_emulate_ctxt(vcpu);
6286 
6287 	ctxt->op_bytes = 2;
6288 	ctxt->ad_bytes = 2;
6289 	ctxt->_eip = ctxt->eip + inc_eip;
6290 	ret = emulate_int_real(ctxt, irq);
6291 
6292 	if (ret != X86EMUL_CONTINUE) {
6293 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6294 	} else {
6295 		ctxt->eip = ctxt->_eip;
6296 		kvm_rip_write(vcpu, ctxt->eip);
6297 		kvm_set_rflags(vcpu, ctxt->eflags);
6298 	}
6299 }
6300 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6301 
6302 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6303 {
6304 	++vcpu->stat.insn_emulation_fail;
6305 	trace_kvm_emulate_insn_failed(vcpu);
6306 
6307 	if (emulation_type & EMULTYPE_VMWARE_GP) {
6308 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6309 		return 1;
6310 	}
6311 
6312 	if (emulation_type & EMULTYPE_SKIP) {
6313 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6314 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6315 		vcpu->run->internal.ndata = 0;
6316 		return 0;
6317 	}
6318 
6319 	kvm_queue_exception(vcpu, UD_VECTOR);
6320 
6321 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6322 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6323 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6324 		vcpu->run->internal.ndata = 0;
6325 		return 0;
6326 	}
6327 
6328 	return 1;
6329 }
6330 
6331 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6332 				  bool write_fault_to_shadow_pgtable,
6333 				  int emulation_type)
6334 {
6335 	gpa_t gpa = cr2;
6336 	kvm_pfn_t pfn;
6337 
6338 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6339 		return false;
6340 
6341 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6342 		return false;
6343 
6344 	if (!vcpu->arch.mmu->direct_map) {
6345 		/*
6346 		 * Write permission should be allowed since only
6347 		 * write access need to be emulated.
6348 		 */
6349 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6350 
6351 		/*
6352 		 * If the mapping is invalid in guest, let cpu retry
6353 		 * it to generate fault.
6354 		 */
6355 		if (gpa == UNMAPPED_GVA)
6356 			return true;
6357 	}
6358 
6359 	/*
6360 	 * Do not retry the unhandleable instruction if it faults on the
6361 	 * readonly host memory, otherwise it will goto a infinite loop:
6362 	 * retry instruction -> write #PF -> emulation fail -> retry
6363 	 * instruction -> ...
6364 	 */
6365 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6366 
6367 	/*
6368 	 * If the instruction failed on the error pfn, it can not be fixed,
6369 	 * report the error to userspace.
6370 	 */
6371 	if (is_error_noslot_pfn(pfn))
6372 		return false;
6373 
6374 	kvm_release_pfn_clean(pfn);
6375 
6376 	/* The instructions are well-emulated on direct mmu. */
6377 	if (vcpu->arch.mmu->direct_map) {
6378 		unsigned int indirect_shadow_pages;
6379 
6380 		spin_lock(&vcpu->kvm->mmu_lock);
6381 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6382 		spin_unlock(&vcpu->kvm->mmu_lock);
6383 
6384 		if (indirect_shadow_pages)
6385 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6386 
6387 		return true;
6388 	}
6389 
6390 	/*
6391 	 * if emulation was due to access to shadowed page table
6392 	 * and it failed try to unshadow page and re-enter the
6393 	 * guest to let CPU execute the instruction.
6394 	 */
6395 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6396 
6397 	/*
6398 	 * If the access faults on its page table, it can not
6399 	 * be fixed by unprotecting shadow page and it should
6400 	 * be reported to userspace.
6401 	 */
6402 	return !write_fault_to_shadow_pgtable;
6403 }
6404 
6405 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6406 			      unsigned long cr2,  int emulation_type)
6407 {
6408 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6409 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6410 
6411 	last_retry_eip = vcpu->arch.last_retry_eip;
6412 	last_retry_addr = vcpu->arch.last_retry_addr;
6413 
6414 	/*
6415 	 * If the emulation is caused by #PF and it is non-page_table
6416 	 * writing instruction, it means the VM-EXIT is caused by shadow
6417 	 * page protected, we can zap the shadow page and retry this
6418 	 * instruction directly.
6419 	 *
6420 	 * Note: if the guest uses a non-page-table modifying instruction
6421 	 * on the PDE that points to the instruction, then we will unmap
6422 	 * the instruction and go to an infinite loop. So, we cache the
6423 	 * last retried eip and the last fault address, if we meet the eip
6424 	 * and the address again, we can break out of the potential infinite
6425 	 * loop.
6426 	 */
6427 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6428 
6429 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6430 		return false;
6431 
6432 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6433 		return false;
6434 
6435 	if (x86_page_table_writing_insn(ctxt))
6436 		return false;
6437 
6438 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6439 		return false;
6440 
6441 	vcpu->arch.last_retry_eip = ctxt->eip;
6442 	vcpu->arch.last_retry_addr = cr2;
6443 
6444 	if (!vcpu->arch.mmu->direct_map)
6445 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6446 
6447 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6448 
6449 	return true;
6450 }
6451 
6452 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6453 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6454 
6455 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6456 {
6457 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6458 		/* This is a good place to trace that we are exiting SMM.  */
6459 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6460 
6461 		/* Process a latched INIT or SMI, if any.  */
6462 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6463 	}
6464 
6465 	kvm_mmu_reset_context(vcpu);
6466 }
6467 
6468 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6469 				unsigned long *db)
6470 {
6471 	u32 dr6 = 0;
6472 	int i;
6473 	u32 enable, rwlen;
6474 
6475 	enable = dr7;
6476 	rwlen = dr7 >> 16;
6477 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6478 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6479 			dr6 |= (1 << i);
6480 	return dr6;
6481 }
6482 
6483 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6484 {
6485 	struct kvm_run *kvm_run = vcpu->run;
6486 
6487 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6488 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6489 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6490 		kvm_run->debug.arch.exception = DB_VECTOR;
6491 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
6492 		return 0;
6493 	}
6494 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6495 	return 1;
6496 }
6497 
6498 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6499 {
6500 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6501 	int r;
6502 
6503 	r = kvm_x86_ops->skip_emulated_instruction(vcpu);
6504 	if (unlikely(!r))
6505 		return 0;
6506 
6507 	/*
6508 	 * rflags is the old, "raw" value of the flags.  The new value has
6509 	 * not been saved yet.
6510 	 *
6511 	 * This is correct even for TF set by the guest, because "the
6512 	 * processor will not generate this exception after the instruction
6513 	 * that sets the TF flag".
6514 	 */
6515 	if (unlikely(rflags & X86_EFLAGS_TF))
6516 		r = kvm_vcpu_do_singlestep(vcpu);
6517 	return r;
6518 }
6519 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6520 
6521 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6522 {
6523 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6524 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6525 		struct kvm_run *kvm_run = vcpu->run;
6526 		unsigned long eip = kvm_get_linear_rip(vcpu);
6527 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6528 					   vcpu->arch.guest_debug_dr7,
6529 					   vcpu->arch.eff_db);
6530 
6531 		if (dr6 != 0) {
6532 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6533 			kvm_run->debug.arch.pc = eip;
6534 			kvm_run->debug.arch.exception = DB_VECTOR;
6535 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
6536 			*r = 0;
6537 			return true;
6538 		}
6539 	}
6540 
6541 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6542 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6543 		unsigned long eip = kvm_get_linear_rip(vcpu);
6544 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6545 					   vcpu->arch.dr7,
6546 					   vcpu->arch.db);
6547 
6548 		if (dr6 != 0) {
6549 			vcpu->arch.dr6 &= ~DR_TRAP_BITS;
6550 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
6551 			kvm_queue_exception(vcpu, DB_VECTOR);
6552 			*r = 1;
6553 			return true;
6554 		}
6555 	}
6556 
6557 	return false;
6558 }
6559 
6560 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6561 {
6562 	switch (ctxt->opcode_len) {
6563 	case 1:
6564 		switch (ctxt->b) {
6565 		case 0xe4:	/* IN */
6566 		case 0xe5:
6567 		case 0xec:
6568 		case 0xed:
6569 		case 0xe6:	/* OUT */
6570 		case 0xe7:
6571 		case 0xee:
6572 		case 0xef:
6573 		case 0x6c:	/* INS */
6574 		case 0x6d:
6575 		case 0x6e:	/* OUTS */
6576 		case 0x6f:
6577 			return true;
6578 		}
6579 		break;
6580 	case 2:
6581 		switch (ctxt->b) {
6582 		case 0x33:	/* RDPMC */
6583 			return true;
6584 		}
6585 		break;
6586 	}
6587 
6588 	return false;
6589 }
6590 
6591 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6592 			    unsigned long cr2,
6593 			    int emulation_type,
6594 			    void *insn,
6595 			    int insn_len)
6596 {
6597 	int r;
6598 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6599 	bool writeback = true;
6600 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6601 
6602 	vcpu->arch.l1tf_flush_l1d = true;
6603 
6604 	/*
6605 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
6606 	 * never reused.
6607 	 */
6608 	vcpu->arch.write_fault_to_shadow_pgtable = false;
6609 	kvm_clear_exception_queue(vcpu);
6610 
6611 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6612 		init_emulate_ctxt(vcpu);
6613 
6614 		/*
6615 		 * We will reenter on the same instruction since
6616 		 * we do not set complete_userspace_io.  This does not
6617 		 * handle watchpoints yet, those would be handled in
6618 		 * the emulate_ops.
6619 		 */
6620 		if (!(emulation_type & EMULTYPE_SKIP) &&
6621 		    kvm_vcpu_check_breakpoint(vcpu, &r))
6622 			return r;
6623 
6624 		ctxt->interruptibility = 0;
6625 		ctxt->have_exception = false;
6626 		ctxt->exception.vector = -1;
6627 		ctxt->perm_ok = false;
6628 
6629 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6630 
6631 		r = x86_decode_insn(ctxt, insn, insn_len);
6632 
6633 		trace_kvm_emulate_insn_start(vcpu);
6634 		++vcpu->stat.insn_emulation;
6635 		if (r != EMULATION_OK)  {
6636 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
6637 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6638 				kvm_queue_exception(vcpu, UD_VECTOR);
6639 				return 1;
6640 			}
6641 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6642 						emulation_type))
6643 				return 1;
6644 			if (ctxt->have_exception) {
6645 				/*
6646 				 * #UD should result in just EMULATION_FAILED, and trap-like
6647 				 * exception should not be encountered during decode.
6648 				 */
6649 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6650 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6651 				inject_emulated_exception(vcpu);
6652 				return 1;
6653 			}
6654 			return handle_emulation_failure(vcpu, emulation_type);
6655 		}
6656 	}
6657 
6658 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6659 	    !is_vmware_backdoor_opcode(ctxt)) {
6660 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6661 		return 1;
6662 	}
6663 
6664 	/*
6665 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6666 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
6667 	 * updating interruptibility state and injecting single-step #DBs.
6668 	 */
6669 	if (emulation_type & EMULTYPE_SKIP) {
6670 		kvm_rip_write(vcpu, ctxt->_eip);
6671 		if (ctxt->eflags & X86_EFLAGS_RF)
6672 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6673 		return 1;
6674 	}
6675 
6676 	if (retry_instruction(ctxt, cr2, emulation_type))
6677 		return 1;
6678 
6679 	/* this is needed for vmware backdoor interface to work since it
6680 	   changes registers values  during IO operation */
6681 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6682 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6683 		emulator_invalidate_register_cache(ctxt);
6684 	}
6685 
6686 restart:
6687 	/* Save the faulting GPA (cr2) in the address field */
6688 	ctxt->exception.address = cr2;
6689 
6690 	r = x86_emulate_insn(ctxt);
6691 
6692 	if (r == EMULATION_INTERCEPTED)
6693 		return 1;
6694 
6695 	if (r == EMULATION_FAILED) {
6696 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6697 					emulation_type))
6698 			return 1;
6699 
6700 		return handle_emulation_failure(vcpu, emulation_type);
6701 	}
6702 
6703 	if (ctxt->have_exception) {
6704 		r = 1;
6705 		if (inject_emulated_exception(vcpu))
6706 			return r;
6707 	} else if (vcpu->arch.pio.count) {
6708 		if (!vcpu->arch.pio.in) {
6709 			/* FIXME: return into emulator if single-stepping.  */
6710 			vcpu->arch.pio.count = 0;
6711 		} else {
6712 			writeback = false;
6713 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
6714 		}
6715 		r = 0;
6716 	} else if (vcpu->mmio_needed) {
6717 		++vcpu->stat.mmio_exits;
6718 
6719 		if (!vcpu->mmio_is_write)
6720 			writeback = false;
6721 		r = 0;
6722 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6723 	} else if (r == EMULATION_RESTART)
6724 		goto restart;
6725 	else
6726 		r = 1;
6727 
6728 	if (writeback) {
6729 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6730 		toggle_interruptibility(vcpu, ctxt->interruptibility);
6731 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6732 		if (!ctxt->have_exception ||
6733 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6734 			kvm_rip_write(vcpu, ctxt->eip);
6735 			if (r && ctxt->tf)
6736 				r = kvm_vcpu_do_singlestep(vcpu);
6737 			__kvm_set_rflags(vcpu, ctxt->eflags);
6738 		}
6739 
6740 		/*
6741 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6742 		 * do nothing, and it will be requested again as soon as
6743 		 * the shadow expires.  But we still need to check here,
6744 		 * because POPF has no interrupt shadow.
6745 		 */
6746 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6747 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6748 	} else
6749 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6750 
6751 	return r;
6752 }
6753 
6754 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6755 {
6756 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6757 }
6758 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6759 
6760 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6761 					void *insn, int insn_len)
6762 {
6763 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6764 }
6765 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6766 
6767 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6768 {
6769 	vcpu->arch.pio.count = 0;
6770 	return 1;
6771 }
6772 
6773 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6774 {
6775 	vcpu->arch.pio.count = 0;
6776 
6777 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6778 		return 1;
6779 
6780 	return kvm_skip_emulated_instruction(vcpu);
6781 }
6782 
6783 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6784 			    unsigned short port)
6785 {
6786 	unsigned long val = kvm_rax_read(vcpu);
6787 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6788 					    size, port, &val, 1);
6789 	if (ret)
6790 		return ret;
6791 
6792 	/*
6793 	 * Workaround userspace that relies on old KVM behavior of %rip being
6794 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
6795 	 */
6796 	if (port == 0x7e &&
6797 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6798 		vcpu->arch.complete_userspace_io =
6799 			complete_fast_pio_out_port_0x7e;
6800 		kvm_skip_emulated_instruction(vcpu);
6801 	} else {
6802 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6803 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6804 	}
6805 	return 0;
6806 }
6807 
6808 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6809 {
6810 	unsigned long val;
6811 
6812 	/* We should only ever be called with arch.pio.count equal to 1 */
6813 	BUG_ON(vcpu->arch.pio.count != 1);
6814 
6815 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6816 		vcpu->arch.pio.count = 0;
6817 		return 1;
6818 	}
6819 
6820 	/* For size less than 4 we merge, else we zero extend */
6821 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6822 
6823 	/*
6824 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6825 	 * the copy and tracing
6826 	 */
6827 	emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6828 				 vcpu->arch.pio.port, &val, 1);
6829 	kvm_rax_write(vcpu, val);
6830 
6831 	return kvm_skip_emulated_instruction(vcpu);
6832 }
6833 
6834 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6835 			   unsigned short port)
6836 {
6837 	unsigned long val;
6838 	int ret;
6839 
6840 	/* For size less than 4 we merge, else we zero extend */
6841 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
6842 
6843 	ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6844 				       &val, 1);
6845 	if (ret) {
6846 		kvm_rax_write(vcpu, val);
6847 		return ret;
6848 	}
6849 
6850 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6851 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6852 
6853 	return 0;
6854 }
6855 
6856 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6857 {
6858 	int ret;
6859 
6860 	if (in)
6861 		ret = kvm_fast_pio_in(vcpu, size, port);
6862 	else
6863 		ret = kvm_fast_pio_out(vcpu, size, port);
6864 	return ret && kvm_skip_emulated_instruction(vcpu);
6865 }
6866 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6867 
6868 static int kvmclock_cpu_down_prep(unsigned int cpu)
6869 {
6870 	__this_cpu_write(cpu_tsc_khz, 0);
6871 	return 0;
6872 }
6873 
6874 static void tsc_khz_changed(void *data)
6875 {
6876 	struct cpufreq_freqs *freq = data;
6877 	unsigned long khz = 0;
6878 
6879 	if (data)
6880 		khz = freq->new;
6881 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6882 		khz = cpufreq_quick_get(raw_smp_processor_id());
6883 	if (!khz)
6884 		khz = tsc_khz;
6885 	__this_cpu_write(cpu_tsc_khz, khz);
6886 }
6887 
6888 #ifdef CONFIG_X86_64
6889 static void kvm_hyperv_tsc_notifier(void)
6890 {
6891 	struct kvm *kvm;
6892 	struct kvm_vcpu *vcpu;
6893 	int cpu;
6894 
6895 	mutex_lock(&kvm_lock);
6896 	list_for_each_entry(kvm, &vm_list, vm_list)
6897 		kvm_make_mclock_inprogress_request(kvm);
6898 
6899 	hyperv_stop_tsc_emulation();
6900 
6901 	/* TSC frequency always matches when on Hyper-V */
6902 	for_each_present_cpu(cpu)
6903 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6904 	kvm_max_guest_tsc_khz = tsc_khz;
6905 
6906 	list_for_each_entry(kvm, &vm_list, vm_list) {
6907 		struct kvm_arch *ka = &kvm->arch;
6908 
6909 		spin_lock(&ka->pvclock_gtod_sync_lock);
6910 
6911 		pvclock_update_vm_gtod_copy(kvm);
6912 
6913 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6914 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6915 
6916 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6917 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6918 
6919 		spin_unlock(&ka->pvclock_gtod_sync_lock);
6920 	}
6921 	mutex_unlock(&kvm_lock);
6922 }
6923 #endif
6924 
6925 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
6926 {
6927 	struct kvm *kvm;
6928 	struct kvm_vcpu *vcpu;
6929 	int i, send_ipi = 0;
6930 
6931 	/*
6932 	 * We allow guests to temporarily run on slowing clocks,
6933 	 * provided we notify them after, or to run on accelerating
6934 	 * clocks, provided we notify them before.  Thus time never
6935 	 * goes backwards.
6936 	 *
6937 	 * However, we have a problem.  We can't atomically update
6938 	 * the frequency of a given CPU from this function; it is
6939 	 * merely a notifier, which can be called from any CPU.
6940 	 * Changing the TSC frequency at arbitrary points in time
6941 	 * requires a recomputation of local variables related to
6942 	 * the TSC for each VCPU.  We must flag these local variables
6943 	 * to be updated and be sure the update takes place with the
6944 	 * new frequency before any guests proceed.
6945 	 *
6946 	 * Unfortunately, the combination of hotplug CPU and frequency
6947 	 * change creates an intractable locking scenario; the order
6948 	 * of when these callouts happen is undefined with respect to
6949 	 * CPU hotplug, and they can race with each other.  As such,
6950 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6951 	 * undefined; you can actually have a CPU frequency change take
6952 	 * place in between the computation of X and the setting of the
6953 	 * variable.  To protect against this problem, all updates of
6954 	 * the per_cpu tsc_khz variable are done in an interrupt
6955 	 * protected IPI, and all callers wishing to update the value
6956 	 * must wait for a synchronous IPI to complete (which is trivial
6957 	 * if the caller is on the CPU already).  This establishes the
6958 	 * necessary total order on variable updates.
6959 	 *
6960 	 * Note that because a guest time update may take place
6961 	 * anytime after the setting of the VCPU's request bit, the
6962 	 * correct TSC value must be set before the request.  However,
6963 	 * to ensure the update actually makes it to any guest which
6964 	 * starts running in hardware virtualization between the set
6965 	 * and the acquisition of the spinlock, we must also ping the
6966 	 * CPU after setting the request bit.
6967 	 *
6968 	 */
6969 
6970 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6971 
6972 	mutex_lock(&kvm_lock);
6973 	list_for_each_entry(kvm, &vm_list, vm_list) {
6974 		kvm_for_each_vcpu(i, vcpu, kvm) {
6975 			if (vcpu->cpu != cpu)
6976 				continue;
6977 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6978 			if (vcpu->cpu != raw_smp_processor_id())
6979 				send_ipi = 1;
6980 		}
6981 	}
6982 	mutex_unlock(&kvm_lock);
6983 
6984 	if (freq->old < freq->new && send_ipi) {
6985 		/*
6986 		 * We upscale the frequency.  Must make the guest
6987 		 * doesn't see old kvmclock values while running with
6988 		 * the new frequency, otherwise we risk the guest sees
6989 		 * time go backwards.
6990 		 *
6991 		 * In case we update the frequency for another cpu
6992 		 * (which might be in guest context) send an interrupt
6993 		 * to kick the cpu out of guest context.  Next time
6994 		 * guest context is entered kvmclock will be updated,
6995 		 * so the guest will not see stale values.
6996 		 */
6997 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6998 	}
6999 }
7000 
7001 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7002 				     void *data)
7003 {
7004 	struct cpufreq_freqs *freq = data;
7005 	int cpu;
7006 
7007 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7008 		return 0;
7009 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7010 		return 0;
7011 
7012 	for_each_cpu(cpu, freq->policy->cpus)
7013 		__kvmclock_cpufreq_notifier(freq, cpu);
7014 
7015 	return 0;
7016 }
7017 
7018 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7019 	.notifier_call  = kvmclock_cpufreq_notifier
7020 };
7021 
7022 static int kvmclock_cpu_online(unsigned int cpu)
7023 {
7024 	tsc_khz_changed(NULL);
7025 	return 0;
7026 }
7027 
7028 static void kvm_timer_init(void)
7029 {
7030 	max_tsc_khz = tsc_khz;
7031 
7032 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7033 #ifdef CONFIG_CPU_FREQ
7034 		struct cpufreq_policy policy;
7035 		int cpu;
7036 
7037 		memset(&policy, 0, sizeof(policy));
7038 		cpu = get_cpu();
7039 		cpufreq_get_policy(&policy, cpu);
7040 		if (policy.cpuinfo.max_freq)
7041 			max_tsc_khz = policy.cpuinfo.max_freq;
7042 		put_cpu();
7043 #endif
7044 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7045 					  CPUFREQ_TRANSITION_NOTIFIER);
7046 	}
7047 
7048 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7049 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
7050 }
7051 
7052 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7053 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7054 
7055 int kvm_is_in_guest(void)
7056 {
7057 	return __this_cpu_read(current_vcpu) != NULL;
7058 }
7059 
7060 static int kvm_is_user_mode(void)
7061 {
7062 	int user_mode = 3;
7063 
7064 	if (__this_cpu_read(current_vcpu))
7065 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
7066 
7067 	return user_mode != 0;
7068 }
7069 
7070 static unsigned long kvm_get_guest_ip(void)
7071 {
7072 	unsigned long ip = 0;
7073 
7074 	if (__this_cpu_read(current_vcpu))
7075 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7076 
7077 	return ip;
7078 }
7079 
7080 static void kvm_handle_intel_pt_intr(void)
7081 {
7082 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7083 
7084 	kvm_make_request(KVM_REQ_PMI, vcpu);
7085 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7086 			(unsigned long *)&vcpu->arch.pmu.global_status);
7087 }
7088 
7089 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7090 	.is_in_guest		= kvm_is_in_guest,
7091 	.is_user_mode		= kvm_is_user_mode,
7092 	.get_guest_ip		= kvm_get_guest_ip,
7093 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
7094 };
7095 
7096 #ifdef CONFIG_X86_64
7097 static void pvclock_gtod_update_fn(struct work_struct *work)
7098 {
7099 	struct kvm *kvm;
7100 
7101 	struct kvm_vcpu *vcpu;
7102 	int i;
7103 
7104 	mutex_lock(&kvm_lock);
7105 	list_for_each_entry(kvm, &vm_list, vm_list)
7106 		kvm_for_each_vcpu(i, vcpu, kvm)
7107 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7108 	atomic_set(&kvm_guest_has_master_clock, 0);
7109 	mutex_unlock(&kvm_lock);
7110 }
7111 
7112 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7113 
7114 /*
7115  * Notification about pvclock gtod data update.
7116  */
7117 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7118 			       void *priv)
7119 {
7120 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7121 	struct timekeeper *tk = priv;
7122 
7123 	update_pvclock_gtod(tk);
7124 
7125 	/* disable master clock if host does not trust, or does not
7126 	 * use, TSC based clocksource.
7127 	 */
7128 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7129 	    atomic_read(&kvm_guest_has_master_clock) != 0)
7130 		queue_work(system_long_wq, &pvclock_gtod_work);
7131 
7132 	return 0;
7133 }
7134 
7135 static struct notifier_block pvclock_gtod_notifier = {
7136 	.notifier_call = pvclock_gtod_notify,
7137 };
7138 #endif
7139 
7140 int kvm_arch_init(void *opaque)
7141 {
7142 	int r;
7143 	struct kvm_x86_ops *ops = opaque;
7144 
7145 	if (kvm_x86_ops) {
7146 		printk(KERN_ERR "kvm: already loaded the other module\n");
7147 		r = -EEXIST;
7148 		goto out;
7149 	}
7150 
7151 	if (!ops->cpu_has_kvm_support()) {
7152 		printk(KERN_ERR "kvm: no hardware support\n");
7153 		r = -EOPNOTSUPP;
7154 		goto out;
7155 	}
7156 	if (ops->disabled_by_bios()) {
7157 		printk(KERN_ERR "kvm: disabled by bios\n");
7158 		r = -EOPNOTSUPP;
7159 		goto out;
7160 	}
7161 
7162 	/*
7163 	 * KVM explicitly assumes that the guest has an FPU and
7164 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7165 	 * vCPU's FPU state as a fxregs_state struct.
7166 	 */
7167 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7168 		printk(KERN_ERR "kvm: inadequate fpu\n");
7169 		r = -EOPNOTSUPP;
7170 		goto out;
7171 	}
7172 
7173 	r = -ENOMEM;
7174 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7175 					  __alignof__(struct fpu), SLAB_ACCOUNT,
7176 					  NULL);
7177 	if (!x86_fpu_cache) {
7178 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7179 		goto out;
7180 	}
7181 
7182 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7183 	if (!shared_msrs) {
7184 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7185 		goto out_free_x86_fpu_cache;
7186 	}
7187 
7188 	r = kvm_mmu_module_init();
7189 	if (r)
7190 		goto out_free_percpu;
7191 
7192 	kvm_x86_ops = ops;
7193 
7194 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7195 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
7196 			PT_PRESENT_MASK, 0, sme_me_mask);
7197 	kvm_timer_init();
7198 
7199 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
7200 
7201 	if (boot_cpu_has(X86_FEATURE_XSAVE))
7202 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7203 
7204 	kvm_lapic_init();
7205 	if (pi_inject_timer == -1)
7206 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7207 #ifdef CONFIG_X86_64
7208 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7209 
7210 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7211 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7212 #endif
7213 
7214 	return 0;
7215 
7216 out_free_percpu:
7217 	free_percpu(shared_msrs);
7218 out_free_x86_fpu_cache:
7219 	kmem_cache_destroy(x86_fpu_cache);
7220 out:
7221 	return r;
7222 }
7223 
7224 void kvm_arch_exit(void)
7225 {
7226 #ifdef CONFIG_X86_64
7227 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7228 		clear_hv_tscchange_cb();
7229 #endif
7230 	kvm_lapic_exit();
7231 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7232 
7233 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7234 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7235 					    CPUFREQ_TRANSITION_NOTIFIER);
7236 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7237 #ifdef CONFIG_X86_64
7238 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7239 #endif
7240 	kvm_x86_ops = NULL;
7241 	kvm_mmu_module_exit();
7242 	free_percpu(shared_msrs);
7243 	kmem_cache_destroy(x86_fpu_cache);
7244 }
7245 
7246 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7247 {
7248 	++vcpu->stat.halt_exits;
7249 	if (lapic_in_kernel(vcpu)) {
7250 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7251 		return 1;
7252 	} else {
7253 		vcpu->run->exit_reason = KVM_EXIT_HLT;
7254 		return 0;
7255 	}
7256 }
7257 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7258 
7259 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7260 {
7261 	int ret = kvm_skip_emulated_instruction(vcpu);
7262 	/*
7263 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7264 	 * KVM_EXIT_DEBUG here.
7265 	 */
7266 	return kvm_vcpu_halt(vcpu) && ret;
7267 }
7268 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7269 
7270 #ifdef CONFIG_X86_64
7271 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7272 			        unsigned long clock_type)
7273 {
7274 	struct kvm_clock_pairing clock_pairing;
7275 	struct timespec64 ts;
7276 	u64 cycle;
7277 	int ret;
7278 
7279 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7280 		return -KVM_EOPNOTSUPP;
7281 
7282 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7283 		return -KVM_EOPNOTSUPP;
7284 
7285 	clock_pairing.sec = ts.tv_sec;
7286 	clock_pairing.nsec = ts.tv_nsec;
7287 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7288 	clock_pairing.flags = 0;
7289 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7290 
7291 	ret = 0;
7292 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7293 			    sizeof(struct kvm_clock_pairing)))
7294 		ret = -KVM_EFAULT;
7295 
7296 	return ret;
7297 }
7298 #endif
7299 
7300 /*
7301  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7302  *
7303  * @apicid - apicid of vcpu to be kicked.
7304  */
7305 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7306 {
7307 	struct kvm_lapic_irq lapic_irq;
7308 
7309 	lapic_irq.shorthand = 0;
7310 	lapic_irq.dest_mode = 0;
7311 	lapic_irq.level = 0;
7312 	lapic_irq.dest_id = apicid;
7313 	lapic_irq.msi_redir_hint = false;
7314 
7315 	lapic_irq.delivery_mode = APIC_DM_REMRD;
7316 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7317 }
7318 
7319 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7320 {
7321 	if (!lapic_in_kernel(vcpu)) {
7322 		WARN_ON_ONCE(vcpu->arch.apicv_active);
7323 		return;
7324 	}
7325 	if (!vcpu->arch.apicv_active)
7326 		return;
7327 
7328 	vcpu->arch.apicv_active = false;
7329 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7330 }
7331 
7332 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7333 {
7334 	struct kvm_vcpu *target = NULL;
7335 	struct kvm_apic_map *map;
7336 
7337 	rcu_read_lock();
7338 	map = rcu_dereference(kvm->arch.apic_map);
7339 
7340 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7341 		target = map->phys_map[dest_id]->vcpu;
7342 
7343 	rcu_read_unlock();
7344 
7345 	if (target && READ_ONCE(target->ready))
7346 		kvm_vcpu_yield_to(target);
7347 }
7348 
7349 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7350 {
7351 	unsigned long nr, a0, a1, a2, a3, ret;
7352 	int op_64_bit;
7353 
7354 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
7355 		return kvm_hv_hypercall(vcpu);
7356 
7357 	nr = kvm_rax_read(vcpu);
7358 	a0 = kvm_rbx_read(vcpu);
7359 	a1 = kvm_rcx_read(vcpu);
7360 	a2 = kvm_rdx_read(vcpu);
7361 	a3 = kvm_rsi_read(vcpu);
7362 
7363 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
7364 
7365 	op_64_bit = is_64_bit_mode(vcpu);
7366 	if (!op_64_bit) {
7367 		nr &= 0xFFFFFFFF;
7368 		a0 &= 0xFFFFFFFF;
7369 		a1 &= 0xFFFFFFFF;
7370 		a2 &= 0xFFFFFFFF;
7371 		a3 &= 0xFFFFFFFF;
7372 	}
7373 
7374 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7375 		ret = -KVM_EPERM;
7376 		goto out;
7377 	}
7378 
7379 	switch (nr) {
7380 	case KVM_HC_VAPIC_POLL_IRQ:
7381 		ret = 0;
7382 		break;
7383 	case KVM_HC_KICK_CPU:
7384 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7385 		kvm_sched_yield(vcpu->kvm, a1);
7386 		ret = 0;
7387 		break;
7388 #ifdef CONFIG_X86_64
7389 	case KVM_HC_CLOCK_PAIRING:
7390 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7391 		break;
7392 #endif
7393 	case KVM_HC_SEND_IPI:
7394 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7395 		break;
7396 	case KVM_HC_SCHED_YIELD:
7397 		kvm_sched_yield(vcpu->kvm, a0);
7398 		ret = 0;
7399 		break;
7400 	default:
7401 		ret = -KVM_ENOSYS;
7402 		break;
7403 	}
7404 out:
7405 	if (!op_64_bit)
7406 		ret = (u32)ret;
7407 	kvm_rax_write(vcpu, ret);
7408 
7409 	++vcpu->stat.hypercalls;
7410 	return kvm_skip_emulated_instruction(vcpu);
7411 }
7412 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7413 
7414 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7415 {
7416 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7417 	char instruction[3];
7418 	unsigned long rip = kvm_rip_read(vcpu);
7419 
7420 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
7421 
7422 	return emulator_write_emulated(ctxt, rip, instruction, 3,
7423 		&ctxt->exception);
7424 }
7425 
7426 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7427 {
7428 	return vcpu->run->request_interrupt_window &&
7429 		likely(!pic_in_kernel(vcpu->kvm));
7430 }
7431 
7432 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7433 {
7434 	struct kvm_run *kvm_run = vcpu->run;
7435 
7436 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7437 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7438 	kvm_run->cr8 = kvm_get_cr8(vcpu);
7439 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
7440 	kvm_run->ready_for_interrupt_injection =
7441 		pic_in_kernel(vcpu->kvm) ||
7442 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
7443 }
7444 
7445 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7446 {
7447 	int max_irr, tpr;
7448 
7449 	if (!kvm_x86_ops->update_cr8_intercept)
7450 		return;
7451 
7452 	if (!lapic_in_kernel(vcpu))
7453 		return;
7454 
7455 	if (vcpu->arch.apicv_active)
7456 		return;
7457 
7458 	if (!vcpu->arch.apic->vapic_addr)
7459 		max_irr = kvm_lapic_find_highest_irr(vcpu);
7460 	else
7461 		max_irr = -1;
7462 
7463 	if (max_irr != -1)
7464 		max_irr >>= 4;
7465 
7466 	tpr = kvm_lapic_get_cr8(vcpu);
7467 
7468 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7469 }
7470 
7471 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7472 {
7473 	int r;
7474 
7475 	/* try to reinject previous events if any */
7476 
7477 	if (vcpu->arch.exception.injected)
7478 		kvm_x86_ops->queue_exception(vcpu);
7479 	/*
7480 	 * Do not inject an NMI or interrupt if there is a pending
7481 	 * exception.  Exceptions and interrupts are recognized at
7482 	 * instruction boundaries, i.e. the start of an instruction.
7483 	 * Trap-like exceptions, e.g. #DB, have higher priority than
7484 	 * NMIs and interrupts, i.e. traps are recognized before an
7485 	 * NMI/interrupt that's pending on the same instruction.
7486 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7487 	 * priority, but are only generated (pended) during instruction
7488 	 * execution, i.e. a pending fault-like exception means the
7489 	 * fault occurred on the *previous* instruction and must be
7490 	 * serviced prior to recognizing any new events in order to
7491 	 * fully complete the previous instruction.
7492 	 */
7493 	else if (!vcpu->arch.exception.pending) {
7494 		if (vcpu->arch.nmi_injected)
7495 			kvm_x86_ops->set_nmi(vcpu);
7496 		else if (vcpu->arch.interrupt.injected)
7497 			kvm_x86_ops->set_irq(vcpu);
7498 	}
7499 
7500 	/*
7501 	 * Call check_nested_events() even if we reinjected a previous event
7502 	 * in order for caller to determine if it should require immediate-exit
7503 	 * from L2 to L1 due to pending L1 events which require exit
7504 	 * from L2 to L1.
7505 	 */
7506 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7507 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7508 		if (r != 0)
7509 			return r;
7510 	}
7511 
7512 	/* try to inject new event if pending */
7513 	if (vcpu->arch.exception.pending) {
7514 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
7515 					vcpu->arch.exception.has_error_code,
7516 					vcpu->arch.exception.error_code);
7517 
7518 		WARN_ON_ONCE(vcpu->arch.exception.injected);
7519 		vcpu->arch.exception.pending = false;
7520 		vcpu->arch.exception.injected = true;
7521 
7522 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7523 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7524 					     X86_EFLAGS_RF);
7525 
7526 		if (vcpu->arch.exception.nr == DB_VECTOR) {
7527 			/*
7528 			 * This code assumes that nSVM doesn't use
7529 			 * check_nested_events(). If it does, the
7530 			 * DR6/DR7 changes should happen before L1
7531 			 * gets a #VMEXIT for an intercepted #DB in
7532 			 * L2.  (Under VMX, on the other hand, the
7533 			 * DR6/DR7 changes should not happen in the
7534 			 * event of a VM-exit to L1 for an intercepted
7535 			 * #DB in L2.)
7536 			 */
7537 			kvm_deliver_exception_payload(vcpu);
7538 			if (vcpu->arch.dr7 & DR7_GD) {
7539 				vcpu->arch.dr7 &= ~DR7_GD;
7540 				kvm_update_dr7(vcpu);
7541 			}
7542 		}
7543 
7544 		kvm_x86_ops->queue_exception(vcpu);
7545 	}
7546 
7547 	/* Don't consider new event if we re-injected an event */
7548 	if (kvm_event_needs_reinjection(vcpu))
7549 		return 0;
7550 
7551 	if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7552 	    kvm_x86_ops->smi_allowed(vcpu)) {
7553 		vcpu->arch.smi_pending = false;
7554 		++vcpu->arch.smi_count;
7555 		enter_smm(vcpu);
7556 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7557 		--vcpu->arch.nmi_pending;
7558 		vcpu->arch.nmi_injected = true;
7559 		kvm_x86_ops->set_nmi(vcpu);
7560 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
7561 		/*
7562 		 * Because interrupts can be injected asynchronously, we are
7563 		 * calling check_nested_events again here to avoid a race condition.
7564 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7565 		 * proposal and current concerns.  Perhaps we should be setting
7566 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
7567 		 */
7568 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7569 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7570 			if (r != 0)
7571 				return r;
7572 		}
7573 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7574 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7575 					    false);
7576 			kvm_x86_ops->set_irq(vcpu);
7577 		}
7578 	}
7579 
7580 	return 0;
7581 }
7582 
7583 static void process_nmi(struct kvm_vcpu *vcpu)
7584 {
7585 	unsigned limit = 2;
7586 
7587 	/*
7588 	 * x86 is limited to one NMI running, and one NMI pending after it.
7589 	 * If an NMI is already in progress, limit further NMIs to just one.
7590 	 * Otherwise, allow two (and we'll inject the first one immediately).
7591 	 */
7592 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7593 		limit = 1;
7594 
7595 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7596 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7597 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7598 }
7599 
7600 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7601 {
7602 	u32 flags = 0;
7603 	flags |= seg->g       << 23;
7604 	flags |= seg->db      << 22;
7605 	flags |= seg->l       << 21;
7606 	flags |= seg->avl     << 20;
7607 	flags |= seg->present << 15;
7608 	flags |= seg->dpl     << 13;
7609 	flags |= seg->s       << 12;
7610 	flags |= seg->type    << 8;
7611 	return flags;
7612 }
7613 
7614 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7615 {
7616 	struct kvm_segment seg;
7617 	int offset;
7618 
7619 	kvm_get_segment(vcpu, &seg, n);
7620 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7621 
7622 	if (n < 3)
7623 		offset = 0x7f84 + n * 12;
7624 	else
7625 		offset = 0x7f2c + (n - 3) * 12;
7626 
7627 	put_smstate(u32, buf, offset + 8, seg.base);
7628 	put_smstate(u32, buf, offset + 4, seg.limit);
7629 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7630 }
7631 
7632 #ifdef CONFIG_X86_64
7633 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7634 {
7635 	struct kvm_segment seg;
7636 	int offset;
7637 	u16 flags;
7638 
7639 	kvm_get_segment(vcpu, &seg, n);
7640 	offset = 0x7e00 + n * 16;
7641 
7642 	flags = enter_smm_get_segment_flags(&seg) >> 8;
7643 	put_smstate(u16, buf, offset, seg.selector);
7644 	put_smstate(u16, buf, offset + 2, flags);
7645 	put_smstate(u32, buf, offset + 4, seg.limit);
7646 	put_smstate(u64, buf, offset + 8, seg.base);
7647 }
7648 #endif
7649 
7650 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7651 {
7652 	struct desc_ptr dt;
7653 	struct kvm_segment seg;
7654 	unsigned long val;
7655 	int i;
7656 
7657 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7658 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7659 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7660 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7661 
7662 	for (i = 0; i < 8; i++)
7663 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7664 
7665 	kvm_get_dr(vcpu, 6, &val);
7666 	put_smstate(u32, buf, 0x7fcc, (u32)val);
7667 	kvm_get_dr(vcpu, 7, &val);
7668 	put_smstate(u32, buf, 0x7fc8, (u32)val);
7669 
7670 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7671 	put_smstate(u32, buf, 0x7fc4, seg.selector);
7672 	put_smstate(u32, buf, 0x7f64, seg.base);
7673 	put_smstate(u32, buf, 0x7f60, seg.limit);
7674 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7675 
7676 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7677 	put_smstate(u32, buf, 0x7fc0, seg.selector);
7678 	put_smstate(u32, buf, 0x7f80, seg.base);
7679 	put_smstate(u32, buf, 0x7f7c, seg.limit);
7680 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7681 
7682 	kvm_x86_ops->get_gdt(vcpu, &dt);
7683 	put_smstate(u32, buf, 0x7f74, dt.address);
7684 	put_smstate(u32, buf, 0x7f70, dt.size);
7685 
7686 	kvm_x86_ops->get_idt(vcpu, &dt);
7687 	put_smstate(u32, buf, 0x7f58, dt.address);
7688 	put_smstate(u32, buf, 0x7f54, dt.size);
7689 
7690 	for (i = 0; i < 6; i++)
7691 		enter_smm_save_seg_32(vcpu, buf, i);
7692 
7693 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7694 
7695 	/* revision id */
7696 	put_smstate(u32, buf, 0x7efc, 0x00020000);
7697 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7698 }
7699 
7700 #ifdef CONFIG_X86_64
7701 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7702 {
7703 	struct desc_ptr dt;
7704 	struct kvm_segment seg;
7705 	unsigned long val;
7706 	int i;
7707 
7708 	for (i = 0; i < 16; i++)
7709 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7710 
7711 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7712 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7713 
7714 	kvm_get_dr(vcpu, 6, &val);
7715 	put_smstate(u64, buf, 0x7f68, val);
7716 	kvm_get_dr(vcpu, 7, &val);
7717 	put_smstate(u64, buf, 0x7f60, val);
7718 
7719 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7720 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7721 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7722 
7723 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7724 
7725 	/* revision id */
7726 	put_smstate(u32, buf, 0x7efc, 0x00020064);
7727 
7728 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7729 
7730 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7731 	put_smstate(u16, buf, 0x7e90, seg.selector);
7732 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7733 	put_smstate(u32, buf, 0x7e94, seg.limit);
7734 	put_smstate(u64, buf, 0x7e98, seg.base);
7735 
7736 	kvm_x86_ops->get_idt(vcpu, &dt);
7737 	put_smstate(u32, buf, 0x7e84, dt.size);
7738 	put_smstate(u64, buf, 0x7e88, dt.address);
7739 
7740 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7741 	put_smstate(u16, buf, 0x7e70, seg.selector);
7742 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7743 	put_smstate(u32, buf, 0x7e74, seg.limit);
7744 	put_smstate(u64, buf, 0x7e78, seg.base);
7745 
7746 	kvm_x86_ops->get_gdt(vcpu, &dt);
7747 	put_smstate(u32, buf, 0x7e64, dt.size);
7748 	put_smstate(u64, buf, 0x7e68, dt.address);
7749 
7750 	for (i = 0; i < 6; i++)
7751 		enter_smm_save_seg_64(vcpu, buf, i);
7752 }
7753 #endif
7754 
7755 static void enter_smm(struct kvm_vcpu *vcpu)
7756 {
7757 	struct kvm_segment cs, ds;
7758 	struct desc_ptr dt;
7759 	char buf[512];
7760 	u32 cr0;
7761 
7762 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7763 	memset(buf, 0, 512);
7764 #ifdef CONFIG_X86_64
7765 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7766 		enter_smm_save_state_64(vcpu, buf);
7767 	else
7768 #endif
7769 		enter_smm_save_state_32(vcpu, buf);
7770 
7771 	/*
7772 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7773 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
7774 	 * the SMM state-save area.
7775 	 */
7776 	kvm_x86_ops->pre_enter_smm(vcpu, buf);
7777 
7778 	vcpu->arch.hflags |= HF_SMM_MASK;
7779 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7780 
7781 	if (kvm_x86_ops->get_nmi_mask(vcpu))
7782 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7783 	else
7784 		kvm_x86_ops->set_nmi_mask(vcpu, true);
7785 
7786 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7787 	kvm_rip_write(vcpu, 0x8000);
7788 
7789 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7790 	kvm_x86_ops->set_cr0(vcpu, cr0);
7791 	vcpu->arch.cr0 = cr0;
7792 
7793 	kvm_x86_ops->set_cr4(vcpu, 0);
7794 
7795 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
7796 	dt.address = dt.size = 0;
7797 	kvm_x86_ops->set_idt(vcpu, &dt);
7798 
7799 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7800 
7801 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7802 	cs.base = vcpu->arch.smbase;
7803 
7804 	ds.selector = 0;
7805 	ds.base = 0;
7806 
7807 	cs.limit    = ds.limit = 0xffffffff;
7808 	cs.type     = ds.type = 0x3;
7809 	cs.dpl      = ds.dpl = 0;
7810 	cs.db       = ds.db = 0;
7811 	cs.s        = ds.s = 1;
7812 	cs.l        = ds.l = 0;
7813 	cs.g        = ds.g = 1;
7814 	cs.avl      = ds.avl = 0;
7815 	cs.present  = ds.present = 1;
7816 	cs.unusable = ds.unusable = 0;
7817 	cs.padding  = ds.padding = 0;
7818 
7819 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7820 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7821 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7822 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7823 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7824 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7825 
7826 #ifdef CONFIG_X86_64
7827 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7828 		kvm_x86_ops->set_efer(vcpu, 0);
7829 #endif
7830 
7831 	kvm_update_cpuid(vcpu);
7832 	kvm_mmu_reset_context(vcpu);
7833 }
7834 
7835 static void process_smi(struct kvm_vcpu *vcpu)
7836 {
7837 	vcpu->arch.smi_pending = true;
7838 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7839 }
7840 
7841 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7842 {
7843 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7844 }
7845 
7846 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7847 {
7848 	if (!kvm_apic_present(vcpu))
7849 		return;
7850 
7851 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7852 
7853 	if (irqchip_split(vcpu->kvm))
7854 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7855 	else {
7856 		if (vcpu->arch.apicv_active)
7857 			kvm_x86_ops->sync_pir_to_irr(vcpu);
7858 		if (ioapic_in_kernel(vcpu->kvm))
7859 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7860 	}
7861 
7862 	if (is_guest_mode(vcpu))
7863 		vcpu->arch.load_eoi_exitmap_pending = true;
7864 	else
7865 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7866 }
7867 
7868 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7869 {
7870 	u64 eoi_exit_bitmap[4];
7871 
7872 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7873 		return;
7874 
7875 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7876 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
7877 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7878 }
7879 
7880 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7881 		unsigned long start, unsigned long end,
7882 		bool blockable)
7883 {
7884 	unsigned long apic_address;
7885 
7886 	/*
7887 	 * The physical address of apic access page is stored in the VMCS.
7888 	 * Update it when it becomes invalid.
7889 	 */
7890 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7891 	if (start <= apic_address && apic_address < end)
7892 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7893 
7894 	return 0;
7895 }
7896 
7897 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7898 {
7899 	struct page *page = NULL;
7900 
7901 	if (!lapic_in_kernel(vcpu))
7902 		return;
7903 
7904 	if (!kvm_x86_ops->set_apic_access_page_addr)
7905 		return;
7906 
7907 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7908 	if (is_error_page(page))
7909 		return;
7910 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7911 
7912 	/*
7913 	 * Do not pin apic access page in memory, the MMU notifier
7914 	 * will call us again if it is migrated or swapped out.
7915 	 */
7916 	put_page(page);
7917 }
7918 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7919 
7920 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7921 {
7922 	smp_send_reschedule(vcpu->cpu);
7923 }
7924 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7925 
7926 /*
7927  * Returns 1 to let vcpu_run() continue the guest execution loop without
7928  * exiting to the userspace.  Otherwise, the value will be returned to the
7929  * userspace.
7930  */
7931 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7932 {
7933 	int r;
7934 	bool req_int_win =
7935 		dm_request_for_irq_injection(vcpu) &&
7936 		kvm_cpu_accept_dm_intr(vcpu);
7937 
7938 	bool req_immediate_exit = false;
7939 
7940 	if (kvm_request_pending(vcpu)) {
7941 		if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) {
7942 			if (unlikely(!kvm_x86_ops->get_vmcs12_pages(vcpu))) {
7943 				r = 0;
7944 				goto out;
7945 			}
7946 		}
7947 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7948 			kvm_mmu_unload(vcpu);
7949 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7950 			__kvm_migrate_timers(vcpu);
7951 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7952 			kvm_gen_update_masterclock(vcpu->kvm);
7953 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7954 			kvm_gen_kvmclock_update(vcpu);
7955 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7956 			r = kvm_guest_time_update(vcpu);
7957 			if (unlikely(r))
7958 				goto out;
7959 		}
7960 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7961 			kvm_mmu_sync_roots(vcpu);
7962 		if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7963 			kvm_mmu_load_cr3(vcpu);
7964 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7965 			kvm_vcpu_flush_tlb(vcpu, true);
7966 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7967 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7968 			r = 0;
7969 			goto out;
7970 		}
7971 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7972 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7973 			vcpu->mmio_needed = 0;
7974 			r = 0;
7975 			goto out;
7976 		}
7977 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7978 			/* Page is swapped out. Do synthetic halt */
7979 			vcpu->arch.apf.halted = true;
7980 			r = 1;
7981 			goto out;
7982 		}
7983 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7984 			record_steal_time(vcpu);
7985 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
7986 			process_smi(vcpu);
7987 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
7988 			process_nmi(vcpu);
7989 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
7990 			kvm_pmu_handle_event(vcpu);
7991 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
7992 			kvm_pmu_deliver_pmi(vcpu);
7993 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7994 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7995 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
7996 				     vcpu->arch.ioapic_handled_vectors)) {
7997 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7998 				vcpu->run->eoi.vector =
7999 						vcpu->arch.pending_ioapic_eoi;
8000 				r = 0;
8001 				goto out;
8002 			}
8003 		}
8004 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8005 			vcpu_scan_ioapic(vcpu);
8006 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8007 			vcpu_load_eoi_exitmap(vcpu);
8008 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8009 			kvm_vcpu_reload_apic_access_page(vcpu);
8010 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8011 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8012 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8013 			r = 0;
8014 			goto out;
8015 		}
8016 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8017 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8018 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8019 			r = 0;
8020 			goto out;
8021 		}
8022 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8023 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8024 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8025 			r = 0;
8026 			goto out;
8027 		}
8028 
8029 		/*
8030 		 * KVM_REQ_HV_STIMER has to be processed after
8031 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8032 		 * depend on the guest clock being up-to-date
8033 		 */
8034 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8035 			kvm_hv_process_stimers(vcpu);
8036 	}
8037 
8038 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8039 		++vcpu->stat.req_event;
8040 		kvm_apic_accept_events(vcpu);
8041 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8042 			r = 1;
8043 			goto out;
8044 		}
8045 
8046 		if (inject_pending_event(vcpu, req_int_win) != 0)
8047 			req_immediate_exit = true;
8048 		else {
8049 			/* Enable SMI/NMI/IRQ window open exits if needed.
8050 			 *
8051 			 * SMIs have three cases:
8052 			 * 1) They can be nested, and then there is nothing to
8053 			 *    do here because RSM will cause a vmexit anyway.
8054 			 * 2) There is an ISA-specific reason why SMI cannot be
8055 			 *    injected, and the moment when this changes can be
8056 			 *    intercepted.
8057 			 * 3) Or the SMI can be pending because
8058 			 *    inject_pending_event has completed the injection
8059 			 *    of an IRQ or NMI from the previous vmexit, and
8060 			 *    then we request an immediate exit to inject the
8061 			 *    SMI.
8062 			 */
8063 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
8064 				if (!kvm_x86_ops->enable_smi_window(vcpu))
8065 					req_immediate_exit = true;
8066 			if (vcpu->arch.nmi_pending)
8067 				kvm_x86_ops->enable_nmi_window(vcpu);
8068 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
8069 				kvm_x86_ops->enable_irq_window(vcpu);
8070 			WARN_ON(vcpu->arch.exception.pending);
8071 		}
8072 
8073 		if (kvm_lapic_enabled(vcpu)) {
8074 			update_cr8_intercept(vcpu);
8075 			kvm_lapic_sync_to_vapic(vcpu);
8076 		}
8077 	}
8078 
8079 	r = kvm_mmu_reload(vcpu);
8080 	if (unlikely(r)) {
8081 		goto cancel_injection;
8082 	}
8083 
8084 	preempt_disable();
8085 
8086 	kvm_x86_ops->prepare_guest_switch(vcpu);
8087 
8088 	/*
8089 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8090 	 * IPI are then delayed after guest entry, which ensures that they
8091 	 * result in virtual interrupt delivery.
8092 	 */
8093 	local_irq_disable();
8094 	vcpu->mode = IN_GUEST_MODE;
8095 
8096 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8097 
8098 	/*
8099 	 * 1) We should set ->mode before checking ->requests.  Please see
8100 	 * the comment in kvm_vcpu_exiting_guest_mode().
8101 	 *
8102 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
8103 	 * pairs with the memory barrier implicit in pi_test_and_set_on
8104 	 * (see vmx_deliver_posted_interrupt).
8105 	 *
8106 	 * 3) This also orders the write to mode from any reads to the page
8107 	 * tables done while the VCPU is running.  Please see the comment
8108 	 * in kvm_flush_remote_tlbs.
8109 	 */
8110 	smp_mb__after_srcu_read_unlock();
8111 
8112 	/*
8113 	 * This handles the case where a posted interrupt was
8114 	 * notified with kvm_vcpu_kick.
8115 	 */
8116 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8117 		kvm_x86_ops->sync_pir_to_irr(vcpu);
8118 
8119 	if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
8120 	    || need_resched() || signal_pending(current)) {
8121 		vcpu->mode = OUTSIDE_GUEST_MODE;
8122 		smp_wmb();
8123 		local_irq_enable();
8124 		preempt_enable();
8125 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8126 		r = 1;
8127 		goto cancel_injection;
8128 	}
8129 
8130 	if (req_immediate_exit) {
8131 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8132 		kvm_x86_ops->request_immediate_exit(vcpu);
8133 	}
8134 
8135 	trace_kvm_entry(vcpu->vcpu_id);
8136 	guest_enter_irqoff();
8137 
8138 	/* The preempt notifier should have taken care of the FPU already.  */
8139 	WARN_ON_ONCE(test_thread_flag(TIF_NEED_FPU_LOAD));
8140 
8141 	if (unlikely(vcpu->arch.switch_db_regs)) {
8142 		set_debugreg(0, 7);
8143 		set_debugreg(vcpu->arch.eff_db[0], 0);
8144 		set_debugreg(vcpu->arch.eff_db[1], 1);
8145 		set_debugreg(vcpu->arch.eff_db[2], 2);
8146 		set_debugreg(vcpu->arch.eff_db[3], 3);
8147 		set_debugreg(vcpu->arch.dr6, 6);
8148 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8149 	}
8150 
8151 	kvm_x86_ops->run(vcpu);
8152 
8153 	/*
8154 	 * Do this here before restoring debug registers on the host.  And
8155 	 * since we do this before handling the vmexit, a DR access vmexit
8156 	 * can (a) read the correct value of the debug registers, (b) set
8157 	 * KVM_DEBUGREG_WONT_EXIT again.
8158 	 */
8159 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8160 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8161 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
8162 		kvm_update_dr0123(vcpu);
8163 		kvm_update_dr6(vcpu);
8164 		kvm_update_dr7(vcpu);
8165 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8166 	}
8167 
8168 	/*
8169 	 * If the guest has used debug registers, at least dr7
8170 	 * will be disabled while returning to the host.
8171 	 * If we don't have active breakpoints in the host, we don't
8172 	 * care about the messed up debug address registers. But if
8173 	 * we have some of them active, restore the old state.
8174 	 */
8175 	if (hw_breakpoint_active())
8176 		hw_breakpoint_restore();
8177 
8178 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8179 
8180 	vcpu->mode = OUTSIDE_GUEST_MODE;
8181 	smp_wmb();
8182 
8183 	kvm_x86_ops->handle_exit_irqoff(vcpu);
8184 
8185 	/*
8186 	 * Consume any pending interrupts, including the possible source of
8187 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8188 	 * An instruction is required after local_irq_enable() to fully unblock
8189 	 * interrupts on processors that implement an interrupt shadow, the
8190 	 * stat.exits increment will do nicely.
8191 	 */
8192 	kvm_before_interrupt(vcpu);
8193 	local_irq_enable();
8194 	++vcpu->stat.exits;
8195 	local_irq_disable();
8196 	kvm_after_interrupt(vcpu);
8197 
8198 	guest_exit_irqoff();
8199 	if (lapic_in_kernel(vcpu)) {
8200 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8201 		if (delta != S64_MIN) {
8202 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8203 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8204 		}
8205 	}
8206 
8207 	local_irq_enable();
8208 	preempt_enable();
8209 
8210 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8211 
8212 	/*
8213 	 * Profile KVM exit RIPs:
8214 	 */
8215 	if (unlikely(prof_on == KVM_PROFILING)) {
8216 		unsigned long rip = kvm_rip_read(vcpu);
8217 		profile_hit(KVM_PROFILING, (void *)rip);
8218 	}
8219 
8220 	if (unlikely(vcpu->arch.tsc_always_catchup))
8221 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8222 
8223 	if (vcpu->arch.apic_attention)
8224 		kvm_lapic_sync_from_vapic(vcpu);
8225 
8226 	vcpu->arch.gpa_available = false;
8227 	r = kvm_x86_ops->handle_exit(vcpu);
8228 	return r;
8229 
8230 cancel_injection:
8231 	kvm_x86_ops->cancel_injection(vcpu);
8232 	if (unlikely(vcpu->arch.apic_attention))
8233 		kvm_lapic_sync_from_vapic(vcpu);
8234 out:
8235 	return r;
8236 }
8237 
8238 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8239 {
8240 	if (!kvm_arch_vcpu_runnable(vcpu) &&
8241 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8242 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8243 		kvm_vcpu_block(vcpu);
8244 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8245 
8246 		if (kvm_x86_ops->post_block)
8247 			kvm_x86_ops->post_block(vcpu);
8248 
8249 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8250 			return 1;
8251 	}
8252 
8253 	kvm_apic_accept_events(vcpu);
8254 	switch(vcpu->arch.mp_state) {
8255 	case KVM_MP_STATE_HALTED:
8256 		vcpu->arch.pv.pv_unhalted = false;
8257 		vcpu->arch.mp_state =
8258 			KVM_MP_STATE_RUNNABLE;
8259 		/* fall through */
8260 	case KVM_MP_STATE_RUNNABLE:
8261 		vcpu->arch.apf.halted = false;
8262 		break;
8263 	case KVM_MP_STATE_INIT_RECEIVED:
8264 		break;
8265 	default:
8266 		return -EINTR;
8267 		break;
8268 	}
8269 	return 1;
8270 }
8271 
8272 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8273 {
8274 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8275 		kvm_x86_ops->check_nested_events(vcpu, false);
8276 
8277 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8278 		!vcpu->arch.apf.halted);
8279 }
8280 
8281 static int vcpu_run(struct kvm_vcpu *vcpu)
8282 {
8283 	int r;
8284 	struct kvm *kvm = vcpu->kvm;
8285 
8286 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8287 	vcpu->arch.l1tf_flush_l1d = true;
8288 
8289 	for (;;) {
8290 		if (kvm_vcpu_running(vcpu)) {
8291 			r = vcpu_enter_guest(vcpu);
8292 		} else {
8293 			r = vcpu_block(kvm, vcpu);
8294 		}
8295 
8296 		if (r <= 0)
8297 			break;
8298 
8299 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8300 		if (kvm_cpu_has_pending_timer(vcpu))
8301 			kvm_inject_pending_timer_irqs(vcpu);
8302 
8303 		if (dm_request_for_irq_injection(vcpu) &&
8304 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8305 			r = 0;
8306 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8307 			++vcpu->stat.request_irq_exits;
8308 			break;
8309 		}
8310 
8311 		kvm_check_async_pf_completion(vcpu);
8312 
8313 		if (signal_pending(current)) {
8314 			r = -EINTR;
8315 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8316 			++vcpu->stat.signal_exits;
8317 			break;
8318 		}
8319 		if (need_resched()) {
8320 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8321 			cond_resched();
8322 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8323 		}
8324 	}
8325 
8326 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8327 
8328 	return r;
8329 }
8330 
8331 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8332 {
8333 	int r;
8334 
8335 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8336 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8337 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8338 	return r;
8339 }
8340 
8341 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8342 {
8343 	BUG_ON(!vcpu->arch.pio.count);
8344 
8345 	return complete_emulated_io(vcpu);
8346 }
8347 
8348 /*
8349  * Implements the following, as a state machine:
8350  *
8351  * read:
8352  *   for each fragment
8353  *     for each mmio piece in the fragment
8354  *       write gpa, len
8355  *       exit
8356  *       copy data
8357  *   execute insn
8358  *
8359  * write:
8360  *   for each fragment
8361  *     for each mmio piece in the fragment
8362  *       write gpa, len
8363  *       copy data
8364  *       exit
8365  */
8366 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8367 {
8368 	struct kvm_run *run = vcpu->run;
8369 	struct kvm_mmio_fragment *frag;
8370 	unsigned len;
8371 
8372 	BUG_ON(!vcpu->mmio_needed);
8373 
8374 	/* Complete previous fragment */
8375 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8376 	len = min(8u, frag->len);
8377 	if (!vcpu->mmio_is_write)
8378 		memcpy(frag->data, run->mmio.data, len);
8379 
8380 	if (frag->len <= 8) {
8381 		/* Switch to the next fragment. */
8382 		frag++;
8383 		vcpu->mmio_cur_fragment++;
8384 	} else {
8385 		/* Go forward to the next mmio piece. */
8386 		frag->data += len;
8387 		frag->gpa += len;
8388 		frag->len -= len;
8389 	}
8390 
8391 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8392 		vcpu->mmio_needed = 0;
8393 
8394 		/* FIXME: return into emulator if single-stepping.  */
8395 		if (vcpu->mmio_is_write)
8396 			return 1;
8397 		vcpu->mmio_read_completed = 1;
8398 		return complete_emulated_io(vcpu);
8399 	}
8400 
8401 	run->exit_reason = KVM_EXIT_MMIO;
8402 	run->mmio.phys_addr = frag->gpa;
8403 	if (vcpu->mmio_is_write)
8404 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8405 	run->mmio.len = min(8u, frag->len);
8406 	run->mmio.is_write = vcpu->mmio_is_write;
8407 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8408 	return 0;
8409 }
8410 
8411 /* Swap (qemu) user FPU context for the guest FPU context. */
8412 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8413 {
8414 	fpregs_lock();
8415 
8416 	copy_fpregs_to_fpstate(vcpu->arch.user_fpu);
8417 	/* PKRU is separately restored in kvm_x86_ops->run.  */
8418 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8419 				~XFEATURE_MASK_PKRU);
8420 
8421 	fpregs_mark_activate();
8422 	fpregs_unlock();
8423 
8424 	trace_kvm_fpu(1);
8425 }
8426 
8427 /* When vcpu_run ends, restore user space FPU context. */
8428 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8429 {
8430 	fpregs_lock();
8431 
8432 	copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8433 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8434 
8435 	fpregs_mark_activate();
8436 	fpregs_unlock();
8437 
8438 	++vcpu->stat.fpu_reload;
8439 	trace_kvm_fpu(0);
8440 }
8441 
8442 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8443 {
8444 	int r;
8445 
8446 	vcpu_load(vcpu);
8447 	kvm_sigset_activate(vcpu);
8448 	kvm_load_guest_fpu(vcpu);
8449 
8450 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8451 		if (kvm_run->immediate_exit) {
8452 			r = -EINTR;
8453 			goto out;
8454 		}
8455 		kvm_vcpu_block(vcpu);
8456 		kvm_apic_accept_events(vcpu);
8457 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8458 		r = -EAGAIN;
8459 		if (signal_pending(current)) {
8460 			r = -EINTR;
8461 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8462 			++vcpu->stat.signal_exits;
8463 		}
8464 		goto out;
8465 	}
8466 
8467 	if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8468 		r = -EINVAL;
8469 		goto out;
8470 	}
8471 
8472 	if (vcpu->run->kvm_dirty_regs) {
8473 		r = sync_regs(vcpu);
8474 		if (r != 0)
8475 			goto out;
8476 	}
8477 
8478 	/* re-sync apic's tpr */
8479 	if (!lapic_in_kernel(vcpu)) {
8480 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8481 			r = -EINVAL;
8482 			goto out;
8483 		}
8484 	}
8485 
8486 	if (unlikely(vcpu->arch.complete_userspace_io)) {
8487 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8488 		vcpu->arch.complete_userspace_io = NULL;
8489 		r = cui(vcpu);
8490 		if (r <= 0)
8491 			goto out;
8492 	} else
8493 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8494 
8495 	if (kvm_run->immediate_exit)
8496 		r = -EINTR;
8497 	else
8498 		r = vcpu_run(vcpu);
8499 
8500 out:
8501 	kvm_put_guest_fpu(vcpu);
8502 	if (vcpu->run->kvm_valid_regs)
8503 		store_regs(vcpu);
8504 	post_kvm_run_save(vcpu);
8505 	kvm_sigset_deactivate(vcpu);
8506 
8507 	vcpu_put(vcpu);
8508 	return r;
8509 }
8510 
8511 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8512 {
8513 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8514 		/*
8515 		 * We are here if userspace calls get_regs() in the middle of
8516 		 * instruction emulation. Registers state needs to be copied
8517 		 * back from emulation context to vcpu. Userspace shouldn't do
8518 		 * that usually, but some bad designed PV devices (vmware
8519 		 * backdoor interface) need this to work
8520 		 */
8521 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8522 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8523 	}
8524 	regs->rax = kvm_rax_read(vcpu);
8525 	regs->rbx = kvm_rbx_read(vcpu);
8526 	regs->rcx = kvm_rcx_read(vcpu);
8527 	regs->rdx = kvm_rdx_read(vcpu);
8528 	regs->rsi = kvm_rsi_read(vcpu);
8529 	regs->rdi = kvm_rdi_read(vcpu);
8530 	regs->rsp = kvm_rsp_read(vcpu);
8531 	regs->rbp = kvm_rbp_read(vcpu);
8532 #ifdef CONFIG_X86_64
8533 	regs->r8 = kvm_r8_read(vcpu);
8534 	regs->r9 = kvm_r9_read(vcpu);
8535 	regs->r10 = kvm_r10_read(vcpu);
8536 	regs->r11 = kvm_r11_read(vcpu);
8537 	regs->r12 = kvm_r12_read(vcpu);
8538 	regs->r13 = kvm_r13_read(vcpu);
8539 	regs->r14 = kvm_r14_read(vcpu);
8540 	regs->r15 = kvm_r15_read(vcpu);
8541 #endif
8542 
8543 	regs->rip = kvm_rip_read(vcpu);
8544 	regs->rflags = kvm_get_rflags(vcpu);
8545 }
8546 
8547 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8548 {
8549 	vcpu_load(vcpu);
8550 	__get_regs(vcpu, regs);
8551 	vcpu_put(vcpu);
8552 	return 0;
8553 }
8554 
8555 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8556 {
8557 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8558 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8559 
8560 	kvm_rax_write(vcpu, regs->rax);
8561 	kvm_rbx_write(vcpu, regs->rbx);
8562 	kvm_rcx_write(vcpu, regs->rcx);
8563 	kvm_rdx_write(vcpu, regs->rdx);
8564 	kvm_rsi_write(vcpu, regs->rsi);
8565 	kvm_rdi_write(vcpu, regs->rdi);
8566 	kvm_rsp_write(vcpu, regs->rsp);
8567 	kvm_rbp_write(vcpu, regs->rbp);
8568 #ifdef CONFIG_X86_64
8569 	kvm_r8_write(vcpu, regs->r8);
8570 	kvm_r9_write(vcpu, regs->r9);
8571 	kvm_r10_write(vcpu, regs->r10);
8572 	kvm_r11_write(vcpu, regs->r11);
8573 	kvm_r12_write(vcpu, regs->r12);
8574 	kvm_r13_write(vcpu, regs->r13);
8575 	kvm_r14_write(vcpu, regs->r14);
8576 	kvm_r15_write(vcpu, regs->r15);
8577 #endif
8578 
8579 	kvm_rip_write(vcpu, regs->rip);
8580 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8581 
8582 	vcpu->arch.exception.pending = false;
8583 
8584 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8585 }
8586 
8587 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8588 {
8589 	vcpu_load(vcpu);
8590 	__set_regs(vcpu, regs);
8591 	vcpu_put(vcpu);
8592 	return 0;
8593 }
8594 
8595 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8596 {
8597 	struct kvm_segment cs;
8598 
8599 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8600 	*db = cs.db;
8601 	*l = cs.l;
8602 }
8603 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8604 
8605 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8606 {
8607 	struct desc_ptr dt;
8608 
8609 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8610 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8611 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8612 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8613 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8614 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8615 
8616 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8617 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8618 
8619 	kvm_x86_ops->get_idt(vcpu, &dt);
8620 	sregs->idt.limit = dt.size;
8621 	sregs->idt.base = dt.address;
8622 	kvm_x86_ops->get_gdt(vcpu, &dt);
8623 	sregs->gdt.limit = dt.size;
8624 	sregs->gdt.base = dt.address;
8625 
8626 	sregs->cr0 = kvm_read_cr0(vcpu);
8627 	sregs->cr2 = vcpu->arch.cr2;
8628 	sregs->cr3 = kvm_read_cr3(vcpu);
8629 	sregs->cr4 = kvm_read_cr4(vcpu);
8630 	sregs->cr8 = kvm_get_cr8(vcpu);
8631 	sregs->efer = vcpu->arch.efer;
8632 	sregs->apic_base = kvm_get_apic_base(vcpu);
8633 
8634 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8635 
8636 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8637 		set_bit(vcpu->arch.interrupt.nr,
8638 			(unsigned long *)sregs->interrupt_bitmap);
8639 }
8640 
8641 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8642 				  struct kvm_sregs *sregs)
8643 {
8644 	vcpu_load(vcpu);
8645 	__get_sregs(vcpu, sregs);
8646 	vcpu_put(vcpu);
8647 	return 0;
8648 }
8649 
8650 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8651 				    struct kvm_mp_state *mp_state)
8652 {
8653 	vcpu_load(vcpu);
8654 
8655 	kvm_apic_accept_events(vcpu);
8656 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8657 					vcpu->arch.pv.pv_unhalted)
8658 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8659 	else
8660 		mp_state->mp_state = vcpu->arch.mp_state;
8661 
8662 	vcpu_put(vcpu);
8663 	return 0;
8664 }
8665 
8666 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8667 				    struct kvm_mp_state *mp_state)
8668 {
8669 	int ret = -EINVAL;
8670 
8671 	vcpu_load(vcpu);
8672 
8673 	if (!lapic_in_kernel(vcpu) &&
8674 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8675 		goto out;
8676 
8677 	/* INITs are latched while in SMM */
8678 	if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8679 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8680 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8681 		goto out;
8682 
8683 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8684 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8685 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8686 	} else
8687 		vcpu->arch.mp_state = mp_state->mp_state;
8688 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8689 
8690 	ret = 0;
8691 out:
8692 	vcpu_put(vcpu);
8693 	return ret;
8694 }
8695 
8696 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8697 		    int reason, bool has_error_code, u32 error_code)
8698 {
8699 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8700 	int ret;
8701 
8702 	init_emulate_ctxt(vcpu);
8703 
8704 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8705 				   has_error_code, error_code);
8706 	if (ret) {
8707 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8708 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
8709 		vcpu->run->internal.ndata = 0;
8710 		return 0;
8711 	}
8712 
8713 	kvm_rip_write(vcpu, ctxt->eip);
8714 	kvm_set_rflags(vcpu, ctxt->eflags);
8715 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8716 	return 1;
8717 }
8718 EXPORT_SYMBOL_GPL(kvm_task_switch);
8719 
8720 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8721 {
8722 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8723 		/*
8724 		 * When EFER.LME and CR0.PG are set, the processor is in
8725 		 * 64-bit mode (though maybe in a 32-bit code segment).
8726 		 * CR4.PAE and EFER.LMA must be set.
8727 		 */
8728 		if (!(sregs->cr4 & X86_CR4_PAE)
8729 		    || !(sregs->efer & EFER_LMA))
8730 			return -EINVAL;
8731 	} else {
8732 		/*
8733 		 * Not in 64-bit mode: EFER.LMA is clear and the code
8734 		 * segment cannot be 64-bit.
8735 		 */
8736 		if (sregs->efer & EFER_LMA || sregs->cs.l)
8737 			return -EINVAL;
8738 	}
8739 
8740 	return kvm_valid_cr4(vcpu, sregs->cr4);
8741 }
8742 
8743 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8744 {
8745 	struct msr_data apic_base_msr;
8746 	int mmu_reset_needed = 0;
8747 	int cpuid_update_needed = 0;
8748 	int pending_vec, max_bits, idx;
8749 	struct desc_ptr dt;
8750 	int ret = -EINVAL;
8751 
8752 	if (kvm_valid_sregs(vcpu, sregs))
8753 		goto out;
8754 
8755 	apic_base_msr.data = sregs->apic_base;
8756 	apic_base_msr.host_initiated = true;
8757 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
8758 		goto out;
8759 
8760 	dt.size = sregs->idt.limit;
8761 	dt.address = sregs->idt.base;
8762 	kvm_x86_ops->set_idt(vcpu, &dt);
8763 	dt.size = sregs->gdt.limit;
8764 	dt.address = sregs->gdt.base;
8765 	kvm_x86_ops->set_gdt(vcpu, &dt);
8766 
8767 	vcpu->arch.cr2 = sregs->cr2;
8768 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8769 	vcpu->arch.cr3 = sregs->cr3;
8770 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8771 
8772 	kvm_set_cr8(vcpu, sregs->cr8);
8773 
8774 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8775 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
8776 
8777 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8778 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8779 	vcpu->arch.cr0 = sregs->cr0;
8780 
8781 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8782 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8783 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
8784 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8785 	if (cpuid_update_needed)
8786 		kvm_update_cpuid(vcpu);
8787 
8788 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8789 	if (is_pae_paging(vcpu)) {
8790 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8791 		mmu_reset_needed = 1;
8792 	}
8793 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8794 
8795 	if (mmu_reset_needed)
8796 		kvm_mmu_reset_context(vcpu);
8797 
8798 	max_bits = KVM_NR_INTERRUPTS;
8799 	pending_vec = find_first_bit(
8800 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
8801 	if (pending_vec < max_bits) {
8802 		kvm_queue_interrupt(vcpu, pending_vec, false);
8803 		pr_debug("Set back pending irq %d\n", pending_vec);
8804 	}
8805 
8806 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8807 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8808 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8809 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8810 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8811 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8812 
8813 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8814 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8815 
8816 	update_cr8_intercept(vcpu);
8817 
8818 	/* Older userspace won't unhalt the vcpu on reset. */
8819 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8820 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8821 	    !is_protmode(vcpu))
8822 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8823 
8824 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8825 
8826 	ret = 0;
8827 out:
8828 	return ret;
8829 }
8830 
8831 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8832 				  struct kvm_sregs *sregs)
8833 {
8834 	int ret;
8835 
8836 	vcpu_load(vcpu);
8837 	ret = __set_sregs(vcpu, sregs);
8838 	vcpu_put(vcpu);
8839 	return ret;
8840 }
8841 
8842 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8843 					struct kvm_guest_debug *dbg)
8844 {
8845 	unsigned long rflags;
8846 	int i, r;
8847 
8848 	vcpu_load(vcpu);
8849 
8850 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8851 		r = -EBUSY;
8852 		if (vcpu->arch.exception.pending)
8853 			goto out;
8854 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8855 			kvm_queue_exception(vcpu, DB_VECTOR);
8856 		else
8857 			kvm_queue_exception(vcpu, BP_VECTOR);
8858 	}
8859 
8860 	/*
8861 	 * Read rflags as long as potentially injected trace flags are still
8862 	 * filtered out.
8863 	 */
8864 	rflags = kvm_get_rflags(vcpu);
8865 
8866 	vcpu->guest_debug = dbg->control;
8867 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8868 		vcpu->guest_debug = 0;
8869 
8870 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8871 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
8872 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8873 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8874 	} else {
8875 		for (i = 0; i < KVM_NR_DB_REGS; i++)
8876 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8877 	}
8878 	kvm_update_dr7(vcpu);
8879 
8880 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8881 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8882 			get_segment_base(vcpu, VCPU_SREG_CS);
8883 
8884 	/*
8885 	 * Trigger an rflags update that will inject or remove the trace
8886 	 * flags.
8887 	 */
8888 	kvm_set_rflags(vcpu, rflags);
8889 
8890 	kvm_x86_ops->update_bp_intercept(vcpu);
8891 
8892 	r = 0;
8893 
8894 out:
8895 	vcpu_put(vcpu);
8896 	return r;
8897 }
8898 
8899 /*
8900  * Translate a guest virtual address to a guest physical address.
8901  */
8902 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8903 				    struct kvm_translation *tr)
8904 {
8905 	unsigned long vaddr = tr->linear_address;
8906 	gpa_t gpa;
8907 	int idx;
8908 
8909 	vcpu_load(vcpu);
8910 
8911 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8912 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8913 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8914 	tr->physical_address = gpa;
8915 	tr->valid = gpa != UNMAPPED_GVA;
8916 	tr->writeable = 1;
8917 	tr->usermode = 0;
8918 
8919 	vcpu_put(vcpu);
8920 	return 0;
8921 }
8922 
8923 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8924 {
8925 	struct fxregs_state *fxsave;
8926 
8927 	vcpu_load(vcpu);
8928 
8929 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8930 	memcpy(fpu->fpr, fxsave->st_space, 128);
8931 	fpu->fcw = fxsave->cwd;
8932 	fpu->fsw = fxsave->swd;
8933 	fpu->ftwx = fxsave->twd;
8934 	fpu->last_opcode = fxsave->fop;
8935 	fpu->last_ip = fxsave->rip;
8936 	fpu->last_dp = fxsave->rdp;
8937 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8938 
8939 	vcpu_put(vcpu);
8940 	return 0;
8941 }
8942 
8943 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8944 {
8945 	struct fxregs_state *fxsave;
8946 
8947 	vcpu_load(vcpu);
8948 
8949 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8950 
8951 	memcpy(fxsave->st_space, fpu->fpr, 128);
8952 	fxsave->cwd = fpu->fcw;
8953 	fxsave->swd = fpu->fsw;
8954 	fxsave->twd = fpu->ftwx;
8955 	fxsave->fop = fpu->last_opcode;
8956 	fxsave->rip = fpu->last_ip;
8957 	fxsave->rdp = fpu->last_dp;
8958 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8959 
8960 	vcpu_put(vcpu);
8961 	return 0;
8962 }
8963 
8964 static void store_regs(struct kvm_vcpu *vcpu)
8965 {
8966 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8967 
8968 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8969 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
8970 
8971 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8972 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8973 
8974 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8975 		kvm_vcpu_ioctl_x86_get_vcpu_events(
8976 				vcpu, &vcpu->run->s.regs.events);
8977 }
8978 
8979 static int sync_regs(struct kvm_vcpu *vcpu)
8980 {
8981 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8982 		return -EINVAL;
8983 
8984 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8985 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
8986 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8987 	}
8988 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8989 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8990 			return -EINVAL;
8991 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8992 	}
8993 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8994 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8995 				vcpu, &vcpu->run->s.regs.events))
8996 			return -EINVAL;
8997 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8998 	}
8999 
9000 	return 0;
9001 }
9002 
9003 static void fx_init(struct kvm_vcpu *vcpu)
9004 {
9005 	fpstate_init(&vcpu->arch.guest_fpu->state);
9006 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9007 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9008 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
9009 
9010 	/*
9011 	 * Ensure guest xcr0 is valid for loading
9012 	 */
9013 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9014 
9015 	vcpu->arch.cr0 |= X86_CR0_ET;
9016 }
9017 
9018 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
9019 {
9020 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
9021 
9022 	kvmclock_reset(vcpu);
9023 
9024 	kvm_x86_ops->vcpu_free(vcpu);
9025 	free_cpumask_var(wbinvd_dirty_mask);
9026 }
9027 
9028 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
9029 						unsigned int id)
9030 {
9031 	struct kvm_vcpu *vcpu;
9032 
9033 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9034 		printk_once(KERN_WARNING
9035 		"kvm: SMP vm created on host with unstable TSC; "
9036 		"guest TSC will not be reliable\n");
9037 
9038 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
9039 
9040 	return vcpu;
9041 }
9042 
9043 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
9044 {
9045 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9046 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9047 	kvm_vcpu_mtrr_init(vcpu);
9048 	vcpu_load(vcpu);
9049 	kvm_vcpu_reset(vcpu, false);
9050 	kvm_init_mmu(vcpu, false);
9051 	vcpu_put(vcpu);
9052 	return 0;
9053 }
9054 
9055 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9056 {
9057 	struct msr_data msr;
9058 	struct kvm *kvm = vcpu->kvm;
9059 
9060 	kvm_hv_vcpu_postcreate(vcpu);
9061 
9062 	if (mutex_lock_killable(&vcpu->mutex))
9063 		return;
9064 	vcpu_load(vcpu);
9065 	msr.data = 0x0;
9066 	msr.index = MSR_IA32_TSC;
9067 	msr.host_initiated = true;
9068 	kvm_write_tsc(vcpu, &msr);
9069 	vcpu_put(vcpu);
9070 
9071 	/* poll control enabled by default */
9072 	vcpu->arch.msr_kvm_poll_control = 1;
9073 
9074 	mutex_unlock(&vcpu->mutex);
9075 
9076 	if (!kvmclock_periodic_sync)
9077 		return;
9078 
9079 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9080 					KVMCLOCK_SYNC_PERIOD);
9081 }
9082 
9083 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9084 {
9085 	vcpu->arch.apf.msr_val = 0;
9086 
9087 	vcpu_load(vcpu);
9088 	kvm_mmu_unload(vcpu);
9089 	vcpu_put(vcpu);
9090 
9091 	kvm_x86_ops->vcpu_free(vcpu);
9092 }
9093 
9094 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9095 {
9096 	kvm_lapic_reset(vcpu, init_event);
9097 
9098 	vcpu->arch.hflags = 0;
9099 
9100 	vcpu->arch.smi_pending = 0;
9101 	vcpu->arch.smi_count = 0;
9102 	atomic_set(&vcpu->arch.nmi_queued, 0);
9103 	vcpu->arch.nmi_pending = 0;
9104 	vcpu->arch.nmi_injected = false;
9105 	kvm_clear_interrupt_queue(vcpu);
9106 	kvm_clear_exception_queue(vcpu);
9107 	vcpu->arch.exception.pending = false;
9108 
9109 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9110 	kvm_update_dr0123(vcpu);
9111 	vcpu->arch.dr6 = DR6_INIT;
9112 	kvm_update_dr6(vcpu);
9113 	vcpu->arch.dr7 = DR7_FIXED_1;
9114 	kvm_update_dr7(vcpu);
9115 
9116 	vcpu->arch.cr2 = 0;
9117 
9118 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9119 	vcpu->arch.apf.msr_val = 0;
9120 	vcpu->arch.st.msr_val = 0;
9121 
9122 	kvmclock_reset(vcpu);
9123 
9124 	kvm_clear_async_pf_completion_queue(vcpu);
9125 	kvm_async_pf_hash_reset(vcpu);
9126 	vcpu->arch.apf.halted = false;
9127 
9128 	if (kvm_mpx_supported()) {
9129 		void *mpx_state_buffer;
9130 
9131 		/*
9132 		 * To avoid have the INIT path from kvm_apic_has_events() that be
9133 		 * called with loaded FPU and does not let userspace fix the state.
9134 		 */
9135 		if (init_event)
9136 			kvm_put_guest_fpu(vcpu);
9137 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9138 					XFEATURE_BNDREGS);
9139 		if (mpx_state_buffer)
9140 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9141 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9142 					XFEATURE_BNDCSR);
9143 		if (mpx_state_buffer)
9144 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9145 		if (init_event)
9146 			kvm_load_guest_fpu(vcpu);
9147 	}
9148 
9149 	if (!init_event) {
9150 		kvm_pmu_reset(vcpu);
9151 		vcpu->arch.smbase = 0x30000;
9152 
9153 		vcpu->arch.msr_misc_features_enables = 0;
9154 
9155 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9156 	}
9157 
9158 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9159 	vcpu->arch.regs_avail = ~0;
9160 	vcpu->arch.regs_dirty = ~0;
9161 
9162 	vcpu->arch.ia32_xss = 0;
9163 
9164 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
9165 }
9166 
9167 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9168 {
9169 	struct kvm_segment cs;
9170 
9171 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9172 	cs.selector = vector << 8;
9173 	cs.base = vector << 12;
9174 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9175 	kvm_rip_write(vcpu, 0);
9176 }
9177 
9178 int kvm_arch_hardware_enable(void)
9179 {
9180 	struct kvm *kvm;
9181 	struct kvm_vcpu *vcpu;
9182 	int i;
9183 	int ret;
9184 	u64 local_tsc;
9185 	u64 max_tsc = 0;
9186 	bool stable, backwards_tsc = false;
9187 
9188 	kvm_shared_msr_cpu_online();
9189 	ret = kvm_x86_ops->hardware_enable();
9190 	if (ret != 0)
9191 		return ret;
9192 
9193 	local_tsc = rdtsc();
9194 	stable = !kvm_check_tsc_unstable();
9195 	list_for_each_entry(kvm, &vm_list, vm_list) {
9196 		kvm_for_each_vcpu(i, vcpu, kvm) {
9197 			if (!stable && vcpu->cpu == smp_processor_id())
9198 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9199 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9200 				backwards_tsc = true;
9201 				if (vcpu->arch.last_host_tsc > max_tsc)
9202 					max_tsc = vcpu->arch.last_host_tsc;
9203 			}
9204 		}
9205 	}
9206 
9207 	/*
9208 	 * Sometimes, even reliable TSCs go backwards.  This happens on
9209 	 * platforms that reset TSC during suspend or hibernate actions, but
9210 	 * maintain synchronization.  We must compensate.  Fortunately, we can
9211 	 * detect that condition here, which happens early in CPU bringup,
9212 	 * before any KVM threads can be running.  Unfortunately, we can't
9213 	 * bring the TSCs fully up to date with real time, as we aren't yet far
9214 	 * enough into CPU bringup that we know how much real time has actually
9215 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9216 	 * variables that haven't been updated yet.
9217 	 *
9218 	 * So we simply find the maximum observed TSC above, then record the
9219 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9220 	 * the adjustment will be applied.  Note that we accumulate
9221 	 * adjustments, in case multiple suspend cycles happen before some VCPU
9222 	 * gets a chance to run again.  In the event that no KVM threads get a
9223 	 * chance to run, we will miss the entire elapsed period, as we'll have
9224 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9225 	 * loose cycle time.  This isn't too big a deal, since the loss will be
9226 	 * uniform across all VCPUs (not to mention the scenario is extremely
9227 	 * unlikely). It is possible that a second hibernate recovery happens
9228 	 * much faster than a first, causing the observed TSC here to be
9229 	 * smaller; this would require additional padding adjustment, which is
9230 	 * why we set last_host_tsc to the local tsc observed here.
9231 	 *
9232 	 * N.B. - this code below runs only on platforms with reliable TSC,
9233 	 * as that is the only way backwards_tsc is set above.  Also note
9234 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9235 	 * have the same delta_cyc adjustment applied if backwards_tsc
9236 	 * is detected.  Note further, this adjustment is only done once,
9237 	 * as we reset last_host_tsc on all VCPUs to stop this from being
9238 	 * called multiple times (one for each physical CPU bringup).
9239 	 *
9240 	 * Platforms with unreliable TSCs don't have to deal with this, they
9241 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
9242 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
9243 	 * guarantee that they stay in perfect synchronization.
9244 	 */
9245 	if (backwards_tsc) {
9246 		u64 delta_cyc = max_tsc - local_tsc;
9247 		list_for_each_entry(kvm, &vm_list, vm_list) {
9248 			kvm->arch.backwards_tsc_observed = true;
9249 			kvm_for_each_vcpu(i, vcpu, kvm) {
9250 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
9251 				vcpu->arch.last_host_tsc = local_tsc;
9252 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9253 			}
9254 
9255 			/*
9256 			 * We have to disable TSC offset matching.. if you were
9257 			 * booting a VM while issuing an S4 host suspend....
9258 			 * you may have some problem.  Solving this issue is
9259 			 * left as an exercise to the reader.
9260 			 */
9261 			kvm->arch.last_tsc_nsec = 0;
9262 			kvm->arch.last_tsc_write = 0;
9263 		}
9264 
9265 	}
9266 	return 0;
9267 }
9268 
9269 void kvm_arch_hardware_disable(void)
9270 {
9271 	kvm_x86_ops->hardware_disable();
9272 	drop_user_return_notifiers();
9273 }
9274 
9275 int kvm_arch_hardware_setup(void)
9276 {
9277 	int r;
9278 
9279 	r = kvm_x86_ops->hardware_setup();
9280 	if (r != 0)
9281 		return r;
9282 
9283 	if (kvm_has_tsc_control) {
9284 		/*
9285 		 * Make sure the user can only configure tsc_khz values that
9286 		 * fit into a signed integer.
9287 		 * A min value is not calculated because it will always
9288 		 * be 1 on all machines.
9289 		 */
9290 		u64 max = min(0x7fffffffULL,
9291 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9292 		kvm_max_guest_tsc_khz = max;
9293 
9294 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9295 	}
9296 
9297 	kvm_init_msr_list();
9298 	return 0;
9299 }
9300 
9301 void kvm_arch_hardware_unsetup(void)
9302 {
9303 	kvm_x86_ops->hardware_unsetup();
9304 }
9305 
9306 int kvm_arch_check_processor_compat(void)
9307 {
9308 	return kvm_x86_ops->check_processor_compatibility();
9309 }
9310 
9311 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9312 {
9313 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9314 }
9315 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9316 
9317 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9318 {
9319 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9320 }
9321 
9322 struct static_key kvm_no_apic_vcpu __read_mostly;
9323 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9324 
9325 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9326 {
9327 	struct page *page;
9328 	int r;
9329 
9330 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9331 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9332 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9333 	else
9334 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9335 
9336 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9337 	if (!page) {
9338 		r = -ENOMEM;
9339 		goto fail;
9340 	}
9341 	vcpu->arch.pio_data = page_address(page);
9342 
9343 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
9344 
9345 	r = kvm_mmu_create(vcpu);
9346 	if (r < 0)
9347 		goto fail_free_pio_data;
9348 
9349 	if (irqchip_in_kernel(vcpu->kvm)) {
9350 		vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
9351 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9352 		if (r < 0)
9353 			goto fail_mmu_destroy;
9354 	} else
9355 		static_key_slow_inc(&kvm_no_apic_vcpu);
9356 
9357 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9358 				       GFP_KERNEL_ACCOUNT);
9359 	if (!vcpu->arch.mce_banks) {
9360 		r = -ENOMEM;
9361 		goto fail_free_lapic;
9362 	}
9363 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9364 
9365 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9366 				GFP_KERNEL_ACCOUNT)) {
9367 		r = -ENOMEM;
9368 		goto fail_free_mce_banks;
9369 	}
9370 
9371 	fx_init(vcpu);
9372 
9373 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9374 
9375 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9376 
9377 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9378 
9379 	kvm_async_pf_hash_reset(vcpu);
9380 	kvm_pmu_init(vcpu);
9381 
9382 	vcpu->arch.pending_external_vector = -1;
9383 	vcpu->arch.preempted_in_kernel = false;
9384 
9385 	kvm_hv_vcpu_init(vcpu);
9386 
9387 	return 0;
9388 
9389 fail_free_mce_banks:
9390 	kfree(vcpu->arch.mce_banks);
9391 fail_free_lapic:
9392 	kvm_free_lapic(vcpu);
9393 fail_mmu_destroy:
9394 	kvm_mmu_destroy(vcpu);
9395 fail_free_pio_data:
9396 	free_page((unsigned long)vcpu->arch.pio_data);
9397 fail:
9398 	return r;
9399 }
9400 
9401 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9402 {
9403 	int idx;
9404 
9405 	kvm_hv_vcpu_uninit(vcpu);
9406 	kvm_pmu_destroy(vcpu);
9407 	kfree(vcpu->arch.mce_banks);
9408 	kvm_free_lapic(vcpu);
9409 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9410 	kvm_mmu_destroy(vcpu);
9411 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9412 	free_page((unsigned long)vcpu->arch.pio_data);
9413 	if (!lapic_in_kernel(vcpu))
9414 		static_key_slow_dec(&kvm_no_apic_vcpu);
9415 }
9416 
9417 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9418 {
9419 	vcpu->arch.l1tf_flush_l1d = true;
9420 	kvm_x86_ops->sched_in(vcpu, cpu);
9421 }
9422 
9423 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9424 {
9425 	if (type)
9426 		return -EINVAL;
9427 
9428 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9429 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9430 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9431 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9432 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9433 
9434 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9435 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9436 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9437 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9438 		&kvm->arch.irq_sources_bitmap);
9439 
9440 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9441 	mutex_init(&kvm->arch.apic_map_lock);
9442 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9443 
9444 	kvm->arch.kvmclock_offset = -ktime_get_boottime_ns();
9445 	pvclock_update_vm_gtod_copy(kvm);
9446 
9447 	kvm->arch.guest_can_read_msr_platform_info = true;
9448 
9449 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9450 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9451 
9452 	kvm_hv_init_vm(kvm);
9453 	kvm_page_track_init(kvm);
9454 	kvm_mmu_init_vm(kvm);
9455 
9456 	return kvm_x86_ops->vm_init(kvm);
9457 }
9458 
9459 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9460 {
9461 	vcpu_load(vcpu);
9462 	kvm_mmu_unload(vcpu);
9463 	vcpu_put(vcpu);
9464 }
9465 
9466 static void kvm_free_vcpus(struct kvm *kvm)
9467 {
9468 	unsigned int i;
9469 	struct kvm_vcpu *vcpu;
9470 
9471 	/*
9472 	 * Unpin any mmu pages first.
9473 	 */
9474 	kvm_for_each_vcpu(i, vcpu, kvm) {
9475 		kvm_clear_async_pf_completion_queue(vcpu);
9476 		kvm_unload_vcpu_mmu(vcpu);
9477 	}
9478 	kvm_for_each_vcpu(i, vcpu, kvm)
9479 		kvm_arch_vcpu_free(vcpu);
9480 
9481 	mutex_lock(&kvm->lock);
9482 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9483 		kvm->vcpus[i] = NULL;
9484 
9485 	atomic_set(&kvm->online_vcpus, 0);
9486 	mutex_unlock(&kvm->lock);
9487 }
9488 
9489 void kvm_arch_sync_events(struct kvm *kvm)
9490 {
9491 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9492 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9493 	kvm_free_pit(kvm);
9494 }
9495 
9496 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9497 {
9498 	int i, r;
9499 	unsigned long hva;
9500 	struct kvm_memslots *slots = kvm_memslots(kvm);
9501 	struct kvm_memory_slot *slot, old;
9502 
9503 	/* Called with kvm->slots_lock held.  */
9504 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9505 		return -EINVAL;
9506 
9507 	slot = id_to_memslot(slots, id);
9508 	if (size) {
9509 		if (slot->npages)
9510 			return -EEXIST;
9511 
9512 		/*
9513 		 * MAP_SHARED to prevent internal slot pages from being moved
9514 		 * by fork()/COW.
9515 		 */
9516 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9517 			      MAP_SHARED | MAP_ANONYMOUS, 0);
9518 		if (IS_ERR((void *)hva))
9519 			return PTR_ERR((void *)hva);
9520 	} else {
9521 		if (!slot->npages)
9522 			return 0;
9523 
9524 		hva = 0;
9525 	}
9526 
9527 	old = *slot;
9528 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9529 		struct kvm_userspace_memory_region m;
9530 
9531 		m.slot = id | (i << 16);
9532 		m.flags = 0;
9533 		m.guest_phys_addr = gpa;
9534 		m.userspace_addr = hva;
9535 		m.memory_size = size;
9536 		r = __kvm_set_memory_region(kvm, &m);
9537 		if (r < 0)
9538 			return r;
9539 	}
9540 
9541 	if (!size)
9542 		vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9543 
9544 	return 0;
9545 }
9546 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9547 
9548 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9549 {
9550 	int r;
9551 
9552 	mutex_lock(&kvm->slots_lock);
9553 	r = __x86_set_memory_region(kvm, id, gpa, size);
9554 	mutex_unlock(&kvm->slots_lock);
9555 
9556 	return r;
9557 }
9558 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9559 
9560 void kvm_arch_destroy_vm(struct kvm *kvm)
9561 {
9562 	if (current->mm == kvm->mm) {
9563 		/*
9564 		 * Free memory regions allocated on behalf of userspace,
9565 		 * unless the the memory map has changed due to process exit
9566 		 * or fd copying.
9567 		 */
9568 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9569 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9570 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9571 	}
9572 	if (kvm_x86_ops->vm_destroy)
9573 		kvm_x86_ops->vm_destroy(kvm);
9574 	kvm_pic_destroy(kvm);
9575 	kvm_ioapic_destroy(kvm);
9576 	kvm_free_vcpus(kvm);
9577 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9578 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
9579 	kvm_mmu_uninit_vm(kvm);
9580 	kvm_page_track_cleanup(kvm);
9581 	kvm_hv_destroy_vm(kvm);
9582 }
9583 
9584 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9585 			   struct kvm_memory_slot *dont)
9586 {
9587 	int i;
9588 
9589 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9590 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9591 			kvfree(free->arch.rmap[i]);
9592 			free->arch.rmap[i] = NULL;
9593 		}
9594 		if (i == 0)
9595 			continue;
9596 
9597 		if (!dont || free->arch.lpage_info[i - 1] !=
9598 			     dont->arch.lpage_info[i - 1]) {
9599 			kvfree(free->arch.lpage_info[i - 1]);
9600 			free->arch.lpage_info[i - 1] = NULL;
9601 		}
9602 	}
9603 
9604 	kvm_page_track_free_memslot(free, dont);
9605 }
9606 
9607 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9608 			    unsigned long npages)
9609 {
9610 	int i;
9611 
9612 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9613 		struct kvm_lpage_info *linfo;
9614 		unsigned long ugfn;
9615 		int lpages;
9616 		int level = i + 1;
9617 
9618 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
9619 				      slot->base_gfn, level) + 1;
9620 
9621 		slot->arch.rmap[i] =
9622 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9623 				 GFP_KERNEL_ACCOUNT);
9624 		if (!slot->arch.rmap[i])
9625 			goto out_free;
9626 		if (i == 0)
9627 			continue;
9628 
9629 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9630 		if (!linfo)
9631 			goto out_free;
9632 
9633 		slot->arch.lpage_info[i - 1] = linfo;
9634 
9635 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9636 			linfo[0].disallow_lpage = 1;
9637 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9638 			linfo[lpages - 1].disallow_lpage = 1;
9639 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
9640 		/*
9641 		 * If the gfn and userspace address are not aligned wrt each
9642 		 * other, or if explicitly asked to, disable large page
9643 		 * support for this slot
9644 		 */
9645 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9646 		    !kvm_largepages_enabled()) {
9647 			unsigned long j;
9648 
9649 			for (j = 0; j < lpages; ++j)
9650 				linfo[j].disallow_lpage = 1;
9651 		}
9652 	}
9653 
9654 	if (kvm_page_track_create_memslot(slot, npages))
9655 		goto out_free;
9656 
9657 	return 0;
9658 
9659 out_free:
9660 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9661 		kvfree(slot->arch.rmap[i]);
9662 		slot->arch.rmap[i] = NULL;
9663 		if (i == 0)
9664 			continue;
9665 
9666 		kvfree(slot->arch.lpage_info[i - 1]);
9667 		slot->arch.lpage_info[i - 1] = NULL;
9668 	}
9669 	return -ENOMEM;
9670 }
9671 
9672 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9673 {
9674 	/*
9675 	 * memslots->generation has been incremented.
9676 	 * mmio generation may have reached its maximum value.
9677 	 */
9678 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9679 }
9680 
9681 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9682 				struct kvm_memory_slot *memslot,
9683 				const struct kvm_userspace_memory_region *mem,
9684 				enum kvm_mr_change change)
9685 {
9686 	return 0;
9687 }
9688 
9689 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9690 				     struct kvm_memory_slot *new)
9691 {
9692 	/* Still write protect RO slot */
9693 	if (new->flags & KVM_MEM_READONLY) {
9694 		kvm_mmu_slot_remove_write_access(kvm, new);
9695 		return;
9696 	}
9697 
9698 	/*
9699 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
9700 	 *
9701 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
9702 	 *
9703 	 *  - KVM_MR_CREATE with dirty logging is disabled
9704 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9705 	 *
9706 	 * The reason is, in case of PML, we need to set D-bit for any slots
9707 	 * with dirty logging disabled in order to eliminate unnecessary GPA
9708 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
9709 	 * guarantees leaving PML enabled during guest's lifetime won't have
9710 	 * any additional overhead from PML when guest is running with dirty
9711 	 * logging disabled for memory slots.
9712 	 *
9713 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9714 	 * to dirty logging mode.
9715 	 *
9716 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9717 	 *
9718 	 * In case of write protect:
9719 	 *
9720 	 * Write protect all pages for dirty logging.
9721 	 *
9722 	 * All the sptes including the large sptes which point to this
9723 	 * slot are set to readonly. We can not create any new large
9724 	 * spte on this slot until the end of the logging.
9725 	 *
9726 	 * See the comments in fast_page_fault().
9727 	 */
9728 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9729 		if (kvm_x86_ops->slot_enable_log_dirty)
9730 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9731 		else
9732 			kvm_mmu_slot_remove_write_access(kvm, new);
9733 	} else {
9734 		if (kvm_x86_ops->slot_disable_log_dirty)
9735 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9736 	}
9737 }
9738 
9739 void kvm_arch_commit_memory_region(struct kvm *kvm,
9740 				const struct kvm_userspace_memory_region *mem,
9741 				const struct kvm_memory_slot *old,
9742 				const struct kvm_memory_slot *new,
9743 				enum kvm_mr_change change)
9744 {
9745 	if (!kvm->arch.n_requested_mmu_pages)
9746 		kvm_mmu_change_mmu_pages(kvm,
9747 				kvm_mmu_calculate_default_mmu_pages(kvm));
9748 
9749 	/*
9750 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
9751 	 * sptes have to be split.  If live migration is successful, the guest
9752 	 * in the source machine will be destroyed and large sptes will be
9753 	 * created in the destination. However, if the guest continues to run
9754 	 * in the source machine (for example if live migration fails), small
9755 	 * sptes will remain around and cause bad performance.
9756 	 *
9757 	 * Scan sptes if dirty logging has been stopped, dropping those
9758 	 * which can be collapsed into a single large-page spte.  Later
9759 	 * page faults will create the large-page sptes.
9760 	 *
9761 	 * There is no need to do this in any of the following cases:
9762 	 * CREATE:	No dirty mappings will already exist.
9763 	 * MOVE/DELETE:	The old mappings will already have been cleaned up by
9764 	 *		kvm_arch_flush_shadow_memslot()
9765 	 */
9766 	if (change == KVM_MR_FLAGS_ONLY &&
9767 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9768 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9769 		kvm_mmu_zap_collapsible_sptes(kvm, new);
9770 
9771 	/*
9772 	 * Set up write protection and/or dirty logging for the new slot.
9773 	 *
9774 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9775 	 * been zapped so no dirty logging staff is needed for old slot. For
9776 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9777 	 * new and it's also covered when dealing with the new slot.
9778 	 *
9779 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
9780 	 */
9781 	if (change != KVM_MR_DELETE)
9782 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9783 }
9784 
9785 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9786 {
9787 	kvm_mmu_zap_all(kvm);
9788 }
9789 
9790 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9791 				   struct kvm_memory_slot *slot)
9792 {
9793 	kvm_page_track_flush_slot(kvm, slot);
9794 }
9795 
9796 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9797 {
9798 	return (is_guest_mode(vcpu) &&
9799 			kvm_x86_ops->guest_apic_has_interrupt &&
9800 			kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9801 }
9802 
9803 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9804 {
9805 	if (!list_empty_careful(&vcpu->async_pf.done))
9806 		return true;
9807 
9808 	if (kvm_apic_has_events(vcpu))
9809 		return true;
9810 
9811 	if (vcpu->arch.pv.pv_unhalted)
9812 		return true;
9813 
9814 	if (vcpu->arch.exception.pending)
9815 		return true;
9816 
9817 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9818 	    (vcpu->arch.nmi_pending &&
9819 	     kvm_x86_ops->nmi_allowed(vcpu)))
9820 		return true;
9821 
9822 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9823 	    (vcpu->arch.smi_pending && !is_smm(vcpu)))
9824 		return true;
9825 
9826 	if (kvm_arch_interrupt_allowed(vcpu) &&
9827 	    (kvm_cpu_has_interrupt(vcpu) ||
9828 	    kvm_guest_apic_has_interrupt(vcpu)))
9829 		return true;
9830 
9831 	if (kvm_hv_has_stimer_pending(vcpu))
9832 		return true;
9833 
9834 	return false;
9835 }
9836 
9837 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9838 {
9839 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9840 }
9841 
9842 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
9843 {
9844 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
9845 		return true;
9846 
9847 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9848 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
9849 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
9850 		return true;
9851 
9852 	if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu))
9853 		return true;
9854 
9855 	return false;
9856 }
9857 
9858 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9859 {
9860 	return vcpu->arch.preempted_in_kernel;
9861 }
9862 
9863 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9864 {
9865 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9866 }
9867 
9868 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9869 {
9870 	return kvm_x86_ops->interrupt_allowed(vcpu);
9871 }
9872 
9873 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9874 {
9875 	if (is_64_bit_mode(vcpu))
9876 		return kvm_rip_read(vcpu);
9877 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9878 		     kvm_rip_read(vcpu));
9879 }
9880 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9881 
9882 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9883 {
9884 	return kvm_get_linear_rip(vcpu) == linear_rip;
9885 }
9886 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9887 
9888 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9889 {
9890 	unsigned long rflags;
9891 
9892 	rflags = kvm_x86_ops->get_rflags(vcpu);
9893 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9894 		rflags &= ~X86_EFLAGS_TF;
9895 	return rflags;
9896 }
9897 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9898 
9899 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9900 {
9901 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9902 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9903 		rflags |= X86_EFLAGS_TF;
9904 	kvm_x86_ops->set_rflags(vcpu, rflags);
9905 }
9906 
9907 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9908 {
9909 	__kvm_set_rflags(vcpu, rflags);
9910 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9911 }
9912 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9913 
9914 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9915 {
9916 	int r;
9917 
9918 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9919 	      work->wakeup_all)
9920 		return;
9921 
9922 	r = kvm_mmu_reload(vcpu);
9923 	if (unlikely(r))
9924 		return;
9925 
9926 	if (!vcpu->arch.mmu->direct_map &&
9927 	      work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9928 		return;
9929 
9930 	vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9931 }
9932 
9933 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9934 {
9935 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9936 }
9937 
9938 static inline u32 kvm_async_pf_next_probe(u32 key)
9939 {
9940 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9941 }
9942 
9943 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9944 {
9945 	u32 key = kvm_async_pf_hash_fn(gfn);
9946 
9947 	while (vcpu->arch.apf.gfns[key] != ~0)
9948 		key = kvm_async_pf_next_probe(key);
9949 
9950 	vcpu->arch.apf.gfns[key] = gfn;
9951 }
9952 
9953 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9954 {
9955 	int i;
9956 	u32 key = kvm_async_pf_hash_fn(gfn);
9957 
9958 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9959 		     (vcpu->arch.apf.gfns[key] != gfn &&
9960 		      vcpu->arch.apf.gfns[key] != ~0); i++)
9961 		key = kvm_async_pf_next_probe(key);
9962 
9963 	return key;
9964 }
9965 
9966 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9967 {
9968 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9969 }
9970 
9971 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9972 {
9973 	u32 i, j, k;
9974 
9975 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9976 	while (true) {
9977 		vcpu->arch.apf.gfns[i] = ~0;
9978 		do {
9979 			j = kvm_async_pf_next_probe(j);
9980 			if (vcpu->arch.apf.gfns[j] == ~0)
9981 				return;
9982 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9983 			/*
9984 			 * k lies cyclically in ]i,j]
9985 			 * |    i.k.j |
9986 			 * |....j i.k.| or  |.k..j i...|
9987 			 */
9988 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9989 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9990 		i = j;
9991 	}
9992 }
9993 
9994 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9995 {
9996 
9997 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9998 				      sizeof(val));
9999 }
10000 
10001 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
10002 {
10003 
10004 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
10005 				      sizeof(u32));
10006 }
10007 
10008 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10009 {
10010 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10011 		return false;
10012 
10013 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
10014 	    (vcpu->arch.apf.send_user_only &&
10015 	     kvm_x86_ops->get_cpl(vcpu) == 0))
10016 		return false;
10017 
10018 	return true;
10019 }
10020 
10021 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10022 {
10023 	if (unlikely(!lapic_in_kernel(vcpu) ||
10024 		     kvm_event_needs_reinjection(vcpu) ||
10025 		     vcpu->arch.exception.pending))
10026 		return false;
10027 
10028 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10029 		return false;
10030 
10031 	/*
10032 	 * If interrupts are off we cannot even use an artificial
10033 	 * halt state.
10034 	 */
10035 	return kvm_x86_ops->interrupt_allowed(vcpu);
10036 }
10037 
10038 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10039 				     struct kvm_async_pf *work)
10040 {
10041 	struct x86_exception fault;
10042 
10043 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
10044 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10045 
10046 	if (kvm_can_deliver_async_pf(vcpu) &&
10047 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
10048 		fault.vector = PF_VECTOR;
10049 		fault.error_code_valid = true;
10050 		fault.error_code = 0;
10051 		fault.nested_page_fault = false;
10052 		fault.address = work->arch.token;
10053 		fault.async_page_fault = true;
10054 		kvm_inject_page_fault(vcpu, &fault);
10055 	} else {
10056 		/*
10057 		 * It is not possible to deliver a paravirtualized asynchronous
10058 		 * page fault, but putting the guest in an artificial halt state
10059 		 * can be beneficial nevertheless: if an interrupt arrives, we
10060 		 * can deliver it timely and perhaps the guest will schedule
10061 		 * another process.  When the instruction that triggered a page
10062 		 * fault is retried, hopefully the page will be ready in the host.
10063 		 */
10064 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10065 	}
10066 }
10067 
10068 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10069 				 struct kvm_async_pf *work)
10070 {
10071 	struct x86_exception fault;
10072 	u32 val;
10073 
10074 	if (work->wakeup_all)
10075 		work->arch.token = ~0; /* broadcast wakeup */
10076 	else
10077 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10078 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
10079 
10080 	if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
10081 	    !apf_get_user(vcpu, &val)) {
10082 		if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
10083 		    vcpu->arch.exception.pending &&
10084 		    vcpu->arch.exception.nr == PF_VECTOR &&
10085 		    !apf_put_user(vcpu, 0)) {
10086 			vcpu->arch.exception.injected = false;
10087 			vcpu->arch.exception.pending = false;
10088 			vcpu->arch.exception.nr = 0;
10089 			vcpu->arch.exception.has_error_code = false;
10090 			vcpu->arch.exception.error_code = 0;
10091 			vcpu->arch.exception.has_payload = false;
10092 			vcpu->arch.exception.payload = 0;
10093 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
10094 			fault.vector = PF_VECTOR;
10095 			fault.error_code_valid = true;
10096 			fault.error_code = 0;
10097 			fault.nested_page_fault = false;
10098 			fault.address = work->arch.token;
10099 			fault.async_page_fault = true;
10100 			kvm_inject_page_fault(vcpu, &fault);
10101 		}
10102 	}
10103 	vcpu->arch.apf.halted = false;
10104 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10105 }
10106 
10107 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
10108 {
10109 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
10110 		return true;
10111 	else
10112 		return kvm_can_do_async_pf(vcpu);
10113 }
10114 
10115 void kvm_arch_start_assignment(struct kvm *kvm)
10116 {
10117 	atomic_inc(&kvm->arch.assigned_device_count);
10118 }
10119 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10120 
10121 void kvm_arch_end_assignment(struct kvm *kvm)
10122 {
10123 	atomic_dec(&kvm->arch.assigned_device_count);
10124 }
10125 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10126 
10127 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10128 {
10129 	return atomic_read(&kvm->arch.assigned_device_count);
10130 }
10131 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10132 
10133 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10134 {
10135 	atomic_inc(&kvm->arch.noncoherent_dma_count);
10136 }
10137 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10138 
10139 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10140 {
10141 	atomic_dec(&kvm->arch.noncoherent_dma_count);
10142 }
10143 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10144 
10145 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10146 {
10147 	return atomic_read(&kvm->arch.noncoherent_dma_count);
10148 }
10149 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10150 
10151 bool kvm_arch_has_irq_bypass(void)
10152 {
10153 	return true;
10154 }
10155 
10156 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10157 				      struct irq_bypass_producer *prod)
10158 {
10159 	struct kvm_kernel_irqfd *irqfd =
10160 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10161 
10162 	irqfd->producer = prod;
10163 
10164 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
10165 					   prod->irq, irqfd->gsi, 1);
10166 }
10167 
10168 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10169 				      struct irq_bypass_producer *prod)
10170 {
10171 	int ret;
10172 	struct kvm_kernel_irqfd *irqfd =
10173 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10174 
10175 	WARN_ON(irqfd->producer != prod);
10176 	irqfd->producer = NULL;
10177 
10178 	/*
10179 	 * When producer of consumer is unregistered, we change back to
10180 	 * remapped mode, so we can re-use the current implementation
10181 	 * when the irq is masked/disabled or the consumer side (KVM
10182 	 * int this case doesn't want to receive the interrupts.
10183 	*/
10184 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10185 	if (ret)
10186 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10187 		       " fails: %d\n", irqfd->consumer.token, ret);
10188 }
10189 
10190 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10191 				   uint32_t guest_irq, bool set)
10192 {
10193 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
10194 }
10195 
10196 bool kvm_vector_hashing_enabled(void)
10197 {
10198 	return vector_hashing;
10199 }
10200 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
10201 
10202 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10203 {
10204 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10205 }
10206 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10207 
10208 
10209 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10210 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10211 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10212 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10213 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10214 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10215 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10216 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10217 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10218 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10219 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10220 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10221 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10222 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10223 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10224 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10225 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10226 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10227 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10228 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
10229