xref: /linux/arch/x86/kvm/x86.c (revision d642ef71)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36 
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65 
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68 
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88 
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91 
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94 
95 struct kvm_caps kvm_caps __read_mostly = {
96 	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
97 };
98 EXPORT_SYMBOL_GPL(kvm_caps);
99 
100 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
101 
102 #define emul_to_vcpu(ctxt) \
103 	((struct kvm_vcpu *)(ctxt)->vcpu)
104 
105 /* EFER defaults:
106  * - enable syscall per default because its emulated by KVM
107  * - enable LME and LMA per default on 64 bit KVM
108  */
109 #ifdef CONFIG_X86_64
110 static
111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
112 #else
113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
114 #endif
115 
116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
117 
118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
119 
120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
121 
122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
123                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
124 
125 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
126 static void process_nmi(struct kvm_vcpu *vcpu);
127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
128 static void store_regs(struct kvm_vcpu *vcpu);
129 static int sync_regs(struct kvm_vcpu *vcpu);
130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
131 
132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
134 
135 static DEFINE_MUTEX(vendor_module_lock);
136 struct kvm_x86_ops kvm_x86_ops __read_mostly;
137 
138 #define KVM_X86_OP(func)					     \
139 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
140 				*(((struct kvm_x86_ops *)0)->func));
141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
143 #include <asm/kvm-x86-ops.h>
144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
146 
147 static bool __read_mostly ignore_msrs = 0;
148 module_param(ignore_msrs, bool, 0644);
149 
150 bool __read_mostly report_ignored_msrs = true;
151 module_param(report_ignored_msrs, bool, 0644);
152 EXPORT_SYMBOL_GPL(report_ignored_msrs);
153 
154 unsigned int min_timer_period_us = 200;
155 module_param(min_timer_period_us, uint, 0644);
156 
157 static bool __read_mostly kvmclock_periodic_sync = true;
158 module_param(kvmclock_periodic_sync, bool, 0444);
159 
160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
161 static u32 __read_mostly tsc_tolerance_ppm = 250;
162 module_param(tsc_tolerance_ppm, uint, 0644);
163 
164 /*
165  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
166  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
167  * advancement entirely.  Any other value is used as-is and disables adaptive
168  * tuning, i.e. allows privileged userspace to set an exact advancement time.
169  */
170 static int __read_mostly lapic_timer_advance_ns = -1;
171 module_param(lapic_timer_advance_ns, int, 0644);
172 
173 static bool __read_mostly vector_hashing = true;
174 module_param(vector_hashing, bool, 0444);
175 
176 bool __read_mostly enable_vmware_backdoor = false;
177 module_param(enable_vmware_backdoor, bool, 0444);
178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
179 
180 /*
181  * Flags to manipulate forced emulation behavior (any non-zero value will
182  * enable forced emulation).
183  */
184 #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
185 static int __read_mostly force_emulation_prefix;
186 module_param(force_emulation_prefix, int, 0644);
187 
188 int __read_mostly pi_inject_timer = -1;
189 module_param(pi_inject_timer, bint, 0644);
190 
191 /* Enable/disable PMU virtualization */
192 bool __read_mostly enable_pmu = true;
193 EXPORT_SYMBOL_GPL(enable_pmu);
194 module_param(enable_pmu, bool, 0444);
195 
196 bool __read_mostly eager_page_split = true;
197 module_param(eager_page_split, bool, 0644);
198 
199 /* Enable/disable SMT_RSB bug mitigation */
200 static bool __read_mostly mitigate_smt_rsb;
201 module_param(mitigate_smt_rsb, bool, 0444);
202 
203 /*
204  * Restoring the host value for MSRs that are only consumed when running in
205  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
206  * returns to userspace, i.e. the kernel can run with the guest's value.
207  */
208 #define KVM_MAX_NR_USER_RETURN_MSRS 16
209 
210 struct kvm_user_return_msrs {
211 	struct user_return_notifier urn;
212 	bool registered;
213 	struct kvm_user_return_msr_values {
214 		u64 host;
215 		u64 curr;
216 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
217 };
218 
219 u32 __read_mostly kvm_nr_uret_msrs;
220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
222 static struct kvm_user_return_msrs __percpu *user_return_msrs;
223 
224 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
225 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
226 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
227 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
228 
229 u64 __read_mostly host_efer;
230 EXPORT_SYMBOL_GPL(host_efer);
231 
232 bool __read_mostly allow_smaller_maxphyaddr = 0;
233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
234 
235 bool __read_mostly enable_apicv = true;
236 EXPORT_SYMBOL_GPL(enable_apicv);
237 
238 u64 __read_mostly host_xss;
239 EXPORT_SYMBOL_GPL(host_xss);
240 
241 u64 __read_mostly host_arch_capabilities;
242 EXPORT_SYMBOL_GPL(host_arch_capabilities);
243 
244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
245 	KVM_GENERIC_VM_STATS(),
246 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
247 	STATS_DESC_COUNTER(VM, mmu_pte_write),
248 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
249 	STATS_DESC_COUNTER(VM, mmu_flooded),
250 	STATS_DESC_COUNTER(VM, mmu_recycled),
251 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
252 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
253 	STATS_DESC_ICOUNTER(VM, pages_4k),
254 	STATS_DESC_ICOUNTER(VM, pages_2m),
255 	STATS_DESC_ICOUNTER(VM, pages_1g),
256 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
257 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
258 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
259 };
260 
261 const struct kvm_stats_header kvm_vm_stats_header = {
262 	.name_size = KVM_STATS_NAME_SIZE,
263 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
264 	.id_offset = sizeof(struct kvm_stats_header),
265 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
266 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
267 		       sizeof(kvm_vm_stats_desc),
268 };
269 
270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
271 	KVM_GENERIC_VCPU_STATS(),
272 	STATS_DESC_COUNTER(VCPU, pf_taken),
273 	STATS_DESC_COUNTER(VCPU, pf_fixed),
274 	STATS_DESC_COUNTER(VCPU, pf_emulate),
275 	STATS_DESC_COUNTER(VCPU, pf_spurious),
276 	STATS_DESC_COUNTER(VCPU, pf_fast),
277 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
278 	STATS_DESC_COUNTER(VCPU, pf_guest),
279 	STATS_DESC_COUNTER(VCPU, tlb_flush),
280 	STATS_DESC_COUNTER(VCPU, invlpg),
281 	STATS_DESC_COUNTER(VCPU, exits),
282 	STATS_DESC_COUNTER(VCPU, io_exits),
283 	STATS_DESC_COUNTER(VCPU, mmio_exits),
284 	STATS_DESC_COUNTER(VCPU, signal_exits),
285 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
286 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
287 	STATS_DESC_COUNTER(VCPU, l1d_flush),
288 	STATS_DESC_COUNTER(VCPU, halt_exits),
289 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
290 	STATS_DESC_COUNTER(VCPU, irq_exits),
291 	STATS_DESC_COUNTER(VCPU, host_state_reload),
292 	STATS_DESC_COUNTER(VCPU, fpu_reload),
293 	STATS_DESC_COUNTER(VCPU, insn_emulation),
294 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
295 	STATS_DESC_COUNTER(VCPU, hypercalls),
296 	STATS_DESC_COUNTER(VCPU, irq_injections),
297 	STATS_DESC_COUNTER(VCPU, nmi_injections),
298 	STATS_DESC_COUNTER(VCPU, req_event),
299 	STATS_DESC_COUNTER(VCPU, nested_run),
300 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
301 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
302 	STATS_DESC_COUNTER(VCPU, preemption_reported),
303 	STATS_DESC_COUNTER(VCPU, preemption_other),
304 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
305 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
306 };
307 
308 const struct kvm_stats_header kvm_vcpu_stats_header = {
309 	.name_size = KVM_STATS_NAME_SIZE,
310 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
311 	.id_offset = sizeof(struct kvm_stats_header),
312 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
313 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
314 		       sizeof(kvm_vcpu_stats_desc),
315 };
316 
317 u64 __read_mostly host_xcr0;
318 
319 static struct kmem_cache *x86_emulator_cache;
320 
321 /*
322  * When called, it means the previous get/set msr reached an invalid msr.
323  * Return true if we want to ignore/silent this failed msr access.
324  */
325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
326 {
327 	const char *op = write ? "wrmsr" : "rdmsr";
328 
329 	if (ignore_msrs) {
330 		if (report_ignored_msrs)
331 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
332 				      op, msr, data);
333 		/* Mask the error */
334 		return true;
335 	} else {
336 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
337 				      op, msr, data);
338 		return false;
339 	}
340 }
341 
342 static struct kmem_cache *kvm_alloc_emulator_cache(void)
343 {
344 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
345 	unsigned int size = sizeof(struct x86_emulate_ctxt);
346 
347 	return kmem_cache_create_usercopy("x86_emulator", size,
348 					  __alignof__(struct x86_emulate_ctxt),
349 					  SLAB_ACCOUNT, useroffset,
350 					  size - useroffset, NULL);
351 }
352 
353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
354 
355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
356 {
357 	int i;
358 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
359 		vcpu->arch.apf.gfns[i] = ~0;
360 }
361 
362 static void kvm_on_user_return(struct user_return_notifier *urn)
363 {
364 	unsigned slot;
365 	struct kvm_user_return_msrs *msrs
366 		= container_of(urn, struct kvm_user_return_msrs, urn);
367 	struct kvm_user_return_msr_values *values;
368 	unsigned long flags;
369 
370 	/*
371 	 * Disabling irqs at this point since the following code could be
372 	 * interrupted and executed through kvm_arch_hardware_disable()
373 	 */
374 	local_irq_save(flags);
375 	if (msrs->registered) {
376 		msrs->registered = false;
377 		user_return_notifier_unregister(urn);
378 	}
379 	local_irq_restore(flags);
380 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
381 		values = &msrs->values[slot];
382 		if (values->host != values->curr) {
383 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
384 			values->curr = values->host;
385 		}
386 	}
387 }
388 
389 static int kvm_probe_user_return_msr(u32 msr)
390 {
391 	u64 val;
392 	int ret;
393 
394 	preempt_disable();
395 	ret = rdmsrl_safe(msr, &val);
396 	if (ret)
397 		goto out;
398 	ret = wrmsrl_safe(msr, val);
399 out:
400 	preempt_enable();
401 	return ret;
402 }
403 
404 int kvm_add_user_return_msr(u32 msr)
405 {
406 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
407 
408 	if (kvm_probe_user_return_msr(msr))
409 		return -1;
410 
411 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
412 	return kvm_nr_uret_msrs++;
413 }
414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
415 
416 int kvm_find_user_return_msr(u32 msr)
417 {
418 	int i;
419 
420 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421 		if (kvm_uret_msrs_list[i] == msr)
422 			return i;
423 	}
424 	return -1;
425 }
426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
427 
428 static void kvm_user_return_msr_cpu_online(void)
429 {
430 	unsigned int cpu = smp_processor_id();
431 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
432 	u64 value;
433 	int i;
434 
435 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
436 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
437 		msrs->values[i].host = value;
438 		msrs->values[i].curr = value;
439 	}
440 }
441 
442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
443 {
444 	unsigned int cpu = smp_processor_id();
445 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
446 	int err;
447 
448 	value = (value & mask) | (msrs->values[slot].host & ~mask);
449 	if (value == msrs->values[slot].curr)
450 		return 0;
451 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
452 	if (err)
453 		return 1;
454 
455 	msrs->values[slot].curr = value;
456 	if (!msrs->registered) {
457 		msrs->urn.on_user_return = kvm_on_user_return;
458 		user_return_notifier_register(&msrs->urn);
459 		msrs->registered = true;
460 	}
461 	return 0;
462 }
463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
464 
465 static void drop_user_return_notifiers(void)
466 {
467 	unsigned int cpu = smp_processor_id();
468 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
469 
470 	if (msrs->registered)
471 		kvm_on_user_return(&msrs->urn);
472 }
473 
474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
475 {
476 	return vcpu->arch.apic_base;
477 }
478 
479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
480 {
481 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
482 }
483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
484 
485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
486 {
487 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
488 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
489 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
490 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
491 
492 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
493 		return 1;
494 	if (!msr_info->host_initiated) {
495 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
496 			return 1;
497 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
498 			return 1;
499 	}
500 
501 	kvm_lapic_set_base(vcpu, msr_info->data);
502 	kvm_recalculate_apic_map(vcpu->kvm);
503 	return 0;
504 }
505 
506 /*
507  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
508  *
509  * Hardware virtualization extension instructions may fault if a reboot turns
510  * off virtualization while processes are running.  Usually after catching the
511  * fault we just panic; during reboot instead the instruction is ignored.
512  */
513 noinstr void kvm_spurious_fault(void)
514 {
515 	/* Fault while not rebooting.  We want the trace. */
516 	BUG_ON(!kvm_rebooting);
517 }
518 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
519 
520 #define EXCPT_BENIGN		0
521 #define EXCPT_CONTRIBUTORY	1
522 #define EXCPT_PF		2
523 
524 static int exception_class(int vector)
525 {
526 	switch (vector) {
527 	case PF_VECTOR:
528 		return EXCPT_PF;
529 	case DE_VECTOR:
530 	case TS_VECTOR:
531 	case NP_VECTOR:
532 	case SS_VECTOR:
533 	case GP_VECTOR:
534 		return EXCPT_CONTRIBUTORY;
535 	default:
536 		break;
537 	}
538 	return EXCPT_BENIGN;
539 }
540 
541 #define EXCPT_FAULT		0
542 #define EXCPT_TRAP		1
543 #define EXCPT_ABORT		2
544 #define EXCPT_INTERRUPT		3
545 #define EXCPT_DB		4
546 
547 static int exception_type(int vector)
548 {
549 	unsigned int mask;
550 
551 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
552 		return EXCPT_INTERRUPT;
553 
554 	mask = 1 << vector;
555 
556 	/*
557 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
558 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
559 	 */
560 	if (mask & (1 << DB_VECTOR))
561 		return EXCPT_DB;
562 
563 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
564 		return EXCPT_TRAP;
565 
566 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
567 		return EXCPT_ABORT;
568 
569 	/* Reserved exceptions will result in fault */
570 	return EXCPT_FAULT;
571 }
572 
573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
574 				   struct kvm_queued_exception *ex)
575 {
576 	if (!ex->has_payload)
577 		return;
578 
579 	switch (ex->vector) {
580 	case DB_VECTOR:
581 		/*
582 		 * "Certain debug exceptions may clear bit 0-3.  The
583 		 * remaining contents of the DR6 register are never
584 		 * cleared by the processor".
585 		 */
586 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
587 		/*
588 		 * In order to reflect the #DB exception payload in guest
589 		 * dr6, three components need to be considered: active low
590 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
591 		 * DR6_BS and DR6_BT)
592 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
593 		 * In the target guest dr6:
594 		 * FIXED_1 bits should always be set.
595 		 * Active low bits should be cleared if 1-setting in payload.
596 		 * Active high bits should be set if 1-setting in payload.
597 		 *
598 		 * Note, the payload is compatible with the pending debug
599 		 * exceptions/exit qualification under VMX, that active_low bits
600 		 * are active high in payload.
601 		 * So they need to be flipped for DR6.
602 		 */
603 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
604 		vcpu->arch.dr6 |= ex->payload;
605 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
606 
607 		/*
608 		 * The #DB payload is defined as compatible with the 'pending
609 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
610 		 * defined in the 'pending debug exceptions' field (enabled
611 		 * breakpoint), it is reserved and must be zero in DR6.
612 		 */
613 		vcpu->arch.dr6 &= ~BIT(12);
614 		break;
615 	case PF_VECTOR:
616 		vcpu->arch.cr2 = ex->payload;
617 		break;
618 	}
619 
620 	ex->has_payload = false;
621 	ex->payload = 0;
622 }
623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
624 
625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
626 				       bool has_error_code, u32 error_code,
627 				       bool has_payload, unsigned long payload)
628 {
629 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
630 
631 	ex->vector = vector;
632 	ex->injected = false;
633 	ex->pending = true;
634 	ex->has_error_code = has_error_code;
635 	ex->error_code = error_code;
636 	ex->has_payload = has_payload;
637 	ex->payload = payload;
638 }
639 
640 /* Forcibly leave the nested mode in cases like a vCPU reset */
641 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
642 {
643 	kvm_x86_ops.nested_ops->leave_nested(vcpu);
644 }
645 
646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
647 		unsigned nr, bool has_error, u32 error_code,
648 	        bool has_payload, unsigned long payload, bool reinject)
649 {
650 	u32 prev_nr;
651 	int class1, class2;
652 
653 	kvm_make_request(KVM_REQ_EVENT, vcpu);
654 
655 	/*
656 	 * If the exception is destined for L2 and isn't being reinjected,
657 	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
658 	 * previously injected exception is not checked because it was checked
659 	 * when it was original queued, and re-checking is incorrect if _L1_
660 	 * injected the exception, in which case it's exempt from interception.
661 	 */
662 	if (!reinject && is_guest_mode(vcpu) &&
663 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
664 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
665 					   has_payload, payload);
666 		return;
667 	}
668 
669 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
670 	queue:
671 		if (reinject) {
672 			/*
673 			 * On VM-Entry, an exception can be pending if and only
674 			 * if event injection was blocked by nested_run_pending.
675 			 * In that case, however, vcpu_enter_guest() requests an
676 			 * immediate exit, and the guest shouldn't proceed far
677 			 * enough to need reinjection.
678 			 */
679 			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
680 			vcpu->arch.exception.injected = true;
681 			if (WARN_ON_ONCE(has_payload)) {
682 				/*
683 				 * A reinjected event has already
684 				 * delivered its payload.
685 				 */
686 				has_payload = false;
687 				payload = 0;
688 			}
689 		} else {
690 			vcpu->arch.exception.pending = true;
691 			vcpu->arch.exception.injected = false;
692 		}
693 		vcpu->arch.exception.has_error_code = has_error;
694 		vcpu->arch.exception.vector = nr;
695 		vcpu->arch.exception.error_code = error_code;
696 		vcpu->arch.exception.has_payload = has_payload;
697 		vcpu->arch.exception.payload = payload;
698 		if (!is_guest_mode(vcpu))
699 			kvm_deliver_exception_payload(vcpu,
700 						      &vcpu->arch.exception);
701 		return;
702 	}
703 
704 	/* to check exception */
705 	prev_nr = vcpu->arch.exception.vector;
706 	if (prev_nr == DF_VECTOR) {
707 		/* triple fault -> shutdown */
708 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
709 		return;
710 	}
711 	class1 = exception_class(prev_nr);
712 	class2 = exception_class(nr);
713 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
714 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
715 		/*
716 		 * Synthesize #DF.  Clear the previously injected or pending
717 		 * exception so as not to incorrectly trigger shutdown.
718 		 */
719 		vcpu->arch.exception.injected = false;
720 		vcpu->arch.exception.pending = false;
721 
722 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
723 	} else {
724 		/* replace previous exception with a new one in a hope
725 		   that instruction re-execution will regenerate lost
726 		   exception */
727 		goto queue;
728 	}
729 }
730 
731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
732 {
733 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
734 }
735 EXPORT_SYMBOL_GPL(kvm_queue_exception);
736 
737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
738 {
739 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
740 }
741 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
742 
743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
744 			   unsigned long payload)
745 {
746 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
747 }
748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
749 
750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
751 				    u32 error_code, unsigned long payload)
752 {
753 	kvm_multiple_exception(vcpu, nr, true, error_code,
754 			       true, payload, false);
755 }
756 
757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
758 {
759 	if (err)
760 		kvm_inject_gp(vcpu, 0);
761 	else
762 		return kvm_skip_emulated_instruction(vcpu);
763 
764 	return 1;
765 }
766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
767 
768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
769 {
770 	if (err) {
771 		kvm_inject_gp(vcpu, 0);
772 		return 1;
773 	}
774 
775 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
776 				       EMULTYPE_COMPLETE_USER_EXIT);
777 }
778 
779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
780 {
781 	++vcpu->stat.pf_guest;
782 
783 	/*
784 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
785 	 * whether or not L1 wants to intercept "regular" #PF.
786 	 */
787 	if (is_guest_mode(vcpu) && fault->async_page_fault)
788 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
789 					   true, fault->error_code,
790 					   true, fault->address);
791 	else
792 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
793 					fault->address);
794 }
795 
796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
797 				    struct x86_exception *fault)
798 {
799 	struct kvm_mmu *fault_mmu;
800 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
801 
802 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
803 					       vcpu->arch.walk_mmu;
804 
805 	/*
806 	 * Invalidate the TLB entry for the faulting address, if it exists,
807 	 * else the access will fault indefinitely (and to emulate hardware).
808 	 */
809 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
810 	    !(fault->error_code & PFERR_RSVD_MASK))
811 		kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
812 					KVM_MMU_ROOT_CURRENT);
813 
814 	fault_mmu->inject_page_fault(vcpu, fault);
815 }
816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
817 
818 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
819 {
820 	atomic_inc(&vcpu->arch.nmi_queued);
821 	kvm_make_request(KVM_REQ_NMI, vcpu);
822 }
823 
824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
825 {
826 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
827 }
828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
829 
830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
831 {
832 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
833 }
834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
835 
836 /*
837  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
838  * a #GP and return false.
839  */
840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
841 {
842 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
843 		return true;
844 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
845 	return false;
846 }
847 
848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
849 {
850 	if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
851 		return true;
852 
853 	kvm_queue_exception(vcpu, UD_VECTOR);
854 	return false;
855 }
856 EXPORT_SYMBOL_GPL(kvm_require_dr);
857 
858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
859 {
860 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
861 }
862 
863 /*
864  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
865  */
866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
867 {
868 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
869 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
870 	gpa_t real_gpa;
871 	int i;
872 	int ret;
873 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
874 
875 	/*
876 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
877 	 * to an L1 GPA.
878 	 */
879 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
880 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
881 	if (real_gpa == INVALID_GPA)
882 		return 0;
883 
884 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
885 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
886 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
887 	if (ret < 0)
888 		return 0;
889 
890 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
891 		if ((pdpte[i] & PT_PRESENT_MASK) &&
892 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
893 			return 0;
894 		}
895 	}
896 
897 	/*
898 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
899 	 * Shadow page roots need to be reconstructed instead.
900 	 */
901 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
902 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
903 
904 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
905 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
906 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
907 	vcpu->arch.pdptrs_from_userspace = false;
908 
909 	return 1;
910 }
911 EXPORT_SYMBOL_GPL(load_pdptrs);
912 
913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
914 {
915 #ifdef CONFIG_X86_64
916 	if (cr0 & 0xffffffff00000000UL)
917 		return false;
918 #endif
919 
920 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
921 		return false;
922 
923 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
924 		return false;
925 
926 	return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
927 }
928 
929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
930 {
931 	/*
932 	 * CR0.WP is incorporated into the MMU role, but only for non-nested,
933 	 * indirect shadow MMUs.  If paging is disabled, no updates are needed
934 	 * as there are no permission bits to emulate.  If TDP is enabled, the
935 	 * MMU's metadata needs to be updated, e.g. so that emulating guest
936 	 * translations does the right thing, but there's no need to unload the
937 	 * root as CR0.WP doesn't affect SPTEs.
938 	 */
939 	if ((cr0 ^ old_cr0) == X86_CR0_WP) {
940 		if (!(cr0 & X86_CR0_PG))
941 			return;
942 
943 		if (tdp_enabled) {
944 			kvm_init_mmu(vcpu);
945 			return;
946 		}
947 	}
948 
949 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
950 		kvm_clear_async_pf_completion_queue(vcpu);
951 		kvm_async_pf_hash_reset(vcpu);
952 
953 		/*
954 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
955 		 * perspective.
956 		 */
957 		if (!(cr0 & X86_CR0_PG))
958 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
959 	}
960 
961 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
962 		kvm_mmu_reset_context(vcpu);
963 
964 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
965 	    kvm_mmu_honors_guest_mtrrs(vcpu->kvm) &&
966 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
967 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
968 }
969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
970 
971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
972 {
973 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
974 
975 	if (!kvm_is_valid_cr0(vcpu, cr0))
976 		return 1;
977 
978 	cr0 |= X86_CR0_ET;
979 
980 	/* Write to CR0 reserved bits are ignored, even on Intel. */
981 	cr0 &= ~CR0_RESERVED_BITS;
982 
983 #ifdef CONFIG_X86_64
984 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
985 	    (cr0 & X86_CR0_PG)) {
986 		int cs_db, cs_l;
987 
988 		if (!is_pae(vcpu))
989 			return 1;
990 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
991 		if (cs_l)
992 			return 1;
993 	}
994 #endif
995 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
996 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
997 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
998 		return 1;
999 
1000 	if (!(cr0 & X86_CR0_PG) &&
1001 	    (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1002 		return 1;
1003 
1004 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
1005 
1006 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
1007 
1008 	return 0;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1011 
1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1013 {
1014 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1015 }
1016 EXPORT_SYMBOL_GPL(kvm_lmsw);
1017 
1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1019 {
1020 	if (vcpu->arch.guest_state_protected)
1021 		return;
1022 
1023 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1024 
1025 		if (vcpu->arch.xcr0 != host_xcr0)
1026 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1027 
1028 		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1029 		    vcpu->arch.ia32_xss != host_xss)
1030 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1031 	}
1032 
1033 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1034 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
1035 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1036 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1037 		write_pkru(vcpu->arch.pkru);
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1040 
1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1042 {
1043 	if (vcpu->arch.guest_state_protected)
1044 		return;
1045 
1046 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1047 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1048 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1049 		vcpu->arch.pkru = rdpkru();
1050 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1051 			write_pkru(vcpu->arch.host_pkru);
1052 	}
1053 
1054 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1055 
1056 		if (vcpu->arch.xcr0 != host_xcr0)
1057 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1058 
1059 		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1060 		    vcpu->arch.ia32_xss != host_xss)
1061 			wrmsrl(MSR_IA32_XSS, host_xss);
1062 	}
1063 
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1066 
1067 #ifdef CONFIG_X86_64
1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1069 {
1070 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1071 }
1072 #endif
1073 
1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1075 {
1076 	u64 xcr0 = xcr;
1077 	u64 old_xcr0 = vcpu->arch.xcr0;
1078 	u64 valid_bits;
1079 
1080 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1081 	if (index != XCR_XFEATURE_ENABLED_MASK)
1082 		return 1;
1083 	if (!(xcr0 & XFEATURE_MASK_FP))
1084 		return 1;
1085 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1086 		return 1;
1087 
1088 	/*
1089 	 * Do not allow the guest to set bits that we do not support
1090 	 * saving.  However, xcr0 bit 0 is always set, even if the
1091 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1092 	 */
1093 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1094 	if (xcr0 & ~valid_bits)
1095 		return 1;
1096 
1097 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1098 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1099 		return 1;
1100 
1101 	if (xcr0 & XFEATURE_MASK_AVX512) {
1102 		if (!(xcr0 & XFEATURE_MASK_YMM))
1103 			return 1;
1104 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1105 			return 1;
1106 	}
1107 
1108 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1109 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1110 		return 1;
1111 
1112 	vcpu->arch.xcr0 = xcr0;
1113 
1114 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1115 		kvm_update_cpuid_runtime(vcpu);
1116 	return 0;
1117 }
1118 
1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1120 {
1121 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1122 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1123 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1124 		kvm_inject_gp(vcpu, 0);
1125 		return 1;
1126 	}
1127 
1128 	return kvm_skip_emulated_instruction(vcpu);
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1131 
1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1133 {
1134 	if (cr4 & cr4_reserved_bits)
1135 		return false;
1136 
1137 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1138 		return false;
1139 
1140 	return true;
1141 }
1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1143 
1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1145 {
1146 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1147 	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1148 }
1149 
1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1151 {
1152 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1153 		kvm_mmu_reset_context(vcpu);
1154 
1155 	/*
1156 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1157 	 * according to the SDM; however, stale prev_roots could be reused
1158 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1159 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1160 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1161 	 * so fall through.
1162 	 */
1163 	if (!tdp_enabled &&
1164 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1165 		kvm_mmu_unload(vcpu);
1166 
1167 	/*
1168 	 * The TLB has to be flushed for all PCIDs if any of the following
1169 	 * (architecturally required) changes happen:
1170 	 * - CR4.PCIDE is changed from 1 to 0
1171 	 * - CR4.PGE is toggled
1172 	 *
1173 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1174 	 */
1175 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1176 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1177 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1178 
1179 	/*
1180 	 * The TLB has to be flushed for the current PCID if any of the
1181 	 * following (architecturally required) changes happen:
1182 	 * - CR4.SMEP is changed from 0 to 1
1183 	 * - CR4.PAE is toggled
1184 	 */
1185 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1186 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1187 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1188 
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1191 
1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1193 {
1194 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1195 
1196 	if (!kvm_is_valid_cr4(vcpu, cr4))
1197 		return 1;
1198 
1199 	if (is_long_mode(vcpu)) {
1200 		if (!(cr4 & X86_CR4_PAE))
1201 			return 1;
1202 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1203 			return 1;
1204 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1205 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1206 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1207 		return 1;
1208 
1209 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1210 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1211 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1212 			return 1;
1213 	}
1214 
1215 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1216 
1217 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1218 
1219 	return 0;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1222 
1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1224 {
1225 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1226 	unsigned long roots_to_free = 0;
1227 	int i;
1228 
1229 	/*
1230 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1231 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1232 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1233 	 * the invalidation, but the guest's TLB entries need to be flushed as
1234 	 * the CPU may have cached entries in its TLB for the target PCID.
1235 	 */
1236 	if (unlikely(tdp_enabled)) {
1237 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1238 		return;
1239 	}
1240 
1241 	/*
1242 	 * If neither the current CR3 nor any of the prev_roots use the given
1243 	 * PCID, then nothing needs to be done here because a resync will
1244 	 * happen anyway before switching to any other CR3.
1245 	 */
1246 	if (kvm_get_active_pcid(vcpu) == pcid) {
1247 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1248 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1249 	}
1250 
1251 	/*
1252 	 * If PCID is disabled, there is no need to free prev_roots even if the
1253 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1254 	 * with PCIDE=0.
1255 	 */
1256 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1257 		return;
1258 
1259 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1260 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1261 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1262 
1263 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1264 }
1265 
1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1267 {
1268 	bool skip_tlb_flush = false;
1269 	unsigned long pcid = 0;
1270 #ifdef CONFIG_X86_64
1271 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1272 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1273 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1274 		pcid = cr3 & X86_CR3_PCID_MASK;
1275 	}
1276 #endif
1277 
1278 	/* PDPTRs are always reloaded for PAE paging. */
1279 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1280 		goto handle_tlb_flush;
1281 
1282 	/*
1283 	 * Do not condition the GPA check on long mode, this helper is used to
1284 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1285 	 * the current vCPU mode is accurate.
1286 	 */
1287 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1288 		return 1;
1289 
1290 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1291 		return 1;
1292 
1293 	if (cr3 != kvm_read_cr3(vcpu))
1294 		kvm_mmu_new_pgd(vcpu, cr3);
1295 
1296 	vcpu->arch.cr3 = cr3;
1297 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1298 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1299 
1300 handle_tlb_flush:
1301 	/*
1302 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1303 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1304 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1305 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1306 	 * i.e. only PCID=0 can be relevant.
1307 	 */
1308 	if (!skip_tlb_flush)
1309 		kvm_invalidate_pcid(vcpu, pcid);
1310 
1311 	return 0;
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1314 
1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1316 {
1317 	if (cr8 & CR8_RESERVED_BITS)
1318 		return 1;
1319 	if (lapic_in_kernel(vcpu))
1320 		kvm_lapic_set_tpr(vcpu, cr8);
1321 	else
1322 		vcpu->arch.cr8 = cr8;
1323 	return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1326 
1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1328 {
1329 	if (lapic_in_kernel(vcpu))
1330 		return kvm_lapic_get_cr8(vcpu);
1331 	else
1332 		return vcpu->arch.cr8;
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1335 
1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1337 {
1338 	int i;
1339 
1340 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1341 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1342 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1343 	}
1344 }
1345 
1346 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1347 {
1348 	unsigned long dr7;
1349 
1350 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1351 		dr7 = vcpu->arch.guest_debug_dr7;
1352 	else
1353 		dr7 = vcpu->arch.dr7;
1354 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1355 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1356 	if (dr7 & DR7_BP_EN_MASK)
1357 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1358 }
1359 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1360 
1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1362 {
1363 	u64 fixed = DR6_FIXED_1;
1364 
1365 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1366 		fixed |= DR6_RTM;
1367 
1368 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1369 		fixed |= DR6_BUS_LOCK;
1370 	return fixed;
1371 }
1372 
1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1374 {
1375 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1376 
1377 	switch (dr) {
1378 	case 0 ... 3:
1379 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1380 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1381 			vcpu->arch.eff_db[dr] = val;
1382 		break;
1383 	case 4:
1384 	case 6:
1385 		if (!kvm_dr6_valid(val))
1386 			return 1; /* #GP */
1387 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1388 		break;
1389 	case 5:
1390 	default: /* 7 */
1391 		if (!kvm_dr7_valid(val))
1392 			return 1; /* #GP */
1393 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1394 		kvm_update_dr7(vcpu);
1395 		break;
1396 	}
1397 
1398 	return 0;
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_set_dr);
1401 
1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1403 {
1404 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1405 
1406 	switch (dr) {
1407 	case 0 ... 3:
1408 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1409 		break;
1410 	case 4:
1411 	case 6:
1412 		*val = vcpu->arch.dr6;
1413 		break;
1414 	case 5:
1415 	default: /* 7 */
1416 		*val = vcpu->arch.dr7;
1417 		break;
1418 	}
1419 }
1420 EXPORT_SYMBOL_GPL(kvm_get_dr);
1421 
1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1423 {
1424 	u32 ecx = kvm_rcx_read(vcpu);
1425 	u64 data;
1426 
1427 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1428 		kvm_inject_gp(vcpu, 0);
1429 		return 1;
1430 	}
1431 
1432 	kvm_rax_write(vcpu, (u32)data);
1433 	kvm_rdx_write(vcpu, data >> 32);
1434 	return kvm_skip_emulated_instruction(vcpu);
1435 }
1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1437 
1438 /*
1439  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1440  * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1441  * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
1442  * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
1443  * MSRs that KVM emulates without strictly requiring host support.
1444  * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1445  * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
1446  * msrs_to_save and emulated_msrs.
1447  */
1448 
1449 static const u32 msrs_to_save_base[] = {
1450 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1451 	MSR_STAR,
1452 #ifdef CONFIG_X86_64
1453 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1454 #endif
1455 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1456 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1457 	MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1458 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1459 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1460 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1461 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1462 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1463 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1464 	MSR_IA32_UMWAIT_CONTROL,
1465 
1466 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1467 };
1468 
1469 static const u32 msrs_to_save_pmu[] = {
1470 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1471 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1472 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1473 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1474 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1475 
1476 	/* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1477 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1478 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1479 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1480 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1481 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1482 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1483 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1484 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1485 
1486 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1487 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1488 
1489 	/* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1490 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1491 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1492 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1493 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1494 
1495 	MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1496 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1497 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1498 };
1499 
1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1501 			ARRAY_SIZE(msrs_to_save_pmu)];
1502 static unsigned num_msrs_to_save;
1503 
1504 static const u32 emulated_msrs_all[] = {
1505 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1506 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1507 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1508 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1509 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1510 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1511 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1512 	HV_X64_MSR_RESET,
1513 	HV_X64_MSR_VP_INDEX,
1514 	HV_X64_MSR_VP_RUNTIME,
1515 	HV_X64_MSR_SCONTROL,
1516 	HV_X64_MSR_STIMER0_CONFIG,
1517 	HV_X64_MSR_VP_ASSIST_PAGE,
1518 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1519 	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1520 	HV_X64_MSR_SYNDBG_OPTIONS,
1521 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1522 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1523 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1524 
1525 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1526 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1527 
1528 	MSR_IA32_TSC_ADJUST,
1529 	MSR_IA32_TSC_DEADLINE,
1530 	MSR_IA32_ARCH_CAPABILITIES,
1531 	MSR_IA32_PERF_CAPABILITIES,
1532 	MSR_IA32_MISC_ENABLE,
1533 	MSR_IA32_MCG_STATUS,
1534 	MSR_IA32_MCG_CTL,
1535 	MSR_IA32_MCG_EXT_CTL,
1536 	MSR_IA32_SMBASE,
1537 	MSR_SMI_COUNT,
1538 	MSR_PLATFORM_INFO,
1539 	MSR_MISC_FEATURES_ENABLES,
1540 	MSR_AMD64_VIRT_SPEC_CTRL,
1541 	MSR_AMD64_TSC_RATIO,
1542 	MSR_IA32_POWER_CTL,
1543 	MSR_IA32_UCODE_REV,
1544 
1545 	/*
1546 	 * KVM always supports the "true" VMX control MSRs, even if the host
1547 	 * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
1548 	 * doesn't strictly require them to exist in the host (ignoring that
1549 	 * KVM would refuse to load in the first place if the core set of MSRs
1550 	 * aren't supported).
1551 	 */
1552 	MSR_IA32_VMX_BASIC,
1553 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1554 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1555 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1556 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1557 	MSR_IA32_VMX_MISC,
1558 	MSR_IA32_VMX_CR0_FIXED0,
1559 	MSR_IA32_VMX_CR4_FIXED0,
1560 	MSR_IA32_VMX_VMCS_ENUM,
1561 	MSR_IA32_VMX_PROCBASED_CTLS2,
1562 	MSR_IA32_VMX_EPT_VPID_CAP,
1563 	MSR_IA32_VMX_VMFUNC,
1564 
1565 	MSR_K7_HWCR,
1566 	MSR_KVM_POLL_CONTROL,
1567 };
1568 
1569 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1570 static unsigned num_emulated_msrs;
1571 
1572 /*
1573  * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1574  * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
1575  * feature MSRs, but are handled separately to allow expedited lookups.
1576  */
1577 static const u32 msr_based_features_all_except_vmx[] = {
1578 	MSR_AMD64_DE_CFG,
1579 	MSR_IA32_UCODE_REV,
1580 	MSR_IA32_ARCH_CAPABILITIES,
1581 	MSR_IA32_PERF_CAPABILITIES,
1582 };
1583 
1584 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1585 			      (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1586 static unsigned int num_msr_based_features;
1587 
1588 /*
1589  * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1590  * patch, are immutable once the vCPU model is defined.
1591  */
1592 static bool kvm_is_immutable_feature_msr(u32 msr)
1593 {
1594 	int i;
1595 
1596 	if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1597 		return true;
1598 
1599 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1600 		if (msr == msr_based_features_all_except_vmx[i])
1601 			return msr != MSR_IA32_UCODE_REV;
1602 	}
1603 
1604 	return false;
1605 }
1606 
1607 /*
1608  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1609  * does not yet virtualize. These include:
1610  *   10 - MISC_PACKAGE_CTRLS
1611  *   11 - ENERGY_FILTERING_CTL
1612  *   12 - DOITM
1613  *   18 - FB_CLEAR_CTRL
1614  *   21 - XAPIC_DISABLE_STATUS
1615  *   23 - OVERCLOCKING_STATUS
1616  */
1617 
1618 #define KVM_SUPPORTED_ARCH_CAP \
1619 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1620 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1621 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1622 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1623 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO)
1624 
1625 static u64 kvm_get_arch_capabilities(void)
1626 {
1627 	u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1628 
1629 	/*
1630 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1631 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1632 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1633 	 * L1 guests, so it need not worry about its own (L2) guests.
1634 	 */
1635 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1636 
1637 	/*
1638 	 * If we're doing cache flushes (either "always" or "cond")
1639 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1640 	 * If an outer hypervisor is doing the cache flush for us
1641 	 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1642 	 * capability to the guest too, and if EPT is disabled we're not
1643 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1644 	 * require a nested hypervisor to do a flush of its own.
1645 	 */
1646 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1647 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1648 
1649 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1650 		data |= ARCH_CAP_RDCL_NO;
1651 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1652 		data |= ARCH_CAP_SSB_NO;
1653 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1654 		data |= ARCH_CAP_MDS_NO;
1655 
1656 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1657 		/*
1658 		 * If RTM=0 because the kernel has disabled TSX, the host might
1659 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1660 		 * and therefore knows that there cannot be TAA) but keep
1661 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1662 		 * and we want to allow migrating those guests to tsx=off hosts.
1663 		 */
1664 		data &= ~ARCH_CAP_TAA_NO;
1665 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1666 		data |= ARCH_CAP_TAA_NO;
1667 	} else {
1668 		/*
1669 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1670 		 * host so the guest can choose between disabling TSX or
1671 		 * using VERW to clear CPU buffers.
1672 		 */
1673 	}
1674 
1675 	if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1676 		data |= ARCH_CAP_GDS_NO;
1677 
1678 	return data;
1679 }
1680 
1681 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1682 {
1683 	switch (msr->index) {
1684 	case MSR_IA32_ARCH_CAPABILITIES:
1685 		msr->data = kvm_get_arch_capabilities();
1686 		break;
1687 	case MSR_IA32_PERF_CAPABILITIES:
1688 		msr->data = kvm_caps.supported_perf_cap;
1689 		break;
1690 	case MSR_IA32_UCODE_REV:
1691 		rdmsrl_safe(msr->index, &msr->data);
1692 		break;
1693 	default:
1694 		return static_call(kvm_x86_get_msr_feature)(msr);
1695 	}
1696 	return 0;
1697 }
1698 
1699 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1700 {
1701 	struct kvm_msr_entry msr;
1702 	int r;
1703 
1704 	msr.index = index;
1705 	r = kvm_get_msr_feature(&msr);
1706 
1707 	if (r == KVM_MSR_RET_INVALID) {
1708 		/* Unconditionally clear the output for simplicity */
1709 		*data = 0;
1710 		if (kvm_msr_ignored_check(index, 0, false))
1711 			r = 0;
1712 	}
1713 
1714 	if (r)
1715 		return r;
1716 
1717 	*data = msr.data;
1718 
1719 	return 0;
1720 }
1721 
1722 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1723 {
1724 	if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1725 		return false;
1726 
1727 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1728 		return false;
1729 
1730 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1731 		return false;
1732 
1733 	if (efer & (EFER_LME | EFER_LMA) &&
1734 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1735 		return false;
1736 
1737 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1738 		return false;
1739 
1740 	return true;
1741 
1742 }
1743 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1744 {
1745 	if (efer & efer_reserved_bits)
1746 		return false;
1747 
1748 	return __kvm_valid_efer(vcpu, efer);
1749 }
1750 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1751 
1752 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1753 {
1754 	u64 old_efer = vcpu->arch.efer;
1755 	u64 efer = msr_info->data;
1756 	int r;
1757 
1758 	if (efer & efer_reserved_bits)
1759 		return 1;
1760 
1761 	if (!msr_info->host_initiated) {
1762 		if (!__kvm_valid_efer(vcpu, efer))
1763 			return 1;
1764 
1765 		if (is_paging(vcpu) &&
1766 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1767 			return 1;
1768 	}
1769 
1770 	efer &= ~EFER_LMA;
1771 	efer |= vcpu->arch.efer & EFER_LMA;
1772 
1773 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1774 	if (r) {
1775 		WARN_ON(r > 0);
1776 		return r;
1777 	}
1778 
1779 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1780 		kvm_mmu_reset_context(vcpu);
1781 
1782 	return 0;
1783 }
1784 
1785 void kvm_enable_efer_bits(u64 mask)
1786 {
1787        efer_reserved_bits &= ~mask;
1788 }
1789 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1790 
1791 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1792 {
1793 	struct kvm_x86_msr_filter *msr_filter;
1794 	struct msr_bitmap_range *ranges;
1795 	struct kvm *kvm = vcpu->kvm;
1796 	bool allowed;
1797 	int idx;
1798 	u32 i;
1799 
1800 	/* x2APIC MSRs do not support filtering. */
1801 	if (index >= 0x800 && index <= 0x8ff)
1802 		return true;
1803 
1804 	idx = srcu_read_lock(&kvm->srcu);
1805 
1806 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1807 	if (!msr_filter) {
1808 		allowed = true;
1809 		goto out;
1810 	}
1811 
1812 	allowed = msr_filter->default_allow;
1813 	ranges = msr_filter->ranges;
1814 
1815 	for (i = 0; i < msr_filter->count; i++) {
1816 		u32 start = ranges[i].base;
1817 		u32 end = start + ranges[i].nmsrs;
1818 		u32 flags = ranges[i].flags;
1819 		unsigned long *bitmap = ranges[i].bitmap;
1820 
1821 		if ((index >= start) && (index < end) && (flags & type)) {
1822 			allowed = test_bit(index - start, bitmap);
1823 			break;
1824 		}
1825 	}
1826 
1827 out:
1828 	srcu_read_unlock(&kvm->srcu, idx);
1829 
1830 	return allowed;
1831 }
1832 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1833 
1834 /*
1835  * Write @data into the MSR specified by @index.  Select MSR specific fault
1836  * checks are bypassed if @host_initiated is %true.
1837  * Returns 0 on success, non-0 otherwise.
1838  * Assumes vcpu_load() was already called.
1839  */
1840 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1841 			 bool host_initiated)
1842 {
1843 	struct msr_data msr;
1844 
1845 	switch (index) {
1846 	case MSR_FS_BASE:
1847 	case MSR_GS_BASE:
1848 	case MSR_KERNEL_GS_BASE:
1849 	case MSR_CSTAR:
1850 	case MSR_LSTAR:
1851 		if (is_noncanonical_address(data, vcpu))
1852 			return 1;
1853 		break;
1854 	case MSR_IA32_SYSENTER_EIP:
1855 	case MSR_IA32_SYSENTER_ESP:
1856 		/*
1857 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1858 		 * non-canonical address is written on Intel but not on
1859 		 * AMD (which ignores the top 32-bits, because it does
1860 		 * not implement 64-bit SYSENTER).
1861 		 *
1862 		 * 64-bit code should hence be able to write a non-canonical
1863 		 * value on AMD.  Making the address canonical ensures that
1864 		 * vmentry does not fail on Intel after writing a non-canonical
1865 		 * value, and that something deterministic happens if the guest
1866 		 * invokes 64-bit SYSENTER.
1867 		 */
1868 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1869 		break;
1870 	case MSR_TSC_AUX:
1871 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1872 			return 1;
1873 
1874 		if (!host_initiated &&
1875 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1876 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1877 			return 1;
1878 
1879 		/*
1880 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1881 		 * incomplete and conflicting architectural behavior.  Current
1882 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1883 		 * reserved and always read as zeros.  Enforce Intel's reserved
1884 		 * bits check if and only if the guest CPU is Intel, and clear
1885 		 * the bits in all other cases.  This ensures cross-vendor
1886 		 * migration will provide consistent behavior for the guest.
1887 		 */
1888 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1889 			return 1;
1890 
1891 		data = (u32)data;
1892 		break;
1893 	}
1894 
1895 	msr.data = data;
1896 	msr.index = index;
1897 	msr.host_initiated = host_initiated;
1898 
1899 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1900 }
1901 
1902 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1903 				     u32 index, u64 data, bool host_initiated)
1904 {
1905 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1906 
1907 	if (ret == KVM_MSR_RET_INVALID)
1908 		if (kvm_msr_ignored_check(index, data, true))
1909 			ret = 0;
1910 
1911 	return ret;
1912 }
1913 
1914 /*
1915  * Read the MSR specified by @index into @data.  Select MSR specific fault
1916  * checks are bypassed if @host_initiated is %true.
1917  * Returns 0 on success, non-0 otherwise.
1918  * Assumes vcpu_load() was already called.
1919  */
1920 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1921 		  bool host_initiated)
1922 {
1923 	struct msr_data msr;
1924 	int ret;
1925 
1926 	switch (index) {
1927 	case MSR_TSC_AUX:
1928 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1929 			return 1;
1930 
1931 		if (!host_initiated &&
1932 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1933 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1934 			return 1;
1935 		break;
1936 	}
1937 
1938 	msr.index = index;
1939 	msr.host_initiated = host_initiated;
1940 
1941 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1942 	if (!ret)
1943 		*data = msr.data;
1944 	return ret;
1945 }
1946 
1947 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1948 				     u32 index, u64 *data, bool host_initiated)
1949 {
1950 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1951 
1952 	if (ret == KVM_MSR_RET_INVALID) {
1953 		/* Unconditionally clear *data for simplicity */
1954 		*data = 0;
1955 		if (kvm_msr_ignored_check(index, 0, false))
1956 			ret = 0;
1957 	}
1958 
1959 	return ret;
1960 }
1961 
1962 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1963 {
1964 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1965 		return KVM_MSR_RET_FILTERED;
1966 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1967 }
1968 
1969 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1970 {
1971 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1972 		return KVM_MSR_RET_FILTERED;
1973 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1974 }
1975 
1976 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1977 {
1978 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1979 }
1980 EXPORT_SYMBOL_GPL(kvm_get_msr);
1981 
1982 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1983 {
1984 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1985 }
1986 EXPORT_SYMBOL_GPL(kvm_set_msr);
1987 
1988 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1989 {
1990 	if (!vcpu->run->msr.error) {
1991 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1992 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1993 	}
1994 }
1995 
1996 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1997 {
1998 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1999 }
2000 
2001 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2002 {
2003 	complete_userspace_rdmsr(vcpu);
2004 	return complete_emulated_msr_access(vcpu);
2005 }
2006 
2007 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2008 {
2009 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2010 }
2011 
2012 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2013 {
2014 	complete_userspace_rdmsr(vcpu);
2015 	return complete_fast_msr_access(vcpu);
2016 }
2017 
2018 static u64 kvm_msr_reason(int r)
2019 {
2020 	switch (r) {
2021 	case KVM_MSR_RET_INVALID:
2022 		return KVM_MSR_EXIT_REASON_UNKNOWN;
2023 	case KVM_MSR_RET_FILTERED:
2024 		return KVM_MSR_EXIT_REASON_FILTER;
2025 	default:
2026 		return KVM_MSR_EXIT_REASON_INVAL;
2027 	}
2028 }
2029 
2030 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2031 			      u32 exit_reason, u64 data,
2032 			      int (*completion)(struct kvm_vcpu *vcpu),
2033 			      int r)
2034 {
2035 	u64 msr_reason = kvm_msr_reason(r);
2036 
2037 	/* Check if the user wanted to know about this MSR fault */
2038 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2039 		return 0;
2040 
2041 	vcpu->run->exit_reason = exit_reason;
2042 	vcpu->run->msr.error = 0;
2043 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2044 	vcpu->run->msr.reason = msr_reason;
2045 	vcpu->run->msr.index = index;
2046 	vcpu->run->msr.data = data;
2047 	vcpu->arch.complete_userspace_io = completion;
2048 
2049 	return 1;
2050 }
2051 
2052 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2053 {
2054 	u32 ecx = kvm_rcx_read(vcpu);
2055 	u64 data;
2056 	int r;
2057 
2058 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2059 
2060 	if (!r) {
2061 		trace_kvm_msr_read(ecx, data);
2062 
2063 		kvm_rax_write(vcpu, data & -1u);
2064 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2065 	} else {
2066 		/* MSR read failed? See if we should ask user space */
2067 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2068 				       complete_fast_rdmsr, r))
2069 			return 0;
2070 		trace_kvm_msr_read_ex(ecx);
2071 	}
2072 
2073 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2074 }
2075 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2076 
2077 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2078 {
2079 	u32 ecx = kvm_rcx_read(vcpu);
2080 	u64 data = kvm_read_edx_eax(vcpu);
2081 	int r;
2082 
2083 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2084 
2085 	if (!r) {
2086 		trace_kvm_msr_write(ecx, data);
2087 	} else {
2088 		/* MSR write failed? See if we should ask user space */
2089 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2090 				       complete_fast_msr_access, r))
2091 			return 0;
2092 		/* Signal all other negative errors to userspace */
2093 		if (r < 0)
2094 			return r;
2095 		trace_kvm_msr_write_ex(ecx, data);
2096 	}
2097 
2098 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2099 }
2100 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2101 
2102 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2103 {
2104 	return kvm_skip_emulated_instruction(vcpu);
2105 }
2106 
2107 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2108 {
2109 	/* Treat an INVD instruction as a NOP and just skip it. */
2110 	return kvm_emulate_as_nop(vcpu);
2111 }
2112 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2113 
2114 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2115 {
2116 	kvm_queue_exception(vcpu, UD_VECTOR);
2117 	return 1;
2118 }
2119 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2120 
2121 
2122 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2123 {
2124 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2125 	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2126 		return kvm_handle_invalid_op(vcpu);
2127 
2128 	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2129 	return kvm_emulate_as_nop(vcpu);
2130 }
2131 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2132 {
2133 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2134 }
2135 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2136 
2137 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2138 {
2139 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2140 }
2141 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2142 
2143 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2144 {
2145 	xfer_to_guest_mode_prepare();
2146 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2147 		xfer_to_guest_mode_work_pending();
2148 }
2149 
2150 /*
2151  * The fast path for frequent and performance sensitive wrmsr emulation,
2152  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2153  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2154  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2155  * other cases which must be called after interrupts are enabled on the host.
2156  */
2157 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2158 {
2159 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2160 		return 1;
2161 
2162 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2163 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2164 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2165 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2166 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2167 
2168 	return 1;
2169 }
2170 
2171 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2172 {
2173 	if (!kvm_can_use_hv_timer(vcpu))
2174 		return 1;
2175 
2176 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2177 	return 0;
2178 }
2179 
2180 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2181 {
2182 	u32 msr = kvm_rcx_read(vcpu);
2183 	u64 data;
2184 	fastpath_t ret = EXIT_FASTPATH_NONE;
2185 
2186 	kvm_vcpu_srcu_read_lock(vcpu);
2187 
2188 	switch (msr) {
2189 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2190 		data = kvm_read_edx_eax(vcpu);
2191 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2192 			kvm_skip_emulated_instruction(vcpu);
2193 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2194 		}
2195 		break;
2196 	case MSR_IA32_TSC_DEADLINE:
2197 		data = kvm_read_edx_eax(vcpu);
2198 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2199 			kvm_skip_emulated_instruction(vcpu);
2200 			ret = EXIT_FASTPATH_REENTER_GUEST;
2201 		}
2202 		break;
2203 	default:
2204 		break;
2205 	}
2206 
2207 	if (ret != EXIT_FASTPATH_NONE)
2208 		trace_kvm_msr_write(msr, data);
2209 
2210 	kvm_vcpu_srcu_read_unlock(vcpu);
2211 
2212 	return ret;
2213 }
2214 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2215 
2216 /*
2217  * Adapt set_msr() to msr_io()'s calling convention
2218  */
2219 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2220 {
2221 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2222 }
2223 
2224 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2225 {
2226 	u64 val;
2227 
2228 	/*
2229 	 * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2230 	 * not support modifying the guest vCPU model on the fly, e.g. changing
2231 	 * the nVMX capabilities while L2 is running is nonsensical.  Ignore
2232 	 * writes of the same value, e.g. to allow userspace to blindly stuff
2233 	 * all MSRs when emulating RESET.
2234 	 */
2235 	if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2236 		if (do_get_msr(vcpu, index, &val) || *data != val)
2237 			return -EINVAL;
2238 
2239 		return 0;
2240 	}
2241 
2242 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2243 }
2244 
2245 #ifdef CONFIG_X86_64
2246 struct pvclock_clock {
2247 	int vclock_mode;
2248 	u64 cycle_last;
2249 	u64 mask;
2250 	u32 mult;
2251 	u32 shift;
2252 	u64 base_cycles;
2253 	u64 offset;
2254 };
2255 
2256 struct pvclock_gtod_data {
2257 	seqcount_t	seq;
2258 
2259 	struct pvclock_clock clock; /* extract of a clocksource struct */
2260 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2261 
2262 	ktime_t		offs_boot;
2263 	u64		wall_time_sec;
2264 };
2265 
2266 static struct pvclock_gtod_data pvclock_gtod_data;
2267 
2268 static void update_pvclock_gtod(struct timekeeper *tk)
2269 {
2270 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2271 
2272 	write_seqcount_begin(&vdata->seq);
2273 
2274 	/* copy pvclock gtod data */
2275 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2276 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2277 	vdata->clock.mask		= tk->tkr_mono.mask;
2278 	vdata->clock.mult		= tk->tkr_mono.mult;
2279 	vdata->clock.shift		= tk->tkr_mono.shift;
2280 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2281 	vdata->clock.offset		= tk->tkr_mono.base;
2282 
2283 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2284 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2285 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2286 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2287 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2288 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2289 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2290 
2291 	vdata->wall_time_sec            = tk->xtime_sec;
2292 
2293 	vdata->offs_boot		= tk->offs_boot;
2294 
2295 	write_seqcount_end(&vdata->seq);
2296 }
2297 
2298 static s64 get_kvmclock_base_ns(void)
2299 {
2300 	/* Count up from boot time, but with the frequency of the raw clock.  */
2301 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2302 }
2303 #else
2304 static s64 get_kvmclock_base_ns(void)
2305 {
2306 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2307 	return ktime_get_boottime_ns();
2308 }
2309 #endif
2310 
2311 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2312 {
2313 	int version;
2314 	int r;
2315 	struct pvclock_wall_clock wc;
2316 	u32 wc_sec_hi;
2317 	u64 wall_nsec;
2318 
2319 	if (!wall_clock)
2320 		return;
2321 
2322 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2323 	if (r)
2324 		return;
2325 
2326 	if (version & 1)
2327 		++version;  /* first time write, random junk */
2328 
2329 	++version;
2330 
2331 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2332 		return;
2333 
2334 	wall_nsec = kvm_get_wall_clock_epoch(kvm);
2335 
2336 	wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2337 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2338 	wc.version = version;
2339 
2340 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2341 
2342 	if (sec_hi_ofs) {
2343 		wc_sec_hi = wall_nsec >> 32;
2344 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2345 				&wc_sec_hi, sizeof(wc_sec_hi));
2346 	}
2347 
2348 	version++;
2349 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2350 }
2351 
2352 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2353 				  bool old_msr, bool host_initiated)
2354 {
2355 	struct kvm_arch *ka = &vcpu->kvm->arch;
2356 
2357 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2358 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2359 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2360 
2361 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2362 	}
2363 
2364 	vcpu->arch.time = system_time;
2365 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2366 
2367 	/* we verify if the enable bit is set... */
2368 	if (system_time & 1)
2369 		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2370 				 sizeof(struct pvclock_vcpu_time_info));
2371 	else
2372 		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2373 
2374 	return;
2375 }
2376 
2377 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2378 {
2379 	do_shl32_div32(dividend, divisor);
2380 	return dividend;
2381 }
2382 
2383 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2384 			       s8 *pshift, u32 *pmultiplier)
2385 {
2386 	uint64_t scaled64;
2387 	int32_t  shift = 0;
2388 	uint64_t tps64;
2389 	uint32_t tps32;
2390 
2391 	tps64 = base_hz;
2392 	scaled64 = scaled_hz;
2393 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2394 		tps64 >>= 1;
2395 		shift--;
2396 	}
2397 
2398 	tps32 = (uint32_t)tps64;
2399 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2400 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2401 			scaled64 >>= 1;
2402 		else
2403 			tps32 <<= 1;
2404 		shift++;
2405 	}
2406 
2407 	*pshift = shift;
2408 	*pmultiplier = div_frac(scaled64, tps32);
2409 }
2410 
2411 #ifdef CONFIG_X86_64
2412 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2413 #endif
2414 
2415 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2416 static unsigned long max_tsc_khz;
2417 
2418 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2419 {
2420 	u64 v = (u64)khz * (1000000 + ppm);
2421 	do_div(v, 1000000);
2422 	return v;
2423 }
2424 
2425 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2426 
2427 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2428 {
2429 	u64 ratio;
2430 
2431 	/* Guest TSC same frequency as host TSC? */
2432 	if (!scale) {
2433 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2434 		return 0;
2435 	}
2436 
2437 	/* TSC scaling supported? */
2438 	if (!kvm_caps.has_tsc_control) {
2439 		if (user_tsc_khz > tsc_khz) {
2440 			vcpu->arch.tsc_catchup = 1;
2441 			vcpu->arch.tsc_always_catchup = 1;
2442 			return 0;
2443 		} else {
2444 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2445 			return -1;
2446 		}
2447 	}
2448 
2449 	/* TSC scaling required  - calculate ratio */
2450 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2451 				user_tsc_khz, tsc_khz);
2452 
2453 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2454 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2455 			            user_tsc_khz);
2456 		return -1;
2457 	}
2458 
2459 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2460 	return 0;
2461 }
2462 
2463 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2464 {
2465 	u32 thresh_lo, thresh_hi;
2466 	int use_scaling = 0;
2467 
2468 	/* tsc_khz can be zero if TSC calibration fails */
2469 	if (user_tsc_khz == 0) {
2470 		/* set tsc_scaling_ratio to a safe value */
2471 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2472 		return -1;
2473 	}
2474 
2475 	/* Compute a scale to convert nanoseconds in TSC cycles */
2476 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2477 			   &vcpu->arch.virtual_tsc_shift,
2478 			   &vcpu->arch.virtual_tsc_mult);
2479 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2480 
2481 	/*
2482 	 * Compute the variation in TSC rate which is acceptable
2483 	 * within the range of tolerance and decide if the
2484 	 * rate being applied is within that bounds of the hardware
2485 	 * rate.  If so, no scaling or compensation need be done.
2486 	 */
2487 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2488 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2489 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2490 		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2491 			 user_tsc_khz, thresh_lo, thresh_hi);
2492 		use_scaling = 1;
2493 	}
2494 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2495 }
2496 
2497 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2498 {
2499 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2500 				      vcpu->arch.virtual_tsc_mult,
2501 				      vcpu->arch.virtual_tsc_shift);
2502 	tsc += vcpu->arch.this_tsc_write;
2503 	return tsc;
2504 }
2505 
2506 #ifdef CONFIG_X86_64
2507 static inline int gtod_is_based_on_tsc(int mode)
2508 {
2509 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2510 }
2511 #endif
2512 
2513 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2514 {
2515 #ifdef CONFIG_X86_64
2516 	bool vcpus_matched;
2517 	struct kvm_arch *ka = &vcpu->kvm->arch;
2518 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2519 
2520 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2521 			 atomic_read(&vcpu->kvm->online_vcpus));
2522 
2523 	/*
2524 	 * Once the masterclock is enabled, always perform request in
2525 	 * order to update it.
2526 	 *
2527 	 * In order to enable masterclock, the host clocksource must be TSC
2528 	 * and the vcpus need to have matched TSCs.  When that happens,
2529 	 * perform request to enable masterclock.
2530 	 */
2531 	if (ka->use_master_clock ||
2532 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2533 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2534 
2535 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2536 			    atomic_read(&vcpu->kvm->online_vcpus),
2537 		            ka->use_master_clock, gtod->clock.vclock_mode);
2538 #endif
2539 }
2540 
2541 /*
2542  * Multiply tsc by a fixed point number represented by ratio.
2543  *
2544  * The most significant 64-N bits (mult) of ratio represent the
2545  * integral part of the fixed point number; the remaining N bits
2546  * (frac) represent the fractional part, ie. ratio represents a fixed
2547  * point number (mult + frac * 2^(-N)).
2548  *
2549  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2550  */
2551 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2552 {
2553 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2554 }
2555 
2556 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2557 {
2558 	u64 _tsc = tsc;
2559 
2560 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2561 		_tsc = __scale_tsc(ratio, tsc);
2562 
2563 	return _tsc;
2564 }
2565 
2566 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2567 {
2568 	u64 tsc;
2569 
2570 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2571 
2572 	return target_tsc - tsc;
2573 }
2574 
2575 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2576 {
2577 	return vcpu->arch.l1_tsc_offset +
2578 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2579 }
2580 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2581 
2582 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2583 {
2584 	u64 nested_offset;
2585 
2586 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2587 		nested_offset = l1_offset;
2588 	else
2589 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2590 						kvm_caps.tsc_scaling_ratio_frac_bits);
2591 
2592 	nested_offset += l2_offset;
2593 	return nested_offset;
2594 }
2595 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2596 
2597 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2598 {
2599 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2600 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2601 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2602 
2603 	return l1_multiplier;
2604 }
2605 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2606 
2607 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2608 {
2609 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2610 				   vcpu->arch.l1_tsc_offset,
2611 				   l1_offset);
2612 
2613 	vcpu->arch.l1_tsc_offset = l1_offset;
2614 
2615 	/*
2616 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2617 	 * according to the spec this should set L1's TSC (as opposed to
2618 	 * setting L1's offset for L2).
2619 	 */
2620 	if (is_guest_mode(vcpu))
2621 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2622 			l1_offset,
2623 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2624 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2625 	else
2626 		vcpu->arch.tsc_offset = l1_offset;
2627 
2628 	static_call(kvm_x86_write_tsc_offset)(vcpu);
2629 }
2630 
2631 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2632 {
2633 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2634 
2635 	/* Userspace is changing the multiplier while L2 is active */
2636 	if (is_guest_mode(vcpu))
2637 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2638 			l1_multiplier,
2639 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2640 	else
2641 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2642 
2643 	if (kvm_caps.has_tsc_control)
2644 		static_call(kvm_x86_write_tsc_multiplier)(vcpu);
2645 }
2646 
2647 static inline bool kvm_check_tsc_unstable(void)
2648 {
2649 #ifdef CONFIG_X86_64
2650 	/*
2651 	 * TSC is marked unstable when we're running on Hyper-V,
2652 	 * 'TSC page' clocksource is good.
2653 	 */
2654 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2655 		return false;
2656 #endif
2657 	return check_tsc_unstable();
2658 }
2659 
2660 /*
2661  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2662  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2663  * participates in.
2664  */
2665 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2666 				  u64 ns, bool matched)
2667 {
2668 	struct kvm *kvm = vcpu->kvm;
2669 
2670 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2671 
2672 	/*
2673 	 * We also track th most recent recorded KHZ, write and time to
2674 	 * allow the matching interval to be extended at each write.
2675 	 */
2676 	kvm->arch.last_tsc_nsec = ns;
2677 	kvm->arch.last_tsc_write = tsc;
2678 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2679 	kvm->arch.last_tsc_offset = offset;
2680 
2681 	vcpu->arch.last_guest_tsc = tsc;
2682 
2683 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2684 
2685 	if (!matched) {
2686 		/*
2687 		 * We split periods of matched TSC writes into generations.
2688 		 * For each generation, we track the original measured
2689 		 * nanosecond time, offset, and write, so if TSCs are in
2690 		 * sync, we can match exact offset, and if not, we can match
2691 		 * exact software computation in compute_guest_tsc()
2692 		 *
2693 		 * These values are tracked in kvm->arch.cur_xxx variables.
2694 		 */
2695 		kvm->arch.cur_tsc_generation++;
2696 		kvm->arch.cur_tsc_nsec = ns;
2697 		kvm->arch.cur_tsc_write = tsc;
2698 		kvm->arch.cur_tsc_offset = offset;
2699 		kvm->arch.nr_vcpus_matched_tsc = 0;
2700 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2701 		kvm->arch.nr_vcpus_matched_tsc++;
2702 	}
2703 
2704 	/* Keep track of which generation this VCPU has synchronized to */
2705 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2706 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2707 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2708 
2709 	kvm_track_tsc_matching(vcpu);
2710 }
2711 
2712 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2713 {
2714 	u64 data = user_value ? *user_value : 0;
2715 	struct kvm *kvm = vcpu->kvm;
2716 	u64 offset, ns, elapsed;
2717 	unsigned long flags;
2718 	bool matched = false;
2719 	bool synchronizing = false;
2720 
2721 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2722 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2723 	ns = get_kvmclock_base_ns();
2724 	elapsed = ns - kvm->arch.last_tsc_nsec;
2725 
2726 	if (vcpu->arch.virtual_tsc_khz) {
2727 		if (data == 0) {
2728 			/*
2729 			 * Force synchronization when creating a vCPU, or when
2730 			 * userspace explicitly writes a zero value.
2731 			 */
2732 			synchronizing = true;
2733 		} else if (kvm->arch.user_set_tsc) {
2734 			u64 tsc_exp = kvm->arch.last_tsc_write +
2735 						nsec_to_cycles(vcpu, elapsed);
2736 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2737 			/*
2738 			 * Here lies UAPI baggage: when a user-initiated TSC write has
2739 			 * a small delta (1 second) of virtual cycle time against the
2740 			 * previously set vCPU, we assume that they were intended to be
2741 			 * in sync and the delta was only due to the racy nature of the
2742 			 * legacy API.
2743 			 *
2744 			 * This trick falls down when restoring a guest which genuinely
2745 			 * has been running for less time than the 1 second of imprecision
2746 			 * which we allow for in the legacy API. In this case, the first
2747 			 * value written by userspace (on any vCPU) should not be subject
2748 			 * to this 'correction' to make it sync up with values that only
2749 			 * come from the kernel's default vCPU creation. Make the 1-second
2750 			 * slop hack only trigger if the user_set_tsc flag is already set.
2751 			 */
2752 			synchronizing = data < tsc_exp + tsc_hz &&
2753 					data + tsc_hz > tsc_exp;
2754 		}
2755 	}
2756 
2757 	if (user_value)
2758 		kvm->arch.user_set_tsc = true;
2759 
2760 	/*
2761 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2762 	 * TSC, we add elapsed time in this computation.  We could let the
2763 	 * compensation code attempt to catch up if we fall behind, but
2764 	 * it's better to try to match offsets from the beginning.
2765          */
2766 	if (synchronizing &&
2767 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2768 		if (!kvm_check_tsc_unstable()) {
2769 			offset = kvm->arch.cur_tsc_offset;
2770 		} else {
2771 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2772 			data += delta;
2773 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2774 		}
2775 		matched = true;
2776 	}
2777 
2778 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2779 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2780 }
2781 
2782 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2783 					   s64 adjustment)
2784 {
2785 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2786 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2787 }
2788 
2789 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2790 {
2791 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2792 		WARN_ON(adjustment < 0);
2793 	adjustment = kvm_scale_tsc((u64) adjustment,
2794 				   vcpu->arch.l1_tsc_scaling_ratio);
2795 	adjust_tsc_offset_guest(vcpu, adjustment);
2796 }
2797 
2798 #ifdef CONFIG_X86_64
2799 
2800 static u64 read_tsc(void)
2801 {
2802 	u64 ret = (u64)rdtsc_ordered();
2803 	u64 last = pvclock_gtod_data.clock.cycle_last;
2804 
2805 	if (likely(ret >= last))
2806 		return ret;
2807 
2808 	/*
2809 	 * GCC likes to generate cmov here, but this branch is extremely
2810 	 * predictable (it's just a function of time and the likely is
2811 	 * very likely) and there's a data dependence, so force GCC
2812 	 * to generate a branch instead.  I don't barrier() because
2813 	 * we don't actually need a barrier, and if this function
2814 	 * ever gets inlined it will generate worse code.
2815 	 */
2816 	asm volatile ("");
2817 	return last;
2818 }
2819 
2820 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2821 			  int *mode)
2822 {
2823 	u64 tsc_pg_val;
2824 	long v;
2825 
2826 	switch (clock->vclock_mode) {
2827 	case VDSO_CLOCKMODE_HVCLOCK:
2828 		if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2829 					 tsc_timestamp, &tsc_pg_val)) {
2830 			/* TSC page valid */
2831 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2832 			v = (tsc_pg_val - clock->cycle_last) &
2833 				clock->mask;
2834 		} else {
2835 			/* TSC page invalid */
2836 			*mode = VDSO_CLOCKMODE_NONE;
2837 		}
2838 		break;
2839 	case VDSO_CLOCKMODE_TSC:
2840 		*mode = VDSO_CLOCKMODE_TSC;
2841 		*tsc_timestamp = read_tsc();
2842 		v = (*tsc_timestamp - clock->cycle_last) &
2843 			clock->mask;
2844 		break;
2845 	default:
2846 		*mode = VDSO_CLOCKMODE_NONE;
2847 	}
2848 
2849 	if (*mode == VDSO_CLOCKMODE_NONE)
2850 		*tsc_timestamp = v = 0;
2851 
2852 	return v * clock->mult;
2853 }
2854 
2855 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2856 {
2857 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2858 	unsigned long seq;
2859 	int mode;
2860 	u64 ns;
2861 
2862 	do {
2863 		seq = read_seqcount_begin(&gtod->seq);
2864 		ns = gtod->raw_clock.base_cycles;
2865 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2866 		ns >>= gtod->raw_clock.shift;
2867 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2868 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2869 	*t = ns;
2870 
2871 	return mode;
2872 }
2873 
2874 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2875 {
2876 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2877 	unsigned long seq;
2878 	int mode;
2879 	u64 ns;
2880 
2881 	do {
2882 		seq = read_seqcount_begin(&gtod->seq);
2883 		ts->tv_sec = gtod->wall_time_sec;
2884 		ns = gtod->clock.base_cycles;
2885 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2886 		ns >>= gtod->clock.shift;
2887 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2888 
2889 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2890 	ts->tv_nsec = ns;
2891 
2892 	return mode;
2893 }
2894 
2895 /* returns true if host is using TSC based clocksource */
2896 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2897 {
2898 	/* checked again under seqlock below */
2899 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2900 		return false;
2901 
2902 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2903 						      tsc_timestamp));
2904 }
2905 
2906 /* returns true if host is using TSC based clocksource */
2907 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2908 					   u64 *tsc_timestamp)
2909 {
2910 	/* checked again under seqlock below */
2911 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2912 		return false;
2913 
2914 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2915 }
2916 #endif
2917 
2918 /*
2919  *
2920  * Assuming a stable TSC across physical CPUS, and a stable TSC
2921  * across virtual CPUs, the following condition is possible.
2922  * Each numbered line represents an event visible to both
2923  * CPUs at the next numbered event.
2924  *
2925  * "timespecX" represents host monotonic time. "tscX" represents
2926  * RDTSC value.
2927  *
2928  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2929  *
2930  * 1.  read timespec0,tsc0
2931  * 2.					| timespec1 = timespec0 + N
2932  * 					| tsc1 = tsc0 + M
2933  * 3. transition to guest		| transition to guest
2934  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2935  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2936  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2937  *
2938  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2939  *
2940  * 	- ret0 < ret1
2941  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2942  *		...
2943  *	- 0 < N - M => M < N
2944  *
2945  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2946  * always the case (the difference between two distinct xtime instances
2947  * might be smaller then the difference between corresponding TSC reads,
2948  * when updating guest vcpus pvclock areas).
2949  *
2950  * To avoid that problem, do not allow visibility of distinct
2951  * system_timestamp/tsc_timestamp values simultaneously: use a master
2952  * copy of host monotonic time values. Update that master copy
2953  * in lockstep.
2954  *
2955  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2956  *
2957  */
2958 
2959 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2960 {
2961 #ifdef CONFIG_X86_64
2962 	struct kvm_arch *ka = &kvm->arch;
2963 	int vclock_mode;
2964 	bool host_tsc_clocksource, vcpus_matched;
2965 
2966 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2967 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2968 			atomic_read(&kvm->online_vcpus));
2969 
2970 	/*
2971 	 * If the host uses TSC clock, then passthrough TSC as stable
2972 	 * to the guest.
2973 	 */
2974 	host_tsc_clocksource = kvm_get_time_and_clockread(
2975 					&ka->master_kernel_ns,
2976 					&ka->master_cycle_now);
2977 
2978 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2979 				&& !ka->backwards_tsc_observed
2980 				&& !ka->boot_vcpu_runs_old_kvmclock;
2981 
2982 	if (ka->use_master_clock)
2983 		atomic_set(&kvm_guest_has_master_clock, 1);
2984 
2985 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2986 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2987 					vcpus_matched);
2988 #endif
2989 }
2990 
2991 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2992 {
2993 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2994 }
2995 
2996 static void __kvm_start_pvclock_update(struct kvm *kvm)
2997 {
2998 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2999 	write_seqcount_begin(&kvm->arch.pvclock_sc);
3000 }
3001 
3002 static void kvm_start_pvclock_update(struct kvm *kvm)
3003 {
3004 	kvm_make_mclock_inprogress_request(kvm);
3005 
3006 	/* no guest entries from this point */
3007 	__kvm_start_pvclock_update(kvm);
3008 }
3009 
3010 static void kvm_end_pvclock_update(struct kvm *kvm)
3011 {
3012 	struct kvm_arch *ka = &kvm->arch;
3013 	struct kvm_vcpu *vcpu;
3014 	unsigned long i;
3015 
3016 	write_seqcount_end(&ka->pvclock_sc);
3017 	raw_spin_unlock_irq(&ka->tsc_write_lock);
3018 	kvm_for_each_vcpu(i, vcpu, kvm)
3019 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3020 
3021 	/* guest entries allowed */
3022 	kvm_for_each_vcpu(i, vcpu, kvm)
3023 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3024 }
3025 
3026 static void kvm_update_masterclock(struct kvm *kvm)
3027 {
3028 	kvm_hv_request_tsc_page_update(kvm);
3029 	kvm_start_pvclock_update(kvm);
3030 	pvclock_update_vm_gtod_copy(kvm);
3031 	kvm_end_pvclock_update(kvm);
3032 }
3033 
3034 /*
3035  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3036  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3037  * can change during boot even if the TSC is constant, as it's possible for KVM
3038  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3039  * notification when calibration completes, but practically speaking calibration
3040  * will complete before userspace is alive enough to create VMs.
3041  */
3042 static unsigned long get_cpu_tsc_khz(void)
3043 {
3044 	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3045 		return tsc_khz;
3046 	else
3047 		return __this_cpu_read(cpu_tsc_khz);
3048 }
3049 
3050 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
3051 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3052 {
3053 	struct kvm_arch *ka = &kvm->arch;
3054 	struct pvclock_vcpu_time_info hv_clock;
3055 
3056 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
3057 	get_cpu();
3058 
3059 	data->flags = 0;
3060 	if (ka->use_master_clock &&
3061 	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3062 #ifdef CONFIG_X86_64
3063 		struct timespec64 ts;
3064 
3065 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3066 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3067 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3068 		} else
3069 #endif
3070 		data->host_tsc = rdtsc();
3071 
3072 		data->flags |= KVM_CLOCK_TSC_STABLE;
3073 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3074 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3075 		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3076 				   &hv_clock.tsc_shift,
3077 				   &hv_clock.tsc_to_system_mul);
3078 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3079 	} else {
3080 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3081 	}
3082 
3083 	put_cpu();
3084 }
3085 
3086 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3087 {
3088 	struct kvm_arch *ka = &kvm->arch;
3089 	unsigned seq;
3090 
3091 	do {
3092 		seq = read_seqcount_begin(&ka->pvclock_sc);
3093 		__get_kvmclock(kvm, data);
3094 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3095 }
3096 
3097 u64 get_kvmclock_ns(struct kvm *kvm)
3098 {
3099 	struct kvm_clock_data data;
3100 
3101 	get_kvmclock(kvm, &data);
3102 	return data.clock;
3103 }
3104 
3105 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3106 				    struct gfn_to_pfn_cache *gpc,
3107 				    unsigned int offset)
3108 {
3109 	struct kvm_vcpu_arch *vcpu = &v->arch;
3110 	struct pvclock_vcpu_time_info *guest_hv_clock;
3111 	unsigned long flags;
3112 
3113 	read_lock_irqsave(&gpc->lock, flags);
3114 	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3115 		read_unlock_irqrestore(&gpc->lock, flags);
3116 
3117 		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3118 			return;
3119 
3120 		read_lock_irqsave(&gpc->lock, flags);
3121 	}
3122 
3123 	guest_hv_clock = (void *)(gpc->khva + offset);
3124 
3125 	/*
3126 	 * This VCPU is paused, but it's legal for a guest to read another
3127 	 * VCPU's kvmclock, so we really have to follow the specification where
3128 	 * it says that version is odd if data is being modified, and even after
3129 	 * it is consistent.
3130 	 */
3131 
3132 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3133 	smp_wmb();
3134 
3135 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3136 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3137 
3138 	if (vcpu->pvclock_set_guest_stopped_request) {
3139 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3140 		vcpu->pvclock_set_guest_stopped_request = false;
3141 	}
3142 
3143 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3144 	smp_wmb();
3145 
3146 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3147 
3148 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3149 	read_unlock_irqrestore(&gpc->lock, flags);
3150 
3151 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3152 }
3153 
3154 static int kvm_guest_time_update(struct kvm_vcpu *v)
3155 {
3156 	unsigned long flags, tgt_tsc_khz;
3157 	unsigned seq;
3158 	struct kvm_vcpu_arch *vcpu = &v->arch;
3159 	struct kvm_arch *ka = &v->kvm->arch;
3160 	s64 kernel_ns;
3161 	u64 tsc_timestamp, host_tsc;
3162 	u8 pvclock_flags;
3163 	bool use_master_clock;
3164 
3165 	kernel_ns = 0;
3166 	host_tsc = 0;
3167 
3168 	/*
3169 	 * If the host uses TSC clock, then passthrough TSC as stable
3170 	 * to the guest.
3171 	 */
3172 	do {
3173 		seq = read_seqcount_begin(&ka->pvclock_sc);
3174 		use_master_clock = ka->use_master_clock;
3175 		if (use_master_clock) {
3176 			host_tsc = ka->master_cycle_now;
3177 			kernel_ns = ka->master_kernel_ns;
3178 		}
3179 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3180 
3181 	/* Keep irq disabled to prevent changes to the clock */
3182 	local_irq_save(flags);
3183 	tgt_tsc_khz = get_cpu_tsc_khz();
3184 	if (unlikely(tgt_tsc_khz == 0)) {
3185 		local_irq_restore(flags);
3186 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3187 		return 1;
3188 	}
3189 	if (!use_master_clock) {
3190 		host_tsc = rdtsc();
3191 		kernel_ns = get_kvmclock_base_ns();
3192 	}
3193 
3194 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3195 
3196 	/*
3197 	 * We may have to catch up the TSC to match elapsed wall clock
3198 	 * time for two reasons, even if kvmclock is used.
3199 	 *   1) CPU could have been running below the maximum TSC rate
3200 	 *   2) Broken TSC compensation resets the base at each VCPU
3201 	 *      entry to avoid unknown leaps of TSC even when running
3202 	 *      again on the same CPU.  This may cause apparent elapsed
3203 	 *      time to disappear, and the guest to stand still or run
3204 	 *	very slowly.
3205 	 */
3206 	if (vcpu->tsc_catchup) {
3207 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3208 		if (tsc > tsc_timestamp) {
3209 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3210 			tsc_timestamp = tsc;
3211 		}
3212 	}
3213 
3214 	local_irq_restore(flags);
3215 
3216 	/* With all the info we got, fill in the values */
3217 
3218 	if (kvm_caps.has_tsc_control)
3219 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3220 					    v->arch.l1_tsc_scaling_ratio);
3221 
3222 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3223 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3224 				   &vcpu->hv_clock.tsc_shift,
3225 				   &vcpu->hv_clock.tsc_to_system_mul);
3226 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3227 		kvm_xen_update_tsc_info(v);
3228 	}
3229 
3230 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3231 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3232 	vcpu->last_guest_tsc = tsc_timestamp;
3233 
3234 	/* If the host uses TSC clocksource, then it is stable */
3235 	pvclock_flags = 0;
3236 	if (use_master_clock)
3237 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3238 
3239 	vcpu->hv_clock.flags = pvclock_flags;
3240 
3241 	if (vcpu->pv_time.active)
3242 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3243 #ifdef CONFIG_KVM_XEN
3244 	if (vcpu->xen.vcpu_info_cache.active)
3245 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3246 					offsetof(struct compat_vcpu_info, time));
3247 	if (vcpu->xen.vcpu_time_info_cache.active)
3248 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3249 #endif
3250 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3251 	return 0;
3252 }
3253 
3254 /*
3255  * The pvclock_wall_clock ABI tells the guest the wall clock time at
3256  * which it started (i.e. its epoch, when its kvmclock was zero).
3257  *
3258  * In fact those clocks are subtly different; wall clock frequency is
3259  * adjusted by NTP and has leap seconds, while the kvmclock is a
3260  * simple function of the TSC without any such adjustment.
3261  *
3262  * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3263  * that and kvmclock, but even that would be subject to change over
3264  * time.
3265  *
3266  * Attempt to calculate the epoch at a given moment using the *same*
3267  * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3268  * wallclock and kvmclock times, and subtracting one from the other.
3269  *
3270  * Fall back to using their values at slightly different moments by
3271  * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3272  */
3273 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3274 {
3275 #ifdef CONFIG_X86_64
3276 	struct pvclock_vcpu_time_info hv_clock;
3277 	struct kvm_arch *ka = &kvm->arch;
3278 	unsigned long seq, local_tsc_khz;
3279 	struct timespec64 ts;
3280 	uint64_t host_tsc;
3281 
3282 	do {
3283 		seq = read_seqcount_begin(&ka->pvclock_sc);
3284 
3285 		local_tsc_khz = 0;
3286 		if (!ka->use_master_clock)
3287 			break;
3288 
3289 		/*
3290 		 * The TSC read and the call to get_cpu_tsc_khz() must happen
3291 		 * on the same CPU.
3292 		 */
3293 		get_cpu();
3294 
3295 		local_tsc_khz = get_cpu_tsc_khz();
3296 
3297 		if (local_tsc_khz &&
3298 		    !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3299 			local_tsc_khz = 0; /* Fall back to old method */
3300 
3301 		put_cpu();
3302 
3303 		/*
3304 		 * These values must be snapshotted within the seqcount loop.
3305 		 * After that, it's just mathematics which can happen on any
3306 		 * CPU at any time.
3307 		 */
3308 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3309 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3310 
3311 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3312 
3313 	/*
3314 	 * If the conditions were right, and obtaining the wallclock+TSC was
3315 	 * successful, calculate the KVM clock at the corresponding time and
3316 	 * subtract one from the other to get the guest's epoch in nanoseconds
3317 	 * since 1970-01-01.
3318 	 */
3319 	if (local_tsc_khz) {
3320 		kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3321 				   &hv_clock.tsc_shift,
3322 				   &hv_clock.tsc_to_system_mul);
3323 		return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3324 			__pvclock_read_cycles(&hv_clock, host_tsc);
3325 	}
3326 #endif
3327 	return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3328 }
3329 
3330 /*
3331  * kvmclock updates which are isolated to a given vcpu, such as
3332  * vcpu->cpu migration, should not allow system_timestamp from
3333  * the rest of the vcpus to remain static. Otherwise ntp frequency
3334  * correction applies to one vcpu's system_timestamp but not
3335  * the others.
3336  *
3337  * So in those cases, request a kvmclock update for all vcpus.
3338  * We need to rate-limit these requests though, as they can
3339  * considerably slow guests that have a large number of vcpus.
3340  * The time for a remote vcpu to update its kvmclock is bound
3341  * by the delay we use to rate-limit the updates.
3342  */
3343 
3344 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3345 
3346 static void kvmclock_update_fn(struct work_struct *work)
3347 {
3348 	unsigned long i;
3349 	struct delayed_work *dwork = to_delayed_work(work);
3350 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3351 					   kvmclock_update_work);
3352 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3353 	struct kvm_vcpu *vcpu;
3354 
3355 	kvm_for_each_vcpu(i, vcpu, kvm) {
3356 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3357 		kvm_vcpu_kick(vcpu);
3358 	}
3359 }
3360 
3361 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3362 {
3363 	struct kvm *kvm = v->kvm;
3364 
3365 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3366 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3367 					KVMCLOCK_UPDATE_DELAY);
3368 }
3369 
3370 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3371 
3372 static void kvmclock_sync_fn(struct work_struct *work)
3373 {
3374 	struct delayed_work *dwork = to_delayed_work(work);
3375 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3376 					   kvmclock_sync_work);
3377 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3378 
3379 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3380 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3381 					KVMCLOCK_SYNC_PERIOD);
3382 }
3383 
3384 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3385 static bool is_mci_control_msr(u32 msr)
3386 {
3387 	return (msr & 3) == 0;
3388 }
3389 static bool is_mci_status_msr(u32 msr)
3390 {
3391 	return (msr & 3) == 1;
3392 }
3393 
3394 /*
3395  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3396  */
3397 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3398 {
3399 	/* McStatusWrEn enabled? */
3400 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3401 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3402 
3403 	return false;
3404 }
3405 
3406 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3407 {
3408 	u64 mcg_cap = vcpu->arch.mcg_cap;
3409 	unsigned bank_num = mcg_cap & 0xff;
3410 	u32 msr = msr_info->index;
3411 	u64 data = msr_info->data;
3412 	u32 offset, last_msr;
3413 
3414 	switch (msr) {
3415 	case MSR_IA32_MCG_STATUS:
3416 		vcpu->arch.mcg_status = data;
3417 		break;
3418 	case MSR_IA32_MCG_CTL:
3419 		if (!(mcg_cap & MCG_CTL_P) &&
3420 		    (data || !msr_info->host_initiated))
3421 			return 1;
3422 		if (data != 0 && data != ~(u64)0)
3423 			return 1;
3424 		vcpu->arch.mcg_ctl = data;
3425 		break;
3426 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3427 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3428 		if (msr > last_msr)
3429 			return 1;
3430 
3431 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3432 			return 1;
3433 		/* An attempt to write a 1 to a reserved bit raises #GP */
3434 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3435 			return 1;
3436 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3437 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3438 		vcpu->arch.mci_ctl2_banks[offset] = data;
3439 		break;
3440 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3441 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3442 		if (msr > last_msr)
3443 			return 1;
3444 
3445 		/*
3446 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3447 		 * values are architecturally undefined.  But, some Linux
3448 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3449 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3450 		 * other bits in order to avoid an uncaught #GP in the guest.
3451 		 *
3452 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3453 		 * single-bit ECC data errors.
3454 		 */
3455 		if (is_mci_control_msr(msr) &&
3456 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3457 			return 1;
3458 
3459 		/*
3460 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3461 		 * AMD-based CPUs allow non-zero values, but if and only if
3462 		 * HWCR[McStatusWrEn] is set.
3463 		 */
3464 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3465 		    data != 0 && !can_set_mci_status(vcpu))
3466 			return 1;
3467 
3468 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3469 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3470 		vcpu->arch.mce_banks[offset] = data;
3471 		break;
3472 	default:
3473 		return 1;
3474 	}
3475 	return 0;
3476 }
3477 
3478 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3479 {
3480 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3481 
3482 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3483 }
3484 
3485 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3486 {
3487 	gpa_t gpa = data & ~0x3f;
3488 
3489 	/* Bits 4:5 are reserved, Should be zero */
3490 	if (data & 0x30)
3491 		return 1;
3492 
3493 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3494 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3495 		return 1;
3496 
3497 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3498 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3499 		return 1;
3500 
3501 	if (!lapic_in_kernel(vcpu))
3502 		return data ? 1 : 0;
3503 
3504 	vcpu->arch.apf.msr_en_val = data;
3505 
3506 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3507 		kvm_clear_async_pf_completion_queue(vcpu);
3508 		kvm_async_pf_hash_reset(vcpu);
3509 		return 0;
3510 	}
3511 
3512 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3513 					sizeof(u64)))
3514 		return 1;
3515 
3516 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3517 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3518 
3519 	kvm_async_pf_wakeup_all(vcpu);
3520 
3521 	return 0;
3522 }
3523 
3524 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3525 {
3526 	/* Bits 8-63 are reserved */
3527 	if (data >> 8)
3528 		return 1;
3529 
3530 	if (!lapic_in_kernel(vcpu))
3531 		return 1;
3532 
3533 	vcpu->arch.apf.msr_int_val = data;
3534 
3535 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3536 
3537 	return 0;
3538 }
3539 
3540 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3541 {
3542 	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3543 	vcpu->arch.time = 0;
3544 }
3545 
3546 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3547 {
3548 	++vcpu->stat.tlb_flush;
3549 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3550 
3551 	/* Flushing all ASIDs flushes the current ASID... */
3552 	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3553 }
3554 
3555 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3556 {
3557 	++vcpu->stat.tlb_flush;
3558 
3559 	if (!tdp_enabled) {
3560 		/*
3561 		 * A TLB flush on behalf of the guest is equivalent to
3562 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3563 		 * a forced sync of the shadow page tables.  Ensure all the
3564 		 * roots are synced and the guest TLB in hardware is clean.
3565 		 */
3566 		kvm_mmu_sync_roots(vcpu);
3567 		kvm_mmu_sync_prev_roots(vcpu);
3568 	}
3569 
3570 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3571 
3572 	/*
3573 	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3574 	 * grained flushing.
3575 	 */
3576 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3577 }
3578 
3579 
3580 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3581 {
3582 	++vcpu->stat.tlb_flush;
3583 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3584 }
3585 
3586 /*
3587  * Service "local" TLB flush requests, which are specific to the current MMU
3588  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3589  * TLB flushes that are targeted at an MMU context also need to be serviced
3590  * prior before nested VM-Enter/VM-Exit.
3591  */
3592 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3593 {
3594 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3595 		kvm_vcpu_flush_tlb_current(vcpu);
3596 
3597 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3598 		kvm_vcpu_flush_tlb_guest(vcpu);
3599 }
3600 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3601 
3602 static void record_steal_time(struct kvm_vcpu *vcpu)
3603 {
3604 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3605 	struct kvm_steal_time __user *st;
3606 	struct kvm_memslots *slots;
3607 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3608 	u64 steal;
3609 	u32 version;
3610 
3611 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3612 		kvm_xen_runstate_set_running(vcpu);
3613 		return;
3614 	}
3615 
3616 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3617 		return;
3618 
3619 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3620 		return;
3621 
3622 	slots = kvm_memslots(vcpu->kvm);
3623 
3624 	if (unlikely(slots->generation != ghc->generation ||
3625 		     gpa != ghc->gpa ||
3626 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3627 		/* We rely on the fact that it fits in a single page. */
3628 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3629 
3630 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3631 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3632 			return;
3633 	}
3634 
3635 	st = (struct kvm_steal_time __user *)ghc->hva;
3636 	/*
3637 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3638 	 * expensive IPIs.
3639 	 */
3640 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3641 		u8 st_preempted = 0;
3642 		int err = -EFAULT;
3643 
3644 		if (!user_access_begin(st, sizeof(*st)))
3645 			return;
3646 
3647 		asm volatile("1: xchgb %0, %2\n"
3648 			     "xor %1, %1\n"
3649 			     "2:\n"
3650 			     _ASM_EXTABLE_UA(1b, 2b)
3651 			     : "+q" (st_preempted),
3652 			       "+&r" (err),
3653 			       "+m" (st->preempted));
3654 		if (err)
3655 			goto out;
3656 
3657 		user_access_end();
3658 
3659 		vcpu->arch.st.preempted = 0;
3660 
3661 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3662 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3663 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3664 			kvm_vcpu_flush_tlb_guest(vcpu);
3665 
3666 		if (!user_access_begin(st, sizeof(*st)))
3667 			goto dirty;
3668 	} else {
3669 		if (!user_access_begin(st, sizeof(*st)))
3670 			return;
3671 
3672 		unsafe_put_user(0, &st->preempted, out);
3673 		vcpu->arch.st.preempted = 0;
3674 	}
3675 
3676 	unsafe_get_user(version, &st->version, out);
3677 	if (version & 1)
3678 		version += 1;  /* first time write, random junk */
3679 
3680 	version += 1;
3681 	unsafe_put_user(version, &st->version, out);
3682 
3683 	smp_wmb();
3684 
3685 	unsafe_get_user(steal, &st->steal, out);
3686 	steal += current->sched_info.run_delay -
3687 		vcpu->arch.st.last_steal;
3688 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3689 	unsafe_put_user(steal, &st->steal, out);
3690 
3691 	version += 1;
3692 	unsafe_put_user(version, &st->version, out);
3693 
3694  out:
3695 	user_access_end();
3696  dirty:
3697 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3698 }
3699 
3700 static bool kvm_is_msr_to_save(u32 msr_index)
3701 {
3702 	unsigned int i;
3703 
3704 	for (i = 0; i < num_msrs_to_save; i++) {
3705 		if (msrs_to_save[i] == msr_index)
3706 			return true;
3707 	}
3708 
3709 	return false;
3710 }
3711 
3712 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3713 {
3714 	u32 msr = msr_info->index;
3715 	u64 data = msr_info->data;
3716 
3717 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3718 		return kvm_xen_write_hypercall_page(vcpu, data);
3719 
3720 	switch (msr) {
3721 	case MSR_AMD64_NB_CFG:
3722 	case MSR_IA32_UCODE_WRITE:
3723 	case MSR_VM_HSAVE_PA:
3724 	case MSR_AMD64_PATCH_LOADER:
3725 	case MSR_AMD64_BU_CFG2:
3726 	case MSR_AMD64_DC_CFG:
3727 	case MSR_AMD64_TW_CFG:
3728 	case MSR_F15H_EX_CFG:
3729 		break;
3730 
3731 	case MSR_IA32_UCODE_REV:
3732 		if (msr_info->host_initiated)
3733 			vcpu->arch.microcode_version = data;
3734 		break;
3735 	case MSR_IA32_ARCH_CAPABILITIES:
3736 		if (!msr_info->host_initiated)
3737 			return 1;
3738 		vcpu->arch.arch_capabilities = data;
3739 		break;
3740 	case MSR_IA32_PERF_CAPABILITIES:
3741 		if (!msr_info->host_initiated)
3742 			return 1;
3743 		if (data & ~kvm_caps.supported_perf_cap)
3744 			return 1;
3745 
3746 		/*
3747 		 * Note, this is not just a performance optimization!  KVM
3748 		 * disallows changing feature MSRs after the vCPU has run; PMU
3749 		 * refresh will bug the VM if called after the vCPU has run.
3750 		 */
3751 		if (vcpu->arch.perf_capabilities == data)
3752 			break;
3753 
3754 		vcpu->arch.perf_capabilities = data;
3755 		kvm_pmu_refresh(vcpu);
3756 		break;
3757 	case MSR_IA32_PRED_CMD: {
3758 		u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3759 
3760 		if (!msr_info->host_initiated) {
3761 			if ((!guest_has_pred_cmd_msr(vcpu)))
3762 				return 1;
3763 
3764 			if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3765 			    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
3766 				reserved_bits |= PRED_CMD_IBPB;
3767 
3768 			if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB))
3769 				reserved_bits |= PRED_CMD_SBPB;
3770 		}
3771 
3772 		if (!boot_cpu_has(X86_FEATURE_IBPB))
3773 			reserved_bits |= PRED_CMD_IBPB;
3774 
3775 		if (!boot_cpu_has(X86_FEATURE_SBPB))
3776 			reserved_bits |= PRED_CMD_SBPB;
3777 
3778 		if (data & reserved_bits)
3779 			return 1;
3780 
3781 		if (!data)
3782 			break;
3783 
3784 		wrmsrl(MSR_IA32_PRED_CMD, data);
3785 		break;
3786 	}
3787 	case MSR_IA32_FLUSH_CMD:
3788 		if (!msr_info->host_initiated &&
3789 		    !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3790 			return 1;
3791 
3792 		if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3793 			return 1;
3794 		if (!data)
3795 			break;
3796 
3797 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3798 		break;
3799 	case MSR_EFER:
3800 		return set_efer(vcpu, msr_info);
3801 	case MSR_K7_HWCR:
3802 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3803 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3804 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3805 
3806 		/*
3807 		 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3808 		 * through at least v6.6 whine if TscFreqSel is clear,
3809 		 * depending on F/M/S.
3810 		 */
3811 		if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3812 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3813 			return 1;
3814 		}
3815 		vcpu->arch.msr_hwcr = data;
3816 		break;
3817 	case MSR_FAM10H_MMIO_CONF_BASE:
3818 		if (data != 0) {
3819 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3820 			return 1;
3821 		}
3822 		break;
3823 	case MSR_IA32_CR_PAT:
3824 		if (!kvm_pat_valid(data))
3825 			return 1;
3826 
3827 		vcpu->arch.pat = data;
3828 		break;
3829 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3830 	case MSR_MTRRdefType:
3831 		return kvm_mtrr_set_msr(vcpu, msr, data);
3832 	case MSR_IA32_APICBASE:
3833 		return kvm_set_apic_base(vcpu, msr_info);
3834 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3835 		return kvm_x2apic_msr_write(vcpu, msr, data);
3836 	case MSR_IA32_TSC_DEADLINE:
3837 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3838 		break;
3839 	case MSR_IA32_TSC_ADJUST:
3840 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3841 			if (!msr_info->host_initiated) {
3842 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3843 				adjust_tsc_offset_guest(vcpu, adj);
3844 				/* Before back to guest, tsc_timestamp must be adjusted
3845 				 * as well, otherwise guest's percpu pvclock time could jump.
3846 				 */
3847 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3848 			}
3849 			vcpu->arch.ia32_tsc_adjust_msr = data;
3850 		}
3851 		break;
3852 	case MSR_IA32_MISC_ENABLE: {
3853 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3854 
3855 		if (!msr_info->host_initiated) {
3856 			/* RO bits */
3857 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3858 				return 1;
3859 
3860 			/* R bits, i.e. writes are ignored, but don't fault. */
3861 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3862 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3863 		}
3864 
3865 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3866 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3867 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3868 				return 1;
3869 			vcpu->arch.ia32_misc_enable_msr = data;
3870 			kvm_update_cpuid_runtime(vcpu);
3871 		} else {
3872 			vcpu->arch.ia32_misc_enable_msr = data;
3873 		}
3874 		break;
3875 	}
3876 	case MSR_IA32_SMBASE:
3877 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3878 			return 1;
3879 		vcpu->arch.smbase = data;
3880 		break;
3881 	case MSR_IA32_POWER_CTL:
3882 		vcpu->arch.msr_ia32_power_ctl = data;
3883 		break;
3884 	case MSR_IA32_TSC:
3885 		if (msr_info->host_initiated) {
3886 			kvm_synchronize_tsc(vcpu, &data);
3887 		} else {
3888 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3889 			adjust_tsc_offset_guest(vcpu, adj);
3890 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3891 		}
3892 		break;
3893 	case MSR_IA32_XSS:
3894 		if (!msr_info->host_initiated &&
3895 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3896 			return 1;
3897 		/*
3898 		 * KVM supports exposing PT to the guest, but does not support
3899 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3900 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3901 		 */
3902 		if (data & ~kvm_caps.supported_xss)
3903 			return 1;
3904 		vcpu->arch.ia32_xss = data;
3905 		kvm_update_cpuid_runtime(vcpu);
3906 		break;
3907 	case MSR_SMI_COUNT:
3908 		if (!msr_info->host_initiated)
3909 			return 1;
3910 		vcpu->arch.smi_count = data;
3911 		break;
3912 	case MSR_KVM_WALL_CLOCK_NEW:
3913 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3914 			return 1;
3915 
3916 		vcpu->kvm->arch.wall_clock = data;
3917 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3918 		break;
3919 	case MSR_KVM_WALL_CLOCK:
3920 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3921 			return 1;
3922 
3923 		vcpu->kvm->arch.wall_clock = data;
3924 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3925 		break;
3926 	case MSR_KVM_SYSTEM_TIME_NEW:
3927 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3928 			return 1;
3929 
3930 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3931 		break;
3932 	case MSR_KVM_SYSTEM_TIME:
3933 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3934 			return 1;
3935 
3936 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3937 		break;
3938 	case MSR_KVM_ASYNC_PF_EN:
3939 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3940 			return 1;
3941 
3942 		if (kvm_pv_enable_async_pf(vcpu, data))
3943 			return 1;
3944 		break;
3945 	case MSR_KVM_ASYNC_PF_INT:
3946 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3947 			return 1;
3948 
3949 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3950 			return 1;
3951 		break;
3952 	case MSR_KVM_ASYNC_PF_ACK:
3953 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3954 			return 1;
3955 		if (data & 0x1) {
3956 			vcpu->arch.apf.pageready_pending = false;
3957 			kvm_check_async_pf_completion(vcpu);
3958 		}
3959 		break;
3960 	case MSR_KVM_STEAL_TIME:
3961 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3962 			return 1;
3963 
3964 		if (unlikely(!sched_info_on()))
3965 			return 1;
3966 
3967 		if (data & KVM_STEAL_RESERVED_MASK)
3968 			return 1;
3969 
3970 		vcpu->arch.st.msr_val = data;
3971 
3972 		if (!(data & KVM_MSR_ENABLED))
3973 			break;
3974 
3975 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3976 
3977 		break;
3978 	case MSR_KVM_PV_EOI_EN:
3979 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3980 			return 1;
3981 
3982 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3983 			return 1;
3984 		break;
3985 
3986 	case MSR_KVM_POLL_CONTROL:
3987 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3988 			return 1;
3989 
3990 		/* only enable bit supported */
3991 		if (data & (-1ULL << 1))
3992 			return 1;
3993 
3994 		vcpu->arch.msr_kvm_poll_control = data;
3995 		break;
3996 
3997 	case MSR_IA32_MCG_CTL:
3998 	case MSR_IA32_MCG_STATUS:
3999 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4000 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4001 		return set_msr_mce(vcpu, msr_info);
4002 
4003 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4004 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4005 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4006 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4007 		if (kvm_pmu_is_valid_msr(vcpu, msr))
4008 			return kvm_pmu_set_msr(vcpu, msr_info);
4009 
4010 		if (data)
4011 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4012 		break;
4013 	case MSR_K7_CLK_CTL:
4014 		/*
4015 		 * Ignore all writes to this no longer documented MSR.
4016 		 * Writes are only relevant for old K7 processors,
4017 		 * all pre-dating SVM, but a recommended workaround from
4018 		 * AMD for these chips. It is possible to specify the
4019 		 * affected processor models on the command line, hence
4020 		 * the need to ignore the workaround.
4021 		 */
4022 		break;
4023 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4024 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4025 	case HV_X64_MSR_SYNDBG_OPTIONS:
4026 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4027 	case HV_X64_MSR_CRASH_CTL:
4028 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4029 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4030 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4031 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4032 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4033 		return kvm_hv_set_msr_common(vcpu, msr, data,
4034 					     msr_info->host_initiated);
4035 	case MSR_IA32_BBL_CR_CTL3:
4036 		/* Drop writes to this legacy MSR -- see rdmsr
4037 		 * counterpart for further detail.
4038 		 */
4039 		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4040 		break;
4041 	case MSR_AMD64_OSVW_ID_LENGTH:
4042 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4043 			return 1;
4044 		vcpu->arch.osvw.length = data;
4045 		break;
4046 	case MSR_AMD64_OSVW_STATUS:
4047 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4048 			return 1;
4049 		vcpu->arch.osvw.status = data;
4050 		break;
4051 	case MSR_PLATFORM_INFO:
4052 		if (!msr_info->host_initiated ||
4053 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
4054 		     cpuid_fault_enabled(vcpu)))
4055 			return 1;
4056 		vcpu->arch.msr_platform_info = data;
4057 		break;
4058 	case MSR_MISC_FEATURES_ENABLES:
4059 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4060 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4061 		     !supports_cpuid_fault(vcpu)))
4062 			return 1;
4063 		vcpu->arch.msr_misc_features_enables = data;
4064 		break;
4065 #ifdef CONFIG_X86_64
4066 	case MSR_IA32_XFD:
4067 		if (!msr_info->host_initiated &&
4068 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4069 			return 1;
4070 
4071 		if (data & ~kvm_guest_supported_xfd(vcpu))
4072 			return 1;
4073 
4074 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4075 		break;
4076 	case MSR_IA32_XFD_ERR:
4077 		if (!msr_info->host_initiated &&
4078 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4079 			return 1;
4080 
4081 		if (data & ~kvm_guest_supported_xfd(vcpu))
4082 			return 1;
4083 
4084 		vcpu->arch.guest_fpu.xfd_err = data;
4085 		break;
4086 #endif
4087 	default:
4088 		if (kvm_pmu_is_valid_msr(vcpu, msr))
4089 			return kvm_pmu_set_msr(vcpu, msr_info);
4090 
4091 		/*
4092 		 * Userspace is allowed to write '0' to MSRs that KVM reports
4093 		 * as to-be-saved, even if an MSRs isn't fully supported.
4094 		 */
4095 		if (msr_info->host_initiated && !data &&
4096 		    kvm_is_msr_to_save(msr))
4097 			break;
4098 
4099 		return KVM_MSR_RET_INVALID;
4100 	}
4101 	return 0;
4102 }
4103 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4104 
4105 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4106 {
4107 	u64 data;
4108 	u64 mcg_cap = vcpu->arch.mcg_cap;
4109 	unsigned bank_num = mcg_cap & 0xff;
4110 	u32 offset, last_msr;
4111 
4112 	switch (msr) {
4113 	case MSR_IA32_P5_MC_ADDR:
4114 	case MSR_IA32_P5_MC_TYPE:
4115 		data = 0;
4116 		break;
4117 	case MSR_IA32_MCG_CAP:
4118 		data = vcpu->arch.mcg_cap;
4119 		break;
4120 	case MSR_IA32_MCG_CTL:
4121 		if (!(mcg_cap & MCG_CTL_P) && !host)
4122 			return 1;
4123 		data = vcpu->arch.mcg_ctl;
4124 		break;
4125 	case MSR_IA32_MCG_STATUS:
4126 		data = vcpu->arch.mcg_status;
4127 		break;
4128 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4129 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4130 		if (msr > last_msr)
4131 			return 1;
4132 
4133 		if (!(mcg_cap & MCG_CMCI_P) && !host)
4134 			return 1;
4135 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4136 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
4137 		data = vcpu->arch.mci_ctl2_banks[offset];
4138 		break;
4139 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4140 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4141 		if (msr > last_msr)
4142 			return 1;
4143 
4144 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4145 					    last_msr + 1 - MSR_IA32_MC0_CTL);
4146 		data = vcpu->arch.mce_banks[offset];
4147 		break;
4148 	default:
4149 		return 1;
4150 	}
4151 	*pdata = data;
4152 	return 0;
4153 }
4154 
4155 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4156 {
4157 	switch (msr_info->index) {
4158 	case MSR_IA32_PLATFORM_ID:
4159 	case MSR_IA32_EBL_CR_POWERON:
4160 	case MSR_IA32_LASTBRANCHFROMIP:
4161 	case MSR_IA32_LASTBRANCHTOIP:
4162 	case MSR_IA32_LASTINTFROMIP:
4163 	case MSR_IA32_LASTINTTOIP:
4164 	case MSR_AMD64_SYSCFG:
4165 	case MSR_K8_TSEG_ADDR:
4166 	case MSR_K8_TSEG_MASK:
4167 	case MSR_VM_HSAVE_PA:
4168 	case MSR_K8_INT_PENDING_MSG:
4169 	case MSR_AMD64_NB_CFG:
4170 	case MSR_FAM10H_MMIO_CONF_BASE:
4171 	case MSR_AMD64_BU_CFG2:
4172 	case MSR_IA32_PERF_CTL:
4173 	case MSR_AMD64_DC_CFG:
4174 	case MSR_AMD64_TW_CFG:
4175 	case MSR_F15H_EX_CFG:
4176 	/*
4177 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4178 	 * limit) MSRs. Just return 0, as we do not want to expose the host
4179 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
4180 	 * so for existing CPU-specific MSRs.
4181 	 */
4182 	case MSR_RAPL_POWER_UNIT:
4183 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
4184 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
4185 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
4186 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
4187 		msr_info->data = 0;
4188 		break;
4189 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4190 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4191 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4192 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4193 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4194 			return kvm_pmu_get_msr(vcpu, msr_info);
4195 		msr_info->data = 0;
4196 		break;
4197 	case MSR_IA32_UCODE_REV:
4198 		msr_info->data = vcpu->arch.microcode_version;
4199 		break;
4200 	case MSR_IA32_ARCH_CAPABILITIES:
4201 		if (!msr_info->host_initiated &&
4202 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4203 			return 1;
4204 		msr_info->data = vcpu->arch.arch_capabilities;
4205 		break;
4206 	case MSR_IA32_PERF_CAPABILITIES:
4207 		if (!msr_info->host_initiated &&
4208 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4209 			return 1;
4210 		msr_info->data = vcpu->arch.perf_capabilities;
4211 		break;
4212 	case MSR_IA32_POWER_CTL:
4213 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4214 		break;
4215 	case MSR_IA32_TSC: {
4216 		/*
4217 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4218 		 * even when not intercepted. AMD manual doesn't explicitly
4219 		 * state this but appears to behave the same.
4220 		 *
4221 		 * On userspace reads and writes, however, we unconditionally
4222 		 * return L1's TSC value to ensure backwards-compatible
4223 		 * behavior for migration.
4224 		 */
4225 		u64 offset, ratio;
4226 
4227 		if (msr_info->host_initiated) {
4228 			offset = vcpu->arch.l1_tsc_offset;
4229 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4230 		} else {
4231 			offset = vcpu->arch.tsc_offset;
4232 			ratio = vcpu->arch.tsc_scaling_ratio;
4233 		}
4234 
4235 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4236 		break;
4237 	}
4238 	case MSR_IA32_CR_PAT:
4239 		msr_info->data = vcpu->arch.pat;
4240 		break;
4241 	case MSR_MTRRcap:
4242 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4243 	case MSR_MTRRdefType:
4244 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4245 	case 0xcd: /* fsb frequency */
4246 		msr_info->data = 3;
4247 		break;
4248 		/*
4249 		 * MSR_EBC_FREQUENCY_ID
4250 		 * Conservative value valid for even the basic CPU models.
4251 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4252 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4253 		 * and 266MHz for model 3, or 4. Set Core Clock
4254 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4255 		 * 31:24) even though these are only valid for CPU
4256 		 * models > 2, however guests may end up dividing or
4257 		 * multiplying by zero otherwise.
4258 		 */
4259 	case MSR_EBC_FREQUENCY_ID:
4260 		msr_info->data = 1 << 24;
4261 		break;
4262 	case MSR_IA32_APICBASE:
4263 		msr_info->data = kvm_get_apic_base(vcpu);
4264 		break;
4265 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4266 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4267 	case MSR_IA32_TSC_DEADLINE:
4268 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4269 		break;
4270 	case MSR_IA32_TSC_ADJUST:
4271 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4272 		break;
4273 	case MSR_IA32_MISC_ENABLE:
4274 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4275 		break;
4276 	case MSR_IA32_SMBASE:
4277 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4278 			return 1;
4279 		msr_info->data = vcpu->arch.smbase;
4280 		break;
4281 	case MSR_SMI_COUNT:
4282 		msr_info->data = vcpu->arch.smi_count;
4283 		break;
4284 	case MSR_IA32_PERF_STATUS:
4285 		/* TSC increment by tick */
4286 		msr_info->data = 1000ULL;
4287 		/* CPU multiplier */
4288 		msr_info->data |= (((uint64_t)4ULL) << 40);
4289 		break;
4290 	case MSR_EFER:
4291 		msr_info->data = vcpu->arch.efer;
4292 		break;
4293 	case MSR_KVM_WALL_CLOCK:
4294 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4295 			return 1;
4296 
4297 		msr_info->data = vcpu->kvm->arch.wall_clock;
4298 		break;
4299 	case MSR_KVM_WALL_CLOCK_NEW:
4300 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4301 			return 1;
4302 
4303 		msr_info->data = vcpu->kvm->arch.wall_clock;
4304 		break;
4305 	case MSR_KVM_SYSTEM_TIME:
4306 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4307 			return 1;
4308 
4309 		msr_info->data = vcpu->arch.time;
4310 		break;
4311 	case MSR_KVM_SYSTEM_TIME_NEW:
4312 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4313 			return 1;
4314 
4315 		msr_info->data = vcpu->arch.time;
4316 		break;
4317 	case MSR_KVM_ASYNC_PF_EN:
4318 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4319 			return 1;
4320 
4321 		msr_info->data = vcpu->arch.apf.msr_en_val;
4322 		break;
4323 	case MSR_KVM_ASYNC_PF_INT:
4324 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4325 			return 1;
4326 
4327 		msr_info->data = vcpu->arch.apf.msr_int_val;
4328 		break;
4329 	case MSR_KVM_ASYNC_PF_ACK:
4330 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4331 			return 1;
4332 
4333 		msr_info->data = 0;
4334 		break;
4335 	case MSR_KVM_STEAL_TIME:
4336 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4337 			return 1;
4338 
4339 		msr_info->data = vcpu->arch.st.msr_val;
4340 		break;
4341 	case MSR_KVM_PV_EOI_EN:
4342 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4343 			return 1;
4344 
4345 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4346 		break;
4347 	case MSR_KVM_POLL_CONTROL:
4348 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4349 			return 1;
4350 
4351 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4352 		break;
4353 	case MSR_IA32_P5_MC_ADDR:
4354 	case MSR_IA32_P5_MC_TYPE:
4355 	case MSR_IA32_MCG_CAP:
4356 	case MSR_IA32_MCG_CTL:
4357 	case MSR_IA32_MCG_STATUS:
4358 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4359 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4360 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4361 				   msr_info->host_initiated);
4362 	case MSR_IA32_XSS:
4363 		if (!msr_info->host_initiated &&
4364 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4365 			return 1;
4366 		msr_info->data = vcpu->arch.ia32_xss;
4367 		break;
4368 	case MSR_K7_CLK_CTL:
4369 		/*
4370 		 * Provide expected ramp-up count for K7. All other
4371 		 * are set to zero, indicating minimum divisors for
4372 		 * every field.
4373 		 *
4374 		 * This prevents guest kernels on AMD host with CPU
4375 		 * type 6, model 8 and higher from exploding due to
4376 		 * the rdmsr failing.
4377 		 */
4378 		msr_info->data = 0x20000000;
4379 		break;
4380 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4381 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4382 	case HV_X64_MSR_SYNDBG_OPTIONS:
4383 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4384 	case HV_X64_MSR_CRASH_CTL:
4385 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4386 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4387 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4388 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4389 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4390 		return kvm_hv_get_msr_common(vcpu,
4391 					     msr_info->index, &msr_info->data,
4392 					     msr_info->host_initiated);
4393 	case MSR_IA32_BBL_CR_CTL3:
4394 		/* This legacy MSR exists but isn't fully documented in current
4395 		 * silicon.  It is however accessed by winxp in very narrow
4396 		 * scenarios where it sets bit #19, itself documented as
4397 		 * a "reserved" bit.  Best effort attempt to source coherent
4398 		 * read data here should the balance of the register be
4399 		 * interpreted by the guest:
4400 		 *
4401 		 * L2 cache control register 3: 64GB range, 256KB size,
4402 		 * enabled, latency 0x1, configured
4403 		 */
4404 		msr_info->data = 0xbe702111;
4405 		break;
4406 	case MSR_AMD64_OSVW_ID_LENGTH:
4407 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4408 			return 1;
4409 		msr_info->data = vcpu->arch.osvw.length;
4410 		break;
4411 	case MSR_AMD64_OSVW_STATUS:
4412 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4413 			return 1;
4414 		msr_info->data = vcpu->arch.osvw.status;
4415 		break;
4416 	case MSR_PLATFORM_INFO:
4417 		if (!msr_info->host_initiated &&
4418 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4419 			return 1;
4420 		msr_info->data = vcpu->arch.msr_platform_info;
4421 		break;
4422 	case MSR_MISC_FEATURES_ENABLES:
4423 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4424 		break;
4425 	case MSR_K7_HWCR:
4426 		msr_info->data = vcpu->arch.msr_hwcr;
4427 		break;
4428 #ifdef CONFIG_X86_64
4429 	case MSR_IA32_XFD:
4430 		if (!msr_info->host_initiated &&
4431 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4432 			return 1;
4433 
4434 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4435 		break;
4436 	case MSR_IA32_XFD_ERR:
4437 		if (!msr_info->host_initiated &&
4438 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4439 			return 1;
4440 
4441 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4442 		break;
4443 #endif
4444 	default:
4445 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4446 			return kvm_pmu_get_msr(vcpu, msr_info);
4447 
4448 		/*
4449 		 * Userspace is allowed to read MSRs that KVM reports as
4450 		 * to-be-saved, even if an MSR isn't fully supported.
4451 		 */
4452 		if (msr_info->host_initiated &&
4453 		    kvm_is_msr_to_save(msr_info->index)) {
4454 			msr_info->data = 0;
4455 			break;
4456 		}
4457 
4458 		return KVM_MSR_RET_INVALID;
4459 	}
4460 	return 0;
4461 }
4462 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4463 
4464 /*
4465  * Read or write a bunch of msrs. All parameters are kernel addresses.
4466  *
4467  * @return number of msrs set successfully.
4468  */
4469 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4470 		    struct kvm_msr_entry *entries,
4471 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4472 				  unsigned index, u64 *data))
4473 {
4474 	int i;
4475 
4476 	for (i = 0; i < msrs->nmsrs; ++i)
4477 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4478 			break;
4479 
4480 	return i;
4481 }
4482 
4483 /*
4484  * Read or write a bunch of msrs. Parameters are user addresses.
4485  *
4486  * @return number of msrs set successfully.
4487  */
4488 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4489 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4490 				unsigned index, u64 *data),
4491 		  int writeback)
4492 {
4493 	struct kvm_msrs msrs;
4494 	struct kvm_msr_entry *entries;
4495 	unsigned size;
4496 	int r;
4497 
4498 	r = -EFAULT;
4499 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4500 		goto out;
4501 
4502 	r = -E2BIG;
4503 	if (msrs.nmsrs >= MAX_IO_MSRS)
4504 		goto out;
4505 
4506 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4507 	entries = memdup_user(user_msrs->entries, size);
4508 	if (IS_ERR(entries)) {
4509 		r = PTR_ERR(entries);
4510 		goto out;
4511 	}
4512 
4513 	r = __msr_io(vcpu, &msrs, entries, do_msr);
4514 
4515 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4516 		r = -EFAULT;
4517 
4518 	kfree(entries);
4519 out:
4520 	return r;
4521 }
4522 
4523 static inline bool kvm_can_mwait_in_guest(void)
4524 {
4525 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4526 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4527 		boot_cpu_has(X86_FEATURE_ARAT);
4528 }
4529 
4530 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4531 					    struct kvm_cpuid2 __user *cpuid_arg)
4532 {
4533 	struct kvm_cpuid2 cpuid;
4534 	int r;
4535 
4536 	r = -EFAULT;
4537 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4538 		return r;
4539 
4540 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4541 	if (r)
4542 		return r;
4543 
4544 	r = -EFAULT;
4545 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4546 		return r;
4547 
4548 	return 0;
4549 }
4550 
4551 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4552 {
4553 	int r = 0;
4554 
4555 	switch (ext) {
4556 	case KVM_CAP_IRQCHIP:
4557 	case KVM_CAP_HLT:
4558 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4559 	case KVM_CAP_SET_TSS_ADDR:
4560 	case KVM_CAP_EXT_CPUID:
4561 	case KVM_CAP_EXT_EMUL_CPUID:
4562 	case KVM_CAP_CLOCKSOURCE:
4563 	case KVM_CAP_PIT:
4564 	case KVM_CAP_NOP_IO_DELAY:
4565 	case KVM_CAP_MP_STATE:
4566 	case KVM_CAP_SYNC_MMU:
4567 	case KVM_CAP_USER_NMI:
4568 	case KVM_CAP_REINJECT_CONTROL:
4569 	case KVM_CAP_IRQ_INJECT_STATUS:
4570 	case KVM_CAP_IOEVENTFD:
4571 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4572 	case KVM_CAP_PIT2:
4573 	case KVM_CAP_PIT_STATE2:
4574 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4575 	case KVM_CAP_VCPU_EVENTS:
4576 	case KVM_CAP_HYPERV:
4577 	case KVM_CAP_HYPERV_VAPIC:
4578 	case KVM_CAP_HYPERV_SPIN:
4579 	case KVM_CAP_HYPERV_SYNIC:
4580 	case KVM_CAP_HYPERV_SYNIC2:
4581 	case KVM_CAP_HYPERV_VP_INDEX:
4582 	case KVM_CAP_HYPERV_EVENTFD:
4583 	case KVM_CAP_HYPERV_TLBFLUSH:
4584 	case KVM_CAP_HYPERV_SEND_IPI:
4585 	case KVM_CAP_HYPERV_CPUID:
4586 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4587 	case KVM_CAP_SYS_HYPERV_CPUID:
4588 	case KVM_CAP_PCI_SEGMENT:
4589 	case KVM_CAP_DEBUGREGS:
4590 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4591 	case KVM_CAP_XSAVE:
4592 	case KVM_CAP_ASYNC_PF:
4593 	case KVM_CAP_ASYNC_PF_INT:
4594 	case KVM_CAP_GET_TSC_KHZ:
4595 	case KVM_CAP_KVMCLOCK_CTRL:
4596 	case KVM_CAP_READONLY_MEM:
4597 	case KVM_CAP_HYPERV_TIME:
4598 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4599 	case KVM_CAP_TSC_DEADLINE_TIMER:
4600 	case KVM_CAP_DISABLE_QUIRKS:
4601 	case KVM_CAP_SET_BOOT_CPU_ID:
4602  	case KVM_CAP_SPLIT_IRQCHIP:
4603 	case KVM_CAP_IMMEDIATE_EXIT:
4604 	case KVM_CAP_PMU_EVENT_FILTER:
4605 	case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4606 	case KVM_CAP_GET_MSR_FEATURES:
4607 	case KVM_CAP_MSR_PLATFORM_INFO:
4608 	case KVM_CAP_EXCEPTION_PAYLOAD:
4609 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4610 	case KVM_CAP_SET_GUEST_DEBUG:
4611 	case KVM_CAP_LAST_CPU:
4612 	case KVM_CAP_X86_USER_SPACE_MSR:
4613 	case KVM_CAP_X86_MSR_FILTER:
4614 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4615 #ifdef CONFIG_X86_SGX_KVM
4616 	case KVM_CAP_SGX_ATTRIBUTE:
4617 #endif
4618 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4619 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4620 	case KVM_CAP_SREGS2:
4621 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4622 	case KVM_CAP_VCPU_ATTRIBUTES:
4623 	case KVM_CAP_SYS_ATTRIBUTES:
4624 	case KVM_CAP_VAPIC:
4625 	case KVM_CAP_ENABLE_CAP:
4626 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4627 	case KVM_CAP_IRQFD_RESAMPLE:
4628 		r = 1;
4629 		break;
4630 	case KVM_CAP_EXIT_HYPERCALL:
4631 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4632 		break;
4633 	case KVM_CAP_SET_GUEST_DEBUG2:
4634 		return KVM_GUESTDBG_VALID_MASK;
4635 #ifdef CONFIG_KVM_XEN
4636 	case KVM_CAP_XEN_HVM:
4637 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4638 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4639 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4640 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4641 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4642 		if (sched_info_on())
4643 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4644 			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4645 		break;
4646 #endif
4647 	case KVM_CAP_SYNC_REGS:
4648 		r = KVM_SYNC_X86_VALID_FIELDS;
4649 		break;
4650 	case KVM_CAP_ADJUST_CLOCK:
4651 		r = KVM_CLOCK_VALID_FLAGS;
4652 		break;
4653 	case KVM_CAP_X86_DISABLE_EXITS:
4654 		r = KVM_X86_DISABLE_EXITS_PAUSE;
4655 
4656 		if (!mitigate_smt_rsb) {
4657 			r |= KVM_X86_DISABLE_EXITS_HLT |
4658 			     KVM_X86_DISABLE_EXITS_CSTATE;
4659 
4660 			if (kvm_can_mwait_in_guest())
4661 				r |= KVM_X86_DISABLE_EXITS_MWAIT;
4662 		}
4663 		break;
4664 	case KVM_CAP_X86_SMM:
4665 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4666 			break;
4667 
4668 		/* SMBASE is usually relocated above 1M on modern chipsets,
4669 		 * and SMM handlers might indeed rely on 4G segment limits,
4670 		 * so do not report SMM to be available if real mode is
4671 		 * emulated via vm86 mode.  Still, do not go to great lengths
4672 		 * to avoid userspace's usage of the feature, because it is a
4673 		 * fringe case that is not enabled except via specific settings
4674 		 * of the module parameters.
4675 		 */
4676 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4677 		break;
4678 	case KVM_CAP_NR_VCPUS:
4679 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4680 		break;
4681 	case KVM_CAP_MAX_VCPUS:
4682 		r = KVM_MAX_VCPUS;
4683 		break;
4684 	case KVM_CAP_MAX_VCPU_ID:
4685 		r = KVM_MAX_VCPU_IDS;
4686 		break;
4687 	case KVM_CAP_PV_MMU:	/* obsolete */
4688 		r = 0;
4689 		break;
4690 	case KVM_CAP_MCE:
4691 		r = KVM_MAX_MCE_BANKS;
4692 		break;
4693 	case KVM_CAP_XCRS:
4694 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4695 		break;
4696 	case KVM_CAP_TSC_CONTROL:
4697 	case KVM_CAP_VM_TSC_CONTROL:
4698 		r = kvm_caps.has_tsc_control;
4699 		break;
4700 	case KVM_CAP_X2APIC_API:
4701 		r = KVM_X2APIC_API_VALID_FLAGS;
4702 		break;
4703 	case KVM_CAP_NESTED_STATE:
4704 		r = kvm_x86_ops.nested_ops->get_state ?
4705 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4706 		break;
4707 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4708 		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4709 		break;
4710 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4711 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4712 		break;
4713 	case KVM_CAP_SMALLER_MAXPHYADDR:
4714 		r = (int) allow_smaller_maxphyaddr;
4715 		break;
4716 	case KVM_CAP_STEAL_TIME:
4717 		r = sched_info_on();
4718 		break;
4719 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4720 		if (kvm_caps.has_bus_lock_exit)
4721 			r = KVM_BUS_LOCK_DETECTION_OFF |
4722 			    KVM_BUS_LOCK_DETECTION_EXIT;
4723 		else
4724 			r = 0;
4725 		break;
4726 	case KVM_CAP_XSAVE2: {
4727 		r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4728 		if (r < sizeof(struct kvm_xsave))
4729 			r = sizeof(struct kvm_xsave);
4730 		break;
4731 	}
4732 	case KVM_CAP_PMU_CAPABILITY:
4733 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4734 		break;
4735 	case KVM_CAP_DISABLE_QUIRKS2:
4736 		r = KVM_X86_VALID_QUIRKS;
4737 		break;
4738 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4739 		r = kvm_caps.has_notify_vmexit;
4740 		break;
4741 	default:
4742 		break;
4743 	}
4744 	return r;
4745 }
4746 
4747 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4748 {
4749 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4750 
4751 	if ((u64)(unsigned long)uaddr != attr->addr)
4752 		return ERR_PTR_USR(-EFAULT);
4753 	return uaddr;
4754 }
4755 
4756 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4757 {
4758 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4759 
4760 	if (attr->group)
4761 		return -ENXIO;
4762 
4763 	if (IS_ERR(uaddr))
4764 		return PTR_ERR(uaddr);
4765 
4766 	switch (attr->attr) {
4767 	case KVM_X86_XCOMP_GUEST_SUPP:
4768 		if (put_user(kvm_caps.supported_xcr0, uaddr))
4769 			return -EFAULT;
4770 		return 0;
4771 	default:
4772 		return -ENXIO;
4773 	}
4774 }
4775 
4776 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4777 {
4778 	if (attr->group)
4779 		return -ENXIO;
4780 
4781 	switch (attr->attr) {
4782 	case KVM_X86_XCOMP_GUEST_SUPP:
4783 		return 0;
4784 	default:
4785 		return -ENXIO;
4786 	}
4787 }
4788 
4789 long kvm_arch_dev_ioctl(struct file *filp,
4790 			unsigned int ioctl, unsigned long arg)
4791 {
4792 	void __user *argp = (void __user *)arg;
4793 	long r;
4794 
4795 	switch (ioctl) {
4796 	case KVM_GET_MSR_INDEX_LIST: {
4797 		struct kvm_msr_list __user *user_msr_list = argp;
4798 		struct kvm_msr_list msr_list;
4799 		unsigned n;
4800 
4801 		r = -EFAULT;
4802 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4803 			goto out;
4804 		n = msr_list.nmsrs;
4805 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4806 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4807 			goto out;
4808 		r = -E2BIG;
4809 		if (n < msr_list.nmsrs)
4810 			goto out;
4811 		r = -EFAULT;
4812 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4813 				 num_msrs_to_save * sizeof(u32)))
4814 			goto out;
4815 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4816 				 &emulated_msrs,
4817 				 num_emulated_msrs * sizeof(u32)))
4818 			goto out;
4819 		r = 0;
4820 		break;
4821 	}
4822 	case KVM_GET_SUPPORTED_CPUID:
4823 	case KVM_GET_EMULATED_CPUID: {
4824 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4825 		struct kvm_cpuid2 cpuid;
4826 
4827 		r = -EFAULT;
4828 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4829 			goto out;
4830 
4831 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4832 					    ioctl);
4833 		if (r)
4834 			goto out;
4835 
4836 		r = -EFAULT;
4837 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4838 			goto out;
4839 		r = 0;
4840 		break;
4841 	}
4842 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4843 		r = -EFAULT;
4844 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4845 				 sizeof(kvm_caps.supported_mce_cap)))
4846 			goto out;
4847 		r = 0;
4848 		break;
4849 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4850 		struct kvm_msr_list __user *user_msr_list = argp;
4851 		struct kvm_msr_list msr_list;
4852 		unsigned int n;
4853 
4854 		r = -EFAULT;
4855 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4856 			goto out;
4857 		n = msr_list.nmsrs;
4858 		msr_list.nmsrs = num_msr_based_features;
4859 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4860 			goto out;
4861 		r = -E2BIG;
4862 		if (n < msr_list.nmsrs)
4863 			goto out;
4864 		r = -EFAULT;
4865 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4866 				 num_msr_based_features * sizeof(u32)))
4867 			goto out;
4868 		r = 0;
4869 		break;
4870 	}
4871 	case KVM_GET_MSRS:
4872 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4873 		break;
4874 	case KVM_GET_SUPPORTED_HV_CPUID:
4875 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4876 		break;
4877 	case KVM_GET_DEVICE_ATTR: {
4878 		struct kvm_device_attr attr;
4879 		r = -EFAULT;
4880 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4881 			break;
4882 		r = kvm_x86_dev_get_attr(&attr);
4883 		break;
4884 	}
4885 	case KVM_HAS_DEVICE_ATTR: {
4886 		struct kvm_device_attr attr;
4887 		r = -EFAULT;
4888 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4889 			break;
4890 		r = kvm_x86_dev_has_attr(&attr);
4891 		break;
4892 	}
4893 	default:
4894 		r = -EINVAL;
4895 		break;
4896 	}
4897 out:
4898 	return r;
4899 }
4900 
4901 static void wbinvd_ipi(void *garbage)
4902 {
4903 	wbinvd();
4904 }
4905 
4906 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4907 {
4908 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4909 }
4910 
4911 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4912 {
4913 	/* Address WBINVD may be executed by guest */
4914 	if (need_emulate_wbinvd(vcpu)) {
4915 		if (static_call(kvm_x86_has_wbinvd_exit)())
4916 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4917 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4918 			smp_call_function_single(vcpu->cpu,
4919 					wbinvd_ipi, NULL, 1);
4920 	}
4921 
4922 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4923 
4924 	/* Save host pkru register if supported */
4925 	vcpu->arch.host_pkru = read_pkru();
4926 
4927 	/* Apply any externally detected TSC adjustments (due to suspend) */
4928 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4929 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4930 		vcpu->arch.tsc_offset_adjustment = 0;
4931 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4932 	}
4933 
4934 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4935 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4936 				rdtsc() - vcpu->arch.last_host_tsc;
4937 		if (tsc_delta < 0)
4938 			mark_tsc_unstable("KVM discovered backwards TSC");
4939 
4940 		if (kvm_check_tsc_unstable()) {
4941 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4942 						vcpu->arch.last_guest_tsc);
4943 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4944 			vcpu->arch.tsc_catchup = 1;
4945 		}
4946 
4947 		if (kvm_lapic_hv_timer_in_use(vcpu))
4948 			kvm_lapic_restart_hv_timer(vcpu);
4949 
4950 		/*
4951 		 * On a host with synchronized TSC, there is no need to update
4952 		 * kvmclock on vcpu->cpu migration
4953 		 */
4954 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4955 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4956 		if (vcpu->cpu != cpu)
4957 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4958 		vcpu->cpu = cpu;
4959 	}
4960 
4961 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4962 }
4963 
4964 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4965 {
4966 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4967 	struct kvm_steal_time __user *st;
4968 	struct kvm_memslots *slots;
4969 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4970 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4971 
4972 	/*
4973 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4974 	 * an instruction boundary and will not trigger guest emulation of any
4975 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4976 	 * when this is true, for example allowing the vCPU to be marked
4977 	 * preempted if and only if the VM-Exit was due to a host interrupt.
4978 	 */
4979 	if (!vcpu->arch.at_instruction_boundary) {
4980 		vcpu->stat.preemption_other++;
4981 		return;
4982 	}
4983 
4984 	vcpu->stat.preemption_reported++;
4985 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4986 		return;
4987 
4988 	if (vcpu->arch.st.preempted)
4989 		return;
4990 
4991 	/* This happens on process exit */
4992 	if (unlikely(current->mm != vcpu->kvm->mm))
4993 		return;
4994 
4995 	slots = kvm_memslots(vcpu->kvm);
4996 
4997 	if (unlikely(slots->generation != ghc->generation ||
4998 		     gpa != ghc->gpa ||
4999 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5000 		return;
5001 
5002 	st = (struct kvm_steal_time __user *)ghc->hva;
5003 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5004 
5005 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5006 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5007 
5008 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5009 }
5010 
5011 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5012 {
5013 	int idx;
5014 
5015 	if (vcpu->preempted) {
5016 		if (!vcpu->arch.guest_state_protected)
5017 			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
5018 
5019 		/*
5020 		 * Take the srcu lock as memslots will be accessed to check the gfn
5021 		 * cache generation against the memslots generation.
5022 		 */
5023 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5024 		if (kvm_xen_msr_enabled(vcpu->kvm))
5025 			kvm_xen_runstate_set_preempted(vcpu);
5026 		else
5027 			kvm_steal_time_set_preempted(vcpu);
5028 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5029 	}
5030 
5031 	static_call(kvm_x86_vcpu_put)(vcpu);
5032 	vcpu->arch.last_host_tsc = rdtsc();
5033 }
5034 
5035 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5036 				    struct kvm_lapic_state *s)
5037 {
5038 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
5039 
5040 	return kvm_apic_get_state(vcpu, s);
5041 }
5042 
5043 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5044 				    struct kvm_lapic_state *s)
5045 {
5046 	int r;
5047 
5048 	r = kvm_apic_set_state(vcpu, s);
5049 	if (r)
5050 		return r;
5051 	update_cr8_intercept(vcpu);
5052 
5053 	return 0;
5054 }
5055 
5056 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5057 {
5058 	/*
5059 	 * We can accept userspace's request for interrupt injection
5060 	 * as long as we have a place to store the interrupt number.
5061 	 * The actual injection will happen when the CPU is able to
5062 	 * deliver the interrupt.
5063 	 */
5064 	if (kvm_cpu_has_extint(vcpu))
5065 		return false;
5066 
5067 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
5068 	return (!lapic_in_kernel(vcpu) ||
5069 		kvm_apic_accept_pic_intr(vcpu));
5070 }
5071 
5072 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5073 {
5074 	/*
5075 	 * Do not cause an interrupt window exit if an exception
5076 	 * is pending or an event needs reinjection; userspace
5077 	 * might want to inject the interrupt manually using KVM_SET_REGS
5078 	 * or KVM_SET_SREGS.  For that to work, we must be at an
5079 	 * instruction boundary and with no events half-injected.
5080 	 */
5081 	return (kvm_arch_interrupt_allowed(vcpu) &&
5082 		kvm_cpu_accept_dm_intr(vcpu) &&
5083 		!kvm_event_needs_reinjection(vcpu) &&
5084 		!kvm_is_exception_pending(vcpu));
5085 }
5086 
5087 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5088 				    struct kvm_interrupt *irq)
5089 {
5090 	if (irq->irq >= KVM_NR_INTERRUPTS)
5091 		return -EINVAL;
5092 
5093 	if (!irqchip_in_kernel(vcpu->kvm)) {
5094 		kvm_queue_interrupt(vcpu, irq->irq, false);
5095 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5096 		return 0;
5097 	}
5098 
5099 	/*
5100 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5101 	 * fail for in-kernel 8259.
5102 	 */
5103 	if (pic_in_kernel(vcpu->kvm))
5104 		return -ENXIO;
5105 
5106 	if (vcpu->arch.pending_external_vector != -1)
5107 		return -EEXIST;
5108 
5109 	vcpu->arch.pending_external_vector = irq->irq;
5110 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5111 	return 0;
5112 }
5113 
5114 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5115 {
5116 	kvm_inject_nmi(vcpu);
5117 
5118 	return 0;
5119 }
5120 
5121 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5122 					   struct kvm_tpr_access_ctl *tac)
5123 {
5124 	if (tac->flags)
5125 		return -EINVAL;
5126 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
5127 	return 0;
5128 }
5129 
5130 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5131 					u64 mcg_cap)
5132 {
5133 	int r;
5134 	unsigned bank_num = mcg_cap & 0xff, bank;
5135 
5136 	r = -EINVAL;
5137 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5138 		goto out;
5139 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5140 		goto out;
5141 	r = 0;
5142 	vcpu->arch.mcg_cap = mcg_cap;
5143 	/* Init IA32_MCG_CTL to all 1s */
5144 	if (mcg_cap & MCG_CTL_P)
5145 		vcpu->arch.mcg_ctl = ~(u64)0;
5146 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5147 	for (bank = 0; bank < bank_num; bank++) {
5148 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5149 		if (mcg_cap & MCG_CMCI_P)
5150 			vcpu->arch.mci_ctl2_banks[bank] = 0;
5151 	}
5152 
5153 	kvm_apic_after_set_mcg_cap(vcpu);
5154 
5155 	static_call(kvm_x86_setup_mce)(vcpu);
5156 out:
5157 	return r;
5158 }
5159 
5160 /*
5161  * Validate this is an UCNA (uncorrectable no action) error by checking the
5162  * MCG_STATUS and MCi_STATUS registers:
5163  * - none of the bits for Machine Check Exceptions are set
5164  * - both the VAL (valid) and UC (uncorrectable) bits are set
5165  * MCI_STATUS_PCC - Processor Context Corrupted
5166  * MCI_STATUS_S - Signaled as a Machine Check Exception
5167  * MCI_STATUS_AR - Software recoverable Action Required
5168  */
5169 static bool is_ucna(struct kvm_x86_mce *mce)
5170 {
5171 	return	!mce->mcg_status &&
5172 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5173 		(mce->status & MCI_STATUS_VAL) &&
5174 		(mce->status & MCI_STATUS_UC);
5175 }
5176 
5177 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5178 {
5179 	u64 mcg_cap = vcpu->arch.mcg_cap;
5180 
5181 	banks[1] = mce->status;
5182 	banks[2] = mce->addr;
5183 	banks[3] = mce->misc;
5184 	vcpu->arch.mcg_status = mce->mcg_status;
5185 
5186 	if (!(mcg_cap & MCG_CMCI_P) ||
5187 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5188 		return 0;
5189 
5190 	if (lapic_in_kernel(vcpu))
5191 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5192 
5193 	return 0;
5194 }
5195 
5196 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5197 				      struct kvm_x86_mce *mce)
5198 {
5199 	u64 mcg_cap = vcpu->arch.mcg_cap;
5200 	unsigned bank_num = mcg_cap & 0xff;
5201 	u64 *banks = vcpu->arch.mce_banks;
5202 
5203 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5204 		return -EINVAL;
5205 
5206 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5207 
5208 	if (is_ucna(mce))
5209 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5210 
5211 	/*
5212 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5213 	 * reporting is disabled
5214 	 */
5215 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5216 	    vcpu->arch.mcg_ctl != ~(u64)0)
5217 		return 0;
5218 	/*
5219 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5220 	 * reporting is disabled for the bank
5221 	 */
5222 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5223 		return 0;
5224 	if (mce->status & MCI_STATUS_UC) {
5225 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5226 		    !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5227 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5228 			return 0;
5229 		}
5230 		if (banks[1] & MCI_STATUS_VAL)
5231 			mce->status |= MCI_STATUS_OVER;
5232 		banks[2] = mce->addr;
5233 		banks[3] = mce->misc;
5234 		vcpu->arch.mcg_status = mce->mcg_status;
5235 		banks[1] = mce->status;
5236 		kvm_queue_exception(vcpu, MC_VECTOR);
5237 	} else if (!(banks[1] & MCI_STATUS_VAL)
5238 		   || !(banks[1] & MCI_STATUS_UC)) {
5239 		if (banks[1] & MCI_STATUS_VAL)
5240 			mce->status |= MCI_STATUS_OVER;
5241 		banks[2] = mce->addr;
5242 		banks[3] = mce->misc;
5243 		banks[1] = mce->status;
5244 	} else
5245 		banks[1] |= MCI_STATUS_OVER;
5246 	return 0;
5247 }
5248 
5249 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5250 					       struct kvm_vcpu_events *events)
5251 {
5252 	struct kvm_queued_exception *ex;
5253 
5254 	process_nmi(vcpu);
5255 
5256 #ifdef CONFIG_KVM_SMM
5257 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5258 		process_smi(vcpu);
5259 #endif
5260 
5261 	/*
5262 	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5263 	 * the only time there can be two queued exceptions is if there's a
5264 	 * non-exiting _injected_ exception, and a pending exiting exception.
5265 	 * In that case, ignore the VM-Exiting exception as it's an extension
5266 	 * of the injected exception.
5267 	 */
5268 	if (vcpu->arch.exception_vmexit.pending &&
5269 	    !vcpu->arch.exception.pending &&
5270 	    !vcpu->arch.exception.injected)
5271 		ex = &vcpu->arch.exception_vmexit;
5272 	else
5273 		ex = &vcpu->arch.exception;
5274 
5275 	/*
5276 	 * In guest mode, payload delivery should be deferred if the exception
5277 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5278 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5279 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5280 	 * propagate the payload and so it cannot be safely deferred.  Deliver
5281 	 * the payload if the capability hasn't been requested.
5282 	 */
5283 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5284 	    ex->pending && ex->has_payload)
5285 		kvm_deliver_exception_payload(vcpu, ex);
5286 
5287 	memset(events, 0, sizeof(*events));
5288 
5289 	/*
5290 	 * The API doesn't provide the instruction length for software
5291 	 * exceptions, so don't report them. As long as the guest RIP
5292 	 * isn't advanced, we should expect to encounter the exception
5293 	 * again.
5294 	 */
5295 	if (!kvm_exception_is_soft(ex->vector)) {
5296 		events->exception.injected = ex->injected;
5297 		events->exception.pending = ex->pending;
5298 		/*
5299 		 * For ABI compatibility, deliberately conflate
5300 		 * pending and injected exceptions when
5301 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5302 		 */
5303 		if (!vcpu->kvm->arch.exception_payload_enabled)
5304 			events->exception.injected |= ex->pending;
5305 	}
5306 	events->exception.nr = ex->vector;
5307 	events->exception.has_error_code = ex->has_error_code;
5308 	events->exception.error_code = ex->error_code;
5309 	events->exception_has_payload = ex->has_payload;
5310 	events->exception_payload = ex->payload;
5311 
5312 	events->interrupt.injected =
5313 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5314 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5315 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5316 
5317 	events->nmi.injected = vcpu->arch.nmi_injected;
5318 	events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5319 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5320 
5321 	/* events->sipi_vector is never valid when reporting to user space */
5322 
5323 #ifdef CONFIG_KVM_SMM
5324 	events->smi.smm = is_smm(vcpu);
5325 	events->smi.pending = vcpu->arch.smi_pending;
5326 	events->smi.smm_inside_nmi =
5327 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5328 #endif
5329 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5330 
5331 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5332 			 | KVM_VCPUEVENT_VALID_SHADOW
5333 			 | KVM_VCPUEVENT_VALID_SMM);
5334 	if (vcpu->kvm->arch.exception_payload_enabled)
5335 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5336 	if (vcpu->kvm->arch.triple_fault_event) {
5337 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5338 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5339 	}
5340 }
5341 
5342 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5343 					      struct kvm_vcpu_events *events)
5344 {
5345 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5346 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5347 			      | KVM_VCPUEVENT_VALID_SHADOW
5348 			      | KVM_VCPUEVENT_VALID_SMM
5349 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5350 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5351 		return -EINVAL;
5352 
5353 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5354 		if (!vcpu->kvm->arch.exception_payload_enabled)
5355 			return -EINVAL;
5356 		if (events->exception.pending)
5357 			events->exception.injected = 0;
5358 		else
5359 			events->exception_has_payload = 0;
5360 	} else {
5361 		events->exception.pending = 0;
5362 		events->exception_has_payload = 0;
5363 	}
5364 
5365 	if ((events->exception.injected || events->exception.pending) &&
5366 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5367 		return -EINVAL;
5368 
5369 	/* INITs are latched while in SMM */
5370 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5371 	    (events->smi.smm || events->smi.pending) &&
5372 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5373 		return -EINVAL;
5374 
5375 	process_nmi(vcpu);
5376 
5377 	/*
5378 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5379 	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5380 	 * pending exceptions, already-injected exceptions are not subject to
5381 	 * intercpetion.  Note, userspace that conflates pending and injected
5382 	 * is hosed, and will incorrectly convert an injected exception into a
5383 	 * pending exception, which in turn may cause a spurious VM-Exit.
5384 	 */
5385 	vcpu->arch.exception_from_userspace = events->exception.pending;
5386 
5387 	vcpu->arch.exception_vmexit.pending = false;
5388 
5389 	vcpu->arch.exception.injected = events->exception.injected;
5390 	vcpu->arch.exception.pending = events->exception.pending;
5391 	vcpu->arch.exception.vector = events->exception.nr;
5392 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5393 	vcpu->arch.exception.error_code = events->exception.error_code;
5394 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5395 	vcpu->arch.exception.payload = events->exception_payload;
5396 
5397 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5398 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5399 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5400 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5401 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5402 						events->interrupt.shadow);
5403 
5404 	vcpu->arch.nmi_injected = events->nmi.injected;
5405 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5406 		vcpu->arch.nmi_pending = 0;
5407 		atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5408 		kvm_make_request(KVM_REQ_NMI, vcpu);
5409 	}
5410 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5411 
5412 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5413 	    lapic_in_kernel(vcpu))
5414 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5415 
5416 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5417 #ifdef CONFIG_KVM_SMM
5418 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5419 			kvm_leave_nested(vcpu);
5420 			kvm_smm_changed(vcpu, events->smi.smm);
5421 		}
5422 
5423 		vcpu->arch.smi_pending = events->smi.pending;
5424 
5425 		if (events->smi.smm) {
5426 			if (events->smi.smm_inside_nmi)
5427 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5428 			else
5429 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5430 		}
5431 
5432 #else
5433 		if (events->smi.smm || events->smi.pending ||
5434 		    events->smi.smm_inside_nmi)
5435 			return -EINVAL;
5436 #endif
5437 
5438 		if (lapic_in_kernel(vcpu)) {
5439 			if (events->smi.latched_init)
5440 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5441 			else
5442 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5443 		}
5444 	}
5445 
5446 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5447 		if (!vcpu->kvm->arch.triple_fault_event)
5448 			return -EINVAL;
5449 		if (events->triple_fault.pending)
5450 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5451 		else
5452 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5453 	}
5454 
5455 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5456 
5457 	return 0;
5458 }
5459 
5460 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5461 					     struct kvm_debugregs *dbgregs)
5462 {
5463 	unsigned long val;
5464 
5465 	memset(dbgregs, 0, sizeof(*dbgregs));
5466 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5467 	kvm_get_dr(vcpu, 6, &val);
5468 	dbgregs->dr6 = val;
5469 	dbgregs->dr7 = vcpu->arch.dr7;
5470 }
5471 
5472 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5473 					    struct kvm_debugregs *dbgregs)
5474 {
5475 	if (dbgregs->flags)
5476 		return -EINVAL;
5477 
5478 	if (!kvm_dr6_valid(dbgregs->dr6))
5479 		return -EINVAL;
5480 	if (!kvm_dr7_valid(dbgregs->dr7))
5481 		return -EINVAL;
5482 
5483 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5484 	kvm_update_dr0123(vcpu);
5485 	vcpu->arch.dr6 = dbgregs->dr6;
5486 	vcpu->arch.dr7 = dbgregs->dr7;
5487 	kvm_update_dr7(vcpu);
5488 
5489 	return 0;
5490 }
5491 
5492 
5493 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5494 					  u8 *state, unsigned int size)
5495 {
5496 	/*
5497 	 * Only copy state for features that are enabled for the guest.  The
5498 	 * state itself isn't problematic, but setting bits in the header for
5499 	 * features that are supported in *this* host but not exposed to the
5500 	 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5501 	 * compatible host without the features that are NOT exposed to the
5502 	 * guest.
5503 	 *
5504 	 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5505 	 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5506 	 * supported by the host.
5507 	 */
5508 	u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5509 			     XFEATURE_MASK_FPSSE;
5510 
5511 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5512 		return;
5513 
5514 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5515 				       supported_xcr0, vcpu->arch.pkru);
5516 }
5517 
5518 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5519 					 struct kvm_xsave *guest_xsave)
5520 {
5521 	kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5522 				      sizeof(guest_xsave->region));
5523 }
5524 
5525 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5526 					struct kvm_xsave *guest_xsave)
5527 {
5528 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5529 		return 0;
5530 
5531 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5532 					      guest_xsave->region,
5533 					      kvm_caps.supported_xcr0,
5534 					      &vcpu->arch.pkru);
5535 }
5536 
5537 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5538 					struct kvm_xcrs *guest_xcrs)
5539 {
5540 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5541 		guest_xcrs->nr_xcrs = 0;
5542 		return;
5543 	}
5544 
5545 	guest_xcrs->nr_xcrs = 1;
5546 	guest_xcrs->flags = 0;
5547 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5548 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5549 }
5550 
5551 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5552 				       struct kvm_xcrs *guest_xcrs)
5553 {
5554 	int i, r = 0;
5555 
5556 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5557 		return -EINVAL;
5558 
5559 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5560 		return -EINVAL;
5561 
5562 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5563 		/* Only support XCR0 currently */
5564 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5565 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5566 				guest_xcrs->xcrs[i].value);
5567 			break;
5568 		}
5569 	if (r)
5570 		r = -EINVAL;
5571 	return r;
5572 }
5573 
5574 /*
5575  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5576  * stopped by the hypervisor.  This function will be called from the host only.
5577  * EINVAL is returned when the host attempts to set the flag for a guest that
5578  * does not support pv clocks.
5579  */
5580 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5581 {
5582 	if (!vcpu->arch.pv_time.active)
5583 		return -EINVAL;
5584 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5585 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5586 	return 0;
5587 }
5588 
5589 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5590 				 struct kvm_device_attr *attr)
5591 {
5592 	int r;
5593 
5594 	switch (attr->attr) {
5595 	case KVM_VCPU_TSC_OFFSET:
5596 		r = 0;
5597 		break;
5598 	default:
5599 		r = -ENXIO;
5600 	}
5601 
5602 	return r;
5603 }
5604 
5605 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5606 				 struct kvm_device_attr *attr)
5607 {
5608 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5609 	int r;
5610 
5611 	if (IS_ERR(uaddr))
5612 		return PTR_ERR(uaddr);
5613 
5614 	switch (attr->attr) {
5615 	case KVM_VCPU_TSC_OFFSET:
5616 		r = -EFAULT;
5617 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5618 			break;
5619 		r = 0;
5620 		break;
5621 	default:
5622 		r = -ENXIO;
5623 	}
5624 
5625 	return r;
5626 }
5627 
5628 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5629 				 struct kvm_device_attr *attr)
5630 {
5631 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5632 	struct kvm *kvm = vcpu->kvm;
5633 	int r;
5634 
5635 	if (IS_ERR(uaddr))
5636 		return PTR_ERR(uaddr);
5637 
5638 	switch (attr->attr) {
5639 	case KVM_VCPU_TSC_OFFSET: {
5640 		u64 offset, tsc, ns;
5641 		unsigned long flags;
5642 		bool matched;
5643 
5644 		r = -EFAULT;
5645 		if (get_user(offset, uaddr))
5646 			break;
5647 
5648 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5649 
5650 		matched = (vcpu->arch.virtual_tsc_khz &&
5651 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5652 			   kvm->arch.last_tsc_offset == offset);
5653 
5654 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5655 		ns = get_kvmclock_base_ns();
5656 
5657 		kvm->arch.user_set_tsc = true;
5658 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5659 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5660 
5661 		r = 0;
5662 		break;
5663 	}
5664 	default:
5665 		r = -ENXIO;
5666 	}
5667 
5668 	return r;
5669 }
5670 
5671 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5672 				      unsigned int ioctl,
5673 				      void __user *argp)
5674 {
5675 	struct kvm_device_attr attr;
5676 	int r;
5677 
5678 	if (copy_from_user(&attr, argp, sizeof(attr)))
5679 		return -EFAULT;
5680 
5681 	if (attr.group != KVM_VCPU_TSC_CTRL)
5682 		return -ENXIO;
5683 
5684 	switch (ioctl) {
5685 	case KVM_HAS_DEVICE_ATTR:
5686 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5687 		break;
5688 	case KVM_GET_DEVICE_ATTR:
5689 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5690 		break;
5691 	case KVM_SET_DEVICE_ATTR:
5692 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5693 		break;
5694 	}
5695 
5696 	return r;
5697 }
5698 
5699 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5700 				     struct kvm_enable_cap *cap)
5701 {
5702 	int r;
5703 	uint16_t vmcs_version;
5704 	void __user *user_ptr;
5705 
5706 	if (cap->flags)
5707 		return -EINVAL;
5708 
5709 	switch (cap->cap) {
5710 	case KVM_CAP_HYPERV_SYNIC2:
5711 		if (cap->args[0])
5712 			return -EINVAL;
5713 		fallthrough;
5714 
5715 	case KVM_CAP_HYPERV_SYNIC:
5716 		if (!irqchip_in_kernel(vcpu->kvm))
5717 			return -EINVAL;
5718 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5719 					     KVM_CAP_HYPERV_SYNIC2);
5720 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5721 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5722 			return -ENOTTY;
5723 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5724 		if (!r) {
5725 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5726 			if (copy_to_user(user_ptr, &vmcs_version,
5727 					 sizeof(vmcs_version)))
5728 				r = -EFAULT;
5729 		}
5730 		return r;
5731 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5732 		if (!kvm_x86_ops.enable_l2_tlb_flush)
5733 			return -ENOTTY;
5734 
5735 		return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5736 
5737 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5738 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5739 
5740 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5741 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5742 		if (vcpu->arch.pv_cpuid.enforce)
5743 			kvm_update_pv_runtime(vcpu);
5744 
5745 		return 0;
5746 	default:
5747 		return -EINVAL;
5748 	}
5749 }
5750 
5751 long kvm_arch_vcpu_ioctl(struct file *filp,
5752 			 unsigned int ioctl, unsigned long arg)
5753 {
5754 	struct kvm_vcpu *vcpu = filp->private_data;
5755 	void __user *argp = (void __user *)arg;
5756 	int r;
5757 	union {
5758 		struct kvm_sregs2 *sregs2;
5759 		struct kvm_lapic_state *lapic;
5760 		struct kvm_xsave *xsave;
5761 		struct kvm_xcrs *xcrs;
5762 		void *buffer;
5763 	} u;
5764 
5765 	vcpu_load(vcpu);
5766 
5767 	u.buffer = NULL;
5768 	switch (ioctl) {
5769 	case KVM_GET_LAPIC: {
5770 		r = -EINVAL;
5771 		if (!lapic_in_kernel(vcpu))
5772 			goto out;
5773 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5774 				GFP_KERNEL_ACCOUNT);
5775 
5776 		r = -ENOMEM;
5777 		if (!u.lapic)
5778 			goto out;
5779 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5780 		if (r)
5781 			goto out;
5782 		r = -EFAULT;
5783 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5784 			goto out;
5785 		r = 0;
5786 		break;
5787 	}
5788 	case KVM_SET_LAPIC: {
5789 		r = -EINVAL;
5790 		if (!lapic_in_kernel(vcpu))
5791 			goto out;
5792 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5793 		if (IS_ERR(u.lapic)) {
5794 			r = PTR_ERR(u.lapic);
5795 			goto out_nofree;
5796 		}
5797 
5798 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5799 		break;
5800 	}
5801 	case KVM_INTERRUPT: {
5802 		struct kvm_interrupt irq;
5803 
5804 		r = -EFAULT;
5805 		if (copy_from_user(&irq, argp, sizeof(irq)))
5806 			goto out;
5807 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5808 		break;
5809 	}
5810 	case KVM_NMI: {
5811 		r = kvm_vcpu_ioctl_nmi(vcpu);
5812 		break;
5813 	}
5814 	case KVM_SMI: {
5815 		r = kvm_inject_smi(vcpu);
5816 		break;
5817 	}
5818 	case KVM_SET_CPUID: {
5819 		struct kvm_cpuid __user *cpuid_arg = argp;
5820 		struct kvm_cpuid cpuid;
5821 
5822 		r = -EFAULT;
5823 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5824 			goto out;
5825 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5826 		break;
5827 	}
5828 	case KVM_SET_CPUID2: {
5829 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5830 		struct kvm_cpuid2 cpuid;
5831 
5832 		r = -EFAULT;
5833 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5834 			goto out;
5835 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5836 					      cpuid_arg->entries);
5837 		break;
5838 	}
5839 	case KVM_GET_CPUID2: {
5840 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5841 		struct kvm_cpuid2 cpuid;
5842 
5843 		r = -EFAULT;
5844 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5845 			goto out;
5846 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5847 					      cpuid_arg->entries);
5848 		if (r)
5849 			goto out;
5850 		r = -EFAULT;
5851 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5852 			goto out;
5853 		r = 0;
5854 		break;
5855 	}
5856 	case KVM_GET_MSRS: {
5857 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5858 		r = msr_io(vcpu, argp, do_get_msr, 1);
5859 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5860 		break;
5861 	}
5862 	case KVM_SET_MSRS: {
5863 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5864 		r = msr_io(vcpu, argp, do_set_msr, 0);
5865 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5866 		break;
5867 	}
5868 	case KVM_TPR_ACCESS_REPORTING: {
5869 		struct kvm_tpr_access_ctl tac;
5870 
5871 		r = -EFAULT;
5872 		if (copy_from_user(&tac, argp, sizeof(tac)))
5873 			goto out;
5874 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5875 		if (r)
5876 			goto out;
5877 		r = -EFAULT;
5878 		if (copy_to_user(argp, &tac, sizeof(tac)))
5879 			goto out;
5880 		r = 0;
5881 		break;
5882 	};
5883 	case KVM_SET_VAPIC_ADDR: {
5884 		struct kvm_vapic_addr va;
5885 		int idx;
5886 
5887 		r = -EINVAL;
5888 		if (!lapic_in_kernel(vcpu))
5889 			goto out;
5890 		r = -EFAULT;
5891 		if (copy_from_user(&va, argp, sizeof(va)))
5892 			goto out;
5893 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5894 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5895 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5896 		break;
5897 	}
5898 	case KVM_X86_SETUP_MCE: {
5899 		u64 mcg_cap;
5900 
5901 		r = -EFAULT;
5902 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5903 			goto out;
5904 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5905 		break;
5906 	}
5907 	case KVM_X86_SET_MCE: {
5908 		struct kvm_x86_mce mce;
5909 
5910 		r = -EFAULT;
5911 		if (copy_from_user(&mce, argp, sizeof(mce)))
5912 			goto out;
5913 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5914 		break;
5915 	}
5916 	case KVM_GET_VCPU_EVENTS: {
5917 		struct kvm_vcpu_events events;
5918 
5919 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5920 
5921 		r = -EFAULT;
5922 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5923 			break;
5924 		r = 0;
5925 		break;
5926 	}
5927 	case KVM_SET_VCPU_EVENTS: {
5928 		struct kvm_vcpu_events events;
5929 
5930 		r = -EFAULT;
5931 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5932 			break;
5933 
5934 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5935 		break;
5936 	}
5937 	case KVM_GET_DEBUGREGS: {
5938 		struct kvm_debugregs dbgregs;
5939 
5940 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5941 
5942 		r = -EFAULT;
5943 		if (copy_to_user(argp, &dbgregs,
5944 				 sizeof(struct kvm_debugregs)))
5945 			break;
5946 		r = 0;
5947 		break;
5948 	}
5949 	case KVM_SET_DEBUGREGS: {
5950 		struct kvm_debugregs dbgregs;
5951 
5952 		r = -EFAULT;
5953 		if (copy_from_user(&dbgregs, argp,
5954 				   sizeof(struct kvm_debugregs)))
5955 			break;
5956 
5957 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5958 		break;
5959 	}
5960 	case KVM_GET_XSAVE: {
5961 		r = -EINVAL;
5962 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5963 			break;
5964 
5965 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5966 		r = -ENOMEM;
5967 		if (!u.xsave)
5968 			break;
5969 
5970 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5971 
5972 		r = -EFAULT;
5973 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5974 			break;
5975 		r = 0;
5976 		break;
5977 	}
5978 	case KVM_SET_XSAVE: {
5979 		int size = vcpu->arch.guest_fpu.uabi_size;
5980 
5981 		u.xsave = memdup_user(argp, size);
5982 		if (IS_ERR(u.xsave)) {
5983 			r = PTR_ERR(u.xsave);
5984 			goto out_nofree;
5985 		}
5986 
5987 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5988 		break;
5989 	}
5990 
5991 	case KVM_GET_XSAVE2: {
5992 		int size = vcpu->arch.guest_fpu.uabi_size;
5993 
5994 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5995 		r = -ENOMEM;
5996 		if (!u.xsave)
5997 			break;
5998 
5999 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6000 
6001 		r = -EFAULT;
6002 		if (copy_to_user(argp, u.xsave, size))
6003 			break;
6004 
6005 		r = 0;
6006 		break;
6007 	}
6008 
6009 	case KVM_GET_XCRS: {
6010 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
6011 		r = -ENOMEM;
6012 		if (!u.xcrs)
6013 			break;
6014 
6015 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6016 
6017 		r = -EFAULT;
6018 		if (copy_to_user(argp, u.xcrs,
6019 				 sizeof(struct kvm_xcrs)))
6020 			break;
6021 		r = 0;
6022 		break;
6023 	}
6024 	case KVM_SET_XCRS: {
6025 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6026 		if (IS_ERR(u.xcrs)) {
6027 			r = PTR_ERR(u.xcrs);
6028 			goto out_nofree;
6029 		}
6030 
6031 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6032 		break;
6033 	}
6034 	case KVM_SET_TSC_KHZ: {
6035 		u32 user_tsc_khz;
6036 
6037 		r = -EINVAL;
6038 		user_tsc_khz = (u32)arg;
6039 
6040 		if (kvm_caps.has_tsc_control &&
6041 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6042 			goto out;
6043 
6044 		if (user_tsc_khz == 0)
6045 			user_tsc_khz = tsc_khz;
6046 
6047 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6048 			r = 0;
6049 
6050 		goto out;
6051 	}
6052 	case KVM_GET_TSC_KHZ: {
6053 		r = vcpu->arch.virtual_tsc_khz;
6054 		goto out;
6055 	}
6056 	case KVM_KVMCLOCK_CTRL: {
6057 		r = kvm_set_guest_paused(vcpu);
6058 		goto out;
6059 	}
6060 	case KVM_ENABLE_CAP: {
6061 		struct kvm_enable_cap cap;
6062 
6063 		r = -EFAULT;
6064 		if (copy_from_user(&cap, argp, sizeof(cap)))
6065 			goto out;
6066 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6067 		break;
6068 	}
6069 	case KVM_GET_NESTED_STATE: {
6070 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6071 		u32 user_data_size;
6072 
6073 		r = -EINVAL;
6074 		if (!kvm_x86_ops.nested_ops->get_state)
6075 			break;
6076 
6077 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6078 		r = -EFAULT;
6079 		if (get_user(user_data_size, &user_kvm_nested_state->size))
6080 			break;
6081 
6082 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6083 						     user_data_size);
6084 		if (r < 0)
6085 			break;
6086 
6087 		if (r > user_data_size) {
6088 			if (put_user(r, &user_kvm_nested_state->size))
6089 				r = -EFAULT;
6090 			else
6091 				r = -E2BIG;
6092 			break;
6093 		}
6094 
6095 		r = 0;
6096 		break;
6097 	}
6098 	case KVM_SET_NESTED_STATE: {
6099 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6100 		struct kvm_nested_state kvm_state;
6101 		int idx;
6102 
6103 		r = -EINVAL;
6104 		if (!kvm_x86_ops.nested_ops->set_state)
6105 			break;
6106 
6107 		r = -EFAULT;
6108 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6109 			break;
6110 
6111 		r = -EINVAL;
6112 		if (kvm_state.size < sizeof(kvm_state))
6113 			break;
6114 
6115 		if (kvm_state.flags &
6116 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6117 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6118 		      | KVM_STATE_NESTED_GIF_SET))
6119 			break;
6120 
6121 		/* nested_run_pending implies guest_mode.  */
6122 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6123 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6124 			break;
6125 
6126 		idx = srcu_read_lock(&vcpu->kvm->srcu);
6127 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6128 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6129 		break;
6130 	}
6131 	case KVM_GET_SUPPORTED_HV_CPUID:
6132 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6133 		break;
6134 #ifdef CONFIG_KVM_XEN
6135 	case KVM_XEN_VCPU_GET_ATTR: {
6136 		struct kvm_xen_vcpu_attr xva;
6137 
6138 		r = -EFAULT;
6139 		if (copy_from_user(&xva, argp, sizeof(xva)))
6140 			goto out;
6141 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6142 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6143 			r = -EFAULT;
6144 		break;
6145 	}
6146 	case KVM_XEN_VCPU_SET_ATTR: {
6147 		struct kvm_xen_vcpu_attr xva;
6148 
6149 		r = -EFAULT;
6150 		if (copy_from_user(&xva, argp, sizeof(xva)))
6151 			goto out;
6152 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6153 		break;
6154 	}
6155 #endif
6156 	case KVM_GET_SREGS2: {
6157 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6158 		r = -ENOMEM;
6159 		if (!u.sregs2)
6160 			goto out;
6161 		__get_sregs2(vcpu, u.sregs2);
6162 		r = -EFAULT;
6163 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6164 			goto out;
6165 		r = 0;
6166 		break;
6167 	}
6168 	case KVM_SET_SREGS2: {
6169 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6170 		if (IS_ERR(u.sregs2)) {
6171 			r = PTR_ERR(u.sregs2);
6172 			u.sregs2 = NULL;
6173 			goto out;
6174 		}
6175 		r = __set_sregs2(vcpu, u.sregs2);
6176 		break;
6177 	}
6178 	case KVM_HAS_DEVICE_ATTR:
6179 	case KVM_GET_DEVICE_ATTR:
6180 	case KVM_SET_DEVICE_ATTR:
6181 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6182 		break;
6183 	default:
6184 		r = -EINVAL;
6185 	}
6186 out:
6187 	kfree(u.buffer);
6188 out_nofree:
6189 	vcpu_put(vcpu);
6190 	return r;
6191 }
6192 
6193 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6194 {
6195 	return VM_FAULT_SIGBUS;
6196 }
6197 
6198 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6199 {
6200 	int ret;
6201 
6202 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
6203 		return -EINVAL;
6204 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6205 	return ret;
6206 }
6207 
6208 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6209 					      u64 ident_addr)
6210 {
6211 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6212 }
6213 
6214 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6215 					 unsigned long kvm_nr_mmu_pages)
6216 {
6217 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6218 		return -EINVAL;
6219 
6220 	mutex_lock(&kvm->slots_lock);
6221 
6222 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6223 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6224 
6225 	mutex_unlock(&kvm->slots_lock);
6226 	return 0;
6227 }
6228 
6229 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6230 {
6231 	struct kvm_pic *pic = kvm->arch.vpic;
6232 	int r;
6233 
6234 	r = 0;
6235 	switch (chip->chip_id) {
6236 	case KVM_IRQCHIP_PIC_MASTER:
6237 		memcpy(&chip->chip.pic, &pic->pics[0],
6238 			sizeof(struct kvm_pic_state));
6239 		break;
6240 	case KVM_IRQCHIP_PIC_SLAVE:
6241 		memcpy(&chip->chip.pic, &pic->pics[1],
6242 			sizeof(struct kvm_pic_state));
6243 		break;
6244 	case KVM_IRQCHIP_IOAPIC:
6245 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6246 		break;
6247 	default:
6248 		r = -EINVAL;
6249 		break;
6250 	}
6251 	return r;
6252 }
6253 
6254 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6255 {
6256 	struct kvm_pic *pic = kvm->arch.vpic;
6257 	int r;
6258 
6259 	r = 0;
6260 	switch (chip->chip_id) {
6261 	case KVM_IRQCHIP_PIC_MASTER:
6262 		spin_lock(&pic->lock);
6263 		memcpy(&pic->pics[0], &chip->chip.pic,
6264 			sizeof(struct kvm_pic_state));
6265 		spin_unlock(&pic->lock);
6266 		break;
6267 	case KVM_IRQCHIP_PIC_SLAVE:
6268 		spin_lock(&pic->lock);
6269 		memcpy(&pic->pics[1], &chip->chip.pic,
6270 			sizeof(struct kvm_pic_state));
6271 		spin_unlock(&pic->lock);
6272 		break;
6273 	case KVM_IRQCHIP_IOAPIC:
6274 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6275 		break;
6276 	default:
6277 		r = -EINVAL;
6278 		break;
6279 	}
6280 	kvm_pic_update_irq(pic);
6281 	return r;
6282 }
6283 
6284 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6285 {
6286 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6287 
6288 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6289 
6290 	mutex_lock(&kps->lock);
6291 	memcpy(ps, &kps->channels, sizeof(*ps));
6292 	mutex_unlock(&kps->lock);
6293 	return 0;
6294 }
6295 
6296 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6297 {
6298 	int i;
6299 	struct kvm_pit *pit = kvm->arch.vpit;
6300 
6301 	mutex_lock(&pit->pit_state.lock);
6302 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6303 	for (i = 0; i < 3; i++)
6304 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6305 	mutex_unlock(&pit->pit_state.lock);
6306 	return 0;
6307 }
6308 
6309 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6310 {
6311 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6312 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6313 		sizeof(ps->channels));
6314 	ps->flags = kvm->arch.vpit->pit_state.flags;
6315 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6316 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6317 	return 0;
6318 }
6319 
6320 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6321 {
6322 	int start = 0;
6323 	int i;
6324 	u32 prev_legacy, cur_legacy;
6325 	struct kvm_pit *pit = kvm->arch.vpit;
6326 
6327 	mutex_lock(&pit->pit_state.lock);
6328 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6329 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6330 	if (!prev_legacy && cur_legacy)
6331 		start = 1;
6332 	memcpy(&pit->pit_state.channels, &ps->channels,
6333 	       sizeof(pit->pit_state.channels));
6334 	pit->pit_state.flags = ps->flags;
6335 	for (i = 0; i < 3; i++)
6336 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6337 				   start && i == 0);
6338 	mutex_unlock(&pit->pit_state.lock);
6339 	return 0;
6340 }
6341 
6342 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6343 				 struct kvm_reinject_control *control)
6344 {
6345 	struct kvm_pit *pit = kvm->arch.vpit;
6346 
6347 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6348 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6349 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6350 	 */
6351 	mutex_lock(&pit->pit_state.lock);
6352 	kvm_pit_set_reinject(pit, control->pit_reinject);
6353 	mutex_unlock(&pit->pit_state.lock);
6354 
6355 	return 0;
6356 }
6357 
6358 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6359 {
6360 
6361 	/*
6362 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6363 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6364 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6365 	 * VM-Exit.
6366 	 */
6367 	struct kvm_vcpu *vcpu;
6368 	unsigned long i;
6369 
6370 	if (!kvm_x86_ops.cpu_dirty_log_size)
6371 		return;
6372 
6373 	kvm_for_each_vcpu(i, vcpu, kvm)
6374 		kvm_vcpu_kick(vcpu);
6375 }
6376 
6377 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6378 			bool line_status)
6379 {
6380 	if (!irqchip_in_kernel(kvm))
6381 		return -ENXIO;
6382 
6383 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6384 					irq_event->irq, irq_event->level,
6385 					line_status);
6386 	return 0;
6387 }
6388 
6389 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6390 			    struct kvm_enable_cap *cap)
6391 {
6392 	int r;
6393 
6394 	if (cap->flags)
6395 		return -EINVAL;
6396 
6397 	switch (cap->cap) {
6398 	case KVM_CAP_DISABLE_QUIRKS2:
6399 		r = -EINVAL;
6400 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6401 			break;
6402 		fallthrough;
6403 	case KVM_CAP_DISABLE_QUIRKS:
6404 		kvm->arch.disabled_quirks = cap->args[0];
6405 		r = 0;
6406 		break;
6407 	case KVM_CAP_SPLIT_IRQCHIP: {
6408 		mutex_lock(&kvm->lock);
6409 		r = -EINVAL;
6410 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6411 			goto split_irqchip_unlock;
6412 		r = -EEXIST;
6413 		if (irqchip_in_kernel(kvm))
6414 			goto split_irqchip_unlock;
6415 		if (kvm->created_vcpus)
6416 			goto split_irqchip_unlock;
6417 		r = kvm_setup_empty_irq_routing(kvm);
6418 		if (r)
6419 			goto split_irqchip_unlock;
6420 		/* Pairs with irqchip_in_kernel. */
6421 		smp_wmb();
6422 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6423 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6424 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6425 		r = 0;
6426 split_irqchip_unlock:
6427 		mutex_unlock(&kvm->lock);
6428 		break;
6429 	}
6430 	case KVM_CAP_X2APIC_API:
6431 		r = -EINVAL;
6432 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6433 			break;
6434 
6435 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6436 			kvm->arch.x2apic_format = true;
6437 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6438 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6439 
6440 		r = 0;
6441 		break;
6442 	case KVM_CAP_X86_DISABLE_EXITS:
6443 		r = -EINVAL;
6444 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6445 			break;
6446 
6447 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6448 			kvm->arch.pause_in_guest = true;
6449 
6450 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6451 		    "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6452 
6453 		if (!mitigate_smt_rsb) {
6454 			if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6455 			    (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6456 				pr_warn_once(SMT_RSB_MSG);
6457 
6458 			if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6459 			    kvm_can_mwait_in_guest())
6460 				kvm->arch.mwait_in_guest = true;
6461 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6462 				kvm->arch.hlt_in_guest = true;
6463 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6464 				kvm->arch.cstate_in_guest = true;
6465 		}
6466 
6467 		r = 0;
6468 		break;
6469 	case KVM_CAP_MSR_PLATFORM_INFO:
6470 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6471 		r = 0;
6472 		break;
6473 	case KVM_CAP_EXCEPTION_PAYLOAD:
6474 		kvm->arch.exception_payload_enabled = cap->args[0];
6475 		r = 0;
6476 		break;
6477 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6478 		kvm->arch.triple_fault_event = cap->args[0];
6479 		r = 0;
6480 		break;
6481 	case KVM_CAP_X86_USER_SPACE_MSR:
6482 		r = -EINVAL;
6483 		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6484 			break;
6485 		kvm->arch.user_space_msr_mask = cap->args[0];
6486 		r = 0;
6487 		break;
6488 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6489 		r = -EINVAL;
6490 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6491 			break;
6492 
6493 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6494 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6495 			break;
6496 
6497 		if (kvm_caps.has_bus_lock_exit &&
6498 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6499 			kvm->arch.bus_lock_detection_enabled = true;
6500 		r = 0;
6501 		break;
6502 #ifdef CONFIG_X86_SGX_KVM
6503 	case KVM_CAP_SGX_ATTRIBUTE: {
6504 		unsigned long allowed_attributes = 0;
6505 
6506 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6507 		if (r)
6508 			break;
6509 
6510 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6511 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6512 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6513 			kvm->arch.sgx_provisioning_allowed = true;
6514 		else
6515 			r = -EINVAL;
6516 		break;
6517 	}
6518 #endif
6519 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6520 		r = -EINVAL;
6521 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6522 			break;
6523 
6524 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6525 		break;
6526 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6527 		r = -EINVAL;
6528 		if (!kvm_x86_ops.vm_move_enc_context_from)
6529 			break;
6530 
6531 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6532 		break;
6533 	case KVM_CAP_EXIT_HYPERCALL:
6534 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6535 			r = -EINVAL;
6536 			break;
6537 		}
6538 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6539 		r = 0;
6540 		break;
6541 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6542 		r = -EINVAL;
6543 		if (cap->args[0] & ~1)
6544 			break;
6545 		kvm->arch.exit_on_emulation_error = cap->args[0];
6546 		r = 0;
6547 		break;
6548 	case KVM_CAP_PMU_CAPABILITY:
6549 		r = -EINVAL;
6550 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6551 			break;
6552 
6553 		mutex_lock(&kvm->lock);
6554 		if (!kvm->created_vcpus) {
6555 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6556 			r = 0;
6557 		}
6558 		mutex_unlock(&kvm->lock);
6559 		break;
6560 	case KVM_CAP_MAX_VCPU_ID:
6561 		r = -EINVAL;
6562 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6563 			break;
6564 
6565 		mutex_lock(&kvm->lock);
6566 		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6567 			r = 0;
6568 		} else if (!kvm->arch.max_vcpu_ids) {
6569 			kvm->arch.max_vcpu_ids = cap->args[0];
6570 			r = 0;
6571 		}
6572 		mutex_unlock(&kvm->lock);
6573 		break;
6574 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6575 		r = -EINVAL;
6576 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6577 			break;
6578 		if (!kvm_caps.has_notify_vmexit)
6579 			break;
6580 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6581 			break;
6582 		mutex_lock(&kvm->lock);
6583 		if (!kvm->created_vcpus) {
6584 			kvm->arch.notify_window = cap->args[0] >> 32;
6585 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6586 			r = 0;
6587 		}
6588 		mutex_unlock(&kvm->lock);
6589 		break;
6590 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6591 		r = -EINVAL;
6592 
6593 		/*
6594 		 * Since the risk of disabling NX hugepages is a guest crashing
6595 		 * the system, ensure the userspace process has permission to
6596 		 * reboot the system.
6597 		 *
6598 		 * Note that unlike the reboot() syscall, the process must have
6599 		 * this capability in the root namespace because exposing
6600 		 * /dev/kvm into a container does not limit the scope of the
6601 		 * iTLB multihit bug to that container. In other words,
6602 		 * this must use capable(), not ns_capable().
6603 		 */
6604 		if (!capable(CAP_SYS_BOOT)) {
6605 			r = -EPERM;
6606 			break;
6607 		}
6608 
6609 		if (cap->args[0])
6610 			break;
6611 
6612 		mutex_lock(&kvm->lock);
6613 		if (!kvm->created_vcpus) {
6614 			kvm->arch.disable_nx_huge_pages = true;
6615 			r = 0;
6616 		}
6617 		mutex_unlock(&kvm->lock);
6618 		break;
6619 	default:
6620 		r = -EINVAL;
6621 		break;
6622 	}
6623 	return r;
6624 }
6625 
6626 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6627 {
6628 	struct kvm_x86_msr_filter *msr_filter;
6629 
6630 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6631 	if (!msr_filter)
6632 		return NULL;
6633 
6634 	msr_filter->default_allow = default_allow;
6635 	return msr_filter;
6636 }
6637 
6638 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6639 {
6640 	u32 i;
6641 
6642 	if (!msr_filter)
6643 		return;
6644 
6645 	for (i = 0; i < msr_filter->count; i++)
6646 		kfree(msr_filter->ranges[i].bitmap);
6647 
6648 	kfree(msr_filter);
6649 }
6650 
6651 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6652 			      struct kvm_msr_filter_range *user_range)
6653 {
6654 	unsigned long *bitmap;
6655 	size_t bitmap_size;
6656 
6657 	if (!user_range->nmsrs)
6658 		return 0;
6659 
6660 	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6661 		return -EINVAL;
6662 
6663 	if (!user_range->flags)
6664 		return -EINVAL;
6665 
6666 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6667 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6668 		return -EINVAL;
6669 
6670 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6671 	if (IS_ERR(bitmap))
6672 		return PTR_ERR(bitmap);
6673 
6674 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6675 		.flags = user_range->flags,
6676 		.base = user_range->base,
6677 		.nmsrs = user_range->nmsrs,
6678 		.bitmap = bitmap,
6679 	};
6680 
6681 	msr_filter->count++;
6682 	return 0;
6683 }
6684 
6685 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6686 				       struct kvm_msr_filter *filter)
6687 {
6688 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6689 	bool default_allow;
6690 	bool empty = true;
6691 	int r;
6692 	u32 i;
6693 
6694 	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6695 		return -EINVAL;
6696 
6697 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6698 		empty &= !filter->ranges[i].nmsrs;
6699 
6700 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6701 	if (empty && !default_allow)
6702 		return -EINVAL;
6703 
6704 	new_filter = kvm_alloc_msr_filter(default_allow);
6705 	if (!new_filter)
6706 		return -ENOMEM;
6707 
6708 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6709 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6710 		if (r) {
6711 			kvm_free_msr_filter(new_filter);
6712 			return r;
6713 		}
6714 	}
6715 
6716 	mutex_lock(&kvm->lock);
6717 	old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6718 					 mutex_is_locked(&kvm->lock));
6719 	mutex_unlock(&kvm->lock);
6720 	synchronize_srcu(&kvm->srcu);
6721 
6722 	kvm_free_msr_filter(old_filter);
6723 
6724 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6725 
6726 	return 0;
6727 }
6728 
6729 #ifdef CONFIG_KVM_COMPAT
6730 /* for KVM_X86_SET_MSR_FILTER */
6731 struct kvm_msr_filter_range_compat {
6732 	__u32 flags;
6733 	__u32 nmsrs;
6734 	__u32 base;
6735 	__u32 bitmap;
6736 };
6737 
6738 struct kvm_msr_filter_compat {
6739 	__u32 flags;
6740 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6741 };
6742 
6743 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6744 
6745 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6746 			      unsigned long arg)
6747 {
6748 	void __user *argp = (void __user *)arg;
6749 	struct kvm *kvm = filp->private_data;
6750 	long r = -ENOTTY;
6751 
6752 	switch (ioctl) {
6753 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6754 		struct kvm_msr_filter __user *user_msr_filter = argp;
6755 		struct kvm_msr_filter_compat filter_compat;
6756 		struct kvm_msr_filter filter;
6757 		int i;
6758 
6759 		if (copy_from_user(&filter_compat, user_msr_filter,
6760 				   sizeof(filter_compat)))
6761 			return -EFAULT;
6762 
6763 		filter.flags = filter_compat.flags;
6764 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6765 			struct kvm_msr_filter_range_compat *cr;
6766 
6767 			cr = &filter_compat.ranges[i];
6768 			filter.ranges[i] = (struct kvm_msr_filter_range) {
6769 				.flags = cr->flags,
6770 				.nmsrs = cr->nmsrs,
6771 				.base = cr->base,
6772 				.bitmap = (__u8 *)(ulong)cr->bitmap,
6773 			};
6774 		}
6775 
6776 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6777 		break;
6778 	}
6779 	}
6780 
6781 	return r;
6782 }
6783 #endif
6784 
6785 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6786 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6787 {
6788 	struct kvm_vcpu *vcpu;
6789 	unsigned long i;
6790 	int ret = 0;
6791 
6792 	mutex_lock(&kvm->lock);
6793 	kvm_for_each_vcpu(i, vcpu, kvm) {
6794 		if (!vcpu->arch.pv_time.active)
6795 			continue;
6796 
6797 		ret = kvm_set_guest_paused(vcpu);
6798 		if (ret) {
6799 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6800 				vcpu->vcpu_id, ret);
6801 			break;
6802 		}
6803 	}
6804 	mutex_unlock(&kvm->lock);
6805 
6806 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6807 }
6808 
6809 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6810 {
6811 	switch (state) {
6812 	case PM_HIBERNATION_PREPARE:
6813 	case PM_SUSPEND_PREPARE:
6814 		return kvm_arch_suspend_notifier(kvm);
6815 	}
6816 
6817 	return NOTIFY_DONE;
6818 }
6819 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6820 
6821 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6822 {
6823 	struct kvm_clock_data data = { 0 };
6824 
6825 	get_kvmclock(kvm, &data);
6826 	if (copy_to_user(argp, &data, sizeof(data)))
6827 		return -EFAULT;
6828 
6829 	return 0;
6830 }
6831 
6832 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6833 {
6834 	struct kvm_arch *ka = &kvm->arch;
6835 	struct kvm_clock_data data;
6836 	u64 now_raw_ns;
6837 
6838 	if (copy_from_user(&data, argp, sizeof(data)))
6839 		return -EFAULT;
6840 
6841 	/*
6842 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6843 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6844 	 */
6845 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6846 		return -EINVAL;
6847 
6848 	kvm_hv_request_tsc_page_update(kvm);
6849 	kvm_start_pvclock_update(kvm);
6850 	pvclock_update_vm_gtod_copy(kvm);
6851 
6852 	/*
6853 	 * This pairs with kvm_guest_time_update(): when masterclock is
6854 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6855 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6856 	 * is slightly ahead) here we risk going negative on unsigned
6857 	 * 'system_time' when 'data.clock' is very small.
6858 	 */
6859 	if (data.flags & KVM_CLOCK_REALTIME) {
6860 		u64 now_real_ns = ktime_get_real_ns();
6861 
6862 		/*
6863 		 * Avoid stepping the kvmclock backwards.
6864 		 */
6865 		if (now_real_ns > data.realtime)
6866 			data.clock += now_real_ns - data.realtime;
6867 	}
6868 
6869 	if (ka->use_master_clock)
6870 		now_raw_ns = ka->master_kernel_ns;
6871 	else
6872 		now_raw_ns = get_kvmclock_base_ns();
6873 	ka->kvmclock_offset = data.clock - now_raw_ns;
6874 	kvm_end_pvclock_update(kvm);
6875 	return 0;
6876 }
6877 
6878 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6879 {
6880 	struct kvm *kvm = filp->private_data;
6881 	void __user *argp = (void __user *)arg;
6882 	int r = -ENOTTY;
6883 	/*
6884 	 * This union makes it completely explicit to gcc-3.x
6885 	 * that these two variables' stack usage should be
6886 	 * combined, not added together.
6887 	 */
6888 	union {
6889 		struct kvm_pit_state ps;
6890 		struct kvm_pit_state2 ps2;
6891 		struct kvm_pit_config pit_config;
6892 	} u;
6893 
6894 	switch (ioctl) {
6895 	case KVM_SET_TSS_ADDR:
6896 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6897 		break;
6898 	case KVM_SET_IDENTITY_MAP_ADDR: {
6899 		u64 ident_addr;
6900 
6901 		mutex_lock(&kvm->lock);
6902 		r = -EINVAL;
6903 		if (kvm->created_vcpus)
6904 			goto set_identity_unlock;
6905 		r = -EFAULT;
6906 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6907 			goto set_identity_unlock;
6908 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6909 set_identity_unlock:
6910 		mutex_unlock(&kvm->lock);
6911 		break;
6912 	}
6913 	case KVM_SET_NR_MMU_PAGES:
6914 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6915 		break;
6916 	case KVM_CREATE_IRQCHIP: {
6917 		mutex_lock(&kvm->lock);
6918 
6919 		r = -EEXIST;
6920 		if (irqchip_in_kernel(kvm))
6921 			goto create_irqchip_unlock;
6922 
6923 		r = -EINVAL;
6924 		if (kvm->created_vcpus)
6925 			goto create_irqchip_unlock;
6926 
6927 		r = kvm_pic_init(kvm);
6928 		if (r)
6929 			goto create_irqchip_unlock;
6930 
6931 		r = kvm_ioapic_init(kvm);
6932 		if (r) {
6933 			kvm_pic_destroy(kvm);
6934 			goto create_irqchip_unlock;
6935 		}
6936 
6937 		r = kvm_setup_default_irq_routing(kvm);
6938 		if (r) {
6939 			kvm_ioapic_destroy(kvm);
6940 			kvm_pic_destroy(kvm);
6941 			goto create_irqchip_unlock;
6942 		}
6943 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6944 		smp_wmb();
6945 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6946 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6947 	create_irqchip_unlock:
6948 		mutex_unlock(&kvm->lock);
6949 		break;
6950 	}
6951 	case KVM_CREATE_PIT:
6952 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6953 		goto create_pit;
6954 	case KVM_CREATE_PIT2:
6955 		r = -EFAULT;
6956 		if (copy_from_user(&u.pit_config, argp,
6957 				   sizeof(struct kvm_pit_config)))
6958 			goto out;
6959 	create_pit:
6960 		mutex_lock(&kvm->lock);
6961 		r = -EEXIST;
6962 		if (kvm->arch.vpit)
6963 			goto create_pit_unlock;
6964 		r = -ENOMEM;
6965 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6966 		if (kvm->arch.vpit)
6967 			r = 0;
6968 	create_pit_unlock:
6969 		mutex_unlock(&kvm->lock);
6970 		break;
6971 	case KVM_GET_IRQCHIP: {
6972 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6973 		struct kvm_irqchip *chip;
6974 
6975 		chip = memdup_user(argp, sizeof(*chip));
6976 		if (IS_ERR(chip)) {
6977 			r = PTR_ERR(chip);
6978 			goto out;
6979 		}
6980 
6981 		r = -ENXIO;
6982 		if (!irqchip_kernel(kvm))
6983 			goto get_irqchip_out;
6984 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6985 		if (r)
6986 			goto get_irqchip_out;
6987 		r = -EFAULT;
6988 		if (copy_to_user(argp, chip, sizeof(*chip)))
6989 			goto get_irqchip_out;
6990 		r = 0;
6991 	get_irqchip_out:
6992 		kfree(chip);
6993 		break;
6994 	}
6995 	case KVM_SET_IRQCHIP: {
6996 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6997 		struct kvm_irqchip *chip;
6998 
6999 		chip = memdup_user(argp, sizeof(*chip));
7000 		if (IS_ERR(chip)) {
7001 			r = PTR_ERR(chip);
7002 			goto out;
7003 		}
7004 
7005 		r = -ENXIO;
7006 		if (!irqchip_kernel(kvm))
7007 			goto set_irqchip_out;
7008 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7009 	set_irqchip_out:
7010 		kfree(chip);
7011 		break;
7012 	}
7013 	case KVM_GET_PIT: {
7014 		r = -EFAULT;
7015 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7016 			goto out;
7017 		r = -ENXIO;
7018 		if (!kvm->arch.vpit)
7019 			goto out;
7020 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7021 		if (r)
7022 			goto out;
7023 		r = -EFAULT;
7024 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7025 			goto out;
7026 		r = 0;
7027 		break;
7028 	}
7029 	case KVM_SET_PIT: {
7030 		r = -EFAULT;
7031 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7032 			goto out;
7033 		mutex_lock(&kvm->lock);
7034 		r = -ENXIO;
7035 		if (!kvm->arch.vpit)
7036 			goto set_pit_out;
7037 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7038 set_pit_out:
7039 		mutex_unlock(&kvm->lock);
7040 		break;
7041 	}
7042 	case KVM_GET_PIT2: {
7043 		r = -ENXIO;
7044 		if (!kvm->arch.vpit)
7045 			goto out;
7046 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7047 		if (r)
7048 			goto out;
7049 		r = -EFAULT;
7050 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7051 			goto out;
7052 		r = 0;
7053 		break;
7054 	}
7055 	case KVM_SET_PIT2: {
7056 		r = -EFAULT;
7057 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7058 			goto out;
7059 		mutex_lock(&kvm->lock);
7060 		r = -ENXIO;
7061 		if (!kvm->arch.vpit)
7062 			goto set_pit2_out;
7063 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7064 set_pit2_out:
7065 		mutex_unlock(&kvm->lock);
7066 		break;
7067 	}
7068 	case KVM_REINJECT_CONTROL: {
7069 		struct kvm_reinject_control control;
7070 		r =  -EFAULT;
7071 		if (copy_from_user(&control, argp, sizeof(control)))
7072 			goto out;
7073 		r = -ENXIO;
7074 		if (!kvm->arch.vpit)
7075 			goto out;
7076 		r = kvm_vm_ioctl_reinject(kvm, &control);
7077 		break;
7078 	}
7079 	case KVM_SET_BOOT_CPU_ID:
7080 		r = 0;
7081 		mutex_lock(&kvm->lock);
7082 		if (kvm->created_vcpus)
7083 			r = -EBUSY;
7084 		else
7085 			kvm->arch.bsp_vcpu_id = arg;
7086 		mutex_unlock(&kvm->lock);
7087 		break;
7088 #ifdef CONFIG_KVM_XEN
7089 	case KVM_XEN_HVM_CONFIG: {
7090 		struct kvm_xen_hvm_config xhc;
7091 		r = -EFAULT;
7092 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
7093 			goto out;
7094 		r = kvm_xen_hvm_config(kvm, &xhc);
7095 		break;
7096 	}
7097 	case KVM_XEN_HVM_GET_ATTR: {
7098 		struct kvm_xen_hvm_attr xha;
7099 
7100 		r = -EFAULT;
7101 		if (copy_from_user(&xha, argp, sizeof(xha)))
7102 			goto out;
7103 		r = kvm_xen_hvm_get_attr(kvm, &xha);
7104 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7105 			r = -EFAULT;
7106 		break;
7107 	}
7108 	case KVM_XEN_HVM_SET_ATTR: {
7109 		struct kvm_xen_hvm_attr xha;
7110 
7111 		r = -EFAULT;
7112 		if (copy_from_user(&xha, argp, sizeof(xha)))
7113 			goto out;
7114 		r = kvm_xen_hvm_set_attr(kvm, &xha);
7115 		break;
7116 	}
7117 	case KVM_XEN_HVM_EVTCHN_SEND: {
7118 		struct kvm_irq_routing_xen_evtchn uxe;
7119 
7120 		r = -EFAULT;
7121 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
7122 			goto out;
7123 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7124 		break;
7125 	}
7126 #endif
7127 	case KVM_SET_CLOCK:
7128 		r = kvm_vm_ioctl_set_clock(kvm, argp);
7129 		break;
7130 	case KVM_GET_CLOCK:
7131 		r = kvm_vm_ioctl_get_clock(kvm, argp);
7132 		break;
7133 	case KVM_SET_TSC_KHZ: {
7134 		u32 user_tsc_khz;
7135 
7136 		r = -EINVAL;
7137 		user_tsc_khz = (u32)arg;
7138 
7139 		if (kvm_caps.has_tsc_control &&
7140 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7141 			goto out;
7142 
7143 		if (user_tsc_khz == 0)
7144 			user_tsc_khz = tsc_khz;
7145 
7146 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7147 		r = 0;
7148 
7149 		goto out;
7150 	}
7151 	case KVM_GET_TSC_KHZ: {
7152 		r = READ_ONCE(kvm->arch.default_tsc_khz);
7153 		goto out;
7154 	}
7155 	case KVM_MEMORY_ENCRYPT_OP: {
7156 		r = -ENOTTY;
7157 		if (!kvm_x86_ops.mem_enc_ioctl)
7158 			goto out;
7159 
7160 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7161 		break;
7162 	}
7163 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
7164 		struct kvm_enc_region region;
7165 
7166 		r = -EFAULT;
7167 		if (copy_from_user(&region, argp, sizeof(region)))
7168 			goto out;
7169 
7170 		r = -ENOTTY;
7171 		if (!kvm_x86_ops.mem_enc_register_region)
7172 			goto out;
7173 
7174 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
7175 		break;
7176 	}
7177 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7178 		struct kvm_enc_region region;
7179 
7180 		r = -EFAULT;
7181 		if (copy_from_user(&region, argp, sizeof(region)))
7182 			goto out;
7183 
7184 		r = -ENOTTY;
7185 		if (!kvm_x86_ops.mem_enc_unregister_region)
7186 			goto out;
7187 
7188 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
7189 		break;
7190 	}
7191 	case KVM_HYPERV_EVENTFD: {
7192 		struct kvm_hyperv_eventfd hvevfd;
7193 
7194 		r = -EFAULT;
7195 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7196 			goto out;
7197 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7198 		break;
7199 	}
7200 	case KVM_SET_PMU_EVENT_FILTER:
7201 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7202 		break;
7203 	case KVM_X86_SET_MSR_FILTER: {
7204 		struct kvm_msr_filter __user *user_msr_filter = argp;
7205 		struct kvm_msr_filter filter;
7206 
7207 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7208 			return -EFAULT;
7209 
7210 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7211 		break;
7212 	}
7213 	default:
7214 		r = -ENOTTY;
7215 	}
7216 out:
7217 	return r;
7218 }
7219 
7220 static void kvm_probe_feature_msr(u32 msr_index)
7221 {
7222 	struct kvm_msr_entry msr = {
7223 		.index = msr_index,
7224 	};
7225 
7226 	if (kvm_get_msr_feature(&msr))
7227 		return;
7228 
7229 	msr_based_features[num_msr_based_features++] = msr_index;
7230 }
7231 
7232 static void kvm_probe_msr_to_save(u32 msr_index)
7233 {
7234 	u32 dummy[2];
7235 
7236 	if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7237 		return;
7238 
7239 	/*
7240 	 * Even MSRs that are valid in the host may not be exposed to guests in
7241 	 * some cases.
7242 	 */
7243 	switch (msr_index) {
7244 	case MSR_IA32_BNDCFGS:
7245 		if (!kvm_mpx_supported())
7246 			return;
7247 		break;
7248 	case MSR_TSC_AUX:
7249 		if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7250 		    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7251 			return;
7252 		break;
7253 	case MSR_IA32_UMWAIT_CONTROL:
7254 		if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7255 			return;
7256 		break;
7257 	case MSR_IA32_RTIT_CTL:
7258 	case MSR_IA32_RTIT_STATUS:
7259 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7260 			return;
7261 		break;
7262 	case MSR_IA32_RTIT_CR3_MATCH:
7263 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7264 		    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7265 			return;
7266 		break;
7267 	case MSR_IA32_RTIT_OUTPUT_BASE:
7268 	case MSR_IA32_RTIT_OUTPUT_MASK:
7269 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7270 		    (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7271 		     !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7272 			return;
7273 		break;
7274 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7275 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7276 		    (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7277 		     intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7278 			return;
7279 		break;
7280 	case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7281 		if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7282 		    kvm_pmu_cap.num_counters_gp)
7283 			return;
7284 		break;
7285 	case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7286 		if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7287 		    kvm_pmu_cap.num_counters_gp)
7288 			return;
7289 		break;
7290 	case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7291 		if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7292 		    kvm_pmu_cap.num_counters_fixed)
7293 			return;
7294 		break;
7295 	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7296 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7297 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7298 		if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7299 			return;
7300 		break;
7301 	case MSR_IA32_XFD:
7302 	case MSR_IA32_XFD_ERR:
7303 		if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7304 			return;
7305 		break;
7306 	case MSR_IA32_TSX_CTRL:
7307 		if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7308 			return;
7309 		break;
7310 	default:
7311 		break;
7312 	}
7313 
7314 	msrs_to_save[num_msrs_to_save++] = msr_index;
7315 }
7316 
7317 static void kvm_init_msr_lists(void)
7318 {
7319 	unsigned i;
7320 
7321 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7322 			 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7323 
7324 	num_msrs_to_save = 0;
7325 	num_emulated_msrs = 0;
7326 	num_msr_based_features = 0;
7327 
7328 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7329 		kvm_probe_msr_to_save(msrs_to_save_base[i]);
7330 
7331 	if (enable_pmu) {
7332 		for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7333 			kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7334 	}
7335 
7336 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7337 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7338 			continue;
7339 
7340 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7341 	}
7342 
7343 	for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7344 		kvm_probe_feature_msr(i);
7345 
7346 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7347 		kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7348 }
7349 
7350 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7351 			   const void *v)
7352 {
7353 	int handled = 0;
7354 	int n;
7355 
7356 	do {
7357 		n = min(len, 8);
7358 		if (!(lapic_in_kernel(vcpu) &&
7359 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7360 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7361 			break;
7362 		handled += n;
7363 		addr += n;
7364 		len -= n;
7365 		v += n;
7366 	} while (len);
7367 
7368 	return handled;
7369 }
7370 
7371 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7372 {
7373 	int handled = 0;
7374 	int n;
7375 
7376 	do {
7377 		n = min(len, 8);
7378 		if (!(lapic_in_kernel(vcpu) &&
7379 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7380 					 addr, n, v))
7381 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7382 			break;
7383 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7384 		handled += n;
7385 		addr += n;
7386 		len -= n;
7387 		v += n;
7388 	} while (len);
7389 
7390 	return handled;
7391 }
7392 
7393 void kvm_set_segment(struct kvm_vcpu *vcpu,
7394 		     struct kvm_segment *var, int seg)
7395 {
7396 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
7397 }
7398 
7399 void kvm_get_segment(struct kvm_vcpu *vcpu,
7400 		     struct kvm_segment *var, int seg)
7401 {
7402 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7403 }
7404 
7405 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7406 			   struct x86_exception *exception)
7407 {
7408 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7409 	gpa_t t_gpa;
7410 
7411 	BUG_ON(!mmu_is_nested(vcpu));
7412 
7413 	/* NPT walks are always user-walks */
7414 	access |= PFERR_USER_MASK;
7415 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7416 
7417 	return t_gpa;
7418 }
7419 
7420 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7421 			      struct x86_exception *exception)
7422 {
7423 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7424 
7425 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7426 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7427 }
7428 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7429 
7430 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7431 			       struct x86_exception *exception)
7432 {
7433 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7434 
7435 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7436 	access |= PFERR_WRITE_MASK;
7437 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7438 }
7439 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7440 
7441 /* uses this to access any guest's mapped memory without checking CPL */
7442 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7443 				struct x86_exception *exception)
7444 {
7445 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7446 
7447 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7448 }
7449 
7450 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7451 				      struct kvm_vcpu *vcpu, u64 access,
7452 				      struct x86_exception *exception)
7453 {
7454 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7455 	void *data = val;
7456 	int r = X86EMUL_CONTINUE;
7457 
7458 	while (bytes) {
7459 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7460 		unsigned offset = addr & (PAGE_SIZE-1);
7461 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7462 		int ret;
7463 
7464 		if (gpa == INVALID_GPA)
7465 			return X86EMUL_PROPAGATE_FAULT;
7466 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7467 					       offset, toread);
7468 		if (ret < 0) {
7469 			r = X86EMUL_IO_NEEDED;
7470 			goto out;
7471 		}
7472 
7473 		bytes -= toread;
7474 		data += toread;
7475 		addr += toread;
7476 	}
7477 out:
7478 	return r;
7479 }
7480 
7481 /* used for instruction fetching */
7482 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7483 				gva_t addr, void *val, unsigned int bytes,
7484 				struct x86_exception *exception)
7485 {
7486 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7487 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7488 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7489 	unsigned offset;
7490 	int ret;
7491 
7492 	/* Inline kvm_read_guest_virt_helper for speed.  */
7493 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7494 				    exception);
7495 	if (unlikely(gpa == INVALID_GPA))
7496 		return X86EMUL_PROPAGATE_FAULT;
7497 
7498 	offset = addr & (PAGE_SIZE-1);
7499 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7500 		bytes = (unsigned)PAGE_SIZE - offset;
7501 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7502 				       offset, bytes);
7503 	if (unlikely(ret < 0))
7504 		return X86EMUL_IO_NEEDED;
7505 
7506 	return X86EMUL_CONTINUE;
7507 }
7508 
7509 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7510 			       gva_t addr, void *val, unsigned int bytes,
7511 			       struct x86_exception *exception)
7512 {
7513 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7514 
7515 	/*
7516 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7517 	 * is returned, but our callers are not ready for that and they blindly
7518 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7519 	 * uninitialized kernel stack memory into cr2 and error code.
7520 	 */
7521 	memset(exception, 0, sizeof(*exception));
7522 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7523 					  exception);
7524 }
7525 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7526 
7527 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7528 			     gva_t addr, void *val, unsigned int bytes,
7529 			     struct x86_exception *exception, bool system)
7530 {
7531 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7532 	u64 access = 0;
7533 
7534 	if (system)
7535 		access |= PFERR_IMPLICIT_ACCESS;
7536 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7537 		access |= PFERR_USER_MASK;
7538 
7539 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7540 }
7541 
7542 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7543 				      struct kvm_vcpu *vcpu, u64 access,
7544 				      struct x86_exception *exception)
7545 {
7546 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7547 	void *data = val;
7548 	int r = X86EMUL_CONTINUE;
7549 
7550 	while (bytes) {
7551 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7552 		unsigned offset = addr & (PAGE_SIZE-1);
7553 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7554 		int ret;
7555 
7556 		if (gpa == INVALID_GPA)
7557 			return X86EMUL_PROPAGATE_FAULT;
7558 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7559 		if (ret < 0) {
7560 			r = X86EMUL_IO_NEEDED;
7561 			goto out;
7562 		}
7563 
7564 		bytes -= towrite;
7565 		data += towrite;
7566 		addr += towrite;
7567 	}
7568 out:
7569 	return r;
7570 }
7571 
7572 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7573 			      unsigned int bytes, struct x86_exception *exception,
7574 			      bool system)
7575 {
7576 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7577 	u64 access = PFERR_WRITE_MASK;
7578 
7579 	if (system)
7580 		access |= PFERR_IMPLICIT_ACCESS;
7581 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7582 		access |= PFERR_USER_MASK;
7583 
7584 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7585 					   access, exception);
7586 }
7587 
7588 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7589 				unsigned int bytes, struct x86_exception *exception)
7590 {
7591 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7592 	vcpu->arch.l1tf_flush_l1d = true;
7593 
7594 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7595 					   PFERR_WRITE_MASK, exception);
7596 }
7597 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7598 
7599 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7600 				  void *insn, int insn_len)
7601 {
7602 	return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type,
7603 							      insn, insn_len);
7604 }
7605 
7606 int handle_ud(struct kvm_vcpu *vcpu)
7607 {
7608 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7609 	int fep_flags = READ_ONCE(force_emulation_prefix);
7610 	int emul_type = EMULTYPE_TRAP_UD;
7611 	char sig[5]; /* ud2; .ascii "kvm" */
7612 	struct x86_exception e;
7613 	int r;
7614 
7615 	r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7616 	if (r != X86EMUL_CONTINUE)
7617 		return 1;
7618 
7619 	if (fep_flags &&
7620 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7621 				sig, sizeof(sig), &e) == 0 &&
7622 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7623 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7624 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7625 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7626 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7627 	}
7628 
7629 	return kvm_emulate_instruction(vcpu, emul_type);
7630 }
7631 EXPORT_SYMBOL_GPL(handle_ud);
7632 
7633 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7634 			    gpa_t gpa, bool write)
7635 {
7636 	/* For APIC access vmexit */
7637 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7638 		return 1;
7639 
7640 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7641 		trace_vcpu_match_mmio(gva, gpa, write, true);
7642 		return 1;
7643 	}
7644 
7645 	return 0;
7646 }
7647 
7648 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7649 				gpa_t *gpa, struct x86_exception *exception,
7650 				bool write)
7651 {
7652 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7653 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7654 		| (write ? PFERR_WRITE_MASK : 0);
7655 
7656 	/*
7657 	 * currently PKRU is only applied to ept enabled guest so
7658 	 * there is no pkey in EPT page table for L1 guest or EPT
7659 	 * shadow page table for L2 guest.
7660 	 */
7661 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7662 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7663 			      vcpu->arch.mmio_access, 0, access))) {
7664 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7665 					(gva & (PAGE_SIZE - 1));
7666 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7667 		return 1;
7668 	}
7669 
7670 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7671 
7672 	if (*gpa == INVALID_GPA)
7673 		return -1;
7674 
7675 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7676 }
7677 
7678 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7679 			const void *val, int bytes)
7680 {
7681 	int ret;
7682 
7683 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7684 	if (ret < 0)
7685 		return 0;
7686 	kvm_page_track_write(vcpu, gpa, val, bytes);
7687 	return 1;
7688 }
7689 
7690 struct read_write_emulator_ops {
7691 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7692 				  int bytes);
7693 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7694 				  void *val, int bytes);
7695 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7696 			       int bytes, void *val);
7697 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7698 				    void *val, int bytes);
7699 	bool write;
7700 };
7701 
7702 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7703 {
7704 	if (vcpu->mmio_read_completed) {
7705 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7706 			       vcpu->mmio_fragments[0].gpa, val);
7707 		vcpu->mmio_read_completed = 0;
7708 		return 1;
7709 	}
7710 
7711 	return 0;
7712 }
7713 
7714 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7715 			void *val, int bytes)
7716 {
7717 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7718 }
7719 
7720 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7721 			 void *val, int bytes)
7722 {
7723 	return emulator_write_phys(vcpu, gpa, val, bytes);
7724 }
7725 
7726 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7727 {
7728 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7729 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7730 }
7731 
7732 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7733 			  void *val, int bytes)
7734 {
7735 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7736 	return X86EMUL_IO_NEEDED;
7737 }
7738 
7739 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7740 			   void *val, int bytes)
7741 {
7742 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7743 
7744 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7745 	return X86EMUL_CONTINUE;
7746 }
7747 
7748 static const struct read_write_emulator_ops read_emultor = {
7749 	.read_write_prepare = read_prepare,
7750 	.read_write_emulate = read_emulate,
7751 	.read_write_mmio = vcpu_mmio_read,
7752 	.read_write_exit_mmio = read_exit_mmio,
7753 };
7754 
7755 static const struct read_write_emulator_ops write_emultor = {
7756 	.read_write_emulate = write_emulate,
7757 	.read_write_mmio = write_mmio,
7758 	.read_write_exit_mmio = write_exit_mmio,
7759 	.write = true,
7760 };
7761 
7762 static int emulator_read_write_onepage(unsigned long addr, void *val,
7763 				       unsigned int bytes,
7764 				       struct x86_exception *exception,
7765 				       struct kvm_vcpu *vcpu,
7766 				       const struct read_write_emulator_ops *ops)
7767 {
7768 	gpa_t gpa;
7769 	int handled, ret;
7770 	bool write = ops->write;
7771 	struct kvm_mmio_fragment *frag;
7772 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7773 
7774 	/*
7775 	 * If the exit was due to a NPF we may already have a GPA.
7776 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7777 	 * Note, this cannot be used on string operations since string
7778 	 * operation using rep will only have the initial GPA from the NPF
7779 	 * occurred.
7780 	 */
7781 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7782 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7783 		gpa = ctxt->gpa_val;
7784 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7785 	} else {
7786 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7787 		if (ret < 0)
7788 			return X86EMUL_PROPAGATE_FAULT;
7789 	}
7790 
7791 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7792 		return X86EMUL_CONTINUE;
7793 
7794 	/*
7795 	 * Is this MMIO handled locally?
7796 	 */
7797 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7798 	if (handled == bytes)
7799 		return X86EMUL_CONTINUE;
7800 
7801 	gpa += handled;
7802 	bytes -= handled;
7803 	val += handled;
7804 
7805 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7806 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7807 	frag->gpa = gpa;
7808 	frag->data = val;
7809 	frag->len = bytes;
7810 	return X86EMUL_CONTINUE;
7811 }
7812 
7813 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7814 			unsigned long addr,
7815 			void *val, unsigned int bytes,
7816 			struct x86_exception *exception,
7817 			const struct read_write_emulator_ops *ops)
7818 {
7819 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7820 	gpa_t gpa;
7821 	int rc;
7822 
7823 	if (ops->read_write_prepare &&
7824 		  ops->read_write_prepare(vcpu, val, bytes))
7825 		return X86EMUL_CONTINUE;
7826 
7827 	vcpu->mmio_nr_fragments = 0;
7828 
7829 	/* Crossing a page boundary? */
7830 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7831 		int now;
7832 
7833 		now = -addr & ~PAGE_MASK;
7834 		rc = emulator_read_write_onepage(addr, val, now, exception,
7835 						 vcpu, ops);
7836 
7837 		if (rc != X86EMUL_CONTINUE)
7838 			return rc;
7839 		addr += now;
7840 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7841 			addr = (u32)addr;
7842 		val += now;
7843 		bytes -= now;
7844 	}
7845 
7846 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7847 					 vcpu, ops);
7848 	if (rc != X86EMUL_CONTINUE)
7849 		return rc;
7850 
7851 	if (!vcpu->mmio_nr_fragments)
7852 		return rc;
7853 
7854 	gpa = vcpu->mmio_fragments[0].gpa;
7855 
7856 	vcpu->mmio_needed = 1;
7857 	vcpu->mmio_cur_fragment = 0;
7858 
7859 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7860 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7861 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7862 	vcpu->run->mmio.phys_addr = gpa;
7863 
7864 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7865 }
7866 
7867 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7868 				  unsigned long addr,
7869 				  void *val,
7870 				  unsigned int bytes,
7871 				  struct x86_exception *exception)
7872 {
7873 	return emulator_read_write(ctxt, addr, val, bytes,
7874 				   exception, &read_emultor);
7875 }
7876 
7877 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7878 			    unsigned long addr,
7879 			    const void *val,
7880 			    unsigned int bytes,
7881 			    struct x86_exception *exception)
7882 {
7883 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7884 				   exception, &write_emultor);
7885 }
7886 
7887 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7888 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7889 
7890 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7891 				     unsigned long addr,
7892 				     const void *old,
7893 				     const void *new,
7894 				     unsigned int bytes,
7895 				     struct x86_exception *exception)
7896 {
7897 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7898 	u64 page_line_mask;
7899 	unsigned long hva;
7900 	gpa_t gpa;
7901 	int r;
7902 
7903 	/* guests cmpxchg8b have to be emulated atomically */
7904 	if (bytes > 8 || (bytes & (bytes - 1)))
7905 		goto emul_write;
7906 
7907 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7908 
7909 	if (gpa == INVALID_GPA ||
7910 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7911 		goto emul_write;
7912 
7913 	/*
7914 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7915 	 * enabled in the host and the access splits a cache line.
7916 	 */
7917 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7918 		page_line_mask = ~(cache_line_size() - 1);
7919 	else
7920 		page_line_mask = PAGE_MASK;
7921 
7922 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7923 		goto emul_write;
7924 
7925 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7926 	if (kvm_is_error_hva(hva))
7927 		goto emul_write;
7928 
7929 	hva += offset_in_page(gpa);
7930 
7931 	switch (bytes) {
7932 	case 1:
7933 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7934 		break;
7935 	case 2:
7936 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7937 		break;
7938 	case 4:
7939 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
7940 		break;
7941 	case 8:
7942 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
7943 		break;
7944 	default:
7945 		BUG();
7946 	}
7947 
7948 	if (r < 0)
7949 		return X86EMUL_UNHANDLEABLE;
7950 	if (r)
7951 		return X86EMUL_CMPXCHG_FAILED;
7952 
7953 	kvm_page_track_write(vcpu, gpa, new, bytes);
7954 
7955 	return X86EMUL_CONTINUE;
7956 
7957 emul_write:
7958 	pr_warn_once("emulating exchange as write\n");
7959 
7960 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7961 }
7962 
7963 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7964 			       unsigned short port, void *data,
7965 			       unsigned int count, bool in)
7966 {
7967 	unsigned i;
7968 	int r;
7969 
7970 	WARN_ON_ONCE(vcpu->arch.pio.count);
7971 	for (i = 0; i < count; i++) {
7972 		if (in)
7973 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7974 		else
7975 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7976 
7977 		if (r) {
7978 			if (i == 0)
7979 				goto userspace_io;
7980 
7981 			/*
7982 			 * Userspace must have unregistered the device while PIO
7983 			 * was running.  Drop writes / read as 0.
7984 			 */
7985 			if (in)
7986 				memset(data, 0, size * (count - i));
7987 			break;
7988 		}
7989 
7990 		data += size;
7991 	}
7992 	return 1;
7993 
7994 userspace_io:
7995 	vcpu->arch.pio.port = port;
7996 	vcpu->arch.pio.in = in;
7997 	vcpu->arch.pio.count = count;
7998 	vcpu->arch.pio.size = size;
7999 
8000 	if (in)
8001 		memset(vcpu->arch.pio_data, 0, size * count);
8002 	else
8003 		memcpy(vcpu->arch.pio_data, data, size * count);
8004 
8005 	vcpu->run->exit_reason = KVM_EXIT_IO;
8006 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8007 	vcpu->run->io.size = size;
8008 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8009 	vcpu->run->io.count = count;
8010 	vcpu->run->io.port = port;
8011 	return 0;
8012 }
8013 
8014 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8015       			   unsigned short port, void *val, unsigned int count)
8016 {
8017 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8018 	if (r)
8019 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8020 
8021 	return r;
8022 }
8023 
8024 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8025 {
8026 	int size = vcpu->arch.pio.size;
8027 	unsigned int count = vcpu->arch.pio.count;
8028 	memcpy(val, vcpu->arch.pio_data, size * count);
8029 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8030 	vcpu->arch.pio.count = 0;
8031 }
8032 
8033 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8034 				    int size, unsigned short port, void *val,
8035 				    unsigned int count)
8036 {
8037 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8038 	if (vcpu->arch.pio.count) {
8039 		/*
8040 		 * Complete a previous iteration that required userspace I/O.
8041 		 * Note, @count isn't guaranteed to match pio.count as userspace
8042 		 * can modify ECX before rerunning the vCPU.  Ignore any such
8043 		 * shenanigans as KVM doesn't support modifying the rep count,
8044 		 * and the emulator ensures @count doesn't overflow the buffer.
8045 		 */
8046 		complete_emulator_pio_in(vcpu, val);
8047 		return 1;
8048 	}
8049 
8050 	return emulator_pio_in(vcpu, size, port, val, count);
8051 }
8052 
8053 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8054 			    unsigned short port, const void *val,
8055 			    unsigned int count)
8056 {
8057 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8058 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8059 }
8060 
8061 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8062 				     int size, unsigned short port,
8063 				     const void *val, unsigned int count)
8064 {
8065 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8066 }
8067 
8068 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8069 {
8070 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
8071 }
8072 
8073 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8074 {
8075 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8076 }
8077 
8078 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8079 {
8080 	if (!need_emulate_wbinvd(vcpu))
8081 		return X86EMUL_CONTINUE;
8082 
8083 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
8084 		int cpu = get_cpu();
8085 
8086 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8087 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8088 				wbinvd_ipi, NULL, 1);
8089 		put_cpu();
8090 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8091 	} else
8092 		wbinvd();
8093 	return X86EMUL_CONTINUE;
8094 }
8095 
8096 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8097 {
8098 	kvm_emulate_wbinvd_noskip(vcpu);
8099 	return kvm_skip_emulated_instruction(vcpu);
8100 }
8101 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8102 
8103 
8104 
8105 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8106 {
8107 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8108 }
8109 
8110 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
8111 			    unsigned long *dest)
8112 {
8113 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
8114 }
8115 
8116 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8117 			   unsigned long value)
8118 {
8119 
8120 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8121 }
8122 
8123 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8124 {
8125 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8126 }
8127 
8128 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8129 {
8130 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8131 	unsigned long value;
8132 
8133 	switch (cr) {
8134 	case 0:
8135 		value = kvm_read_cr0(vcpu);
8136 		break;
8137 	case 2:
8138 		value = vcpu->arch.cr2;
8139 		break;
8140 	case 3:
8141 		value = kvm_read_cr3(vcpu);
8142 		break;
8143 	case 4:
8144 		value = kvm_read_cr4(vcpu);
8145 		break;
8146 	case 8:
8147 		value = kvm_get_cr8(vcpu);
8148 		break;
8149 	default:
8150 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8151 		return 0;
8152 	}
8153 
8154 	return value;
8155 }
8156 
8157 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8158 {
8159 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8160 	int res = 0;
8161 
8162 	switch (cr) {
8163 	case 0:
8164 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8165 		break;
8166 	case 2:
8167 		vcpu->arch.cr2 = val;
8168 		break;
8169 	case 3:
8170 		res = kvm_set_cr3(vcpu, val);
8171 		break;
8172 	case 4:
8173 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8174 		break;
8175 	case 8:
8176 		res = kvm_set_cr8(vcpu, val);
8177 		break;
8178 	default:
8179 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8180 		res = -1;
8181 	}
8182 
8183 	return res;
8184 }
8185 
8186 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8187 {
8188 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8189 }
8190 
8191 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8192 {
8193 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8194 }
8195 
8196 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8197 {
8198 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8199 }
8200 
8201 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8202 {
8203 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8204 }
8205 
8206 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8207 {
8208 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8209 }
8210 
8211 static unsigned long emulator_get_cached_segment_base(
8212 	struct x86_emulate_ctxt *ctxt, int seg)
8213 {
8214 	return get_segment_base(emul_to_vcpu(ctxt), seg);
8215 }
8216 
8217 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8218 				 struct desc_struct *desc, u32 *base3,
8219 				 int seg)
8220 {
8221 	struct kvm_segment var;
8222 
8223 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8224 	*selector = var.selector;
8225 
8226 	if (var.unusable) {
8227 		memset(desc, 0, sizeof(*desc));
8228 		if (base3)
8229 			*base3 = 0;
8230 		return false;
8231 	}
8232 
8233 	if (var.g)
8234 		var.limit >>= 12;
8235 	set_desc_limit(desc, var.limit);
8236 	set_desc_base(desc, (unsigned long)var.base);
8237 #ifdef CONFIG_X86_64
8238 	if (base3)
8239 		*base3 = var.base >> 32;
8240 #endif
8241 	desc->type = var.type;
8242 	desc->s = var.s;
8243 	desc->dpl = var.dpl;
8244 	desc->p = var.present;
8245 	desc->avl = var.avl;
8246 	desc->l = var.l;
8247 	desc->d = var.db;
8248 	desc->g = var.g;
8249 
8250 	return true;
8251 }
8252 
8253 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8254 				 struct desc_struct *desc, u32 base3,
8255 				 int seg)
8256 {
8257 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8258 	struct kvm_segment var;
8259 
8260 	var.selector = selector;
8261 	var.base = get_desc_base(desc);
8262 #ifdef CONFIG_X86_64
8263 	var.base |= ((u64)base3) << 32;
8264 #endif
8265 	var.limit = get_desc_limit(desc);
8266 	if (desc->g)
8267 		var.limit = (var.limit << 12) | 0xfff;
8268 	var.type = desc->type;
8269 	var.dpl = desc->dpl;
8270 	var.db = desc->d;
8271 	var.s = desc->s;
8272 	var.l = desc->l;
8273 	var.g = desc->g;
8274 	var.avl = desc->avl;
8275 	var.present = desc->p;
8276 	var.unusable = !var.present;
8277 	var.padding = 0;
8278 
8279 	kvm_set_segment(vcpu, &var, seg);
8280 	return;
8281 }
8282 
8283 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8284 					u32 msr_index, u64 *pdata)
8285 {
8286 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8287 	int r;
8288 
8289 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8290 	if (r < 0)
8291 		return X86EMUL_UNHANDLEABLE;
8292 
8293 	if (r) {
8294 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8295 				       complete_emulated_rdmsr, r))
8296 			return X86EMUL_IO_NEEDED;
8297 
8298 		trace_kvm_msr_read_ex(msr_index);
8299 		return X86EMUL_PROPAGATE_FAULT;
8300 	}
8301 
8302 	trace_kvm_msr_read(msr_index, *pdata);
8303 	return X86EMUL_CONTINUE;
8304 }
8305 
8306 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8307 					u32 msr_index, u64 data)
8308 {
8309 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8310 	int r;
8311 
8312 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8313 	if (r < 0)
8314 		return X86EMUL_UNHANDLEABLE;
8315 
8316 	if (r) {
8317 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8318 				       complete_emulated_msr_access, r))
8319 			return X86EMUL_IO_NEEDED;
8320 
8321 		trace_kvm_msr_write_ex(msr_index, data);
8322 		return X86EMUL_PROPAGATE_FAULT;
8323 	}
8324 
8325 	trace_kvm_msr_write(msr_index, data);
8326 	return X86EMUL_CONTINUE;
8327 }
8328 
8329 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8330 			    u32 msr_index, u64 *pdata)
8331 {
8332 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8333 }
8334 
8335 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8336 			      u32 pmc)
8337 {
8338 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8339 		return 0;
8340 	return -EINVAL;
8341 }
8342 
8343 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8344 			     u32 pmc, u64 *pdata)
8345 {
8346 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8347 }
8348 
8349 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8350 {
8351 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8352 }
8353 
8354 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8355 			      struct x86_instruction_info *info,
8356 			      enum x86_intercept_stage stage)
8357 {
8358 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8359 					    &ctxt->exception);
8360 }
8361 
8362 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8363 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8364 			      bool exact_only)
8365 {
8366 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8367 }
8368 
8369 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8370 {
8371 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8372 }
8373 
8374 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8375 {
8376 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8377 }
8378 
8379 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8380 {
8381 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8382 }
8383 
8384 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8385 {
8386 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8387 }
8388 
8389 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8390 {
8391 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8392 }
8393 
8394 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8395 {
8396 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8397 }
8398 
8399 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8400 {
8401 	return is_smm(emul_to_vcpu(ctxt));
8402 }
8403 
8404 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8405 {
8406 	return is_guest_mode(emul_to_vcpu(ctxt));
8407 }
8408 
8409 #ifndef CONFIG_KVM_SMM
8410 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8411 {
8412 	WARN_ON_ONCE(1);
8413 	return X86EMUL_UNHANDLEABLE;
8414 }
8415 #endif
8416 
8417 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8418 {
8419 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8420 }
8421 
8422 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8423 {
8424 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8425 }
8426 
8427 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8428 {
8429 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8430 
8431 	if (!kvm->vm_bugged)
8432 		kvm_vm_bugged(kvm);
8433 }
8434 
8435 static const struct x86_emulate_ops emulate_ops = {
8436 	.vm_bugged           = emulator_vm_bugged,
8437 	.read_gpr            = emulator_read_gpr,
8438 	.write_gpr           = emulator_write_gpr,
8439 	.read_std            = emulator_read_std,
8440 	.write_std           = emulator_write_std,
8441 	.fetch               = kvm_fetch_guest_virt,
8442 	.read_emulated       = emulator_read_emulated,
8443 	.write_emulated      = emulator_write_emulated,
8444 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8445 	.invlpg              = emulator_invlpg,
8446 	.pio_in_emulated     = emulator_pio_in_emulated,
8447 	.pio_out_emulated    = emulator_pio_out_emulated,
8448 	.get_segment         = emulator_get_segment,
8449 	.set_segment         = emulator_set_segment,
8450 	.get_cached_segment_base = emulator_get_cached_segment_base,
8451 	.get_gdt             = emulator_get_gdt,
8452 	.get_idt	     = emulator_get_idt,
8453 	.set_gdt             = emulator_set_gdt,
8454 	.set_idt	     = emulator_set_idt,
8455 	.get_cr              = emulator_get_cr,
8456 	.set_cr              = emulator_set_cr,
8457 	.cpl                 = emulator_get_cpl,
8458 	.get_dr              = emulator_get_dr,
8459 	.set_dr              = emulator_set_dr,
8460 	.set_msr_with_filter = emulator_set_msr_with_filter,
8461 	.get_msr_with_filter = emulator_get_msr_with_filter,
8462 	.get_msr             = emulator_get_msr,
8463 	.check_pmc	     = emulator_check_pmc,
8464 	.read_pmc            = emulator_read_pmc,
8465 	.halt                = emulator_halt,
8466 	.wbinvd              = emulator_wbinvd,
8467 	.fix_hypercall       = emulator_fix_hypercall,
8468 	.intercept           = emulator_intercept,
8469 	.get_cpuid           = emulator_get_cpuid,
8470 	.guest_has_movbe     = emulator_guest_has_movbe,
8471 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8472 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8473 	.set_nmi_mask        = emulator_set_nmi_mask,
8474 	.is_smm              = emulator_is_smm,
8475 	.is_guest_mode       = emulator_is_guest_mode,
8476 	.leave_smm           = emulator_leave_smm,
8477 	.triple_fault        = emulator_triple_fault,
8478 	.set_xcr             = emulator_set_xcr,
8479 };
8480 
8481 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8482 {
8483 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8484 	/*
8485 	 * an sti; sti; sequence only disable interrupts for the first
8486 	 * instruction. So, if the last instruction, be it emulated or
8487 	 * not, left the system with the INT_STI flag enabled, it
8488 	 * means that the last instruction is an sti. We should not
8489 	 * leave the flag on in this case. The same goes for mov ss
8490 	 */
8491 	if (int_shadow & mask)
8492 		mask = 0;
8493 	if (unlikely(int_shadow || mask)) {
8494 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8495 		if (!mask)
8496 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8497 	}
8498 }
8499 
8500 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8501 {
8502 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8503 
8504 	if (ctxt->exception.vector == PF_VECTOR)
8505 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8506 	else if (ctxt->exception.error_code_valid)
8507 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8508 				      ctxt->exception.error_code);
8509 	else
8510 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8511 }
8512 
8513 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8514 {
8515 	struct x86_emulate_ctxt *ctxt;
8516 
8517 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8518 	if (!ctxt) {
8519 		pr_err("failed to allocate vcpu's emulator\n");
8520 		return NULL;
8521 	}
8522 
8523 	ctxt->vcpu = vcpu;
8524 	ctxt->ops = &emulate_ops;
8525 	vcpu->arch.emulate_ctxt = ctxt;
8526 
8527 	return ctxt;
8528 }
8529 
8530 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8531 {
8532 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8533 	int cs_db, cs_l;
8534 
8535 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8536 
8537 	ctxt->gpa_available = false;
8538 	ctxt->eflags = kvm_get_rflags(vcpu);
8539 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8540 
8541 	ctxt->eip = kvm_rip_read(vcpu);
8542 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8543 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8544 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8545 		     cs_db				? X86EMUL_MODE_PROT32 :
8546 							  X86EMUL_MODE_PROT16;
8547 	ctxt->interruptibility = 0;
8548 	ctxt->have_exception = false;
8549 	ctxt->exception.vector = -1;
8550 	ctxt->perm_ok = false;
8551 
8552 	init_decode_cache(ctxt);
8553 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8554 }
8555 
8556 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8557 {
8558 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8559 	int ret;
8560 
8561 	init_emulate_ctxt(vcpu);
8562 
8563 	ctxt->op_bytes = 2;
8564 	ctxt->ad_bytes = 2;
8565 	ctxt->_eip = ctxt->eip + inc_eip;
8566 	ret = emulate_int_real(ctxt, irq);
8567 
8568 	if (ret != X86EMUL_CONTINUE) {
8569 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8570 	} else {
8571 		ctxt->eip = ctxt->_eip;
8572 		kvm_rip_write(vcpu, ctxt->eip);
8573 		kvm_set_rflags(vcpu, ctxt->eflags);
8574 	}
8575 }
8576 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8577 
8578 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8579 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8580 {
8581 	struct kvm_run *run = vcpu->run;
8582 	u64 info[5];
8583 	u8 info_start;
8584 
8585 	/*
8586 	 * Zero the whole array used to retrieve the exit info, as casting to
8587 	 * u32 for select entries will leave some chunks uninitialized.
8588 	 */
8589 	memset(&info, 0, sizeof(info));
8590 
8591 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8592 					   &info[2], (u32 *)&info[3],
8593 					   (u32 *)&info[4]);
8594 
8595 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8596 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8597 
8598 	/*
8599 	 * There's currently space for 13 entries, but 5 are used for the exit
8600 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8601 	 * when expanding kvm_run.emulation_failure in the future.
8602 	 */
8603 	if (WARN_ON_ONCE(ndata > 4))
8604 		ndata = 4;
8605 
8606 	/* Always include the flags as a 'data' entry. */
8607 	info_start = 1;
8608 	run->emulation_failure.flags = 0;
8609 
8610 	if (insn_size) {
8611 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8612 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8613 		info_start += 2;
8614 		run->emulation_failure.flags |=
8615 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8616 		run->emulation_failure.insn_size = insn_size;
8617 		memset(run->emulation_failure.insn_bytes, 0x90,
8618 		       sizeof(run->emulation_failure.insn_bytes));
8619 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8620 	}
8621 
8622 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8623 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8624 	       ndata * sizeof(data[0]));
8625 
8626 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8627 }
8628 
8629 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8630 {
8631 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8632 
8633 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8634 				       ctxt->fetch.end - ctxt->fetch.data);
8635 }
8636 
8637 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8638 					  u8 ndata)
8639 {
8640 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8641 }
8642 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8643 
8644 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8645 {
8646 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8647 }
8648 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8649 
8650 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8651 {
8652 	struct kvm *kvm = vcpu->kvm;
8653 
8654 	++vcpu->stat.insn_emulation_fail;
8655 	trace_kvm_emulate_insn_failed(vcpu);
8656 
8657 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8658 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8659 		return 1;
8660 	}
8661 
8662 	if (kvm->arch.exit_on_emulation_error ||
8663 	    (emulation_type & EMULTYPE_SKIP)) {
8664 		prepare_emulation_ctxt_failure_exit(vcpu);
8665 		return 0;
8666 	}
8667 
8668 	kvm_queue_exception(vcpu, UD_VECTOR);
8669 
8670 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8671 		prepare_emulation_ctxt_failure_exit(vcpu);
8672 		return 0;
8673 	}
8674 
8675 	return 1;
8676 }
8677 
8678 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8679 				  int emulation_type)
8680 {
8681 	gpa_t gpa = cr2_or_gpa;
8682 	kvm_pfn_t pfn;
8683 
8684 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8685 		return false;
8686 
8687 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8688 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8689 		return false;
8690 
8691 	if (!vcpu->arch.mmu->root_role.direct) {
8692 		/*
8693 		 * Write permission should be allowed since only
8694 		 * write access need to be emulated.
8695 		 */
8696 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8697 
8698 		/*
8699 		 * If the mapping is invalid in guest, let cpu retry
8700 		 * it to generate fault.
8701 		 */
8702 		if (gpa == INVALID_GPA)
8703 			return true;
8704 	}
8705 
8706 	/*
8707 	 * Do not retry the unhandleable instruction if it faults on the
8708 	 * readonly host memory, otherwise it will goto a infinite loop:
8709 	 * retry instruction -> write #PF -> emulation fail -> retry
8710 	 * instruction -> ...
8711 	 */
8712 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8713 
8714 	/*
8715 	 * If the instruction failed on the error pfn, it can not be fixed,
8716 	 * report the error to userspace.
8717 	 */
8718 	if (is_error_noslot_pfn(pfn))
8719 		return false;
8720 
8721 	kvm_release_pfn_clean(pfn);
8722 
8723 	/* The instructions are well-emulated on direct mmu. */
8724 	if (vcpu->arch.mmu->root_role.direct) {
8725 		unsigned int indirect_shadow_pages;
8726 
8727 		write_lock(&vcpu->kvm->mmu_lock);
8728 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8729 		write_unlock(&vcpu->kvm->mmu_lock);
8730 
8731 		if (indirect_shadow_pages)
8732 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8733 
8734 		return true;
8735 	}
8736 
8737 	/*
8738 	 * if emulation was due to access to shadowed page table
8739 	 * and it failed try to unshadow page and re-enter the
8740 	 * guest to let CPU execute the instruction.
8741 	 */
8742 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8743 
8744 	/*
8745 	 * If the access faults on its page table, it can not
8746 	 * be fixed by unprotecting shadow page and it should
8747 	 * be reported to userspace.
8748 	 */
8749 	return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8750 }
8751 
8752 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8753 			      gpa_t cr2_or_gpa,  int emulation_type)
8754 {
8755 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8756 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8757 
8758 	last_retry_eip = vcpu->arch.last_retry_eip;
8759 	last_retry_addr = vcpu->arch.last_retry_addr;
8760 
8761 	/*
8762 	 * If the emulation is caused by #PF and it is non-page_table
8763 	 * writing instruction, it means the VM-EXIT is caused by shadow
8764 	 * page protected, we can zap the shadow page and retry this
8765 	 * instruction directly.
8766 	 *
8767 	 * Note: if the guest uses a non-page-table modifying instruction
8768 	 * on the PDE that points to the instruction, then we will unmap
8769 	 * the instruction and go to an infinite loop. So, we cache the
8770 	 * last retried eip and the last fault address, if we meet the eip
8771 	 * and the address again, we can break out of the potential infinite
8772 	 * loop.
8773 	 */
8774 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8775 
8776 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8777 		return false;
8778 
8779 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8780 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8781 		return false;
8782 
8783 	if (x86_page_table_writing_insn(ctxt))
8784 		return false;
8785 
8786 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8787 		return false;
8788 
8789 	vcpu->arch.last_retry_eip = ctxt->eip;
8790 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8791 
8792 	if (!vcpu->arch.mmu->root_role.direct)
8793 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8794 
8795 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8796 
8797 	return true;
8798 }
8799 
8800 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8801 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8802 
8803 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8804 				unsigned long *db)
8805 {
8806 	u32 dr6 = 0;
8807 	int i;
8808 	u32 enable, rwlen;
8809 
8810 	enable = dr7;
8811 	rwlen = dr7 >> 16;
8812 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8813 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8814 			dr6 |= (1 << i);
8815 	return dr6;
8816 }
8817 
8818 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8819 {
8820 	struct kvm_run *kvm_run = vcpu->run;
8821 
8822 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8823 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8824 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8825 		kvm_run->debug.arch.exception = DB_VECTOR;
8826 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8827 		return 0;
8828 	}
8829 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8830 	return 1;
8831 }
8832 
8833 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8834 {
8835 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8836 	int r;
8837 
8838 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8839 	if (unlikely(!r))
8840 		return 0;
8841 
8842 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8843 
8844 	/*
8845 	 * rflags is the old, "raw" value of the flags.  The new value has
8846 	 * not been saved yet.
8847 	 *
8848 	 * This is correct even for TF set by the guest, because "the
8849 	 * processor will not generate this exception after the instruction
8850 	 * that sets the TF flag".
8851 	 */
8852 	if (unlikely(rflags & X86_EFLAGS_TF))
8853 		r = kvm_vcpu_do_singlestep(vcpu);
8854 	return r;
8855 }
8856 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8857 
8858 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8859 {
8860 	u32 shadow;
8861 
8862 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8863 		return true;
8864 
8865 	/*
8866 	 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8867 	 * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8868 	 * to avoid the relatively expensive CPUID lookup.
8869 	 */
8870 	shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8871 	return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8872 	       guest_cpuid_is_intel(vcpu);
8873 }
8874 
8875 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8876 					   int emulation_type, int *r)
8877 {
8878 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8879 
8880 	/*
8881 	 * Do not check for code breakpoints if hardware has already done the
8882 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8883 	 * the instruction has passed all exception checks, and all intercepted
8884 	 * exceptions that trigger emulation have lower priority than code
8885 	 * breakpoints, i.e. the fact that the intercepted exception occurred
8886 	 * means any code breakpoints have already been serviced.
8887 	 *
8888 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8889 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
8890 	 * the instruction being emulated.  The intent of forced emulation is
8891 	 * to behave as if KVM intercepted the instruction without an exception
8892 	 * and without a prefix.
8893 	 */
8894 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8895 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8896 		return false;
8897 
8898 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8899 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8900 		struct kvm_run *kvm_run = vcpu->run;
8901 		unsigned long eip = kvm_get_linear_rip(vcpu);
8902 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8903 					   vcpu->arch.guest_debug_dr7,
8904 					   vcpu->arch.eff_db);
8905 
8906 		if (dr6 != 0) {
8907 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8908 			kvm_run->debug.arch.pc = eip;
8909 			kvm_run->debug.arch.exception = DB_VECTOR;
8910 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8911 			*r = 0;
8912 			return true;
8913 		}
8914 	}
8915 
8916 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8917 	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
8918 		unsigned long eip = kvm_get_linear_rip(vcpu);
8919 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8920 					   vcpu->arch.dr7,
8921 					   vcpu->arch.db);
8922 
8923 		if (dr6 != 0) {
8924 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8925 			*r = 1;
8926 			return true;
8927 		}
8928 	}
8929 
8930 	return false;
8931 }
8932 
8933 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8934 {
8935 	switch (ctxt->opcode_len) {
8936 	case 1:
8937 		switch (ctxt->b) {
8938 		case 0xe4:	/* IN */
8939 		case 0xe5:
8940 		case 0xec:
8941 		case 0xed:
8942 		case 0xe6:	/* OUT */
8943 		case 0xe7:
8944 		case 0xee:
8945 		case 0xef:
8946 		case 0x6c:	/* INS */
8947 		case 0x6d:
8948 		case 0x6e:	/* OUTS */
8949 		case 0x6f:
8950 			return true;
8951 		}
8952 		break;
8953 	case 2:
8954 		switch (ctxt->b) {
8955 		case 0x33:	/* RDPMC */
8956 			return true;
8957 		}
8958 		break;
8959 	}
8960 
8961 	return false;
8962 }
8963 
8964 /*
8965  * Decode an instruction for emulation.  The caller is responsible for handling
8966  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8967  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8968  * code breakpoints have higher priority and thus have already been done by
8969  * hardware.
8970  *
8971  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8972  *     response to a machine check.
8973  */
8974 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8975 				    void *insn, int insn_len)
8976 {
8977 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8978 	int r;
8979 
8980 	init_emulate_ctxt(vcpu);
8981 
8982 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8983 
8984 	trace_kvm_emulate_insn_start(vcpu);
8985 	++vcpu->stat.insn_emulation;
8986 
8987 	return r;
8988 }
8989 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8990 
8991 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8992 			    int emulation_type, void *insn, int insn_len)
8993 {
8994 	int r;
8995 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8996 	bool writeback = true;
8997 
8998 	r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
8999 	if (r != X86EMUL_CONTINUE) {
9000 		if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9001 			return 1;
9002 
9003 		WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9004 		return handle_emulation_failure(vcpu, emulation_type);
9005 	}
9006 
9007 	vcpu->arch.l1tf_flush_l1d = true;
9008 
9009 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9010 		kvm_clear_exception_queue(vcpu);
9011 
9012 		/*
9013 		 * Return immediately if RIP hits a code breakpoint, such #DBs
9014 		 * are fault-like and are higher priority than any faults on
9015 		 * the code fetch itself.
9016 		 */
9017 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9018 			return r;
9019 
9020 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
9021 						    insn, insn_len);
9022 		if (r != EMULATION_OK)  {
9023 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
9024 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9025 				kvm_queue_exception(vcpu, UD_VECTOR);
9026 				return 1;
9027 			}
9028 			if (reexecute_instruction(vcpu, cr2_or_gpa,
9029 						  emulation_type))
9030 				return 1;
9031 
9032 			if (ctxt->have_exception &&
9033 			    !(emulation_type & EMULTYPE_SKIP)) {
9034 				/*
9035 				 * #UD should result in just EMULATION_FAILED, and trap-like
9036 				 * exception should not be encountered during decode.
9037 				 */
9038 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9039 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9040 				inject_emulated_exception(vcpu);
9041 				return 1;
9042 			}
9043 			return handle_emulation_failure(vcpu, emulation_type);
9044 		}
9045 	}
9046 
9047 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9048 	    !is_vmware_backdoor_opcode(ctxt)) {
9049 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9050 		return 1;
9051 	}
9052 
9053 	/*
9054 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9055 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9056 	 * The caller is responsible for updating interruptibility state and
9057 	 * injecting single-step #DBs.
9058 	 */
9059 	if (emulation_type & EMULTYPE_SKIP) {
9060 		if (ctxt->mode != X86EMUL_MODE_PROT64)
9061 			ctxt->eip = (u32)ctxt->_eip;
9062 		else
9063 			ctxt->eip = ctxt->_eip;
9064 
9065 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9066 			r = 1;
9067 			goto writeback;
9068 		}
9069 
9070 		kvm_rip_write(vcpu, ctxt->eip);
9071 		if (ctxt->eflags & X86_EFLAGS_RF)
9072 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9073 		return 1;
9074 	}
9075 
9076 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
9077 		return 1;
9078 
9079 	/* this is needed for vmware backdoor interface to work since it
9080 	   changes registers values  during IO operation */
9081 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9082 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9083 		emulator_invalidate_register_cache(ctxt);
9084 	}
9085 
9086 restart:
9087 	if (emulation_type & EMULTYPE_PF) {
9088 		/* Save the faulting GPA (cr2) in the address field */
9089 		ctxt->exception.address = cr2_or_gpa;
9090 
9091 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
9092 		if (vcpu->arch.mmu->root_role.direct) {
9093 			ctxt->gpa_available = true;
9094 			ctxt->gpa_val = cr2_or_gpa;
9095 		}
9096 	} else {
9097 		/* Sanitize the address out of an abundance of paranoia. */
9098 		ctxt->exception.address = 0;
9099 	}
9100 
9101 	r = x86_emulate_insn(ctxt);
9102 
9103 	if (r == EMULATION_INTERCEPTED)
9104 		return 1;
9105 
9106 	if (r == EMULATION_FAILED) {
9107 		if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
9108 			return 1;
9109 
9110 		return handle_emulation_failure(vcpu, emulation_type);
9111 	}
9112 
9113 	if (ctxt->have_exception) {
9114 		WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9115 		vcpu->mmio_needed = false;
9116 		r = 1;
9117 		inject_emulated_exception(vcpu);
9118 	} else if (vcpu->arch.pio.count) {
9119 		if (!vcpu->arch.pio.in) {
9120 			/* FIXME: return into emulator if single-stepping.  */
9121 			vcpu->arch.pio.count = 0;
9122 		} else {
9123 			writeback = false;
9124 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
9125 		}
9126 		r = 0;
9127 	} else if (vcpu->mmio_needed) {
9128 		++vcpu->stat.mmio_exits;
9129 
9130 		if (!vcpu->mmio_is_write)
9131 			writeback = false;
9132 		r = 0;
9133 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9134 	} else if (vcpu->arch.complete_userspace_io) {
9135 		writeback = false;
9136 		r = 0;
9137 	} else if (r == EMULATION_RESTART)
9138 		goto restart;
9139 	else
9140 		r = 1;
9141 
9142 writeback:
9143 	if (writeback) {
9144 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9145 		toggle_interruptibility(vcpu, ctxt->interruptibility);
9146 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9147 
9148 		/*
9149 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9150 		 * only supports code breakpoints and general detect #DB, both
9151 		 * of which are fault-like.
9152 		 */
9153 		if (!ctxt->have_exception ||
9154 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9155 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
9156 			if (ctxt->is_branch)
9157 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
9158 			kvm_rip_write(vcpu, ctxt->eip);
9159 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9160 				r = kvm_vcpu_do_singlestep(vcpu);
9161 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9162 			__kvm_set_rflags(vcpu, ctxt->eflags);
9163 		}
9164 
9165 		/*
9166 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9167 		 * do nothing, and it will be requested again as soon as
9168 		 * the shadow expires.  But we still need to check here,
9169 		 * because POPF has no interrupt shadow.
9170 		 */
9171 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9172 			kvm_make_request(KVM_REQ_EVENT, vcpu);
9173 	} else
9174 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9175 
9176 	return r;
9177 }
9178 
9179 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9180 {
9181 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9182 }
9183 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9184 
9185 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9186 					void *insn, int insn_len)
9187 {
9188 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9189 }
9190 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9191 
9192 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9193 {
9194 	vcpu->arch.pio.count = 0;
9195 	return 1;
9196 }
9197 
9198 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9199 {
9200 	vcpu->arch.pio.count = 0;
9201 
9202 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9203 		return 1;
9204 
9205 	return kvm_skip_emulated_instruction(vcpu);
9206 }
9207 
9208 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9209 			    unsigned short port)
9210 {
9211 	unsigned long val = kvm_rax_read(vcpu);
9212 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9213 
9214 	if (ret)
9215 		return ret;
9216 
9217 	/*
9218 	 * Workaround userspace that relies on old KVM behavior of %rip being
9219 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9220 	 */
9221 	if (port == 0x7e &&
9222 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9223 		vcpu->arch.complete_userspace_io =
9224 			complete_fast_pio_out_port_0x7e;
9225 		kvm_skip_emulated_instruction(vcpu);
9226 	} else {
9227 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9228 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9229 	}
9230 	return 0;
9231 }
9232 
9233 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9234 {
9235 	unsigned long val;
9236 
9237 	/* We should only ever be called with arch.pio.count equal to 1 */
9238 	BUG_ON(vcpu->arch.pio.count != 1);
9239 
9240 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9241 		vcpu->arch.pio.count = 0;
9242 		return 1;
9243 	}
9244 
9245 	/* For size less than 4 we merge, else we zero extend */
9246 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9247 
9248 	complete_emulator_pio_in(vcpu, &val);
9249 	kvm_rax_write(vcpu, val);
9250 
9251 	return kvm_skip_emulated_instruction(vcpu);
9252 }
9253 
9254 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9255 			   unsigned short port)
9256 {
9257 	unsigned long val;
9258 	int ret;
9259 
9260 	/* For size less than 4 we merge, else we zero extend */
9261 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9262 
9263 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9264 	if (ret) {
9265 		kvm_rax_write(vcpu, val);
9266 		return ret;
9267 	}
9268 
9269 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9270 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9271 
9272 	return 0;
9273 }
9274 
9275 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9276 {
9277 	int ret;
9278 
9279 	if (in)
9280 		ret = kvm_fast_pio_in(vcpu, size, port);
9281 	else
9282 		ret = kvm_fast_pio_out(vcpu, size, port);
9283 	return ret && kvm_skip_emulated_instruction(vcpu);
9284 }
9285 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9286 
9287 static int kvmclock_cpu_down_prep(unsigned int cpu)
9288 {
9289 	__this_cpu_write(cpu_tsc_khz, 0);
9290 	return 0;
9291 }
9292 
9293 static void tsc_khz_changed(void *data)
9294 {
9295 	struct cpufreq_freqs *freq = data;
9296 	unsigned long khz;
9297 
9298 	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9299 
9300 	if (data)
9301 		khz = freq->new;
9302 	else
9303 		khz = cpufreq_quick_get(raw_smp_processor_id());
9304 	if (!khz)
9305 		khz = tsc_khz;
9306 	__this_cpu_write(cpu_tsc_khz, khz);
9307 }
9308 
9309 #ifdef CONFIG_X86_64
9310 static void kvm_hyperv_tsc_notifier(void)
9311 {
9312 	struct kvm *kvm;
9313 	int cpu;
9314 
9315 	mutex_lock(&kvm_lock);
9316 	list_for_each_entry(kvm, &vm_list, vm_list)
9317 		kvm_make_mclock_inprogress_request(kvm);
9318 
9319 	/* no guest entries from this point */
9320 	hyperv_stop_tsc_emulation();
9321 
9322 	/* TSC frequency always matches when on Hyper-V */
9323 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9324 		for_each_present_cpu(cpu)
9325 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9326 	}
9327 	kvm_caps.max_guest_tsc_khz = tsc_khz;
9328 
9329 	list_for_each_entry(kvm, &vm_list, vm_list) {
9330 		__kvm_start_pvclock_update(kvm);
9331 		pvclock_update_vm_gtod_copy(kvm);
9332 		kvm_end_pvclock_update(kvm);
9333 	}
9334 
9335 	mutex_unlock(&kvm_lock);
9336 }
9337 #endif
9338 
9339 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9340 {
9341 	struct kvm *kvm;
9342 	struct kvm_vcpu *vcpu;
9343 	int send_ipi = 0;
9344 	unsigned long i;
9345 
9346 	/*
9347 	 * We allow guests to temporarily run on slowing clocks,
9348 	 * provided we notify them after, or to run on accelerating
9349 	 * clocks, provided we notify them before.  Thus time never
9350 	 * goes backwards.
9351 	 *
9352 	 * However, we have a problem.  We can't atomically update
9353 	 * the frequency of a given CPU from this function; it is
9354 	 * merely a notifier, which can be called from any CPU.
9355 	 * Changing the TSC frequency at arbitrary points in time
9356 	 * requires a recomputation of local variables related to
9357 	 * the TSC for each VCPU.  We must flag these local variables
9358 	 * to be updated and be sure the update takes place with the
9359 	 * new frequency before any guests proceed.
9360 	 *
9361 	 * Unfortunately, the combination of hotplug CPU and frequency
9362 	 * change creates an intractable locking scenario; the order
9363 	 * of when these callouts happen is undefined with respect to
9364 	 * CPU hotplug, and they can race with each other.  As such,
9365 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9366 	 * undefined; you can actually have a CPU frequency change take
9367 	 * place in between the computation of X and the setting of the
9368 	 * variable.  To protect against this problem, all updates of
9369 	 * the per_cpu tsc_khz variable are done in an interrupt
9370 	 * protected IPI, and all callers wishing to update the value
9371 	 * must wait for a synchronous IPI to complete (which is trivial
9372 	 * if the caller is on the CPU already).  This establishes the
9373 	 * necessary total order on variable updates.
9374 	 *
9375 	 * Note that because a guest time update may take place
9376 	 * anytime after the setting of the VCPU's request bit, the
9377 	 * correct TSC value must be set before the request.  However,
9378 	 * to ensure the update actually makes it to any guest which
9379 	 * starts running in hardware virtualization between the set
9380 	 * and the acquisition of the spinlock, we must also ping the
9381 	 * CPU after setting the request bit.
9382 	 *
9383 	 */
9384 
9385 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9386 
9387 	mutex_lock(&kvm_lock);
9388 	list_for_each_entry(kvm, &vm_list, vm_list) {
9389 		kvm_for_each_vcpu(i, vcpu, kvm) {
9390 			if (vcpu->cpu != cpu)
9391 				continue;
9392 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9393 			if (vcpu->cpu != raw_smp_processor_id())
9394 				send_ipi = 1;
9395 		}
9396 	}
9397 	mutex_unlock(&kvm_lock);
9398 
9399 	if (freq->old < freq->new && send_ipi) {
9400 		/*
9401 		 * We upscale the frequency.  Must make the guest
9402 		 * doesn't see old kvmclock values while running with
9403 		 * the new frequency, otherwise we risk the guest sees
9404 		 * time go backwards.
9405 		 *
9406 		 * In case we update the frequency for another cpu
9407 		 * (which might be in guest context) send an interrupt
9408 		 * to kick the cpu out of guest context.  Next time
9409 		 * guest context is entered kvmclock will be updated,
9410 		 * so the guest will not see stale values.
9411 		 */
9412 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9413 	}
9414 }
9415 
9416 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9417 				     void *data)
9418 {
9419 	struct cpufreq_freqs *freq = data;
9420 	int cpu;
9421 
9422 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9423 		return 0;
9424 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9425 		return 0;
9426 
9427 	for_each_cpu(cpu, freq->policy->cpus)
9428 		__kvmclock_cpufreq_notifier(freq, cpu);
9429 
9430 	return 0;
9431 }
9432 
9433 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9434 	.notifier_call  = kvmclock_cpufreq_notifier
9435 };
9436 
9437 static int kvmclock_cpu_online(unsigned int cpu)
9438 {
9439 	tsc_khz_changed(NULL);
9440 	return 0;
9441 }
9442 
9443 static void kvm_timer_init(void)
9444 {
9445 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9446 		max_tsc_khz = tsc_khz;
9447 
9448 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9449 			struct cpufreq_policy *policy;
9450 			int cpu;
9451 
9452 			cpu = get_cpu();
9453 			policy = cpufreq_cpu_get(cpu);
9454 			if (policy) {
9455 				if (policy->cpuinfo.max_freq)
9456 					max_tsc_khz = policy->cpuinfo.max_freq;
9457 				cpufreq_cpu_put(policy);
9458 			}
9459 			put_cpu();
9460 		}
9461 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9462 					  CPUFREQ_TRANSITION_NOTIFIER);
9463 
9464 		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9465 				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9466 	}
9467 }
9468 
9469 #ifdef CONFIG_X86_64
9470 static void pvclock_gtod_update_fn(struct work_struct *work)
9471 {
9472 	struct kvm *kvm;
9473 	struct kvm_vcpu *vcpu;
9474 	unsigned long i;
9475 
9476 	mutex_lock(&kvm_lock);
9477 	list_for_each_entry(kvm, &vm_list, vm_list)
9478 		kvm_for_each_vcpu(i, vcpu, kvm)
9479 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9480 	atomic_set(&kvm_guest_has_master_clock, 0);
9481 	mutex_unlock(&kvm_lock);
9482 }
9483 
9484 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9485 
9486 /*
9487  * Indirection to move queue_work() out of the tk_core.seq write held
9488  * region to prevent possible deadlocks against time accessors which
9489  * are invoked with work related locks held.
9490  */
9491 static void pvclock_irq_work_fn(struct irq_work *w)
9492 {
9493 	queue_work(system_long_wq, &pvclock_gtod_work);
9494 }
9495 
9496 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9497 
9498 /*
9499  * Notification about pvclock gtod data update.
9500  */
9501 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9502 			       void *priv)
9503 {
9504 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9505 	struct timekeeper *tk = priv;
9506 
9507 	update_pvclock_gtod(tk);
9508 
9509 	/*
9510 	 * Disable master clock if host does not trust, or does not use,
9511 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9512 	 * this is invoked with tk_core.seq write held.
9513 	 */
9514 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9515 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9516 		irq_work_queue(&pvclock_irq_work);
9517 	return 0;
9518 }
9519 
9520 static struct notifier_block pvclock_gtod_notifier = {
9521 	.notifier_call = pvclock_gtod_notify,
9522 };
9523 #endif
9524 
9525 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9526 {
9527 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9528 
9529 #define __KVM_X86_OP(func) \
9530 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9531 #define KVM_X86_OP(func) \
9532 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9533 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9534 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9535 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9536 					   (void *)__static_call_return0);
9537 #include <asm/kvm-x86-ops.h>
9538 #undef __KVM_X86_OP
9539 
9540 	kvm_pmu_ops_update(ops->pmu_ops);
9541 }
9542 
9543 static int kvm_x86_check_processor_compatibility(void)
9544 {
9545 	int cpu = smp_processor_id();
9546 	struct cpuinfo_x86 *c = &cpu_data(cpu);
9547 
9548 	/*
9549 	 * Compatibility checks are done when loading KVM and when enabling
9550 	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9551 	 * compatible, i.e. KVM should never perform a compatibility check on
9552 	 * an offline CPU.
9553 	 */
9554 	WARN_ON(!cpu_online(cpu));
9555 
9556 	if (__cr4_reserved_bits(cpu_has, c) !=
9557 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9558 		return -EIO;
9559 
9560 	return static_call(kvm_x86_check_processor_compatibility)();
9561 }
9562 
9563 static void kvm_x86_check_cpu_compat(void *ret)
9564 {
9565 	*(int *)ret = kvm_x86_check_processor_compatibility();
9566 }
9567 
9568 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9569 {
9570 	u64 host_pat;
9571 	int r, cpu;
9572 
9573 	if (kvm_x86_ops.hardware_enable) {
9574 		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9575 		return -EEXIST;
9576 	}
9577 
9578 	/*
9579 	 * KVM explicitly assumes that the guest has an FPU and
9580 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9581 	 * vCPU's FPU state as a fxregs_state struct.
9582 	 */
9583 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9584 		pr_err("inadequate fpu\n");
9585 		return -EOPNOTSUPP;
9586 	}
9587 
9588 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9589 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9590 		return -EOPNOTSUPP;
9591 	}
9592 
9593 	/*
9594 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9595 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9596 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9597 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9598 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9599 	 */
9600 	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9601 	    (host_pat & GENMASK(2, 0)) != 6) {
9602 		pr_err("host PAT[0] is not WB\n");
9603 		return -EIO;
9604 	}
9605 
9606 	x86_emulator_cache = kvm_alloc_emulator_cache();
9607 	if (!x86_emulator_cache) {
9608 		pr_err("failed to allocate cache for x86 emulator\n");
9609 		return -ENOMEM;
9610 	}
9611 
9612 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9613 	if (!user_return_msrs) {
9614 		pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9615 		r = -ENOMEM;
9616 		goto out_free_x86_emulator_cache;
9617 	}
9618 	kvm_nr_uret_msrs = 0;
9619 
9620 	r = kvm_mmu_vendor_module_init();
9621 	if (r)
9622 		goto out_free_percpu;
9623 
9624 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9625 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9626 		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9627 	}
9628 
9629 	rdmsrl_safe(MSR_EFER, &host_efer);
9630 
9631 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9632 		rdmsrl(MSR_IA32_XSS, host_xss);
9633 
9634 	kvm_init_pmu_capability(ops->pmu_ops);
9635 
9636 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9637 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities);
9638 
9639 	r = ops->hardware_setup();
9640 	if (r != 0)
9641 		goto out_mmu_exit;
9642 
9643 	kvm_ops_update(ops);
9644 
9645 	for_each_online_cpu(cpu) {
9646 		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9647 		if (r < 0)
9648 			goto out_unwind_ops;
9649 	}
9650 
9651 	/*
9652 	 * Point of no return!  DO NOT add error paths below this point unless
9653 	 * absolutely necessary, as most operations from this point forward
9654 	 * require unwinding.
9655 	 */
9656 	kvm_timer_init();
9657 
9658 	if (pi_inject_timer == -1)
9659 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9660 #ifdef CONFIG_X86_64
9661 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9662 
9663 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9664 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9665 #endif
9666 
9667 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9668 
9669 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9670 		kvm_caps.supported_xss = 0;
9671 
9672 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9673 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9674 #undef __kvm_cpu_cap_has
9675 
9676 	if (kvm_caps.has_tsc_control) {
9677 		/*
9678 		 * Make sure the user can only configure tsc_khz values that
9679 		 * fit into a signed integer.
9680 		 * A min value is not calculated because it will always
9681 		 * be 1 on all machines.
9682 		 */
9683 		u64 max = min(0x7fffffffULL,
9684 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9685 		kvm_caps.max_guest_tsc_khz = max;
9686 	}
9687 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9688 	kvm_init_msr_lists();
9689 	return 0;
9690 
9691 out_unwind_ops:
9692 	kvm_x86_ops.hardware_enable = NULL;
9693 	static_call(kvm_x86_hardware_unsetup)();
9694 out_mmu_exit:
9695 	kvm_mmu_vendor_module_exit();
9696 out_free_percpu:
9697 	free_percpu(user_return_msrs);
9698 out_free_x86_emulator_cache:
9699 	kmem_cache_destroy(x86_emulator_cache);
9700 	return r;
9701 }
9702 
9703 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9704 {
9705 	int r;
9706 
9707 	mutex_lock(&vendor_module_lock);
9708 	r = __kvm_x86_vendor_init(ops);
9709 	mutex_unlock(&vendor_module_lock);
9710 
9711 	return r;
9712 }
9713 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9714 
9715 void kvm_x86_vendor_exit(void)
9716 {
9717 	kvm_unregister_perf_callbacks();
9718 
9719 #ifdef CONFIG_X86_64
9720 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9721 		clear_hv_tscchange_cb();
9722 #endif
9723 	kvm_lapic_exit();
9724 
9725 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9726 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9727 					    CPUFREQ_TRANSITION_NOTIFIER);
9728 		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9729 	}
9730 #ifdef CONFIG_X86_64
9731 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9732 	irq_work_sync(&pvclock_irq_work);
9733 	cancel_work_sync(&pvclock_gtod_work);
9734 #endif
9735 	static_call(kvm_x86_hardware_unsetup)();
9736 	kvm_mmu_vendor_module_exit();
9737 	free_percpu(user_return_msrs);
9738 	kmem_cache_destroy(x86_emulator_cache);
9739 #ifdef CONFIG_KVM_XEN
9740 	static_key_deferred_flush(&kvm_xen_enabled);
9741 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9742 #endif
9743 	mutex_lock(&vendor_module_lock);
9744 	kvm_x86_ops.hardware_enable = NULL;
9745 	mutex_unlock(&vendor_module_lock);
9746 }
9747 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9748 
9749 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9750 {
9751 	/*
9752 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9753 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9754 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9755 	 * managed by userspace, in which case userspace is responsible for
9756 	 * handling wake events.
9757 	 */
9758 	++vcpu->stat.halt_exits;
9759 	if (lapic_in_kernel(vcpu)) {
9760 		vcpu->arch.mp_state = state;
9761 		return 1;
9762 	} else {
9763 		vcpu->run->exit_reason = reason;
9764 		return 0;
9765 	}
9766 }
9767 
9768 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9769 {
9770 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9771 }
9772 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9773 
9774 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9775 {
9776 	int ret = kvm_skip_emulated_instruction(vcpu);
9777 	/*
9778 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9779 	 * KVM_EXIT_DEBUG here.
9780 	 */
9781 	return kvm_emulate_halt_noskip(vcpu) && ret;
9782 }
9783 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9784 
9785 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9786 {
9787 	int ret = kvm_skip_emulated_instruction(vcpu);
9788 
9789 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9790 					KVM_EXIT_AP_RESET_HOLD) && ret;
9791 }
9792 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9793 
9794 #ifdef CONFIG_X86_64
9795 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9796 			        unsigned long clock_type)
9797 {
9798 	struct kvm_clock_pairing clock_pairing;
9799 	struct timespec64 ts;
9800 	u64 cycle;
9801 	int ret;
9802 
9803 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9804 		return -KVM_EOPNOTSUPP;
9805 
9806 	/*
9807 	 * When tsc is in permanent catchup mode guests won't be able to use
9808 	 * pvclock_read_retry loop to get consistent view of pvclock
9809 	 */
9810 	if (vcpu->arch.tsc_always_catchup)
9811 		return -KVM_EOPNOTSUPP;
9812 
9813 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9814 		return -KVM_EOPNOTSUPP;
9815 
9816 	clock_pairing.sec = ts.tv_sec;
9817 	clock_pairing.nsec = ts.tv_nsec;
9818 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9819 	clock_pairing.flags = 0;
9820 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9821 
9822 	ret = 0;
9823 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9824 			    sizeof(struct kvm_clock_pairing)))
9825 		ret = -KVM_EFAULT;
9826 
9827 	return ret;
9828 }
9829 #endif
9830 
9831 /*
9832  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9833  *
9834  * @apicid - apicid of vcpu to be kicked.
9835  */
9836 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9837 {
9838 	/*
9839 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9840 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9841 	 */
9842 	struct kvm_lapic_irq lapic_irq = {
9843 		.delivery_mode = APIC_DM_REMRD,
9844 		.dest_mode = APIC_DEST_PHYSICAL,
9845 		.shorthand = APIC_DEST_NOSHORT,
9846 		.dest_id = apicid,
9847 	};
9848 
9849 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9850 }
9851 
9852 bool kvm_apicv_activated(struct kvm *kvm)
9853 {
9854 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9855 }
9856 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9857 
9858 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9859 {
9860 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9861 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9862 
9863 	return (vm_reasons | vcpu_reasons) == 0;
9864 }
9865 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9866 
9867 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9868 				       enum kvm_apicv_inhibit reason, bool set)
9869 {
9870 	if (set)
9871 		__set_bit(reason, inhibits);
9872 	else
9873 		__clear_bit(reason, inhibits);
9874 
9875 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9876 }
9877 
9878 static void kvm_apicv_init(struct kvm *kvm)
9879 {
9880 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9881 
9882 	init_rwsem(&kvm->arch.apicv_update_lock);
9883 
9884 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9885 
9886 	if (!enable_apicv)
9887 		set_or_clear_apicv_inhibit(inhibits,
9888 					   APICV_INHIBIT_REASON_DISABLE, true);
9889 }
9890 
9891 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9892 {
9893 	struct kvm_vcpu *target = NULL;
9894 	struct kvm_apic_map *map;
9895 
9896 	vcpu->stat.directed_yield_attempted++;
9897 
9898 	if (single_task_running())
9899 		goto no_yield;
9900 
9901 	rcu_read_lock();
9902 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9903 
9904 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9905 		target = map->phys_map[dest_id]->vcpu;
9906 
9907 	rcu_read_unlock();
9908 
9909 	if (!target || !READ_ONCE(target->ready))
9910 		goto no_yield;
9911 
9912 	/* Ignore requests to yield to self */
9913 	if (vcpu == target)
9914 		goto no_yield;
9915 
9916 	if (kvm_vcpu_yield_to(target) <= 0)
9917 		goto no_yield;
9918 
9919 	vcpu->stat.directed_yield_successful++;
9920 
9921 no_yield:
9922 	return;
9923 }
9924 
9925 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9926 {
9927 	u64 ret = vcpu->run->hypercall.ret;
9928 
9929 	if (!is_64_bit_mode(vcpu))
9930 		ret = (u32)ret;
9931 	kvm_rax_write(vcpu, ret);
9932 	++vcpu->stat.hypercalls;
9933 	return kvm_skip_emulated_instruction(vcpu);
9934 }
9935 
9936 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9937 {
9938 	unsigned long nr, a0, a1, a2, a3, ret;
9939 	int op_64_bit;
9940 
9941 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9942 		return kvm_xen_hypercall(vcpu);
9943 
9944 	if (kvm_hv_hypercall_enabled(vcpu))
9945 		return kvm_hv_hypercall(vcpu);
9946 
9947 	nr = kvm_rax_read(vcpu);
9948 	a0 = kvm_rbx_read(vcpu);
9949 	a1 = kvm_rcx_read(vcpu);
9950 	a2 = kvm_rdx_read(vcpu);
9951 	a3 = kvm_rsi_read(vcpu);
9952 
9953 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9954 
9955 	op_64_bit = is_64_bit_hypercall(vcpu);
9956 	if (!op_64_bit) {
9957 		nr &= 0xFFFFFFFF;
9958 		a0 &= 0xFFFFFFFF;
9959 		a1 &= 0xFFFFFFFF;
9960 		a2 &= 0xFFFFFFFF;
9961 		a3 &= 0xFFFFFFFF;
9962 	}
9963 
9964 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9965 		ret = -KVM_EPERM;
9966 		goto out;
9967 	}
9968 
9969 	ret = -KVM_ENOSYS;
9970 
9971 	switch (nr) {
9972 	case KVM_HC_VAPIC_POLL_IRQ:
9973 		ret = 0;
9974 		break;
9975 	case KVM_HC_KICK_CPU:
9976 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9977 			break;
9978 
9979 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9980 		kvm_sched_yield(vcpu, a1);
9981 		ret = 0;
9982 		break;
9983 #ifdef CONFIG_X86_64
9984 	case KVM_HC_CLOCK_PAIRING:
9985 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9986 		break;
9987 #endif
9988 	case KVM_HC_SEND_IPI:
9989 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9990 			break;
9991 
9992 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9993 		break;
9994 	case KVM_HC_SCHED_YIELD:
9995 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9996 			break;
9997 
9998 		kvm_sched_yield(vcpu, a0);
9999 		ret = 0;
10000 		break;
10001 	case KVM_HC_MAP_GPA_RANGE: {
10002 		u64 gpa = a0, npages = a1, attrs = a2;
10003 
10004 		ret = -KVM_ENOSYS;
10005 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
10006 			break;
10007 
10008 		if (!PAGE_ALIGNED(gpa) || !npages ||
10009 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10010 			ret = -KVM_EINVAL;
10011 			break;
10012 		}
10013 
10014 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
10015 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
10016 		vcpu->run->hypercall.args[0]  = gpa;
10017 		vcpu->run->hypercall.args[1]  = npages;
10018 		vcpu->run->hypercall.args[2]  = attrs;
10019 		vcpu->run->hypercall.flags    = 0;
10020 		if (op_64_bit)
10021 			vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10022 
10023 		WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10024 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
10025 		return 0;
10026 	}
10027 	default:
10028 		ret = -KVM_ENOSYS;
10029 		break;
10030 	}
10031 out:
10032 	if (!op_64_bit)
10033 		ret = (u32)ret;
10034 	kvm_rax_write(vcpu, ret);
10035 
10036 	++vcpu->stat.hypercalls;
10037 	return kvm_skip_emulated_instruction(vcpu);
10038 }
10039 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10040 
10041 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10042 {
10043 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10044 	char instruction[3];
10045 	unsigned long rip = kvm_rip_read(vcpu);
10046 
10047 	/*
10048 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10049 	 * the pieces.
10050 	 */
10051 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10052 		ctxt->exception.error_code_valid = false;
10053 		ctxt->exception.vector = UD_VECTOR;
10054 		ctxt->have_exception = true;
10055 		return X86EMUL_PROPAGATE_FAULT;
10056 	}
10057 
10058 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
10059 
10060 	return emulator_write_emulated(ctxt, rip, instruction, 3,
10061 		&ctxt->exception);
10062 }
10063 
10064 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10065 {
10066 	return vcpu->run->request_interrupt_window &&
10067 		likely(!pic_in_kernel(vcpu->kvm));
10068 }
10069 
10070 /* Called within kvm->srcu read side.  */
10071 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10072 {
10073 	struct kvm_run *kvm_run = vcpu->run;
10074 
10075 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
10076 	kvm_run->cr8 = kvm_get_cr8(vcpu);
10077 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
10078 
10079 	kvm_run->ready_for_interrupt_injection =
10080 		pic_in_kernel(vcpu->kvm) ||
10081 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
10082 
10083 	if (is_smm(vcpu))
10084 		kvm_run->flags |= KVM_RUN_X86_SMM;
10085 }
10086 
10087 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10088 {
10089 	int max_irr, tpr;
10090 
10091 	if (!kvm_x86_ops.update_cr8_intercept)
10092 		return;
10093 
10094 	if (!lapic_in_kernel(vcpu))
10095 		return;
10096 
10097 	if (vcpu->arch.apic->apicv_active)
10098 		return;
10099 
10100 	if (!vcpu->arch.apic->vapic_addr)
10101 		max_irr = kvm_lapic_find_highest_irr(vcpu);
10102 	else
10103 		max_irr = -1;
10104 
10105 	if (max_irr != -1)
10106 		max_irr >>= 4;
10107 
10108 	tpr = kvm_lapic_get_cr8(vcpu);
10109 
10110 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
10111 }
10112 
10113 
10114 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10115 {
10116 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10117 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
10118 		return 1;
10119 	}
10120 
10121 	return kvm_x86_ops.nested_ops->check_events(vcpu);
10122 }
10123 
10124 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10125 {
10126 	/*
10127 	 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10128 	 * exceptions don't report error codes.  The presence of an error code
10129 	 * is carried with the exception and only stripped when the exception
10130 	 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10131 	 * report an error code despite the CPU being in Real Mode.
10132 	 */
10133 	vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10134 
10135 	trace_kvm_inj_exception(vcpu->arch.exception.vector,
10136 				vcpu->arch.exception.has_error_code,
10137 				vcpu->arch.exception.error_code,
10138 				vcpu->arch.exception.injected);
10139 
10140 	static_call(kvm_x86_inject_exception)(vcpu);
10141 }
10142 
10143 /*
10144  * Check for any event (interrupt or exception) that is ready to be injected,
10145  * and if there is at least one event, inject the event with the highest
10146  * priority.  This handles both "pending" events, i.e. events that have never
10147  * been injected into the guest, and "injected" events, i.e. events that were
10148  * injected as part of a previous VM-Enter, but weren't successfully delivered
10149  * and need to be re-injected.
10150  *
10151  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10152  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10153  * be able to inject exceptions in the "middle" of an instruction, and so must
10154  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10155  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10156  * boundaries is necessary and correct.
10157  *
10158  * For simplicity, KVM uses a single path to inject all events (except events
10159  * that are injected directly from L1 to L2) and doesn't explicitly track
10160  * instruction boundaries for asynchronous events.  However, because VM-Exits
10161  * that can occur during instruction execution typically result in KVM skipping
10162  * the instruction or injecting an exception, e.g. instruction and exception
10163  * intercepts, and because pending exceptions have higher priority than pending
10164  * interrupts, KVM still honors instruction boundaries in most scenarios.
10165  *
10166  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10167  * the instruction or inject an exception, then KVM can incorrecty inject a new
10168  * asynchrounous event if the event became pending after the CPU fetched the
10169  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10170  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10171  * injected on the restarted instruction instead of being deferred until the
10172  * instruction completes.
10173  *
10174  * In practice, this virtualization hole is unlikely to be observed by the
10175  * guest, and even less likely to cause functional problems.  To detect the
10176  * hole, the guest would have to trigger an event on a side effect of an early
10177  * phase of instruction execution, e.g. on the instruction fetch from memory.
10178  * And for it to be a functional problem, the guest would need to depend on the
10179  * ordering between that side effect, the instruction completing, _and_ the
10180  * delivery of the asynchronous event.
10181  */
10182 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10183 				       bool *req_immediate_exit)
10184 {
10185 	bool can_inject;
10186 	int r;
10187 
10188 	/*
10189 	 * Process nested events first, as nested VM-Exit supercedes event
10190 	 * re-injection.  If there's an event queued for re-injection, it will
10191 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10192 	 */
10193 	if (is_guest_mode(vcpu))
10194 		r = kvm_check_nested_events(vcpu);
10195 	else
10196 		r = 0;
10197 
10198 	/*
10199 	 * Re-inject exceptions and events *especially* if immediate entry+exit
10200 	 * to/from L2 is needed, as any event that has already been injected
10201 	 * into L2 needs to complete its lifecycle before injecting a new event.
10202 	 *
10203 	 * Don't re-inject an NMI or interrupt if there is a pending exception.
10204 	 * This collision arises if an exception occurred while vectoring the
10205 	 * injected event, KVM intercepted said exception, and KVM ultimately
10206 	 * determined the fault belongs to the guest and queues the exception
10207 	 * for injection back into the guest.
10208 	 *
10209 	 * "Injected" interrupts can also collide with pending exceptions if
10210 	 * userspace ignores the "ready for injection" flag and blindly queues
10211 	 * an interrupt.  In that case, prioritizing the exception is correct,
10212 	 * as the exception "occurred" before the exit to userspace.  Trap-like
10213 	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10214 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10215 	 * priority, they're only generated (pended) during instruction
10216 	 * execution, and interrupts are recognized at instruction boundaries.
10217 	 * Thus a pending fault-like exception means the fault occurred on the
10218 	 * *previous* instruction and must be serviced prior to recognizing any
10219 	 * new events in order to fully complete the previous instruction.
10220 	 */
10221 	if (vcpu->arch.exception.injected)
10222 		kvm_inject_exception(vcpu);
10223 	else if (kvm_is_exception_pending(vcpu))
10224 		; /* see above */
10225 	else if (vcpu->arch.nmi_injected)
10226 		static_call(kvm_x86_inject_nmi)(vcpu);
10227 	else if (vcpu->arch.interrupt.injected)
10228 		static_call(kvm_x86_inject_irq)(vcpu, true);
10229 
10230 	/*
10231 	 * Exceptions that morph to VM-Exits are handled above, and pending
10232 	 * exceptions on top of injected exceptions that do not VM-Exit should
10233 	 * either morph to #DF or, sadly, override the injected exception.
10234 	 */
10235 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
10236 		     vcpu->arch.exception.pending);
10237 
10238 	/*
10239 	 * Bail if immediate entry+exit to/from the guest is needed to complete
10240 	 * nested VM-Enter or event re-injection so that a different pending
10241 	 * event can be serviced (or if KVM needs to exit to userspace).
10242 	 *
10243 	 * Otherwise, continue processing events even if VM-Exit occurred.  The
10244 	 * VM-Exit will have cleared exceptions that were meant for L2, but
10245 	 * there may now be events that can be injected into L1.
10246 	 */
10247 	if (r < 0)
10248 		goto out;
10249 
10250 	/*
10251 	 * A pending exception VM-Exit should either result in nested VM-Exit
10252 	 * or force an immediate re-entry and exit to/from L2, and exception
10253 	 * VM-Exits cannot be injected (flag should _never_ be set).
10254 	 */
10255 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10256 		     vcpu->arch.exception_vmexit.pending);
10257 
10258 	/*
10259 	 * New events, other than exceptions, cannot be injected if KVM needs
10260 	 * to re-inject a previous event.  See above comments on re-injecting
10261 	 * for why pending exceptions get priority.
10262 	 */
10263 	can_inject = !kvm_event_needs_reinjection(vcpu);
10264 
10265 	if (vcpu->arch.exception.pending) {
10266 		/*
10267 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10268 		 * value pushed on the stack.  Trap-like exception and all #DBs
10269 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10270 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10271 		 *
10272 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10273 		 * describe the behavior of General Detect #DBs, which are
10274 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10275 		 */
10276 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10277 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10278 					     X86_EFLAGS_RF);
10279 
10280 		if (vcpu->arch.exception.vector == DB_VECTOR) {
10281 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10282 			if (vcpu->arch.dr7 & DR7_GD) {
10283 				vcpu->arch.dr7 &= ~DR7_GD;
10284 				kvm_update_dr7(vcpu);
10285 			}
10286 		}
10287 
10288 		kvm_inject_exception(vcpu);
10289 
10290 		vcpu->arch.exception.pending = false;
10291 		vcpu->arch.exception.injected = true;
10292 
10293 		can_inject = false;
10294 	}
10295 
10296 	/* Don't inject interrupts if the user asked to avoid doing so */
10297 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10298 		return 0;
10299 
10300 	/*
10301 	 * Finally, inject interrupt events.  If an event cannot be injected
10302 	 * due to architectural conditions (e.g. IF=0) a window-open exit
10303 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10304 	 * and can architecturally be injected, but we cannot do it right now:
10305 	 * an interrupt could have arrived just now and we have to inject it
10306 	 * as a vmexit, or there could already an event in the queue, which is
10307 	 * indicated by can_inject.  In that case we request an immediate exit
10308 	 * in order to make progress and get back here for another iteration.
10309 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10310 	 */
10311 #ifdef CONFIG_KVM_SMM
10312 	if (vcpu->arch.smi_pending) {
10313 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10314 		if (r < 0)
10315 			goto out;
10316 		if (r) {
10317 			vcpu->arch.smi_pending = false;
10318 			++vcpu->arch.smi_count;
10319 			enter_smm(vcpu);
10320 			can_inject = false;
10321 		} else
10322 			static_call(kvm_x86_enable_smi_window)(vcpu);
10323 	}
10324 #endif
10325 
10326 	if (vcpu->arch.nmi_pending) {
10327 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10328 		if (r < 0)
10329 			goto out;
10330 		if (r) {
10331 			--vcpu->arch.nmi_pending;
10332 			vcpu->arch.nmi_injected = true;
10333 			static_call(kvm_x86_inject_nmi)(vcpu);
10334 			can_inject = false;
10335 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10336 		}
10337 		if (vcpu->arch.nmi_pending)
10338 			static_call(kvm_x86_enable_nmi_window)(vcpu);
10339 	}
10340 
10341 	if (kvm_cpu_has_injectable_intr(vcpu)) {
10342 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10343 		if (r < 0)
10344 			goto out;
10345 		if (r) {
10346 			int irq = kvm_cpu_get_interrupt(vcpu);
10347 
10348 			if (!WARN_ON_ONCE(irq == -1)) {
10349 				kvm_queue_interrupt(vcpu, irq, false);
10350 				static_call(kvm_x86_inject_irq)(vcpu, false);
10351 				WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10352 			}
10353 		}
10354 		if (kvm_cpu_has_injectable_intr(vcpu))
10355 			static_call(kvm_x86_enable_irq_window)(vcpu);
10356 	}
10357 
10358 	if (is_guest_mode(vcpu) &&
10359 	    kvm_x86_ops.nested_ops->has_events &&
10360 	    kvm_x86_ops.nested_ops->has_events(vcpu))
10361 		*req_immediate_exit = true;
10362 
10363 	/*
10364 	 * KVM must never queue a new exception while injecting an event; KVM
10365 	 * is done emulating and should only propagate the to-be-injected event
10366 	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10367 	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10368 	 * exception and start the cycle all over.
10369 	 *
10370 	 * Exempt triple faults as they have special handling and won't put the
10371 	 * vCPU into an infinite loop.  Triple fault can be queued when running
10372 	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10373 	 * Mode events (see kvm_inject_realmode_interrupt()).
10374 	 */
10375 	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10376 		     vcpu->arch.exception_vmexit.pending);
10377 	return 0;
10378 
10379 out:
10380 	if (r == -EBUSY) {
10381 		*req_immediate_exit = true;
10382 		r = 0;
10383 	}
10384 	return r;
10385 }
10386 
10387 static void process_nmi(struct kvm_vcpu *vcpu)
10388 {
10389 	unsigned int limit;
10390 
10391 	/*
10392 	 * x86 is limited to one NMI pending, but because KVM can't react to
10393 	 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10394 	 * scheduled out, KVM needs to play nice with two queued NMIs showing
10395 	 * up at the same time.  To handle this scenario, allow two NMIs to be
10396 	 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10397 	 * waiting for a previous NMI injection to complete (which effectively
10398 	 * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10399 	 * will request an NMI window to handle the second NMI.
10400 	 */
10401 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10402 		limit = 1;
10403 	else
10404 		limit = 2;
10405 
10406 	/*
10407 	 * Adjust the limit to account for pending virtual NMIs, which aren't
10408 	 * tracked in vcpu->arch.nmi_pending.
10409 	 */
10410 	if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10411 		limit--;
10412 
10413 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10414 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10415 
10416 	if (vcpu->arch.nmi_pending &&
10417 	    (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10418 		vcpu->arch.nmi_pending--;
10419 
10420 	if (vcpu->arch.nmi_pending)
10421 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10422 }
10423 
10424 /* Return total number of NMIs pending injection to the VM */
10425 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10426 {
10427 	return vcpu->arch.nmi_pending +
10428 	       static_call(kvm_x86_is_vnmi_pending)(vcpu);
10429 }
10430 
10431 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10432 				       unsigned long *vcpu_bitmap)
10433 {
10434 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10435 }
10436 
10437 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10438 {
10439 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10440 }
10441 
10442 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10443 {
10444 	struct kvm_lapic *apic = vcpu->arch.apic;
10445 	bool activate;
10446 
10447 	if (!lapic_in_kernel(vcpu))
10448 		return;
10449 
10450 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10451 	preempt_disable();
10452 
10453 	/* Do not activate APICV when APIC is disabled */
10454 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10455 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10456 
10457 	if (apic->apicv_active == activate)
10458 		goto out;
10459 
10460 	apic->apicv_active = activate;
10461 	kvm_apic_update_apicv(vcpu);
10462 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10463 
10464 	/*
10465 	 * When APICv gets disabled, we may still have injected interrupts
10466 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10467 	 * still active when the interrupt got accepted. Make sure
10468 	 * kvm_check_and_inject_events() is called to check for that.
10469 	 */
10470 	if (!apic->apicv_active)
10471 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10472 
10473 out:
10474 	preempt_enable();
10475 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10476 }
10477 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10478 
10479 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10480 {
10481 	if (!lapic_in_kernel(vcpu))
10482 		return;
10483 
10484 	/*
10485 	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10486 	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10487 	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10488 	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10489 	 * this case so that KVM can the AVIC doorbell to inject interrupts to
10490 	 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10491 	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10492 	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10493 	 * access page is sticky.
10494 	 */
10495 	if (apic_x2apic_mode(vcpu->arch.apic) &&
10496 	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10497 		kvm_inhibit_apic_access_page(vcpu);
10498 
10499 	__kvm_vcpu_update_apicv(vcpu);
10500 }
10501 
10502 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10503 				      enum kvm_apicv_inhibit reason, bool set)
10504 {
10505 	unsigned long old, new;
10506 
10507 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10508 
10509 	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10510 		return;
10511 
10512 	old = new = kvm->arch.apicv_inhibit_reasons;
10513 
10514 	set_or_clear_apicv_inhibit(&new, reason, set);
10515 
10516 	if (!!old != !!new) {
10517 		/*
10518 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10519 		 * false positives in the sanity check WARN in svm_vcpu_run().
10520 		 * This task will wait for all vCPUs to ack the kick IRQ before
10521 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10522 		 * block on acquiring apicv_update_lock so that vCPUs can't
10523 		 * redo svm_vcpu_run() without seeing the new inhibit state.
10524 		 *
10525 		 * Note, holding apicv_update_lock and taking it in the read
10526 		 * side (handling the request) also prevents other vCPUs from
10527 		 * servicing the request with a stale apicv_inhibit_reasons.
10528 		 */
10529 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10530 		kvm->arch.apicv_inhibit_reasons = new;
10531 		if (new) {
10532 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10533 			int idx = srcu_read_lock(&kvm->srcu);
10534 
10535 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10536 			srcu_read_unlock(&kvm->srcu, idx);
10537 		}
10538 	} else {
10539 		kvm->arch.apicv_inhibit_reasons = new;
10540 	}
10541 }
10542 
10543 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10544 				    enum kvm_apicv_inhibit reason, bool set)
10545 {
10546 	if (!enable_apicv)
10547 		return;
10548 
10549 	down_write(&kvm->arch.apicv_update_lock);
10550 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10551 	up_write(&kvm->arch.apicv_update_lock);
10552 }
10553 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10554 
10555 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10556 {
10557 	if (!kvm_apic_present(vcpu))
10558 		return;
10559 
10560 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10561 
10562 	if (irqchip_split(vcpu->kvm))
10563 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10564 	else {
10565 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10566 		if (ioapic_in_kernel(vcpu->kvm))
10567 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10568 	}
10569 
10570 	if (is_guest_mode(vcpu))
10571 		vcpu->arch.load_eoi_exitmap_pending = true;
10572 	else
10573 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10574 }
10575 
10576 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10577 {
10578 	u64 eoi_exit_bitmap[4];
10579 
10580 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10581 		return;
10582 
10583 	if (to_hv_vcpu(vcpu)) {
10584 		bitmap_or((ulong *)eoi_exit_bitmap,
10585 			  vcpu->arch.ioapic_handled_vectors,
10586 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10587 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10588 		return;
10589 	}
10590 
10591 	static_call_cond(kvm_x86_load_eoi_exitmap)(
10592 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10593 }
10594 
10595 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10596 {
10597 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10598 }
10599 
10600 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10601 {
10602 	if (!lapic_in_kernel(vcpu))
10603 		return;
10604 
10605 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10606 }
10607 
10608 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10609 {
10610 	smp_send_reschedule(vcpu->cpu);
10611 }
10612 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10613 
10614 /*
10615  * Called within kvm->srcu read side.
10616  * Returns 1 to let vcpu_run() continue the guest execution loop without
10617  * exiting to the userspace.  Otherwise, the value will be returned to the
10618  * userspace.
10619  */
10620 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10621 {
10622 	int r;
10623 	bool req_int_win =
10624 		dm_request_for_irq_injection(vcpu) &&
10625 		kvm_cpu_accept_dm_intr(vcpu);
10626 	fastpath_t exit_fastpath;
10627 
10628 	bool req_immediate_exit = false;
10629 
10630 	if (kvm_request_pending(vcpu)) {
10631 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10632 			r = -EIO;
10633 			goto out;
10634 		}
10635 
10636 		if (kvm_dirty_ring_check_request(vcpu)) {
10637 			r = 0;
10638 			goto out;
10639 		}
10640 
10641 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10642 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10643 				r = 0;
10644 				goto out;
10645 			}
10646 		}
10647 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10648 			kvm_mmu_free_obsolete_roots(vcpu);
10649 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10650 			__kvm_migrate_timers(vcpu);
10651 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10652 			kvm_update_masterclock(vcpu->kvm);
10653 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10654 			kvm_gen_kvmclock_update(vcpu);
10655 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10656 			r = kvm_guest_time_update(vcpu);
10657 			if (unlikely(r))
10658 				goto out;
10659 		}
10660 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10661 			kvm_mmu_sync_roots(vcpu);
10662 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10663 			kvm_mmu_load_pgd(vcpu);
10664 
10665 		/*
10666 		 * Note, the order matters here, as flushing "all" TLB entries
10667 		 * also flushes the "current" TLB entries, i.e. servicing the
10668 		 * flush "all" will clear any request to flush "current".
10669 		 */
10670 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10671 			kvm_vcpu_flush_tlb_all(vcpu);
10672 
10673 		kvm_service_local_tlb_flush_requests(vcpu);
10674 
10675 		/*
10676 		 * Fall back to a "full" guest flush if Hyper-V's precise
10677 		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10678 		 * the flushes are considered "remote" and not "local" because
10679 		 * the requests can be initiated from other vCPUs.
10680 		 */
10681 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10682 		    kvm_hv_vcpu_flush_tlb(vcpu))
10683 			kvm_vcpu_flush_tlb_guest(vcpu);
10684 
10685 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10686 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10687 			r = 0;
10688 			goto out;
10689 		}
10690 		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10691 			if (is_guest_mode(vcpu))
10692 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10693 
10694 			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10695 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10696 				vcpu->mmio_needed = 0;
10697 				r = 0;
10698 				goto out;
10699 			}
10700 		}
10701 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10702 			/* Page is swapped out. Do synthetic halt */
10703 			vcpu->arch.apf.halted = true;
10704 			r = 1;
10705 			goto out;
10706 		}
10707 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10708 			record_steal_time(vcpu);
10709 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10710 			kvm_pmu_handle_event(vcpu);
10711 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10712 			kvm_pmu_deliver_pmi(vcpu);
10713 #ifdef CONFIG_KVM_SMM
10714 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10715 			process_smi(vcpu);
10716 #endif
10717 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10718 			process_nmi(vcpu);
10719 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10720 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10721 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10722 				     vcpu->arch.ioapic_handled_vectors)) {
10723 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10724 				vcpu->run->eoi.vector =
10725 						vcpu->arch.pending_ioapic_eoi;
10726 				r = 0;
10727 				goto out;
10728 			}
10729 		}
10730 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10731 			vcpu_scan_ioapic(vcpu);
10732 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10733 			vcpu_load_eoi_exitmap(vcpu);
10734 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10735 			kvm_vcpu_reload_apic_access_page(vcpu);
10736 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10737 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10738 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10739 			vcpu->run->system_event.ndata = 0;
10740 			r = 0;
10741 			goto out;
10742 		}
10743 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10744 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10745 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10746 			vcpu->run->system_event.ndata = 0;
10747 			r = 0;
10748 			goto out;
10749 		}
10750 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10751 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10752 
10753 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10754 			vcpu->run->hyperv = hv_vcpu->exit;
10755 			r = 0;
10756 			goto out;
10757 		}
10758 
10759 		/*
10760 		 * KVM_REQ_HV_STIMER has to be processed after
10761 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10762 		 * depend on the guest clock being up-to-date
10763 		 */
10764 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10765 			kvm_hv_process_stimers(vcpu);
10766 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10767 			kvm_vcpu_update_apicv(vcpu);
10768 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10769 			kvm_check_async_pf_completion(vcpu);
10770 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10771 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10772 
10773 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10774 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10775 	}
10776 
10777 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10778 	    kvm_xen_has_interrupt(vcpu)) {
10779 		++vcpu->stat.req_event;
10780 		r = kvm_apic_accept_events(vcpu);
10781 		if (r < 0) {
10782 			r = 0;
10783 			goto out;
10784 		}
10785 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10786 			r = 1;
10787 			goto out;
10788 		}
10789 
10790 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10791 		if (r < 0) {
10792 			r = 0;
10793 			goto out;
10794 		}
10795 		if (req_int_win)
10796 			static_call(kvm_x86_enable_irq_window)(vcpu);
10797 
10798 		if (kvm_lapic_enabled(vcpu)) {
10799 			update_cr8_intercept(vcpu);
10800 			kvm_lapic_sync_to_vapic(vcpu);
10801 		}
10802 	}
10803 
10804 	r = kvm_mmu_reload(vcpu);
10805 	if (unlikely(r)) {
10806 		goto cancel_injection;
10807 	}
10808 
10809 	preempt_disable();
10810 
10811 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10812 
10813 	/*
10814 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10815 	 * IPI are then delayed after guest entry, which ensures that they
10816 	 * result in virtual interrupt delivery.
10817 	 */
10818 	local_irq_disable();
10819 
10820 	/* Store vcpu->apicv_active before vcpu->mode.  */
10821 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10822 
10823 	kvm_vcpu_srcu_read_unlock(vcpu);
10824 
10825 	/*
10826 	 * 1) We should set ->mode before checking ->requests.  Please see
10827 	 * the comment in kvm_vcpu_exiting_guest_mode().
10828 	 *
10829 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10830 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10831 	 * (see vmx_deliver_posted_interrupt).
10832 	 *
10833 	 * 3) This also orders the write to mode from any reads to the page
10834 	 * tables done while the VCPU is running.  Please see the comment
10835 	 * in kvm_flush_remote_tlbs.
10836 	 */
10837 	smp_mb__after_srcu_read_unlock();
10838 
10839 	/*
10840 	 * Process pending posted interrupts to handle the case where the
10841 	 * notification IRQ arrived in the host, or was never sent (because the
10842 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10843 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10844 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10845 	 */
10846 	if (kvm_lapic_enabled(vcpu))
10847 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10848 
10849 	if (kvm_vcpu_exit_request(vcpu)) {
10850 		vcpu->mode = OUTSIDE_GUEST_MODE;
10851 		smp_wmb();
10852 		local_irq_enable();
10853 		preempt_enable();
10854 		kvm_vcpu_srcu_read_lock(vcpu);
10855 		r = 1;
10856 		goto cancel_injection;
10857 	}
10858 
10859 	if (req_immediate_exit) {
10860 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10861 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10862 	}
10863 
10864 	fpregs_assert_state_consistent();
10865 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10866 		switch_fpu_return();
10867 
10868 	if (vcpu->arch.guest_fpu.xfd_err)
10869 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10870 
10871 	if (unlikely(vcpu->arch.switch_db_regs)) {
10872 		set_debugreg(0, 7);
10873 		set_debugreg(vcpu->arch.eff_db[0], 0);
10874 		set_debugreg(vcpu->arch.eff_db[1], 1);
10875 		set_debugreg(vcpu->arch.eff_db[2], 2);
10876 		set_debugreg(vcpu->arch.eff_db[3], 3);
10877 	} else if (unlikely(hw_breakpoint_active())) {
10878 		set_debugreg(0, 7);
10879 	}
10880 
10881 	guest_timing_enter_irqoff();
10882 
10883 	for (;;) {
10884 		/*
10885 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10886 		 * update must kick and wait for all vCPUs before toggling the
10887 		 * per-VM state, and responsing vCPUs must wait for the update
10888 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10889 		 */
10890 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10891 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10892 
10893 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10894 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10895 			break;
10896 
10897 		if (kvm_lapic_enabled(vcpu))
10898 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10899 
10900 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10901 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10902 			break;
10903 		}
10904 
10905 		/* Note, VM-Exits that go down the "slow" path are accounted below. */
10906 		++vcpu->stat.exits;
10907 	}
10908 
10909 	/*
10910 	 * Do this here before restoring debug registers on the host.  And
10911 	 * since we do this before handling the vmexit, a DR access vmexit
10912 	 * can (a) read the correct value of the debug registers, (b) set
10913 	 * KVM_DEBUGREG_WONT_EXIT again.
10914 	 */
10915 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10916 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10917 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10918 		kvm_update_dr0123(vcpu);
10919 		kvm_update_dr7(vcpu);
10920 	}
10921 
10922 	/*
10923 	 * If the guest has used debug registers, at least dr7
10924 	 * will be disabled while returning to the host.
10925 	 * If we don't have active breakpoints in the host, we don't
10926 	 * care about the messed up debug address registers. But if
10927 	 * we have some of them active, restore the old state.
10928 	 */
10929 	if (hw_breakpoint_active())
10930 		hw_breakpoint_restore();
10931 
10932 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10933 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10934 
10935 	vcpu->mode = OUTSIDE_GUEST_MODE;
10936 	smp_wmb();
10937 
10938 	/*
10939 	 * Sync xfd before calling handle_exit_irqoff() which may
10940 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10941 	 * in #NM irqoff handler).
10942 	 */
10943 	if (vcpu->arch.xfd_no_write_intercept)
10944 		fpu_sync_guest_vmexit_xfd_state();
10945 
10946 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10947 
10948 	if (vcpu->arch.guest_fpu.xfd_err)
10949 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10950 
10951 	/*
10952 	 * Consume any pending interrupts, including the possible source of
10953 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10954 	 * An instruction is required after local_irq_enable() to fully unblock
10955 	 * interrupts on processors that implement an interrupt shadow, the
10956 	 * stat.exits increment will do nicely.
10957 	 */
10958 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10959 	local_irq_enable();
10960 	++vcpu->stat.exits;
10961 	local_irq_disable();
10962 	kvm_after_interrupt(vcpu);
10963 
10964 	/*
10965 	 * Wait until after servicing IRQs to account guest time so that any
10966 	 * ticks that occurred while running the guest are properly accounted
10967 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10968 	 * of accounting via context tracking, but the loss of accuracy is
10969 	 * acceptable for all known use cases.
10970 	 */
10971 	guest_timing_exit_irqoff();
10972 
10973 	local_irq_enable();
10974 	preempt_enable();
10975 
10976 	kvm_vcpu_srcu_read_lock(vcpu);
10977 
10978 	/*
10979 	 * Profile KVM exit RIPs:
10980 	 */
10981 	if (unlikely(prof_on == KVM_PROFILING)) {
10982 		unsigned long rip = kvm_rip_read(vcpu);
10983 		profile_hit(KVM_PROFILING, (void *)rip);
10984 	}
10985 
10986 	if (unlikely(vcpu->arch.tsc_always_catchup))
10987 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10988 
10989 	if (vcpu->arch.apic_attention)
10990 		kvm_lapic_sync_from_vapic(vcpu);
10991 
10992 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10993 	return r;
10994 
10995 cancel_injection:
10996 	if (req_immediate_exit)
10997 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10998 	static_call(kvm_x86_cancel_injection)(vcpu);
10999 	if (unlikely(vcpu->arch.apic_attention))
11000 		kvm_lapic_sync_from_vapic(vcpu);
11001 out:
11002 	return r;
11003 }
11004 
11005 /* Called within kvm->srcu read side.  */
11006 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11007 {
11008 	bool hv_timer;
11009 
11010 	if (!kvm_arch_vcpu_runnable(vcpu)) {
11011 		/*
11012 		 * Switch to the software timer before halt-polling/blocking as
11013 		 * the guest's timer may be a break event for the vCPU, and the
11014 		 * hypervisor timer runs only when the CPU is in guest mode.
11015 		 * Switch before halt-polling so that KVM recognizes an expired
11016 		 * timer before blocking.
11017 		 */
11018 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11019 		if (hv_timer)
11020 			kvm_lapic_switch_to_sw_timer(vcpu);
11021 
11022 		kvm_vcpu_srcu_read_unlock(vcpu);
11023 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11024 			kvm_vcpu_halt(vcpu);
11025 		else
11026 			kvm_vcpu_block(vcpu);
11027 		kvm_vcpu_srcu_read_lock(vcpu);
11028 
11029 		if (hv_timer)
11030 			kvm_lapic_switch_to_hv_timer(vcpu);
11031 
11032 		/*
11033 		 * If the vCPU is not runnable, a signal or another host event
11034 		 * of some kind is pending; service it without changing the
11035 		 * vCPU's activity state.
11036 		 */
11037 		if (!kvm_arch_vcpu_runnable(vcpu))
11038 			return 1;
11039 	}
11040 
11041 	/*
11042 	 * Evaluate nested events before exiting the halted state.  This allows
11043 	 * the halt state to be recorded properly in the VMCS12's activity
11044 	 * state field (AMD does not have a similar field and a VM-Exit always
11045 	 * causes a spurious wakeup from HLT).
11046 	 */
11047 	if (is_guest_mode(vcpu)) {
11048 		if (kvm_check_nested_events(vcpu) < 0)
11049 			return 0;
11050 	}
11051 
11052 	if (kvm_apic_accept_events(vcpu) < 0)
11053 		return 0;
11054 	switch(vcpu->arch.mp_state) {
11055 	case KVM_MP_STATE_HALTED:
11056 	case KVM_MP_STATE_AP_RESET_HOLD:
11057 		vcpu->arch.pv.pv_unhalted = false;
11058 		vcpu->arch.mp_state =
11059 			KVM_MP_STATE_RUNNABLE;
11060 		fallthrough;
11061 	case KVM_MP_STATE_RUNNABLE:
11062 		vcpu->arch.apf.halted = false;
11063 		break;
11064 	case KVM_MP_STATE_INIT_RECEIVED:
11065 		break;
11066 	default:
11067 		WARN_ON_ONCE(1);
11068 		break;
11069 	}
11070 	return 1;
11071 }
11072 
11073 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11074 {
11075 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11076 		!vcpu->arch.apf.halted);
11077 }
11078 
11079 /* Called within kvm->srcu read side.  */
11080 static int vcpu_run(struct kvm_vcpu *vcpu)
11081 {
11082 	int r;
11083 
11084 	vcpu->arch.l1tf_flush_l1d = true;
11085 
11086 	for (;;) {
11087 		/*
11088 		 * If another guest vCPU requests a PV TLB flush in the middle
11089 		 * of instruction emulation, the rest of the emulation could
11090 		 * use a stale page translation. Assume that any code after
11091 		 * this point can start executing an instruction.
11092 		 */
11093 		vcpu->arch.at_instruction_boundary = false;
11094 		if (kvm_vcpu_running(vcpu)) {
11095 			r = vcpu_enter_guest(vcpu);
11096 		} else {
11097 			r = vcpu_block(vcpu);
11098 		}
11099 
11100 		if (r <= 0)
11101 			break;
11102 
11103 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11104 		if (kvm_xen_has_pending_events(vcpu))
11105 			kvm_xen_inject_pending_events(vcpu);
11106 
11107 		if (kvm_cpu_has_pending_timer(vcpu))
11108 			kvm_inject_pending_timer_irqs(vcpu);
11109 
11110 		if (dm_request_for_irq_injection(vcpu) &&
11111 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11112 			r = 0;
11113 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11114 			++vcpu->stat.request_irq_exits;
11115 			break;
11116 		}
11117 
11118 		if (__xfer_to_guest_mode_work_pending()) {
11119 			kvm_vcpu_srcu_read_unlock(vcpu);
11120 			r = xfer_to_guest_mode_handle_work(vcpu);
11121 			kvm_vcpu_srcu_read_lock(vcpu);
11122 			if (r)
11123 				return r;
11124 		}
11125 	}
11126 
11127 	return r;
11128 }
11129 
11130 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11131 {
11132 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11133 }
11134 
11135 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11136 {
11137 	BUG_ON(!vcpu->arch.pio.count);
11138 
11139 	return complete_emulated_io(vcpu);
11140 }
11141 
11142 /*
11143  * Implements the following, as a state machine:
11144  *
11145  * read:
11146  *   for each fragment
11147  *     for each mmio piece in the fragment
11148  *       write gpa, len
11149  *       exit
11150  *       copy data
11151  *   execute insn
11152  *
11153  * write:
11154  *   for each fragment
11155  *     for each mmio piece in the fragment
11156  *       write gpa, len
11157  *       copy data
11158  *       exit
11159  */
11160 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11161 {
11162 	struct kvm_run *run = vcpu->run;
11163 	struct kvm_mmio_fragment *frag;
11164 	unsigned len;
11165 
11166 	BUG_ON(!vcpu->mmio_needed);
11167 
11168 	/* Complete previous fragment */
11169 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11170 	len = min(8u, frag->len);
11171 	if (!vcpu->mmio_is_write)
11172 		memcpy(frag->data, run->mmio.data, len);
11173 
11174 	if (frag->len <= 8) {
11175 		/* Switch to the next fragment. */
11176 		frag++;
11177 		vcpu->mmio_cur_fragment++;
11178 	} else {
11179 		/* Go forward to the next mmio piece. */
11180 		frag->data += len;
11181 		frag->gpa += len;
11182 		frag->len -= len;
11183 	}
11184 
11185 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11186 		vcpu->mmio_needed = 0;
11187 
11188 		/* FIXME: return into emulator if single-stepping.  */
11189 		if (vcpu->mmio_is_write)
11190 			return 1;
11191 		vcpu->mmio_read_completed = 1;
11192 		return complete_emulated_io(vcpu);
11193 	}
11194 
11195 	run->exit_reason = KVM_EXIT_MMIO;
11196 	run->mmio.phys_addr = frag->gpa;
11197 	if (vcpu->mmio_is_write)
11198 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11199 	run->mmio.len = min(8u, frag->len);
11200 	run->mmio.is_write = vcpu->mmio_is_write;
11201 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11202 	return 0;
11203 }
11204 
11205 /* Swap (qemu) user FPU context for the guest FPU context. */
11206 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11207 {
11208 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11209 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11210 	trace_kvm_fpu(1);
11211 }
11212 
11213 /* When vcpu_run ends, restore user space FPU context. */
11214 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11215 {
11216 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11217 	++vcpu->stat.fpu_reload;
11218 	trace_kvm_fpu(0);
11219 }
11220 
11221 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11222 {
11223 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
11224 	struct kvm_run *kvm_run = vcpu->run;
11225 	int r;
11226 
11227 	vcpu_load(vcpu);
11228 	kvm_sigset_activate(vcpu);
11229 	kvm_run->flags = 0;
11230 	kvm_load_guest_fpu(vcpu);
11231 
11232 	kvm_vcpu_srcu_read_lock(vcpu);
11233 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11234 		if (kvm_run->immediate_exit) {
11235 			r = -EINTR;
11236 			goto out;
11237 		}
11238 
11239 		/*
11240 		 * Don't bother switching APIC timer emulation from the
11241 		 * hypervisor timer to the software timer, the only way for the
11242 		 * APIC timer to be active is if userspace stuffed vCPU state,
11243 		 * i.e. put the vCPU into a nonsensical state.  Only an INIT
11244 		 * will transition the vCPU out of UNINITIALIZED (without more
11245 		 * state stuffing from userspace), which will reset the local
11246 		 * APIC and thus cancel the timer or drop the IRQ (if the timer
11247 		 * already expired).
11248 		 */
11249 		kvm_vcpu_srcu_read_unlock(vcpu);
11250 		kvm_vcpu_block(vcpu);
11251 		kvm_vcpu_srcu_read_lock(vcpu);
11252 
11253 		if (kvm_apic_accept_events(vcpu) < 0) {
11254 			r = 0;
11255 			goto out;
11256 		}
11257 		r = -EAGAIN;
11258 		if (signal_pending(current)) {
11259 			r = -EINTR;
11260 			kvm_run->exit_reason = KVM_EXIT_INTR;
11261 			++vcpu->stat.signal_exits;
11262 		}
11263 		goto out;
11264 	}
11265 
11266 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11267 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11268 		r = -EINVAL;
11269 		goto out;
11270 	}
11271 
11272 	if (kvm_run->kvm_dirty_regs) {
11273 		r = sync_regs(vcpu);
11274 		if (r != 0)
11275 			goto out;
11276 	}
11277 
11278 	/* re-sync apic's tpr */
11279 	if (!lapic_in_kernel(vcpu)) {
11280 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11281 			r = -EINVAL;
11282 			goto out;
11283 		}
11284 	}
11285 
11286 	/*
11287 	 * If userspace set a pending exception and L2 is active, convert it to
11288 	 * a pending VM-Exit if L1 wants to intercept the exception.
11289 	 */
11290 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11291 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11292 							ex->error_code)) {
11293 		kvm_queue_exception_vmexit(vcpu, ex->vector,
11294 					   ex->has_error_code, ex->error_code,
11295 					   ex->has_payload, ex->payload);
11296 		ex->injected = false;
11297 		ex->pending = false;
11298 	}
11299 	vcpu->arch.exception_from_userspace = false;
11300 
11301 	if (unlikely(vcpu->arch.complete_userspace_io)) {
11302 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11303 		vcpu->arch.complete_userspace_io = NULL;
11304 		r = cui(vcpu);
11305 		if (r <= 0)
11306 			goto out;
11307 	} else {
11308 		WARN_ON_ONCE(vcpu->arch.pio.count);
11309 		WARN_ON_ONCE(vcpu->mmio_needed);
11310 	}
11311 
11312 	if (kvm_run->immediate_exit) {
11313 		r = -EINTR;
11314 		goto out;
11315 	}
11316 
11317 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11318 	if (r <= 0)
11319 		goto out;
11320 
11321 	r = vcpu_run(vcpu);
11322 
11323 out:
11324 	kvm_put_guest_fpu(vcpu);
11325 	if (kvm_run->kvm_valid_regs)
11326 		store_regs(vcpu);
11327 	post_kvm_run_save(vcpu);
11328 	kvm_vcpu_srcu_read_unlock(vcpu);
11329 
11330 	kvm_sigset_deactivate(vcpu);
11331 	vcpu_put(vcpu);
11332 	return r;
11333 }
11334 
11335 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11336 {
11337 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11338 		/*
11339 		 * We are here if userspace calls get_regs() in the middle of
11340 		 * instruction emulation. Registers state needs to be copied
11341 		 * back from emulation context to vcpu. Userspace shouldn't do
11342 		 * that usually, but some bad designed PV devices (vmware
11343 		 * backdoor interface) need this to work
11344 		 */
11345 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11346 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11347 	}
11348 	regs->rax = kvm_rax_read(vcpu);
11349 	regs->rbx = kvm_rbx_read(vcpu);
11350 	regs->rcx = kvm_rcx_read(vcpu);
11351 	regs->rdx = kvm_rdx_read(vcpu);
11352 	regs->rsi = kvm_rsi_read(vcpu);
11353 	regs->rdi = kvm_rdi_read(vcpu);
11354 	regs->rsp = kvm_rsp_read(vcpu);
11355 	regs->rbp = kvm_rbp_read(vcpu);
11356 #ifdef CONFIG_X86_64
11357 	regs->r8 = kvm_r8_read(vcpu);
11358 	regs->r9 = kvm_r9_read(vcpu);
11359 	regs->r10 = kvm_r10_read(vcpu);
11360 	regs->r11 = kvm_r11_read(vcpu);
11361 	regs->r12 = kvm_r12_read(vcpu);
11362 	regs->r13 = kvm_r13_read(vcpu);
11363 	regs->r14 = kvm_r14_read(vcpu);
11364 	regs->r15 = kvm_r15_read(vcpu);
11365 #endif
11366 
11367 	regs->rip = kvm_rip_read(vcpu);
11368 	regs->rflags = kvm_get_rflags(vcpu);
11369 }
11370 
11371 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11372 {
11373 	vcpu_load(vcpu);
11374 	__get_regs(vcpu, regs);
11375 	vcpu_put(vcpu);
11376 	return 0;
11377 }
11378 
11379 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11380 {
11381 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11382 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11383 
11384 	kvm_rax_write(vcpu, regs->rax);
11385 	kvm_rbx_write(vcpu, regs->rbx);
11386 	kvm_rcx_write(vcpu, regs->rcx);
11387 	kvm_rdx_write(vcpu, regs->rdx);
11388 	kvm_rsi_write(vcpu, regs->rsi);
11389 	kvm_rdi_write(vcpu, regs->rdi);
11390 	kvm_rsp_write(vcpu, regs->rsp);
11391 	kvm_rbp_write(vcpu, regs->rbp);
11392 #ifdef CONFIG_X86_64
11393 	kvm_r8_write(vcpu, regs->r8);
11394 	kvm_r9_write(vcpu, regs->r9);
11395 	kvm_r10_write(vcpu, regs->r10);
11396 	kvm_r11_write(vcpu, regs->r11);
11397 	kvm_r12_write(vcpu, regs->r12);
11398 	kvm_r13_write(vcpu, regs->r13);
11399 	kvm_r14_write(vcpu, regs->r14);
11400 	kvm_r15_write(vcpu, regs->r15);
11401 #endif
11402 
11403 	kvm_rip_write(vcpu, regs->rip);
11404 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11405 
11406 	vcpu->arch.exception.pending = false;
11407 	vcpu->arch.exception_vmexit.pending = false;
11408 
11409 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11410 }
11411 
11412 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11413 {
11414 	vcpu_load(vcpu);
11415 	__set_regs(vcpu, regs);
11416 	vcpu_put(vcpu);
11417 	return 0;
11418 }
11419 
11420 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11421 {
11422 	struct desc_ptr dt;
11423 
11424 	if (vcpu->arch.guest_state_protected)
11425 		goto skip_protected_regs;
11426 
11427 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11428 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11429 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11430 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11431 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11432 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11433 
11434 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11435 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11436 
11437 	static_call(kvm_x86_get_idt)(vcpu, &dt);
11438 	sregs->idt.limit = dt.size;
11439 	sregs->idt.base = dt.address;
11440 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
11441 	sregs->gdt.limit = dt.size;
11442 	sregs->gdt.base = dt.address;
11443 
11444 	sregs->cr2 = vcpu->arch.cr2;
11445 	sregs->cr3 = kvm_read_cr3(vcpu);
11446 
11447 skip_protected_regs:
11448 	sregs->cr0 = kvm_read_cr0(vcpu);
11449 	sregs->cr4 = kvm_read_cr4(vcpu);
11450 	sregs->cr8 = kvm_get_cr8(vcpu);
11451 	sregs->efer = vcpu->arch.efer;
11452 	sregs->apic_base = kvm_get_apic_base(vcpu);
11453 }
11454 
11455 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11456 {
11457 	__get_sregs_common(vcpu, sregs);
11458 
11459 	if (vcpu->arch.guest_state_protected)
11460 		return;
11461 
11462 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11463 		set_bit(vcpu->arch.interrupt.nr,
11464 			(unsigned long *)sregs->interrupt_bitmap);
11465 }
11466 
11467 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11468 {
11469 	int i;
11470 
11471 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11472 
11473 	if (vcpu->arch.guest_state_protected)
11474 		return;
11475 
11476 	if (is_pae_paging(vcpu)) {
11477 		for (i = 0 ; i < 4 ; i++)
11478 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11479 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11480 	}
11481 }
11482 
11483 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11484 				  struct kvm_sregs *sregs)
11485 {
11486 	vcpu_load(vcpu);
11487 	__get_sregs(vcpu, sregs);
11488 	vcpu_put(vcpu);
11489 	return 0;
11490 }
11491 
11492 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11493 				    struct kvm_mp_state *mp_state)
11494 {
11495 	int r;
11496 
11497 	vcpu_load(vcpu);
11498 	if (kvm_mpx_supported())
11499 		kvm_load_guest_fpu(vcpu);
11500 
11501 	r = kvm_apic_accept_events(vcpu);
11502 	if (r < 0)
11503 		goto out;
11504 	r = 0;
11505 
11506 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11507 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11508 	    vcpu->arch.pv.pv_unhalted)
11509 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11510 	else
11511 		mp_state->mp_state = vcpu->arch.mp_state;
11512 
11513 out:
11514 	if (kvm_mpx_supported())
11515 		kvm_put_guest_fpu(vcpu);
11516 	vcpu_put(vcpu);
11517 	return r;
11518 }
11519 
11520 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11521 				    struct kvm_mp_state *mp_state)
11522 {
11523 	int ret = -EINVAL;
11524 
11525 	vcpu_load(vcpu);
11526 
11527 	switch (mp_state->mp_state) {
11528 	case KVM_MP_STATE_UNINITIALIZED:
11529 	case KVM_MP_STATE_HALTED:
11530 	case KVM_MP_STATE_AP_RESET_HOLD:
11531 	case KVM_MP_STATE_INIT_RECEIVED:
11532 	case KVM_MP_STATE_SIPI_RECEIVED:
11533 		if (!lapic_in_kernel(vcpu))
11534 			goto out;
11535 		break;
11536 
11537 	case KVM_MP_STATE_RUNNABLE:
11538 		break;
11539 
11540 	default:
11541 		goto out;
11542 	}
11543 
11544 	/*
11545 	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11546 	 * forcing the guest into INIT/SIPI if those events are supposed to be
11547 	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11548 	 * if an SMI is pending as well.
11549 	 */
11550 	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11551 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11552 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11553 		goto out;
11554 
11555 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11556 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11557 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11558 	} else
11559 		vcpu->arch.mp_state = mp_state->mp_state;
11560 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11561 
11562 	ret = 0;
11563 out:
11564 	vcpu_put(vcpu);
11565 	return ret;
11566 }
11567 
11568 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11569 		    int reason, bool has_error_code, u32 error_code)
11570 {
11571 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11572 	int ret;
11573 
11574 	init_emulate_ctxt(vcpu);
11575 
11576 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11577 				   has_error_code, error_code);
11578 	if (ret) {
11579 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11580 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11581 		vcpu->run->internal.ndata = 0;
11582 		return 0;
11583 	}
11584 
11585 	kvm_rip_write(vcpu, ctxt->eip);
11586 	kvm_set_rflags(vcpu, ctxt->eflags);
11587 	return 1;
11588 }
11589 EXPORT_SYMBOL_GPL(kvm_task_switch);
11590 
11591 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11592 {
11593 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11594 		/*
11595 		 * When EFER.LME and CR0.PG are set, the processor is in
11596 		 * 64-bit mode (though maybe in a 32-bit code segment).
11597 		 * CR4.PAE and EFER.LMA must be set.
11598 		 */
11599 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11600 			return false;
11601 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11602 			return false;
11603 	} else {
11604 		/*
11605 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11606 		 * segment cannot be 64-bit.
11607 		 */
11608 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11609 			return false;
11610 	}
11611 
11612 	return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11613 	       kvm_is_valid_cr0(vcpu, sregs->cr0);
11614 }
11615 
11616 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11617 		int *mmu_reset_needed, bool update_pdptrs)
11618 {
11619 	struct msr_data apic_base_msr;
11620 	int idx;
11621 	struct desc_ptr dt;
11622 
11623 	if (!kvm_is_valid_sregs(vcpu, sregs))
11624 		return -EINVAL;
11625 
11626 	apic_base_msr.data = sregs->apic_base;
11627 	apic_base_msr.host_initiated = true;
11628 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11629 		return -EINVAL;
11630 
11631 	if (vcpu->arch.guest_state_protected)
11632 		return 0;
11633 
11634 	dt.size = sregs->idt.limit;
11635 	dt.address = sregs->idt.base;
11636 	static_call(kvm_x86_set_idt)(vcpu, &dt);
11637 	dt.size = sregs->gdt.limit;
11638 	dt.address = sregs->gdt.base;
11639 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11640 
11641 	vcpu->arch.cr2 = sregs->cr2;
11642 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11643 	vcpu->arch.cr3 = sregs->cr3;
11644 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11645 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11646 
11647 	kvm_set_cr8(vcpu, sregs->cr8);
11648 
11649 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11650 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11651 
11652 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11653 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11654 
11655 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11656 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11657 
11658 	if (update_pdptrs) {
11659 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11660 		if (is_pae_paging(vcpu)) {
11661 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11662 			*mmu_reset_needed = 1;
11663 		}
11664 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11665 	}
11666 
11667 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11668 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11669 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11670 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11671 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11672 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11673 
11674 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11675 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11676 
11677 	update_cr8_intercept(vcpu);
11678 
11679 	/* Older userspace won't unhalt the vcpu on reset. */
11680 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11681 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11682 	    !is_protmode(vcpu))
11683 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11684 
11685 	return 0;
11686 }
11687 
11688 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11689 {
11690 	int pending_vec, max_bits;
11691 	int mmu_reset_needed = 0;
11692 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11693 
11694 	if (ret)
11695 		return ret;
11696 
11697 	if (mmu_reset_needed) {
11698 		kvm_mmu_reset_context(vcpu);
11699 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11700 	}
11701 
11702 	max_bits = KVM_NR_INTERRUPTS;
11703 	pending_vec = find_first_bit(
11704 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11705 
11706 	if (pending_vec < max_bits) {
11707 		kvm_queue_interrupt(vcpu, pending_vec, false);
11708 		pr_debug("Set back pending irq %d\n", pending_vec);
11709 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11710 	}
11711 	return 0;
11712 }
11713 
11714 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11715 {
11716 	int mmu_reset_needed = 0;
11717 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11718 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11719 		!(sregs2->efer & EFER_LMA);
11720 	int i, ret;
11721 
11722 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11723 		return -EINVAL;
11724 
11725 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11726 		return -EINVAL;
11727 
11728 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11729 				 &mmu_reset_needed, !valid_pdptrs);
11730 	if (ret)
11731 		return ret;
11732 
11733 	if (valid_pdptrs) {
11734 		for (i = 0; i < 4 ; i++)
11735 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11736 
11737 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11738 		mmu_reset_needed = 1;
11739 		vcpu->arch.pdptrs_from_userspace = true;
11740 	}
11741 	if (mmu_reset_needed) {
11742 		kvm_mmu_reset_context(vcpu);
11743 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11744 	}
11745 	return 0;
11746 }
11747 
11748 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11749 				  struct kvm_sregs *sregs)
11750 {
11751 	int ret;
11752 
11753 	vcpu_load(vcpu);
11754 	ret = __set_sregs(vcpu, sregs);
11755 	vcpu_put(vcpu);
11756 	return ret;
11757 }
11758 
11759 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11760 {
11761 	bool set = false;
11762 	struct kvm_vcpu *vcpu;
11763 	unsigned long i;
11764 
11765 	if (!enable_apicv)
11766 		return;
11767 
11768 	down_write(&kvm->arch.apicv_update_lock);
11769 
11770 	kvm_for_each_vcpu(i, vcpu, kvm) {
11771 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11772 			set = true;
11773 			break;
11774 		}
11775 	}
11776 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11777 	up_write(&kvm->arch.apicv_update_lock);
11778 }
11779 
11780 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11781 					struct kvm_guest_debug *dbg)
11782 {
11783 	unsigned long rflags;
11784 	int i, r;
11785 
11786 	if (vcpu->arch.guest_state_protected)
11787 		return -EINVAL;
11788 
11789 	vcpu_load(vcpu);
11790 
11791 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11792 		r = -EBUSY;
11793 		if (kvm_is_exception_pending(vcpu))
11794 			goto out;
11795 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11796 			kvm_queue_exception(vcpu, DB_VECTOR);
11797 		else
11798 			kvm_queue_exception(vcpu, BP_VECTOR);
11799 	}
11800 
11801 	/*
11802 	 * Read rflags as long as potentially injected trace flags are still
11803 	 * filtered out.
11804 	 */
11805 	rflags = kvm_get_rflags(vcpu);
11806 
11807 	vcpu->guest_debug = dbg->control;
11808 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11809 		vcpu->guest_debug = 0;
11810 
11811 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11812 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11813 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11814 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11815 	} else {
11816 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11817 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11818 	}
11819 	kvm_update_dr7(vcpu);
11820 
11821 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11822 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11823 
11824 	/*
11825 	 * Trigger an rflags update that will inject or remove the trace
11826 	 * flags.
11827 	 */
11828 	kvm_set_rflags(vcpu, rflags);
11829 
11830 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11831 
11832 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11833 
11834 	r = 0;
11835 
11836 out:
11837 	vcpu_put(vcpu);
11838 	return r;
11839 }
11840 
11841 /*
11842  * Translate a guest virtual address to a guest physical address.
11843  */
11844 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11845 				    struct kvm_translation *tr)
11846 {
11847 	unsigned long vaddr = tr->linear_address;
11848 	gpa_t gpa;
11849 	int idx;
11850 
11851 	vcpu_load(vcpu);
11852 
11853 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11854 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11855 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11856 	tr->physical_address = gpa;
11857 	tr->valid = gpa != INVALID_GPA;
11858 	tr->writeable = 1;
11859 	tr->usermode = 0;
11860 
11861 	vcpu_put(vcpu);
11862 	return 0;
11863 }
11864 
11865 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11866 {
11867 	struct fxregs_state *fxsave;
11868 
11869 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11870 		return 0;
11871 
11872 	vcpu_load(vcpu);
11873 
11874 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11875 	memcpy(fpu->fpr, fxsave->st_space, 128);
11876 	fpu->fcw = fxsave->cwd;
11877 	fpu->fsw = fxsave->swd;
11878 	fpu->ftwx = fxsave->twd;
11879 	fpu->last_opcode = fxsave->fop;
11880 	fpu->last_ip = fxsave->rip;
11881 	fpu->last_dp = fxsave->rdp;
11882 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11883 
11884 	vcpu_put(vcpu);
11885 	return 0;
11886 }
11887 
11888 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11889 {
11890 	struct fxregs_state *fxsave;
11891 
11892 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11893 		return 0;
11894 
11895 	vcpu_load(vcpu);
11896 
11897 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11898 
11899 	memcpy(fxsave->st_space, fpu->fpr, 128);
11900 	fxsave->cwd = fpu->fcw;
11901 	fxsave->swd = fpu->fsw;
11902 	fxsave->twd = fpu->ftwx;
11903 	fxsave->fop = fpu->last_opcode;
11904 	fxsave->rip = fpu->last_ip;
11905 	fxsave->rdp = fpu->last_dp;
11906 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11907 
11908 	vcpu_put(vcpu);
11909 	return 0;
11910 }
11911 
11912 static void store_regs(struct kvm_vcpu *vcpu)
11913 {
11914 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11915 
11916 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11917 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11918 
11919 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11920 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11921 
11922 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11923 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11924 				vcpu, &vcpu->run->s.regs.events);
11925 }
11926 
11927 static int sync_regs(struct kvm_vcpu *vcpu)
11928 {
11929 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11930 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11931 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11932 	}
11933 
11934 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11935 		struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
11936 
11937 		if (__set_sregs(vcpu, &sregs))
11938 			return -EINVAL;
11939 
11940 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11941 	}
11942 
11943 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11944 		struct kvm_vcpu_events events = vcpu->run->s.regs.events;
11945 
11946 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
11947 			return -EINVAL;
11948 
11949 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11950 	}
11951 
11952 	return 0;
11953 }
11954 
11955 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11956 {
11957 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11958 		pr_warn_once("SMP vm created on host with unstable TSC; "
11959 			     "guest TSC will not be reliable\n");
11960 
11961 	if (!kvm->arch.max_vcpu_ids)
11962 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11963 
11964 	if (id >= kvm->arch.max_vcpu_ids)
11965 		return -EINVAL;
11966 
11967 	return static_call(kvm_x86_vcpu_precreate)(kvm);
11968 }
11969 
11970 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11971 {
11972 	struct page *page;
11973 	int r;
11974 
11975 	vcpu->arch.last_vmentry_cpu = -1;
11976 	vcpu->arch.regs_avail = ~0;
11977 	vcpu->arch.regs_dirty = ~0;
11978 
11979 	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11980 
11981 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11982 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11983 	else
11984 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11985 
11986 	r = kvm_mmu_create(vcpu);
11987 	if (r < 0)
11988 		return r;
11989 
11990 	if (irqchip_in_kernel(vcpu->kvm)) {
11991 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11992 		if (r < 0)
11993 			goto fail_mmu_destroy;
11994 
11995 		/*
11996 		 * Defer evaluating inhibits until the vCPU is first run, as
11997 		 * this vCPU will not get notified of any changes until this
11998 		 * vCPU is visible to other vCPUs (marked online and added to
11999 		 * the set of vCPUs).  Opportunistically mark APICv active as
12000 		 * VMX in particularly is highly unlikely to have inhibits.
12001 		 * Ignore the current per-VM APICv state so that vCPU creation
12002 		 * is guaranteed to run with a deterministic value, the request
12003 		 * will ensure the vCPU gets the correct state before VM-Entry.
12004 		 */
12005 		if (enable_apicv) {
12006 			vcpu->arch.apic->apicv_active = true;
12007 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
12008 		}
12009 	} else
12010 		static_branch_inc(&kvm_has_noapic_vcpu);
12011 
12012 	r = -ENOMEM;
12013 
12014 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12015 	if (!page)
12016 		goto fail_free_lapic;
12017 	vcpu->arch.pio_data = page_address(page);
12018 
12019 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12020 				       GFP_KERNEL_ACCOUNT);
12021 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12022 					    GFP_KERNEL_ACCOUNT);
12023 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12024 		goto fail_free_mce_banks;
12025 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12026 
12027 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12028 				GFP_KERNEL_ACCOUNT))
12029 		goto fail_free_mce_banks;
12030 
12031 	if (!alloc_emulate_ctxt(vcpu))
12032 		goto free_wbinvd_dirty_mask;
12033 
12034 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12035 		pr_err("failed to allocate vcpu's fpu\n");
12036 		goto free_emulate_ctxt;
12037 	}
12038 
12039 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
12040 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
12041 
12042 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12043 
12044 	kvm_async_pf_hash_reset(vcpu);
12045 
12046 	vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12047 	kvm_pmu_init(vcpu);
12048 
12049 	vcpu->arch.pending_external_vector = -1;
12050 	vcpu->arch.preempted_in_kernel = false;
12051 
12052 #if IS_ENABLED(CONFIG_HYPERV)
12053 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
12054 #endif
12055 
12056 	r = static_call(kvm_x86_vcpu_create)(vcpu);
12057 	if (r)
12058 		goto free_guest_fpu;
12059 
12060 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12061 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12062 	kvm_xen_init_vcpu(vcpu);
12063 	kvm_vcpu_mtrr_init(vcpu);
12064 	vcpu_load(vcpu);
12065 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12066 	kvm_vcpu_reset(vcpu, false);
12067 	kvm_init_mmu(vcpu);
12068 	vcpu_put(vcpu);
12069 	return 0;
12070 
12071 free_guest_fpu:
12072 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12073 free_emulate_ctxt:
12074 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12075 free_wbinvd_dirty_mask:
12076 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12077 fail_free_mce_banks:
12078 	kfree(vcpu->arch.mce_banks);
12079 	kfree(vcpu->arch.mci_ctl2_banks);
12080 	free_page((unsigned long)vcpu->arch.pio_data);
12081 fail_free_lapic:
12082 	kvm_free_lapic(vcpu);
12083 fail_mmu_destroy:
12084 	kvm_mmu_destroy(vcpu);
12085 	return r;
12086 }
12087 
12088 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12089 {
12090 	struct kvm *kvm = vcpu->kvm;
12091 
12092 	if (mutex_lock_killable(&vcpu->mutex))
12093 		return;
12094 	vcpu_load(vcpu);
12095 	kvm_synchronize_tsc(vcpu, NULL);
12096 	vcpu_put(vcpu);
12097 
12098 	/* poll control enabled by default */
12099 	vcpu->arch.msr_kvm_poll_control = 1;
12100 
12101 	mutex_unlock(&vcpu->mutex);
12102 
12103 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12104 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12105 						KVMCLOCK_SYNC_PERIOD);
12106 }
12107 
12108 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12109 {
12110 	int idx;
12111 
12112 	kvmclock_reset(vcpu);
12113 
12114 	static_call(kvm_x86_vcpu_free)(vcpu);
12115 
12116 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12117 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12118 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12119 
12120 	kvm_xen_destroy_vcpu(vcpu);
12121 	kvm_hv_vcpu_uninit(vcpu);
12122 	kvm_pmu_destroy(vcpu);
12123 	kfree(vcpu->arch.mce_banks);
12124 	kfree(vcpu->arch.mci_ctl2_banks);
12125 	kvm_free_lapic(vcpu);
12126 	idx = srcu_read_lock(&vcpu->kvm->srcu);
12127 	kvm_mmu_destroy(vcpu);
12128 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12129 	free_page((unsigned long)vcpu->arch.pio_data);
12130 	kvfree(vcpu->arch.cpuid_entries);
12131 	if (!lapic_in_kernel(vcpu))
12132 		static_branch_dec(&kvm_has_noapic_vcpu);
12133 }
12134 
12135 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12136 {
12137 	struct kvm_cpuid_entry2 *cpuid_0x1;
12138 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
12139 	unsigned long new_cr0;
12140 
12141 	/*
12142 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12143 	 * to handle side effects.  RESET emulation hits those flows and relies
12144 	 * on emulated/virtualized registers, including those that are loaded
12145 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12146 	 * to detect improper or missing initialization.
12147 	 */
12148 	WARN_ON_ONCE(!init_event &&
12149 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12150 
12151 	/*
12152 	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12153 	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12154 	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12155 	 * bits), i.e. virtualization is disabled.
12156 	 */
12157 	if (is_guest_mode(vcpu))
12158 		kvm_leave_nested(vcpu);
12159 
12160 	kvm_lapic_reset(vcpu, init_event);
12161 
12162 	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12163 	vcpu->arch.hflags = 0;
12164 
12165 	vcpu->arch.smi_pending = 0;
12166 	vcpu->arch.smi_count = 0;
12167 	atomic_set(&vcpu->arch.nmi_queued, 0);
12168 	vcpu->arch.nmi_pending = 0;
12169 	vcpu->arch.nmi_injected = false;
12170 	kvm_clear_interrupt_queue(vcpu);
12171 	kvm_clear_exception_queue(vcpu);
12172 
12173 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12174 	kvm_update_dr0123(vcpu);
12175 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12176 	vcpu->arch.dr7 = DR7_FIXED_1;
12177 	kvm_update_dr7(vcpu);
12178 
12179 	vcpu->arch.cr2 = 0;
12180 
12181 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12182 	vcpu->arch.apf.msr_en_val = 0;
12183 	vcpu->arch.apf.msr_int_val = 0;
12184 	vcpu->arch.st.msr_val = 0;
12185 
12186 	kvmclock_reset(vcpu);
12187 
12188 	kvm_clear_async_pf_completion_queue(vcpu);
12189 	kvm_async_pf_hash_reset(vcpu);
12190 	vcpu->arch.apf.halted = false;
12191 
12192 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12193 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12194 
12195 		/*
12196 		 * All paths that lead to INIT are required to load the guest's
12197 		 * FPU state (because most paths are buried in KVM_RUN).
12198 		 */
12199 		if (init_event)
12200 			kvm_put_guest_fpu(vcpu);
12201 
12202 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12203 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12204 
12205 		if (init_event)
12206 			kvm_load_guest_fpu(vcpu);
12207 	}
12208 
12209 	if (!init_event) {
12210 		kvm_pmu_reset(vcpu);
12211 		vcpu->arch.smbase = 0x30000;
12212 
12213 		vcpu->arch.msr_misc_features_enables = 0;
12214 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12215 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12216 
12217 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12218 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12219 	}
12220 
12221 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12222 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12223 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12224 
12225 	/*
12226 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12227 	 * if no CPUID match is found.  Note, it's impossible to get a match at
12228 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12229 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12230 	 * on RESET.  But, go through the motions in case that's ever remedied.
12231 	 */
12232 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12233 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12234 
12235 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12236 
12237 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12238 	kvm_rip_write(vcpu, 0xfff0);
12239 
12240 	vcpu->arch.cr3 = 0;
12241 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12242 
12243 	/*
12244 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12245 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12246 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
12247 	 */
12248 	new_cr0 = X86_CR0_ET;
12249 	if (init_event)
12250 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12251 	else
12252 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12253 
12254 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12255 	static_call(kvm_x86_set_cr4)(vcpu, 0);
12256 	static_call(kvm_x86_set_efer)(vcpu, 0);
12257 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
12258 
12259 	/*
12260 	 * On the standard CR0/CR4/EFER modification paths, there are several
12261 	 * complex conditions determining whether the MMU has to be reset and/or
12262 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12263 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12264 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12265 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12266 	 */
12267 	if (old_cr0 & X86_CR0_PG) {
12268 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12269 		kvm_mmu_reset_context(vcpu);
12270 	}
12271 
12272 	/*
12273 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12274 	 * APM states the TLBs are untouched by INIT, but it also states that
12275 	 * the TLBs are flushed on "External initialization of the processor."
12276 	 * Flush the guest TLB regardless of vendor, there is no meaningful
12277 	 * benefit in relying on the guest to flush the TLB immediately after
12278 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
12279 	 * performance perspective.
12280 	 */
12281 	if (init_event)
12282 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12283 }
12284 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12285 
12286 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12287 {
12288 	struct kvm_segment cs;
12289 
12290 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12291 	cs.selector = vector << 8;
12292 	cs.base = vector << 12;
12293 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12294 	kvm_rip_write(vcpu, 0);
12295 }
12296 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12297 
12298 int kvm_arch_hardware_enable(void)
12299 {
12300 	struct kvm *kvm;
12301 	struct kvm_vcpu *vcpu;
12302 	unsigned long i;
12303 	int ret;
12304 	u64 local_tsc;
12305 	u64 max_tsc = 0;
12306 	bool stable, backwards_tsc = false;
12307 
12308 	kvm_user_return_msr_cpu_online();
12309 
12310 	ret = kvm_x86_check_processor_compatibility();
12311 	if (ret)
12312 		return ret;
12313 
12314 	ret = static_call(kvm_x86_hardware_enable)();
12315 	if (ret != 0)
12316 		return ret;
12317 
12318 	local_tsc = rdtsc();
12319 	stable = !kvm_check_tsc_unstable();
12320 	list_for_each_entry(kvm, &vm_list, vm_list) {
12321 		kvm_for_each_vcpu(i, vcpu, kvm) {
12322 			if (!stable && vcpu->cpu == smp_processor_id())
12323 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12324 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12325 				backwards_tsc = true;
12326 				if (vcpu->arch.last_host_tsc > max_tsc)
12327 					max_tsc = vcpu->arch.last_host_tsc;
12328 			}
12329 		}
12330 	}
12331 
12332 	/*
12333 	 * Sometimes, even reliable TSCs go backwards.  This happens on
12334 	 * platforms that reset TSC during suspend or hibernate actions, but
12335 	 * maintain synchronization.  We must compensate.  Fortunately, we can
12336 	 * detect that condition here, which happens early in CPU bringup,
12337 	 * before any KVM threads can be running.  Unfortunately, we can't
12338 	 * bring the TSCs fully up to date with real time, as we aren't yet far
12339 	 * enough into CPU bringup that we know how much real time has actually
12340 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12341 	 * variables that haven't been updated yet.
12342 	 *
12343 	 * So we simply find the maximum observed TSC above, then record the
12344 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12345 	 * the adjustment will be applied.  Note that we accumulate
12346 	 * adjustments, in case multiple suspend cycles happen before some VCPU
12347 	 * gets a chance to run again.  In the event that no KVM threads get a
12348 	 * chance to run, we will miss the entire elapsed period, as we'll have
12349 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12350 	 * loose cycle time.  This isn't too big a deal, since the loss will be
12351 	 * uniform across all VCPUs (not to mention the scenario is extremely
12352 	 * unlikely). It is possible that a second hibernate recovery happens
12353 	 * much faster than a first, causing the observed TSC here to be
12354 	 * smaller; this would require additional padding adjustment, which is
12355 	 * why we set last_host_tsc to the local tsc observed here.
12356 	 *
12357 	 * N.B. - this code below runs only on platforms with reliable TSC,
12358 	 * as that is the only way backwards_tsc is set above.  Also note
12359 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12360 	 * have the same delta_cyc adjustment applied if backwards_tsc
12361 	 * is detected.  Note further, this adjustment is only done once,
12362 	 * as we reset last_host_tsc on all VCPUs to stop this from being
12363 	 * called multiple times (one for each physical CPU bringup).
12364 	 *
12365 	 * Platforms with unreliable TSCs don't have to deal with this, they
12366 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12367 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12368 	 * guarantee that they stay in perfect synchronization.
12369 	 */
12370 	if (backwards_tsc) {
12371 		u64 delta_cyc = max_tsc - local_tsc;
12372 		list_for_each_entry(kvm, &vm_list, vm_list) {
12373 			kvm->arch.backwards_tsc_observed = true;
12374 			kvm_for_each_vcpu(i, vcpu, kvm) {
12375 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12376 				vcpu->arch.last_host_tsc = local_tsc;
12377 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12378 			}
12379 
12380 			/*
12381 			 * We have to disable TSC offset matching.. if you were
12382 			 * booting a VM while issuing an S4 host suspend....
12383 			 * you may have some problem.  Solving this issue is
12384 			 * left as an exercise to the reader.
12385 			 */
12386 			kvm->arch.last_tsc_nsec = 0;
12387 			kvm->arch.last_tsc_write = 0;
12388 		}
12389 
12390 	}
12391 	return 0;
12392 }
12393 
12394 void kvm_arch_hardware_disable(void)
12395 {
12396 	static_call(kvm_x86_hardware_disable)();
12397 	drop_user_return_notifiers();
12398 }
12399 
12400 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12401 {
12402 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12403 }
12404 
12405 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12406 {
12407 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12408 }
12409 
12410 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12411 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12412 
12413 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12414 {
12415 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12416 
12417 	vcpu->arch.l1tf_flush_l1d = true;
12418 	if (pmu->version && unlikely(pmu->event_count)) {
12419 		pmu->need_cleanup = true;
12420 		kvm_make_request(KVM_REQ_PMU, vcpu);
12421 	}
12422 	static_call(kvm_x86_sched_in)(vcpu, cpu);
12423 }
12424 
12425 void kvm_arch_free_vm(struct kvm *kvm)
12426 {
12427 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
12428 	__kvm_arch_free_vm(kvm);
12429 }
12430 
12431 
12432 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12433 {
12434 	int ret;
12435 	unsigned long flags;
12436 
12437 	if (type)
12438 		return -EINVAL;
12439 
12440 	ret = kvm_page_track_init(kvm);
12441 	if (ret)
12442 		goto out;
12443 
12444 	kvm_mmu_init_vm(kvm);
12445 
12446 	ret = static_call(kvm_x86_vm_init)(kvm);
12447 	if (ret)
12448 		goto out_uninit_mmu;
12449 
12450 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12451 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12452 
12453 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12454 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12455 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12456 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12457 		&kvm->arch.irq_sources_bitmap);
12458 
12459 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12460 	mutex_init(&kvm->arch.apic_map_lock);
12461 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12462 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12463 
12464 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12465 	pvclock_update_vm_gtod_copy(kvm);
12466 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12467 
12468 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12469 	kvm->arch.guest_can_read_msr_platform_info = true;
12470 	kvm->arch.enable_pmu = enable_pmu;
12471 
12472 #if IS_ENABLED(CONFIG_HYPERV)
12473 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12474 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12475 #endif
12476 
12477 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12478 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12479 
12480 	kvm_apicv_init(kvm);
12481 	kvm_hv_init_vm(kvm);
12482 	kvm_xen_init_vm(kvm);
12483 
12484 	return 0;
12485 
12486 out_uninit_mmu:
12487 	kvm_mmu_uninit_vm(kvm);
12488 	kvm_page_track_cleanup(kvm);
12489 out:
12490 	return ret;
12491 }
12492 
12493 int kvm_arch_post_init_vm(struct kvm *kvm)
12494 {
12495 	return kvm_mmu_post_init_vm(kvm);
12496 }
12497 
12498 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12499 {
12500 	vcpu_load(vcpu);
12501 	kvm_mmu_unload(vcpu);
12502 	vcpu_put(vcpu);
12503 }
12504 
12505 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12506 {
12507 	unsigned long i;
12508 	struct kvm_vcpu *vcpu;
12509 
12510 	kvm_for_each_vcpu(i, vcpu, kvm) {
12511 		kvm_clear_async_pf_completion_queue(vcpu);
12512 		kvm_unload_vcpu_mmu(vcpu);
12513 	}
12514 }
12515 
12516 void kvm_arch_sync_events(struct kvm *kvm)
12517 {
12518 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12519 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12520 	kvm_free_pit(kvm);
12521 }
12522 
12523 /**
12524  * __x86_set_memory_region: Setup KVM internal memory slot
12525  *
12526  * @kvm: the kvm pointer to the VM.
12527  * @id: the slot ID to setup.
12528  * @gpa: the GPA to install the slot (unused when @size == 0).
12529  * @size: the size of the slot. Set to zero to uninstall a slot.
12530  *
12531  * This function helps to setup a KVM internal memory slot.  Specify
12532  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12533  * slot.  The return code can be one of the following:
12534  *
12535  *   HVA:           on success (uninstall will return a bogus HVA)
12536  *   -errno:        on error
12537  *
12538  * The caller should always use IS_ERR() to check the return value
12539  * before use.  Note, the KVM internal memory slots are guaranteed to
12540  * remain valid and unchanged until the VM is destroyed, i.e., the
12541  * GPA->HVA translation will not change.  However, the HVA is a user
12542  * address, i.e. its accessibility is not guaranteed, and must be
12543  * accessed via __copy_{to,from}_user().
12544  */
12545 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12546 				      u32 size)
12547 {
12548 	int i, r;
12549 	unsigned long hva, old_npages;
12550 	struct kvm_memslots *slots = kvm_memslots(kvm);
12551 	struct kvm_memory_slot *slot;
12552 
12553 	/* Called with kvm->slots_lock held.  */
12554 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12555 		return ERR_PTR_USR(-EINVAL);
12556 
12557 	slot = id_to_memslot(slots, id);
12558 	if (size) {
12559 		if (slot && slot->npages)
12560 			return ERR_PTR_USR(-EEXIST);
12561 
12562 		/*
12563 		 * MAP_SHARED to prevent internal slot pages from being moved
12564 		 * by fork()/COW.
12565 		 */
12566 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12567 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12568 		if (IS_ERR_VALUE(hva))
12569 			return (void __user *)hva;
12570 	} else {
12571 		if (!slot || !slot->npages)
12572 			return NULL;
12573 
12574 		old_npages = slot->npages;
12575 		hva = slot->userspace_addr;
12576 	}
12577 
12578 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12579 		struct kvm_userspace_memory_region m;
12580 
12581 		m.slot = id | (i << 16);
12582 		m.flags = 0;
12583 		m.guest_phys_addr = gpa;
12584 		m.userspace_addr = hva;
12585 		m.memory_size = size;
12586 		r = __kvm_set_memory_region(kvm, &m);
12587 		if (r < 0)
12588 			return ERR_PTR_USR(r);
12589 	}
12590 
12591 	if (!size)
12592 		vm_munmap(hva, old_npages * PAGE_SIZE);
12593 
12594 	return (void __user *)hva;
12595 }
12596 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12597 
12598 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12599 {
12600 	kvm_mmu_pre_destroy_vm(kvm);
12601 }
12602 
12603 void kvm_arch_destroy_vm(struct kvm *kvm)
12604 {
12605 	if (current->mm == kvm->mm) {
12606 		/*
12607 		 * Free memory regions allocated on behalf of userspace,
12608 		 * unless the memory map has changed due to process exit
12609 		 * or fd copying.
12610 		 */
12611 		mutex_lock(&kvm->slots_lock);
12612 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12613 					0, 0);
12614 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12615 					0, 0);
12616 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12617 		mutex_unlock(&kvm->slots_lock);
12618 	}
12619 	kvm_unload_vcpu_mmus(kvm);
12620 	static_call_cond(kvm_x86_vm_destroy)(kvm);
12621 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12622 	kvm_pic_destroy(kvm);
12623 	kvm_ioapic_destroy(kvm);
12624 	kvm_destroy_vcpus(kvm);
12625 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12626 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12627 	kvm_mmu_uninit_vm(kvm);
12628 	kvm_page_track_cleanup(kvm);
12629 	kvm_xen_destroy_vm(kvm);
12630 	kvm_hv_destroy_vm(kvm);
12631 }
12632 
12633 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12634 {
12635 	int i;
12636 
12637 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12638 		kvfree(slot->arch.rmap[i]);
12639 		slot->arch.rmap[i] = NULL;
12640 	}
12641 }
12642 
12643 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12644 {
12645 	int i;
12646 
12647 	memslot_rmap_free(slot);
12648 
12649 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12650 		kvfree(slot->arch.lpage_info[i - 1]);
12651 		slot->arch.lpage_info[i - 1] = NULL;
12652 	}
12653 
12654 	kvm_page_track_free_memslot(slot);
12655 }
12656 
12657 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12658 {
12659 	const int sz = sizeof(*slot->arch.rmap[0]);
12660 	int i;
12661 
12662 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12663 		int level = i + 1;
12664 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12665 
12666 		if (slot->arch.rmap[i])
12667 			continue;
12668 
12669 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12670 		if (!slot->arch.rmap[i]) {
12671 			memslot_rmap_free(slot);
12672 			return -ENOMEM;
12673 		}
12674 	}
12675 
12676 	return 0;
12677 }
12678 
12679 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12680 				      struct kvm_memory_slot *slot)
12681 {
12682 	unsigned long npages = slot->npages;
12683 	int i, r;
12684 
12685 	/*
12686 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12687 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12688 	 * the new memslot is successful.
12689 	 */
12690 	memset(&slot->arch, 0, sizeof(slot->arch));
12691 
12692 	if (kvm_memslots_have_rmaps(kvm)) {
12693 		r = memslot_rmap_alloc(slot, npages);
12694 		if (r)
12695 			return r;
12696 	}
12697 
12698 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12699 		struct kvm_lpage_info *linfo;
12700 		unsigned long ugfn;
12701 		int lpages;
12702 		int level = i + 1;
12703 
12704 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12705 
12706 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12707 		if (!linfo)
12708 			goto out_free;
12709 
12710 		slot->arch.lpage_info[i - 1] = linfo;
12711 
12712 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12713 			linfo[0].disallow_lpage = 1;
12714 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12715 			linfo[lpages - 1].disallow_lpage = 1;
12716 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12717 		/*
12718 		 * If the gfn and userspace address are not aligned wrt each
12719 		 * other, disable large page support for this slot.
12720 		 */
12721 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12722 			unsigned long j;
12723 
12724 			for (j = 0; j < lpages; ++j)
12725 				linfo[j].disallow_lpage = 1;
12726 		}
12727 	}
12728 
12729 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12730 		goto out_free;
12731 
12732 	return 0;
12733 
12734 out_free:
12735 	memslot_rmap_free(slot);
12736 
12737 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12738 		kvfree(slot->arch.lpage_info[i - 1]);
12739 		slot->arch.lpage_info[i - 1] = NULL;
12740 	}
12741 	return -ENOMEM;
12742 }
12743 
12744 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12745 {
12746 	struct kvm_vcpu *vcpu;
12747 	unsigned long i;
12748 
12749 	/*
12750 	 * memslots->generation has been incremented.
12751 	 * mmio generation may have reached its maximum value.
12752 	 */
12753 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12754 
12755 	/* Force re-initialization of steal_time cache */
12756 	kvm_for_each_vcpu(i, vcpu, kvm)
12757 		kvm_vcpu_kick(vcpu);
12758 }
12759 
12760 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12761 				   const struct kvm_memory_slot *old,
12762 				   struct kvm_memory_slot *new,
12763 				   enum kvm_mr_change change)
12764 {
12765 	/*
12766 	 * KVM doesn't support moving memslots when there are external page
12767 	 * trackers attached to the VM, i.e. if KVMGT is in use.
12768 	 */
12769 	if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
12770 		return -EINVAL;
12771 
12772 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12773 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12774 			return -EINVAL;
12775 
12776 		return kvm_alloc_memslot_metadata(kvm, new);
12777 	}
12778 
12779 	if (change == KVM_MR_FLAGS_ONLY)
12780 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12781 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12782 		return -EIO;
12783 
12784 	return 0;
12785 }
12786 
12787 
12788 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12789 {
12790 	int nr_slots;
12791 
12792 	if (!kvm_x86_ops.cpu_dirty_log_size)
12793 		return;
12794 
12795 	nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12796 	if ((enable && nr_slots == 1) || !nr_slots)
12797 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12798 }
12799 
12800 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12801 				     struct kvm_memory_slot *old,
12802 				     const struct kvm_memory_slot *new,
12803 				     enum kvm_mr_change change)
12804 {
12805 	u32 old_flags = old ? old->flags : 0;
12806 	u32 new_flags = new ? new->flags : 0;
12807 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12808 
12809 	/*
12810 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12811 	 * applies to all operations.
12812 	 */
12813 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12814 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12815 
12816 	/*
12817 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12818 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12819 	 *
12820 	 * For a memslot with dirty logging disabled:
12821 	 * CREATE:      No dirty mappings will already exist.
12822 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12823 	 *		kvm_arch_flush_shadow_memslot()
12824 	 *
12825 	 * For a memslot with dirty logging enabled:
12826 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12827 	 *		and no dirty bits to clear.
12828 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12829 	 *		kvm_arch_flush_shadow_memslot().
12830 	 */
12831 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12832 		return;
12833 
12834 	/*
12835 	 * READONLY and non-flags changes were filtered out above, and the only
12836 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12837 	 * logging isn't being toggled on or off.
12838 	 */
12839 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12840 		return;
12841 
12842 	if (!log_dirty_pages) {
12843 		/*
12844 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12845 		 * large sptes have to be split.  If live migration succeeds,
12846 		 * the guest in the source machine will be destroyed and large
12847 		 * sptes will be created in the destination.  However, if the
12848 		 * guest continues to run in the source machine (for example if
12849 		 * live migration fails), small sptes will remain around and
12850 		 * cause bad performance.
12851 		 *
12852 		 * Scan sptes if dirty logging has been stopped, dropping those
12853 		 * which can be collapsed into a single large-page spte.  Later
12854 		 * page faults will create the large-page sptes.
12855 		 */
12856 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12857 	} else {
12858 		/*
12859 		 * Initially-all-set does not require write protecting any page,
12860 		 * because they're all assumed to be dirty.
12861 		 */
12862 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12863 			return;
12864 
12865 		if (READ_ONCE(eager_page_split))
12866 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12867 
12868 		if (kvm_x86_ops.cpu_dirty_log_size) {
12869 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12870 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12871 		} else {
12872 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12873 		}
12874 
12875 		/*
12876 		 * Unconditionally flush the TLBs after enabling dirty logging.
12877 		 * A flush is almost always going to be necessary (see below),
12878 		 * and unconditionally flushing allows the helpers to omit
12879 		 * the subtly complex checks when removing write access.
12880 		 *
12881 		 * Do the flush outside of mmu_lock to reduce the amount of
12882 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
12883 		 * safe as KVM only needs to guarantee the slot is fully
12884 		 * write-protected before returning to userspace, i.e. before
12885 		 * userspace can consume the dirty status.
12886 		 *
12887 		 * Flushing outside of mmu_lock requires KVM to be careful when
12888 		 * making decisions based on writable status of an SPTE, e.g. a
12889 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12890 		 *
12891 		 * Specifically, KVM also write-protects guest page tables to
12892 		 * monitor changes when using shadow paging, and must guarantee
12893 		 * no CPUs can write to those page before mmu_lock is dropped.
12894 		 * Because CPUs may have stale TLB entries at this point, a
12895 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12896 		 *
12897 		 * KVM also allows making SPTES writable outside of mmu_lock,
12898 		 * e.g. to allow dirty logging without taking mmu_lock.
12899 		 *
12900 		 * To handle these scenarios, KVM uses a separate software-only
12901 		 * bit (MMU-writable) to track if a SPTE is !writable due to
12902 		 * a guest page table being write-protected (KVM clears the
12903 		 * MMU-writable flag when write-protecting for shadow paging).
12904 		 *
12905 		 * The use of MMU-writable is also the primary motivation for
12906 		 * the unconditional flush.  Because KVM must guarantee that a
12907 		 * CPU doesn't contain stale, writable TLB entries for a
12908 		 * !MMU-writable SPTE, KVM must flush if it encounters any
12909 		 * MMU-writable SPTE regardless of whether the actual hardware
12910 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
12911 		 * to flush, while unconditionally flushing allows the "remove
12912 		 * write access" helpers to ignore MMU-writable entirely.
12913 		 *
12914 		 * See is_writable_pte() for more details (the case involving
12915 		 * access-tracked SPTEs is particularly relevant).
12916 		 */
12917 		kvm_flush_remote_tlbs_memslot(kvm, new);
12918 	}
12919 }
12920 
12921 void kvm_arch_commit_memory_region(struct kvm *kvm,
12922 				struct kvm_memory_slot *old,
12923 				const struct kvm_memory_slot *new,
12924 				enum kvm_mr_change change)
12925 {
12926 	if (change == KVM_MR_DELETE)
12927 		kvm_page_track_delete_slot(kvm, old);
12928 
12929 	if (!kvm->arch.n_requested_mmu_pages &&
12930 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12931 		unsigned long nr_mmu_pages;
12932 
12933 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12934 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12935 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12936 	}
12937 
12938 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12939 
12940 	/* Free the arrays associated with the old memslot. */
12941 	if (change == KVM_MR_MOVE)
12942 		kvm_arch_free_memslot(kvm, old);
12943 }
12944 
12945 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12946 {
12947 	return (is_guest_mode(vcpu) &&
12948 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12949 }
12950 
12951 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12952 {
12953 	if (!list_empty_careful(&vcpu->async_pf.done))
12954 		return true;
12955 
12956 	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12957 	    kvm_apic_init_sipi_allowed(vcpu))
12958 		return true;
12959 
12960 	if (vcpu->arch.pv.pv_unhalted)
12961 		return true;
12962 
12963 	if (kvm_is_exception_pending(vcpu))
12964 		return true;
12965 
12966 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12967 	    (vcpu->arch.nmi_pending &&
12968 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12969 		return true;
12970 
12971 #ifdef CONFIG_KVM_SMM
12972 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12973 	    (vcpu->arch.smi_pending &&
12974 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12975 		return true;
12976 #endif
12977 
12978 	if (kvm_test_request(KVM_REQ_PMI, vcpu))
12979 		return true;
12980 
12981 	if (kvm_arch_interrupt_allowed(vcpu) &&
12982 	    (kvm_cpu_has_interrupt(vcpu) ||
12983 	    kvm_guest_apic_has_interrupt(vcpu)))
12984 		return true;
12985 
12986 	if (kvm_hv_has_stimer_pending(vcpu))
12987 		return true;
12988 
12989 	if (is_guest_mode(vcpu) &&
12990 	    kvm_x86_ops.nested_ops->has_events &&
12991 	    kvm_x86_ops.nested_ops->has_events(vcpu))
12992 		return true;
12993 
12994 	if (kvm_xen_has_pending_events(vcpu))
12995 		return true;
12996 
12997 	return false;
12998 }
12999 
13000 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
13001 {
13002 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
13003 }
13004 
13005 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
13006 {
13007 	if (kvm_vcpu_apicv_active(vcpu) &&
13008 	    static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
13009 		return true;
13010 
13011 	return false;
13012 }
13013 
13014 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
13015 {
13016 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
13017 		return true;
13018 
13019 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13020 #ifdef CONFIG_KVM_SMM
13021 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
13022 #endif
13023 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
13024 		return true;
13025 
13026 	return kvm_arch_dy_has_pending_interrupt(vcpu);
13027 }
13028 
13029 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13030 {
13031 	if (vcpu->arch.guest_state_protected)
13032 		return true;
13033 
13034 	if (vcpu != kvm_get_running_vcpu())
13035 		return vcpu->arch.preempted_in_kernel;
13036 
13037 	return static_call(kvm_x86_get_cpl)(vcpu) == 0;
13038 }
13039 
13040 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13041 {
13042 	return kvm_rip_read(vcpu);
13043 }
13044 
13045 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13046 {
13047 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13048 }
13049 
13050 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13051 {
13052 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
13053 }
13054 
13055 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13056 {
13057 	/* Can't read the RIP when guest state is protected, just return 0 */
13058 	if (vcpu->arch.guest_state_protected)
13059 		return 0;
13060 
13061 	if (is_64_bit_mode(vcpu))
13062 		return kvm_rip_read(vcpu);
13063 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13064 		     kvm_rip_read(vcpu));
13065 }
13066 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13067 
13068 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13069 {
13070 	return kvm_get_linear_rip(vcpu) == linear_rip;
13071 }
13072 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13073 
13074 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13075 {
13076 	unsigned long rflags;
13077 
13078 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
13079 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13080 		rflags &= ~X86_EFLAGS_TF;
13081 	return rflags;
13082 }
13083 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13084 
13085 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13086 {
13087 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13088 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13089 		rflags |= X86_EFLAGS_TF;
13090 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
13091 }
13092 
13093 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13094 {
13095 	__kvm_set_rflags(vcpu, rflags);
13096 	kvm_make_request(KVM_REQ_EVENT, vcpu);
13097 }
13098 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13099 
13100 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13101 {
13102 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13103 
13104 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13105 }
13106 
13107 static inline u32 kvm_async_pf_next_probe(u32 key)
13108 {
13109 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13110 }
13111 
13112 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13113 {
13114 	u32 key = kvm_async_pf_hash_fn(gfn);
13115 
13116 	while (vcpu->arch.apf.gfns[key] != ~0)
13117 		key = kvm_async_pf_next_probe(key);
13118 
13119 	vcpu->arch.apf.gfns[key] = gfn;
13120 }
13121 
13122 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13123 {
13124 	int i;
13125 	u32 key = kvm_async_pf_hash_fn(gfn);
13126 
13127 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
13128 		     (vcpu->arch.apf.gfns[key] != gfn &&
13129 		      vcpu->arch.apf.gfns[key] != ~0); i++)
13130 		key = kvm_async_pf_next_probe(key);
13131 
13132 	return key;
13133 }
13134 
13135 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13136 {
13137 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13138 }
13139 
13140 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13141 {
13142 	u32 i, j, k;
13143 
13144 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13145 
13146 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13147 		return;
13148 
13149 	while (true) {
13150 		vcpu->arch.apf.gfns[i] = ~0;
13151 		do {
13152 			j = kvm_async_pf_next_probe(j);
13153 			if (vcpu->arch.apf.gfns[j] == ~0)
13154 				return;
13155 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13156 			/*
13157 			 * k lies cyclically in ]i,j]
13158 			 * |    i.k.j |
13159 			 * |....j i.k.| or  |.k..j i...|
13160 			 */
13161 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13162 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13163 		i = j;
13164 	}
13165 }
13166 
13167 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13168 {
13169 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13170 
13171 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13172 				      sizeof(reason));
13173 }
13174 
13175 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13176 {
13177 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13178 
13179 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13180 					     &token, offset, sizeof(token));
13181 }
13182 
13183 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13184 {
13185 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13186 	u32 val;
13187 
13188 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13189 					 &val, offset, sizeof(val)))
13190 		return false;
13191 
13192 	return !val;
13193 }
13194 
13195 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13196 {
13197 
13198 	if (!kvm_pv_async_pf_enabled(vcpu))
13199 		return false;
13200 
13201 	if (vcpu->arch.apf.send_user_only &&
13202 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
13203 		return false;
13204 
13205 	if (is_guest_mode(vcpu)) {
13206 		/*
13207 		 * L1 needs to opt into the special #PF vmexits that are
13208 		 * used to deliver async page faults.
13209 		 */
13210 		return vcpu->arch.apf.delivery_as_pf_vmexit;
13211 	} else {
13212 		/*
13213 		 * Play it safe in case the guest temporarily disables paging.
13214 		 * The real mode IDT in particular is unlikely to have a #PF
13215 		 * exception setup.
13216 		 */
13217 		return is_paging(vcpu);
13218 	}
13219 }
13220 
13221 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13222 {
13223 	if (unlikely(!lapic_in_kernel(vcpu) ||
13224 		     kvm_event_needs_reinjection(vcpu) ||
13225 		     kvm_is_exception_pending(vcpu)))
13226 		return false;
13227 
13228 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13229 		return false;
13230 
13231 	/*
13232 	 * If interrupts are off we cannot even use an artificial
13233 	 * halt state.
13234 	 */
13235 	return kvm_arch_interrupt_allowed(vcpu);
13236 }
13237 
13238 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13239 				     struct kvm_async_pf *work)
13240 {
13241 	struct x86_exception fault;
13242 
13243 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13244 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13245 
13246 	if (kvm_can_deliver_async_pf(vcpu) &&
13247 	    !apf_put_user_notpresent(vcpu)) {
13248 		fault.vector = PF_VECTOR;
13249 		fault.error_code_valid = true;
13250 		fault.error_code = 0;
13251 		fault.nested_page_fault = false;
13252 		fault.address = work->arch.token;
13253 		fault.async_page_fault = true;
13254 		kvm_inject_page_fault(vcpu, &fault);
13255 		return true;
13256 	} else {
13257 		/*
13258 		 * It is not possible to deliver a paravirtualized asynchronous
13259 		 * page fault, but putting the guest in an artificial halt state
13260 		 * can be beneficial nevertheless: if an interrupt arrives, we
13261 		 * can deliver it timely and perhaps the guest will schedule
13262 		 * another process.  When the instruction that triggered a page
13263 		 * fault is retried, hopefully the page will be ready in the host.
13264 		 */
13265 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13266 		return false;
13267 	}
13268 }
13269 
13270 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13271 				 struct kvm_async_pf *work)
13272 {
13273 	struct kvm_lapic_irq irq = {
13274 		.delivery_mode = APIC_DM_FIXED,
13275 		.vector = vcpu->arch.apf.vec
13276 	};
13277 
13278 	if (work->wakeup_all)
13279 		work->arch.token = ~0; /* broadcast wakeup */
13280 	else
13281 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13282 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13283 
13284 	if ((work->wakeup_all || work->notpresent_injected) &&
13285 	    kvm_pv_async_pf_enabled(vcpu) &&
13286 	    !apf_put_user_ready(vcpu, work->arch.token)) {
13287 		vcpu->arch.apf.pageready_pending = true;
13288 		kvm_apic_set_irq(vcpu, &irq, NULL);
13289 	}
13290 
13291 	vcpu->arch.apf.halted = false;
13292 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13293 }
13294 
13295 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13296 {
13297 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13298 	if (!vcpu->arch.apf.pageready_pending)
13299 		kvm_vcpu_kick(vcpu);
13300 }
13301 
13302 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13303 {
13304 	if (!kvm_pv_async_pf_enabled(vcpu))
13305 		return true;
13306 	else
13307 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13308 }
13309 
13310 void kvm_arch_start_assignment(struct kvm *kvm)
13311 {
13312 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13313 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13314 }
13315 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13316 
13317 void kvm_arch_end_assignment(struct kvm *kvm)
13318 {
13319 	atomic_dec(&kvm->arch.assigned_device_count);
13320 }
13321 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13322 
13323 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13324 {
13325 	return raw_atomic_read(&kvm->arch.assigned_device_count);
13326 }
13327 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13328 
13329 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13330 {
13331 	/*
13332 	 * Non-coherent DMA assignment and de-assignment will affect
13333 	 * whether KVM honors guest MTRRs and cause changes in memtypes
13334 	 * in TDP.
13335 	 * So, pass %true unconditionally to indicate non-coherent DMA was,
13336 	 * or will be involved, and that zapping SPTEs might be necessary.
13337 	 */
13338 	if (__kvm_mmu_honors_guest_mtrrs(true))
13339 		kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13340 }
13341 
13342 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13343 {
13344 	if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13345 		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13346 }
13347 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13348 
13349 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13350 {
13351 	if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13352 		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13353 }
13354 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13355 
13356 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13357 {
13358 	return atomic_read(&kvm->arch.noncoherent_dma_count);
13359 }
13360 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13361 
13362 bool kvm_arch_has_irq_bypass(void)
13363 {
13364 	return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13365 }
13366 
13367 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13368 				      struct irq_bypass_producer *prod)
13369 {
13370 	struct kvm_kernel_irqfd *irqfd =
13371 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13372 	int ret;
13373 
13374 	irqfd->producer = prod;
13375 	kvm_arch_start_assignment(irqfd->kvm);
13376 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13377 					 prod->irq, irqfd->gsi, 1);
13378 
13379 	if (ret)
13380 		kvm_arch_end_assignment(irqfd->kvm);
13381 
13382 	return ret;
13383 }
13384 
13385 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13386 				      struct irq_bypass_producer *prod)
13387 {
13388 	int ret;
13389 	struct kvm_kernel_irqfd *irqfd =
13390 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13391 
13392 	WARN_ON(irqfd->producer != prod);
13393 	irqfd->producer = NULL;
13394 
13395 	/*
13396 	 * When producer of consumer is unregistered, we change back to
13397 	 * remapped mode, so we can re-use the current implementation
13398 	 * when the irq is masked/disabled or the consumer side (KVM
13399 	 * int this case doesn't want to receive the interrupts.
13400 	*/
13401 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13402 	if (ret)
13403 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13404 		       " fails: %d\n", irqfd->consumer.token, ret);
13405 
13406 	kvm_arch_end_assignment(irqfd->kvm);
13407 }
13408 
13409 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13410 				   uint32_t guest_irq, bool set)
13411 {
13412 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13413 }
13414 
13415 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13416 				  struct kvm_kernel_irq_routing_entry *new)
13417 {
13418 	if (new->type != KVM_IRQ_ROUTING_MSI)
13419 		return true;
13420 
13421 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13422 }
13423 
13424 bool kvm_vector_hashing_enabled(void)
13425 {
13426 	return vector_hashing;
13427 }
13428 
13429 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13430 {
13431 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13432 }
13433 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13434 
13435 
13436 int kvm_spec_ctrl_test_value(u64 value)
13437 {
13438 	/*
13439 	 * test that setting IA32_SPEC_CTRL to given value
13440 	 * is allowed by the host processor
13441 	 */
13442 
13443 	u64 saved_value;
13444 	unsigned long flags;
13445 	int ret = 0;
13446 
13447 	local_irq_save(flags);
13448 
13449 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13450 		ret = 1;
13451 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13452 		ret = 1;
13453 	else
13454 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13455 
13456 	local_irq_restore(flags);
13457 
13458 	return ret;
13459 }
13460 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13461 
13462 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13463 {
13464 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13465 	struct x86_exception fault;
13466 	u64 access = error_code &
13467 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13468 
13469 	if (!(error_code & PFERR_PRESENT_MASK) ||
13470 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13471 		/*
13472 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13473 		 * tables probably do not match the TLB.  Just proceed
13474 		 * with the error code that the processor gave.
13475 		 */
13476 		fault.vector = PF_VECTOR;
13477 		fault.error_code_valid = true;
13478 		fault.error_code = error_code;
13479 		fault.nested_page_fault = false;
13480 		fault.address = gva;
13481 		fault.async_page_fault = false;
13482 	}
13483 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13484 }
13485 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13486 
13487 /*
13488  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13489  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13490  * indicates whether exit to userspace is needed.
13491  */
13492 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13493 			      struct x86_exception *e)
13494 {
13495 	if (r == X86EMUL_PROPAGATE_FAULT) {
13496 		if (KVM_BUG_ON(!e, vcpu->kvm))
13497 			return -EIO;
13498 
13499 		kvm_inject_emulated_page_fault(vcpu, e);
13500 		return 1;
13501 	}
13502 
13503 	/*
13504 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13505 	 * while handling a VMX instruction KVM could've handled the request
13506 	 * correctly by exiting to userspace and performing I/O but there
13507 	 * doesn't seem to be a real use-case behind such requests, just return
13508 	 * KVM_EXIT_INTERNAL_ERROR for now.
13509 	 */
13510 	kvm_prepare_emulation_failure_exit(vcpu);
13511 
13512 	return 0;
13513 }
13514 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13515 
13516 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13517 {
13518 	bool pcid_enabled;
13519 	struct x86_exception e;
13520 	struct {
13521 		u64 pcid;
13522 		u64 gla;
13523 	} operand;
13524 	int r;
13525 
13526 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13527 	if (r != X86EMUL_CONTINUE)
13528 		return kvm_handle_memory_failure(vcpu, r, &e);
13529 
13530 	if (operand.pcid >> 12 != 0) {
13531 		kvm_inject_gp(vcpu, 0);
13532 		return 1;
13533 	}
13534 
13535 	pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13536 
13537 	switch (type) {
13538 	case INVPCID_TYPE_INDIV_ADDR:
13539 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13540 		    is_noncanonical_address(operand.gla, vcpu)) {
13541 			kvm_inject_gp(vcpu, 0);
13542 			return 1;
13543 		}
13544 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13545 		return kvm_skip_emulated_instruction(vcpu);
13546 
13547 	case INVPCID_TYPE_SINGLE_CTXT:
13548 		if (!pcid_enabled && (operand.pcid != 0)) {
13549 			kvm_inject_gp(vcpu, 0);
13550 			return 1;
13551 		}
13552 
13553 		kvm_invalidate_pcid(vcpu, operand.pcid);
13554 		return kvm_skip_emulated_instruction(vcpu);
13555 
13556 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13557 		/*
13558 		 * Currently, KVM doesn't mark global entries in the shadow
13559 		 * page tables, so a non-global flush just degenerates to a
13560 		 * global flush. If needed, we could optimize this later by
13561 		 * keeping track of global entries in shadow page tables.
13562 		 */
13563 
13564 		fallthrough;
13565 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13566 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13567 		return kvm_skip_emulated_instruction(vcpu);
13568 
13569 	default:
13570 		kvm_inject_gp(vcpu, 0);
13571 		return 1;
13572 	}
13573 }
13574 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13575 
13576 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13577 {
13578 	struct kvm_run *run = vcpu->run;
13579 	struct kvm_mmio_fragment *frag;
13580 	unsigned int len;
13581 
13582 	BUG_ON(!vcpu->mmio_needed);
13583 
13584 	/* Complete previous fragment */
13585 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13586 	len = min(8u, frag->len);
13587 	if (!vcpu->mmio_is_write)
13588 		memcpy(frag->data, run->mmio.data, len);
13589 
13590 	if (frag->len <= 8) {
13591 		/* Switch to the next fragment. */
13592 		frag++;
13593 		vcpu->mmio_cur_fragment++;
13594 	} else {
13595 		/* Go forward to the next mmio piece. */
13596 		frag->data += len;
13597 		frag->gpa += len;
13598 		frag->len -= len;
13599 	}
13600 
13601 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13602 		vcpu->mmio_needed = 0;
13603 
13604 		// VMG change, at this point, we're always done
13605 		// RIP has already been advanced
13606 		return 1;
13607 	}
13608 
13609 	// More MMIO is needed
13610 	run->mmio.phys_addr = frag->gpa;
13611 	run->mmio.len = min(8u, frag->len);
13612 	run->mmio.is_write = vcpu->mmio_is_write;
13613 	if (run->mmio.is_write)
13614 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13615 	run->exit_reason = KVM_EXIT_MMIO;
13616 
13617 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13618 
13619 	return 0;
13620 }
13621 
13622 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13623 			  void *data)
13624 {
13625 	int handled;
13626 	struct kvm_mmio_fragment *frag;
13627 
13628 	if (!data)
13629 		return -EINVAL;
13630 
13631 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13632 	if (handled == bytes)
13633 		return 1;
13634 
13635 	bytes -= handled;
13636 	gpa += handled;
13637 	data += handled;
13638 
13639 	/*TODO: Check if need to increment number of frags */
13640 	frag = vcpu->mmio_fragments;
13641 	vcpu->mmio_nr_fragments = 1;
13642 	frag->len = bytes;
13643 	frag->gpa = gpa;
13644 	frag->data = data;
13645 
13646 	vcpu->mmio_needed = 1;
13647 	vcpu->mmio_cur_fragment = 0;
13648 
13649 	vcpu->run->mmio.phys_addr = gpa;
13650 	vcpu->run->mmio.len = min(8u, frag->len);
13651 	vcpu->run->mmio.is_write = 1;
13652 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13653 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13654 
13655 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13656 
13657 	return 0;
13658 }
13659 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13660 
13661 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13662 			 void *data)
13663 {
13664 	int handled;
13665 	struct kvm_mmio_fragment *frag;
13666 
13667 	if (!data)
13668 		return -EINVAL;
13669 
13670 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13671 	if (handled == bytes)
13672 		return 1;
13673 
13674 	bytes -= handled;
13675 	gpa += handled;
13676 	data += handled;
13677 
13678 	/*TODO: Check if need to increment number of frags */
13679 	frag = vcpu->mmio_fragments;
13680 	vcpu->mmio_nr_fragments = 1;
13681 	frag->len = bytes;
13682 	frag->gpa = gpa;
13683 	frag->data = data;
13684 
13685 	vcpu->mmio_needed = 1;
13686 	vcpu->mmio_cur_fragment = 0;
13687 
13688 	vcpu->run->mmio.phys_addr = gpa;
13689 	vcpu->run->mmio.len = min(8u, frag->len);
13690 	vcpu->run->mmio.is_write = 0;
13691 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13692 
13693 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13694 
13695 	return 0;
13696 }
13697 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13698 
13699 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13700 {
13701 	vcpu->arch.sev_pio_count -= count;
13702 	vcpu->arch.sev_pio_data += count * size;
13703 }
13704 
13705 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13706 			   unsigned int port);
13707 
13708 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13709 {
13710 	int size = vcpu->arch.pio.size;
13711 	int port = vcpu->arch.pio.port;
13712 
13713 	vcpu->arch.pio.count = 0;
13714 	if (vcpu->arch.sev_pio_count)
13715 		return kvm_sev_es_outs(vcpu, size, port);
13716 	return 1;
13717 }
13718 
13719 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13720 			   unsigned int port)
13721 {
13722 	for (;;) {
13723 		unsigned int count =
13724 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13725 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13726 
13727 		/* memcpy done already by emulator_pio_out.  */
13728 		advance_sev_es_emulated_pio(vcpu, count, size);
13729 		if (!ret)
13730 			break;
13731 
13732 		/* Emulation done by the kernel.  */
13733 		if (!vcpu->arch.sev_pio_count)
13734 			return 1;
13735 	}
13736 
13737 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13738 	return 0;
13739 }
13740 
13741 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13742 			  unsigned int port);
13743 
13744 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13745 {
13746 	unsigned count = vcpu->arch.pio.count;
13747 	int size = vcpu->arch.pio.size;
13748 	int port = vcpu->arch.pio.port;
13749 
13750 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13751 	advance_sev_es_emulated_pio(vcpu, count, size);
13752 	if (vcpu->arch.sev_pio_count)
13753 		return kvm_sev_es_ins(vcpu, size, port);
13754 	return 1;
13755 }
13756 
13757 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13758 			  unsigned int port)
13759 {
13760 	for (;;) {
13761 		unsigned int count =
13762 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13763 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13764 			break;
13765 
13766 		/* Emulation done by the kernel.  */
13767 		advance_sev_es_emulated_pio(vcpu, count, size);
13768 		if (!vcpu->arch.sev_pio_count)
13769 			return 1;
13770 	}
13771 
13772 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13773 	return 0;
13774 }
13775 
13776 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13777 			 unsigned int port, void *data,  unsigned int count,
13778 			 int in)
13779 {
13780 	vcpu->arch.sev_pio_data = data;
13781 	vcpu->arch.sev_pio_count = count;
13782 	return in ? kvm_sev_es_ins(vcpu, size, port)
13783 		  : kvm_sev_es_outs(vcpu, size, port);
13784 }
13785 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13786 
13787 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13788 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13789 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13790 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13791 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13792 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13793 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13794 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13795 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13796 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13797 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13798 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13799 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13800 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13801 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13802 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13803 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13804 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13805 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13806 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13807 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13808 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13809 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13810 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13811 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13812 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13813 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13814 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13815 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13816 
13817 static int __init kvm_x86_init(void)
13818 {
13819 	kvm_mmu_x86_module_init();
13820 	mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13821 	return 0;
13822 }
13823 module_init(kvm_x86_init);
13824 
13825 static void __exit kvm_x86_exit(void)
13826 {
13827 	/*
13828 	 * If module_init() is implemented, module_exit() must also be
13829 	 * implemented to allow module unload.
13830 	 */
13831 }
13832 module_exit(kvm_x86_exit);
13833